
QUANTUM GROUPS AND DIFFERENTIAL FORMS

SWAPNEEL MAHAJAN

Abstract. We construct a quantum semigroup and an algebra of forms ap-

propriate for the generalised homological algebra of N -complexes [8]. This is
an analogue to the picture for usual homological algebra, where one has the
quantum general linear group [9] and the differential forms constructed by

Wess and Zumino [17]. The two pictures are different and we explain why the
dichotomy arises.
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1. Introduction

In the classical situation, for a manifold K, one defines an algebra of differential
forms Ω(K). It is a graded algebra equipped with a graded derivation d of degree
one satisfying d2 = 0. By a graded derivation, we mean that d satisfies the Leibniz
rule for the (wedge) product on Ω(K). If we restrict ourselves to a single coordinate
chart or assume that K = R

n then the general linear group GLn acts on Ω(K).
Dually, the ring of regular functions on GLn, which we denote by GL(n), coacts on
Ω(K). Recall that GL(n) has the structure of a Hopf algebra that is commutative
but not cocommutative.

In the quantum situation, one deforms the above Hopf algebra and constructs a
quantum group GLq(n) which coacts on a suitably deformed algebra of differential
forms Ω(Kq). The Hopf algebra GLq(n) is known in the literature as the quantum
general linear group [9, 12, 13]. Its connection with differential forms first appeared
in the work of Wess and Zumino [17]. For a later survey, see the paper by Manin
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[14]. For us, a quantum group (resp. quantum semigroup) is a Hopf algebra (resp.
bialgebra) which is neither commutative nor cocommutative.

In this paper, we look at an analogue to the above situation. We start with an
algebra of differential forms Ω(A), where the differentials dxi commute instead of
skew-commute and then deform it to Ω(Aq). These considerations are motivated
by the generalised homological algebra of N -complexes [8]. Throughout this paper,
we assume that N ≥ 2 and k is any field.

1.1. The commutative setting. Let V be the vector space over k with basis
S = {x1, . . . , xn}.

Definition 1.1. Let A = k[x1, . . . , xn] be the free commutative algebra in n vari-
ables x1, . . . , xn. Define the algebra of forms

Ω(A) = k[x1, . . . , xn, dx1, . . . , dxn].

There is a differential d : Ω(A) → Ω(A) such that d(xi) = dxi and d(dxi) = 0 for
1 ≤ i ≤ n and

d(uv) = d(u)v + ud(v).

In other words, the differentials dxi commute and the differential d is an ordinary
derivation. So the differential d on Ω(A) does not satisfy d2 = 0.

Definition 1.2. Let the (matrix) bialgebra M be the free commutative algebra on
the generators tij for 1 ≤ i, j ≤ n with the coproduct given by ∆ : M → M ⊗M
with the generator tij 7→

∑n
k=1 tik ⊗ tkj .

The space Ω(A) has a coaction of the bialgebra M , specified on the generators
by

(1.1) xi 7→
n
∑

k=1

tik ⊗ xk and dxi 7→
n
∑

k=1

tik ⊗ dxk.

1.2. The quantum setting. The amazing part is that Ω(A) admits a two pa-
rameter deformation which we may denote Ωs(Aq) along with a quantum (matrix)
semigroup Mq that coacts on it, see Theorem 1. The bialgebra Mq is a two param-
eter deformation of M . These deformations can be constructed systematically. We
will give more details in Sections 3-6. The discussion so far can be summarised in
the following table.

Table 1.

Standard picture Our picture
Classical GL(n) Ω(Rn) M Ω(A)
Quantum GLq(n) Ω(Rn

q ) Mq Ω(Aq)

In the rest of this section, we give the definitions of Ωs(Aq) and Mq using gen-
erators and relations and then discuss the precise relation between the two. The
bialgebra Mq can be seen as a special case of the FRT construction due to Faddeev,
Reshetikhin, and Takhtajan [7]. We treat this and the relation to the Yang Baxter
equation in Section 7.
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1.3. The algebra of forms. We now define an algebra of forms Ω(Aq) that de-
pends on two parameters q and s. For simplicity, we suppress the second parameter
s from the notation. First let

Aq = k{x1, . . . , xn}/(xixj − q xjxi for i > j)

be a deformation of the symmetric algebra A = k[x1, . . . , xn]. It is sometimes
referred to as the Manin n-plane. Next let

dAq = k{dx1, . . . , dxn}/(dxidxj − q dxjdxi for i > j).

Note that dAq is not a deformation of the exterior algebra. Instead it is a defor-
mation of an algebra where the differentials commute instead of skew-commute. In
other words, Aq

∼= dAq as algebras.

Definition 1.3. We define the algebra of forms

Ω(Aq) = Aq ∗ dAq,

as the free product of Aq and dAq, subject to the following twist relations.

(1′) dxixj = q xjdxi + (s− 1) xidxj for i > j.
(1′′) dxjxi = sq−1 xidxj for i > j.
(2) dxkxk = s xkdxk.

It is graded by the number of differential symbols. Furthermore, there is a differ-
ential d : Ω(Aq) → Ω(Aq) such that d(xi) = dxi and d(dxi) = 0 for 1 ≤ i ≤ n and
the s-Leibniz rule holds:

(1.2) d(uv) = d(u)v + s|u|ud(v).

Here |u| is the degree of u with respect to the grading on Ω(Aq). Though d2 is zero
on the generators xi, we cannot conclude d2 = 0. This is because the Leibniz rule
has been skewed by the parameter s rather than the usual (−1). Note that setting
q = s = 1, gives us the basic object Ω(A) in Definition 1.1.

Remark. The object Ω(Aq) is a graded s-differential g-algebra, with generating set
S = {x1, . . . , xn}. This notion is explained in Section 2.

1.4. The order of the differential d and N-complexes. Let the field k have
characteristic 0. Then, for the basic object Ω(A), the differential d has infinite
order, that is, dN = 0 does not hold for any N . And for generic s and q, the same
is true for the deformed object Ω(Aq). However if we choose the parameter s to
be a primitive Nth root of unity then it follows from equation (1.2) that dN = 0
(see Lemma 1). This is the relevance of the paper to the more general homological
algebra of N -complexes [8]. For the basic theory, also see [3, 4, 10]. For an overview
of the mathematical theory and applications to physics, see the paper of Dubois-
Violette [5] and the references therein. Ideas more specific to differential forms can
be found in [1, 2, 6, 11]. Early references to the identity dN = 0 are [15, 16].

This behaviour of the differential is in contrast to the standard picture where
d2 = 0 holds for the usual algebra of differential forms Ω(Rn) as well as for the
deformed one Ω(Rn

q ).
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1.5. The quantum semigroup. The covariance of the algebra of forms Ω(Aq)

leads us to the quantum semigroup Mq which we now define. First let M̃ be the
free associative algebra generated by the symbols tij for 1 ≤ i, j ≤ n with the

coproduct given by ∆ : M̃ → M̃ ⊗ M̃ with the generator tij 7→
∑n

k=1 tik ⊗ tkj .

Definition 1.4. Define the quantum semigroup Mq to be the bialgebra M̃ subject
to the following relations.

(i′) q2 tjktil = s tiltjk for i > j, k > l.
(i′′) q tiktjl = q tjltik + (s− 1) tiltjk for i > j, k > l.
(ii) tiktjk = q tjktik for i > j. (column relations)
(iii) tiltik = qs−1 tiktil for k > l. (row relations)

Note that Mq is a two parameter deformation of the bialgebra M in Definition 1.2.
We obtain the later by setting q = s = 1.

1.6. The covariance of Ω(Aq). Now we explain the connection between Ω(Aq)
and Mq. We think of Ω(Aq) as a noncommutative space and Mq as its space of
endomorphisms.

Theorem 1. The algebra of forms Ω(Aq) is a Mq comodule algebra, that is, there
is a coaction

δ : Ω(Aq) → Mq ⊗ Ω(Aq),

which is a morphism of algebras. The coaction preserves V , the space spanned
by x1, x2, . . . , xn. And, the differential d : Ω(Aq) → Ω(Aq) is a morphism of Mq

comodules. In other words, the following diagram commutes.

Ω(Aq)
d

−−−−→ Ω(Aq)

δ





y
δ





y

Mq ⊗ Ω(Aq)
id⊗d

−−−−→ Mq ⊗ Ω(Aq).

Furthermore, the bialgebra Mq is universal with respect to these properties.

The coaction of Mq on the generators of Ω(Aq) is given by equation (1.1). In
principle, the theorem can be verified directly from the definitions. But that is not
a good approach because it does not tell us how to construct Ω(Aq) and Mq in the
first place. We now address this question.

1.7. Method of construction. The theorem will be proved in three stages (Sec-
tions 3-6). The method is to construct Ω(Aq) and Mq simultaneously using the
properties in the theorem as starting constraints. So when we are done, these prop-
erties would automatically hold. But in any case, we need to start somewhere,
preferably with a situation that is much simpler to understand. This is the content
of Section 3 where we construct free associative objects Ω(Ã) and M̃ that satisfy the
same covariance properties (Proposition 1). The standard picture and our picture
are identical this far.

In Sections 4 and 5, we go from the associative picture to the commutative
picture in two stages by passing to quotients of these free objects by imposing
suitable relations. As we try to do that, the common picture breaks into two cases
(Section 4.1). The first case leads to the standard picture of usual homological
algebra which we are not considering here. So we continue the analysis with the
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second case. The covariance properties, since they hold in the free associative case,
continue to hold after passing to quotients (Propositions 2 and 3).

In Section 6, we obtain Theorem 1 as a special case of Proposition 3. This case
becomes important when we try to relate our construction to the Yang Baxter
equation. We explain this connection in Section 7.

2. The categorical setting

In this section, we give the categorical framework for the algebras of forms consid-
ered in this paper. Observe that the algebras A = k[x1, . . . , xn], Ã = k{x1, . . . , xn}
and its quotient Aq in Section 1, come equipped with the set of generators S =
{x1, . . . , xn}. Further, the differential forms that we construct from these algebras
depend on S in an essential way. Hence, it is natural to do the following.

Definition 2.1. A g-algebra is a pair (A,S), where A = 〈S〉 is an algebra over
k generated by the set S. The letter g indicates that we have specified a set of
generators.

2.1. The standard definitions. We first recall two definitions from [1, 2].

Definition 2.2. A graded s-differential algebra is a graded algebra

Ω = ⊕i≥0Ω
i,

with a degree 1 map d : Ω → Ω such that the s-Leibniz rule holds:

(2.1) d(uv) = d(u)v + s|u|ud(v).

Here |u| is the degree of u with respect to the grading on Ω. We will call d a skewed
derivation or a s-derivation for short.

Definition 2.3. Let A be an algebra. A graded s-differential enveloping algebra
of A is a graded s-differential algebra such that Ω0 = A.

2.2. The modified definitions. We now give the analogues of the above defini-
tions in the category of g-algebras.

Definition 2.4. A graded s-differential g-algebra is a pair (Ω, S), where Ω is a
graded s-differential algebra, (Ω0, S) is a g-algebra and d2(S) = 0.

Lemma 1. For a graded s-differential g-algebra (Ω, S), if s is a primitive N th root
of unity (N ≥ 2) and Ω = 〈S, dS〉, then dN = 0.

Proof. We prove this result by induction. By definition, d2(S) = 0. Hence dN (S) =
0, and dN (dS) = 0. This is the induction basis. Repeated application of the s-
Leibniz rule in equation (2.1) gives

dN (uv) =

N
∑

i=0

si|u|
(

N

i

)

s

dN−i(u)di(v),

where
(

N
i

)

s
is the s-binomial coefficient. Note that if s is a primitive Nth root of

unity then
(

N
i

)

s
= 0 for 1 ≤ i ≤ N − 1. And by induction, dN (u) = dN (v) = 0.

Hence dN (uv) = 0. Since Ω = 〈S, dS〉, the result follows. �
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Remark. Note that to get the conclusion dN = 0, it was enough to assume that
dN (S) = 0. The stronger assumption d2(S) = 0, though unnecessary for Lemma
1, simplifies the analysis done in this paper. Else for xi ∈ S, one needs to intro-
duce higher differential symbols d2xi, d

3xi, and so on; see the paper of Kerner and
Abramov [11] and the references therein for such considerations.

Definition 2.5. Let (A,S) be a g-algebra. A graded s-differential enveloping g-
algebra of A is a graded s-differential g-algebra (Ω, S), with Ω0 = A.

For a fixed g-algebra (A,S), one can define the category of graded s-differential
enveloping g-algebras of A.

3. The free associative picture

In this section, we perform the first step in the proof of Theorem 1, namely,
prove it for the free associative case, see Proposition 1.

3.1. The algebra of forms Ω(Ã). Let V be the vector space over k with basis
S = {x1, . . . , xn}.

Definition 3.1. Let Ã = k{x1, . . . , xn} be the free associative algebra generated by

S = {x1, . . . , xn}. Define Ω(Ã) to be the universal object in the category of graded

s-differential enveloping g-algebras of Ã. An explicit description is as below.

Remark. If s = −1 then the relevance of S disappears and one can work with
algebras instead of g-algebras. And Ω(Ã) is the free differential envelope of Ã and

d is a graded derivation of Ω(Ã) satisfying d2 = 0.

As an algebra,

Ω(Ã) = k{x1, . . . , xn, dx1, . . . , dxn}

is freely generated by x1, . . . , xn and the symbols dx1, . . . , dxn. It is graded by the
number of differential symbols. For example,

x1dx1x2dx2dx2 ∈ Ω(Ã)

is of degree 3. The differential d : Ω(Ã) → Ω(Ã) is defined as follows:
Let zk ∈ {x1, . . . , xn, dx1, . . . , dxn} denote a generator. For a monomial z =

z1z2 · · · zi ∈ Ω(Ã), define

d(z) = d(z1 · · · zi) =
i

∑

k=1

s|z1···zk−1| z1 · · · zk−1 dzk zk+1 · · · zi,

where d(xk) = dxk, d(dxk) = 0 and |z1 · · · zk−1| is the degree of the monomial
z1 . . . zk−1, that is, it is the number of differential symbols that occur in z1 . . . zk−1.
Note that the above definition is forced on us by equation (2.1). As an example,

d(x1dx2x2dx1x1) = dx1dx2x2dx1x1 + s x1dx2dx2dx1x1 + s2 x1dx2x2dx1dx1.

We set dÃ = k{dx1, . . . , dxn}, the subalgebra of Ω(Ã) that is freely generated by

dx1, . . . , dxn. It is then clear that Ω(Ã) = Ã ∗ dÃ, the free product of Ã and dÃ.
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3.2. The universal bialgebra M̃ .

Definition 3.2. Let M̃ be the universal bialgebra that coacts on V such that the
coaction extends to Ã, making it a M̃ comodule algebra.

More explicitly, M̃ is the free associative algebra on the generators tij for 1 ≤

i, j ≤ n and the coproduct ∆ : M̃ → M̃ ⊗ M̃ sends the generator tij 7→
∑n

k=1 tik ⊗

tkj . The coaction δ : Ã → M̃ ⊗ Ã on the generating space V sends the generator
xi 7→

∑n
k=1 tik ⊗ xk.

3.3. Relating Ω(Ã) and M̃ . The bialgebra M̃ can also be viewed as an universal

object coacting on the algebra of forms Ω(Ã) as below.

If we define a coaction δ : dÃ → M̃ ⊗ dÃ that sends the generator dxi 7→
∑n

k=1 tik ⊗ dxk then dÃ is also a M̃ comodule algebra. Furthermore, δ extends

uniquely to a coaction on Ω(Ã) = Ã ∗ dÃ making it a M̃ comodule algebra. One

can directly check that the differential d : Ω(Ã) → Ω(Ã) is a morphism of M̃
comodules. In other words, the following diagram commutes.

(3.1)

Ω(Ã)
d

−−−−→ Ω(Ã)

δ





y
δ





y

M̃ ⊗ Ω(Ã)
id⊗d

−−−−→ M̃ ⊗ Ω(Ã).

As already mentioned, δ in addition to being a comodule map is also a morphism
of algebras.

The discussion in this section can be summarised as follows.

Proposition 1. Theorem 1 holds with Ω(Ã) and M̃ instead of Ω(Aq) and Mq

respectively.

4. Imposing relations

In this section, we perform the second step in the proof of Theorem 1, namely,
prove it for a quotient of the free associative case, see Proposition 2.

We are interested in the following deformation of the symmetric algebra A. Let

Aq = k{x1, . . . , xn}/(xixj − q xjxi for i > j).

Setting q = 1 gives us the symmetric algebra A = k[x1, . . . , xn]. Note that Aq is a

quotient of the free associative algebra Ã. Our goal is to construct an algebra of
forms Ω′(Aq) and a bialgebra M ′

q in this non-free situation. The idea is to obtain

them as quotients of Ω(Ã) and M̃ , the free objects defined in Section 3, with the
new differential d and the new comodule map δ being the induced maps on the
quotients. As before, we require that Ω′(Aq) be a M ′

q comodule algebra and the
s-differential d on Ω′(Aq) be a morphism of M ′

q comodules. In short, we want to
pass to a quotient of the commutative diagram (3.1) of the previous section.

We will explain how these requirements point us to the relations that we must
impose on Ω(Ã) and M̃ . Everything in this section is a formal consequence of our
requirements. The only thing that was ad hoc was the particular deformation Aq

that we chose.



8 SWAPNEEL MAHAJAN

4.1. Taking care of d. Applying d to the relation xixj = q xjxi for i > j, we get

(C) dxixj + xidxj = q(dxjxi + xjdxi) for i > j.

We will call this the connecting relation since it relates the function variables xi

with the differentials dxi. Next apply d to the connecting relation (C) to obtain

(s+ 1)dxidxj = q(s+ 1)dxjdxi for i > j.

This yields two cases,

s = −1 or dxidxj = q dxjdxi for i > j.

The first choice s = −1 corresponds to the standard picture of ordinary homological
algebra (d2 = 0). This case when analysed further would lead to the usual quantum
general linear group GLq(n). Since we would like s to stay a free parameter, we
choose the second alternative, that is, we impose dxidxj = q dxjdxi for i > j. For
notational convenience, we set

dAq = k{dx1, . . . , dxn}/(dxidxj − q dxjdxi for i > j).

Note that Aq
∼= dAq as algebras. Also observe that had we chosen s = −1 to start

with we would have never seen this relation.

Definition 4.1. Let

Ω′(Aq) = Aq ∗ dAq/(connecting relation (C)).

Note that by construction, Ω′(Aq) is the universal object in the category of graded
s-differential enveloping g-algebras of Aq.

4.2. Taking care of δ. For this, we need to impose some relations on M̃ . We
begin by applying δ to the relation xixj = q xjxi for i > j. The left hand side
looks as follows.

δ(xixj) = δ(xi)δ(xj)
=

∑

k,l tiktjl ⊗ xkxl

=
∑

k>l(q tiktjl + tiltjk)⊗ xlxk +
∑

k tiktjk ⊗ x2
k.

The computation for the right hand side δ(q xjxi) is very similar. It can also be
obtained from the above computation by interchanging i and j and adding a factor
of q. Comparing the two sides, we get two relations on M̃ .

(i) (q tiktjl + tiltjk) = q(q tjktil + tjltik) for i > j and k > l.
(ii) tiktjk = q tjktik for i > j. (column relations)

Definition 4.2. Define the bialgebra M ′
q to be the quotient

M ′
q = M̃/(relations (i) and (ii)).

Strictly speaking, one still needs to check that the relations (i) and (ii) generate a

coideal in M̃ . This is a straightforward computation.
Note that by construction, M ′

q is the universal bialgebra that coacts on V such
that the coaction extends to Aq, making it a M ′

q comodule algebra.

Remark. The construction of M ′
q from Aq can be seen as a special case of a theorem

of Manin, which says that for a quadratic algebra A, there is a universal bialgebra
A! •A that coacts on A, see parts (b) and (c) of the theorem in [13, Chapter 4]. In
particular, we have

M ′
q = A!

q •Aq.
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By appealing to Manin’s theorem, one can avoid the above coideal computation.

4.3. Relating Ω′(Aq) and M ′
q. Recall that in addition to the basic relation xixj =

q xjxi for i > j, we had imposed two more relations on Ω(Ã), namely, the connecting
relation (C) and the relation dxidxj = q dxjdxi for i > j. These were obtained by
successively applying d to the basic relation. Hence, in view of the commutative
diagram (3.1) at the end of Section 3, the map δ is automatically well-defined on
these relations. In other words, applying δ to these relations would again lead to
the same relations (i) and (ii) above. For dxidxj = q dxjdxi, of course, we can also
use that Aq

∼= dAq as algebras and that δ respects this isomorphism.
The discussion in this section can be summarised as follows.

Proposition 2. Theorem 1 holds with Ω′(Aq) and M ′
q instead of Ω(Aq) and Mq

respectively.

5. Imposing more relations

In this section, we will perform the third step in the proof of Theorem 1, see
Proposition 3.

From the standpoint of commutativity, the candidates M ′
q and Ω′(Aq) of Section

4 are not satisfactory. More precisely, the bialgebra M ′
q when q = 1 is not commu-

tative; there are not enough relations. Similarly for Ω′(Aq), the connecting relation
(C) does not allow us to move a dxi past a xj . It is clear from this discussion that
we need to pass to a further quotient.

At the end of Section 3, we had a complete picture. But it was not what we
wanted. So in order to do the analysis in Section 4, we started with the deformed
algebra Aq, an ad hoc choice. Now similarly at the end of Section 4, we again have
a complete picture. But it is still not satisfactory. So we must make another ad
hoc choice.

5.1. The twist relations. A natural thing to do is to add the following twist
relations to Ω′(Aq).

(1) dxixj = c+ij xjdxi + c−ij xidxj for i 6= j.

(2) dxkxk = u xkdxk.

Here c+ij , c
−
ij and u are constants to be determined. We will soon see that u = s.

For a fixed i > j, the first relation really consists of two relations that refine the
connecting relation (C). The + superscript indicates that the constant c+ij is in

some sense desirable. Similarly, the constant c−ij is undesirable. It is necessary to
make things work but it must become zero when we specialise to q = s = 1. The
second relation is added to deal with the case i = j. Note that we have added the
simplest possible relations to Ω′(Aq) in order to make it more commutative. It is
possible to consider more general and complicated relations. However it turns out
that the relations we have added are sufficient to give something non-trivial and
interesting and so we will stick to them.

5.2. Taking care of d. Now we play the same game as before. If we apply d to
the second twist relation then we see that u = s, that is,

dxkxk = s xkdxk.



10 SWAPNEEL MAHAJAN

The first twist relation is somewhat more interesting. Plugging it in the connecting
relation (C), we obtain

c+ij xjdxi + (c−ij + 1) xidxj = q [c+ji xidxj + (c−ji + 1) xjdxi].

Also applying d to the first twist relation gives

s dxidxj = c+ij dxjdxi + c−ij dxidxj .

With i, j fixed and i > j, the above two equations give us 3 equations in the four
unknowns c+ij , c

−
ij , c

+
ji and c−ji, namely,

(5.1) c+ij = q(c−ji + 1), qc+ji = c−ij + 1, and sq = c+ij + qc−ij .

Definition 5.1. Let

Ω′′(Aq) = Aq ∗ dAq/(relations (1) and (2)),

where u = s and cij are constants that satisfy equation (5.1). It is a graded s-
differential enveloping g-algebra of Aq, but does not satisfy any universal property
for Aq.

5.3. Taking care of δ. Having dealt with d, we now take care of δ. A routine
computation similar to the one in Section 4.2 gives us the following relations on M̃ .

(i) c+kl tiktjl + (c−lk − c−ij) tiltjk = c+ij tjltik for i 6= j, k 6= l.

(ii) (s− c−ij) tiktjk = c+ij tjktik for i 6= j. (column relations)

(iii) c+kl tiktil = (s− c−lk) tiltik for k 6= l. (row relations)

The first two relations are obtained by applying δ to the relation (1) while the
third one is obtained by applying δ to the relation (2) in Section 5.1. Since the
relation (1) is a refinement of the connecting relation (C), the relations (i) and (ii)
above respectively imply the relations (i) and (ii) of Section 4.2.

Definition 5.2. Define the bialgebra M ′′
q as the quotient

M ′′
q = M̃/(relations (i),(ii) and (iii)).

As in the previous section, one can routinely check that the relations (i),(ii) and

(iii) generate a coideal in M̃ . This computation can be avoided by appealing to the
FRT construction [7]. We explain this in Section 7.1.

5.4. Relating Ω′′(Aq) and M ′′
q . Observe that M ′′

q does not satisfy any universal
property for Aq. However, from the discussion in this section, it does have an
universal property for Ω′′(Aq), as below.

Proposition 3. Theorem 1 holds with Ω′′(Aq) and M ′′
q instead of Ω(Aq) and Mq

respectively.

6. Completing the proof of Theorem 1

In this section, we explain how Theorem 1 is a special case of Proposition 3, see
Lemma 3.
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6.1. The homogeneity condition. Recall that our goal was to construct a de-
formation Mq of the commutative bialgebra M in Definition 1.2. For that, we want

to ensure that we have not added too many relations to M̃ in Definition 5.2. For
example, the relation (i) is made up of four relations depending on how the indices
i and j, and k and l compare. For ease of comparison, we write them as follows
always assuming that i > j and k > l.

tiktjl tiltjk tjktil tjltik

(i′) c+kl + (c−lk − c−ij) = c+ij .

(i′′) c+ji = c+kl + (c−lk − c−ji).

(i′′′) (c−kl − c−ij) + c+lk = c+ij .

(i′′′′) c+ji = (c−kl − c−ji) + c+lk.

In the above short hand notation, equation (i′) says that

c+kl tiktjl + (c−lk − c−ij) tiltjk = c+ij tjltik,

and so on. We would only like two relations and not four. To get some linear
dependence, we assume that for k > l and i > j,

(H) c+kl = c+ij , c−kl = c−ij , c+lk = c+ji, and c−lk = c−ji.

This may be regarded as a homogeneity condition on the variables. With this
assumption, one readily checks that the relations (i′′′) and (i′′′′) are dependent on
the first two. More precisely, (i′′) = (i′′′) and c+ji (i

′) = c+ij (i′′′′). Also observe that

by equation (5.1),

q [(i′) + q (i′′)] = c+kl (i),

where (i) is the relation in Section 4.2.
Similarly, the relation (ii) seems to be made up of two relations, depending on

how the indices i and j compare. However, it is actually only one relation. This
becomes clear if we rewrite it as

(ii) q =
tiktjk
tjktik

=
c+ij

s− c−ij
=

s− c−ji

c+ji
for i > j. (column relations)

The above equalities can be checked using equation (5.1). This also shows that
the relation (ii) is completely equivalent to the relation (ii) of Section 4.2. The
relation (iii) which we called the row relation is completely new. It was obtained
by applying δ to the relation dxkxk = s xkdxk. Following the analogy with the
relation (ii), one can rewrite it as

(iii) q1 =
tiktil
tiltik

=
c+lk

s− c−kl
=

s− c−lk
c+kl

for k > l. (row relations)

To summarise:

Lemma 2. Assuming the homogeneity condition (H), the relations (i), (ii) and (iii)
of Section 5.3 reduce to the relations (i′), (i′′), (ii) and (iii) above.
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6.2. A special case. As mentioned earlier, the two constants c−ji and c−ij for i > j

with − superscripts are undesirable. But if we put c−ji = c−ij = 0 then solving

equation (5.1) gives s = 1, which is unpleasant since we lose control over the
parameter s. A good tradeoff is to put one of them equal to zero; say c−ji = 0 for

i > j. Then solving equation (5.1), we obtain

c+ij = q, c−ij = s− 1 and c+ji = sq−1.

This solution is related to the Yang Baxter equation, see Proposition 5.

Lemma 3. For the choice of the constants c+ij = q, c−ij = s − 1, c+ji = sq−1 and

c−ji = 0 for i > j, the algebra of forms Ω′′(Aq) and the quantum semigroup M ′′
q

in Definitions 5.1 and 5.2 specialise to Ω(Aq) and Mq in Definitions 1.3 and 1.4
respectively.

Proof. The claim is straightforward for the algebra of forms. For the quantum
semigroup, one uses Lemma 2 and checks that substituting the above solution
in the relations (i′), (i′′), (ii) and (iii) of Section 6.1, we obtain the corresponding
relations in Section 1.5. �

7. Connection to the Yang Baxter equation

In this section, we explain how the bialgebra M ′′
q in Proposition 3 can also be

seen as a special case of the FRT construction. We will also explain the connection
to the Yang Baxter equation (YB for short).

7.1. The quantum semigroup M ′′
q as a special case. The existence of M ′′

q can
also be deduced from the following theorem which is central to the FRT construc-
tion.

Theorem 2. Let W be a finite dimensional vector space and c an endomorphism
of W ⊗ W . Then there exists a universal bialgebra A(c), and a comodule map
δ : W → A(c)⊗W such that the map c is a morphism of comodules.

Let W be a n dimensional space with basis e1, e2, . . . , en.

Definition 7.1. Define a linear map c : W ⊗W → W ⊗W using the twist relations
of Section 5.1 as follows.

c(ei ⊗ ej) = c+ij ej ⊗ ei + c−ij ei ⊗ ej for i 6= j, and

c(ek ⊗ ek) = s ek ⊗ ek.

Here the cij ’s are constants that satisfy equation (5.1), with q and s as parame-
ters.

Proposition 4. With A(c) as in Theorem 2 for c as in Definition 7.1, and M ′′
q as

in Definition 5.2, we have

A(c) ∼= M ′′
q .

Proof. The bialgebra A(c) is the quotient of M̃ by the relations imposed by the

condition that c is a morphism of comodules. Similarly, M ′′
q is the quotient of M̃ by

the relations imposed by the condition that the coaction respects the twist relations
(Section 5.3). Hence in view of Definition 7.1, we conclude that A(c) ∼= M ′′

q . �
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Remark. The bialgebra A(c) in Theorem 2 can be defined using generators and
relations, see [9, Definition VIII.6.2]. One can then check that for the c chosen in
Definition 7.1, these relations coincide with the relations (i), (ii) and (iii) in Section
5.3. This is a more direct way to prove the above proposition.

The main step in the proof of Theorem 2 is to show that the relations in the
definition of A(c) form a coideal, see the proof of [9, Lemma VIII.6.3]. This was
precisely the computation that we omitted for M ′′

q .

7.2. The Yang Baxter equation. Let 1 denote the identity map of W to itself.
We say that a linear automorphism c of W ⊗W is a solution of the YB equation if

(c⊗ 1)(1⊗ c)(c⊗ 1) = (1⊗ c)(c⊗ 1)(1⊗ c)

holds in the automorphism group of W ⊗W ⊗W .

Proposition 5. If the linear map c in Definition 7.1 is a solution of the YB
equation and the constants cij satisfy the homogeneity condition (H) in Section 6.1
then for i > j, either c−ij = 0 or c−ji = 0.

For the rest of the section, we will always assume that c−ji = 0 for i > j. This

was precisely the special case considered in Section 6.2. Recall that equation (5.1)
then forces

c+ij = q, c−ij = s− 1 and c+ji = sq−1.

Proposition 6. The linear map c in Definition 7.1, with the cij’s as above is a
solution of the YB equation iff (s = q or q = −1).

Furthermore, if s = q then c satisfies the quadratic relation (c− q)(c+ 1) = 0.

Both the above propositions can be proved by direct computations. They are
very similar to those in Kassel’s book [9, pg 171]. Hence to get a solution to the
YB equation, we either need to put s = q or q = −1. In any case, we get a solution
to the YB equation with one free parameter.

7.3. Braid groups and the Hecke algebra. We now explain the significance of
the quadratic relation

(c− q)(c+ 1) = 0.

For every n, we have the braid group Bn on n strands. The Hecke algebra of type
An−1 is a certain quotient of kBn, the group algebra of Bn over the field k. A
solution c of the YB equation can be used to construct a representation W⊗n of
the braid group Bn for every n, as in [9, X.6.2]. And this representation factors
through the corresponding Hecke algebra of type An−1 exactly when c satisfies the
above quadratic relation. Thus for s = q, our choice of c gives a one parameter
family of representations of the Hecke algebra.
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