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SHUFFLES ON COXETER GROUPS

SWAPNEEL MAHAJAN

Abstract. The random-to-top and the riffle shuffle are two well-studied meth-
ods for shuffling a deck of cards. These correspond to the symmetric group

Sn, i.e., the Coxeter group of type An−1. In this paper, we give analogous
shuffles for the Coxeter groups of type Bn and Dn. These can be interpreted
as shuffles on a “signed” deck of cards. With these examples as motivation,

we abstract the notion of a shuffle algebra which captures the connection be-

tween the algebraic structure of the shuffles and the geometry of the Coxeter
groups. We also give new joker shuffles of type An−1 and briefly discuss the
generalisation to buildings which leads to q-analogues.
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1. Introduction

In a recent work, Ken Brown [10] used algebraic methods to analyze random
walks on a class of semigroups called “left-regular bands”. These walks include the
hyperplane chamber walks of Bidigare, Hanlon and Rockmore [4, 5]. In this paper,
we look at the special case of reflection arrangements that arise in the study of
Coxeter groups. The random walks that we look at can be thought of as shuffles on
the chambers of a Coxeter complex. The motivating examples are the well studied
riffle shuffle and the random-to-top shuffle on a deck of n cards [2, 11, 13, 14, 20].
These correspond to the symmetric group Sn, i.e., the Coxeter group of type An−1.

We define analogous shuffles for the Coxeter groups of type Bn and Dn; also
see [3, 16]. Our examples are motivated by shuffle considerations on the one hand
and the geometry of the Coxeter complex on the other. This is best understood in

1 2000 Mathematics Subject Classification. Primary 60J10, 05A99.
Key words and phrases. random walk; shuffle algebra; semisimplicity; descent algebra; build-

ing; Stirling number.

1



2 SWAPNEEL MAHAJAN

the framework of a shuffle algebra, a notion we introduce. The striking similarity
among the examples can be traced to maps among the three Coxeter complexes of
type An−1, Bn and Dn. We also give new shuffles of type An−1, A2n and A2n−1

and generalize some of the random walks to buildings.
The only Coxeter groups that we deal with are the ones of type An−1, Bn andDn.

To make this paper accessible to readers unfamiliar with Coxeter groups we have
included two appendices. Appendix A reviews the facts we need about hyperplane
arrangements. In Appendix B, we give a brief review of Coxeter groups and then
explain everything in concrete terms for the three cases mentioned above. For the
general theory of Coxeter groups, we refer the reader to [9, 17, 18, 24].

A version of this paper is on the preprint server at http://xxx.lanl.gov/. We
note some changes. Section 7 on shuffles on cards with an involution and a joker
and Section 3.4 have been added. Section 2 and the concluding section on future
prospects has been rewritten. Also some random walk descriptions have been added
or corrected.

1.1. The random walk and the method of analysis. Let Σ be the (simplicial)
Coxeter complex associated to a Coxeter groupW . Also let C be the set of chambers
(or maximal simplices) of Σ. Then Σ is a semigroup containing C as an ideal. The
product in Σ is given by the projection maps as explained in Appendix A. We now
describe the walk. Let {wx}x∈Σ be a probability distribution on Σ. If the walk
is in chamber c ∈ C, then move to the chamber xc, where x ∈ Σ is chosen with
probability wx. The product xc is again a chamber because C is an ideal in Σ.

Next we describe the walk more algebraically. Fix a commutative ring k and
consider the semigroup algebra kΣ. The k-module kC spanned by the chambers
is an ideal in kΣ. In particular, it is a module over kΣ; we therefore obtain a
homomorphism

kΣ → Endk(kC),

the latter being the ring of k-endomorphisms of kC. This map is in fact an inclusion;
so one can regard elements of kΣ as operators on kC. Let σ =

∑
x∈Σ wxx be such

that
∑

x∈Σ wx = 1. It is straightforward to check that the transition matrix of
the random walk determined by {wx} is simply the matrix of the operator “left
multiplication by σ”. In other words, it is the image of σ under the inclusion
kΣ →֒ Endk(kC).

A way to analyze the random walk is to focus on kΣ and understand the structure
of the subalgebra k[σ] that σ generates in kΣ. Because of the inclusion map above,
we can also analyze the structure of k[σ] in Endk(kC). We will make use of both
viewpoints in our examples. The reader may be more familiar with this algebraic
approach in the context of groups [12] rather than semigroups [10].

1.2. Nature of our examples. In our examples, the element σ will never be nor-
malized. In other words, if we write σ =

∑
x∈Σ wxx then

∑
x∈Σ wx 6= 1. So, strictly

speaking, we will not have a probability distribution on Σ. The main reason for
doing this is to simplify the algebra. So every time we describe the random walk
associated to σ, the description will be correct up to a normalization factor. This
will also be true for all other objects that will show up in the analysis. To get rid
of this anomaly, we adopt the following convention. If the random walk description
says “Do xxx at random.” then the normalization factor is “the number of ways
of doing xxx”. In general, the random walk description will involve a sequence of
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independent random acts in which case the normalization factor will be the product
of the individual factors. In most examples, we will prefer to first define relevant
elements of kΣ and then to provide motivation by interpreting the associated ran-
dom walks. Making this translation will always involve the normalization factor
defined above.

Further in all examples, except those in Section 7, the element σ will lie in
the subalgebra of W -invariants of kΣ. We now discuss this subalgebra. The W -
invariants of kΣ under the natural W -action form a k-algebra (kΣ)W . As a k-
module, (kΣ)W is free with one basis element for each W -orbit in Σ, that basis
element being the sum of the simplices in the orbit. Since orbits correspond to
types of simplices, we obtain a basis vector

σJ =
∑

F∈ΣJ

F

for each J ⊆ I, where ΣJ is the set of simplices of type J and I is the set of all
labels or types of vertices of Σ. Also let Σj be the set of all simplices of rank j,
irrespective of their type.

As already mentioned, in most of our examples σ ∈ (kΣ)W and hence k[σ] is a
certain commutative subalgebra of (kΣ)W . Since the element σ is always motivated
by some shuffle considerations, we will call k[σ] a shuffle algebra. For a precise
definition, see Section 2.1. Bidigare [4] proved that (kΣ)W is anti-isomorphic to
Solomon’s descent algebra [22], which is a certain subalgebra of the group algebra
kW . So most of the shuffle algebras we consider are anti-subalgebras of Solomon’s
descent algebra. And since they are commutative, they are in fact subalgebras of
the descent algebra.

1.3. Organization of the paper. In Section 2, we define shuffle algebras, state
a theorem that gives examples of such algebras and then provide a method for
proving it. In the next three sections, we prove the theorem by studying the ex-
amples of shuffle algebras of type An−1, Bn and Dn respectively that it contains.
These sections should be read in conjunction with Appendices B.4, B.5 and B.6
respectively. The maps between Coxeter complexes which explain the close rela-
tion between different examples are explained in Section 6. This section gives us
a good overall picture of how things fit together and can play an important role
in the further development of the theory. We see examples of this in the next two
sections, where we define some new shuffles of type An, A2n and A2n−1 and briefly
discuss the generalization of the random walks to buildings.

2. The abstract setup

In this section, we first abstract the notion of a shuffle algebra, then state a
theorem that gives examples of such algebras and finally provide a method for
proving it. It is best to skim over this section first and then to go over the details
later with a concrete example in mind.

2.1. Shuffle algebras. We first need a preliminary definition. An additive (resp.
multiplicative) shuffle semigroup is a subsemigroup of the semigroup of non-negative
(resp. positive) integers under addition (resp. multiplication). Note that there is
only one additive shuffle semigroup up to isomorphism. However in the multiplica-
tive case, there could be many. Now we are ready to define a shuffle algebra.
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Table 1. Examples of shuffle algebras.

Type Additive Multiplicative

An−1 σs1 , σs1 + σsn−1
σs1 + . . .+ σsn−1

Bn σs1 σt, σs1 + . . .+ σsn−1

Dn σs1 σu + σv, σu + σv + σs1 + . . .+ σsn−2
+ σu,v

We say that a subalgebra A ⊆ kΣ is an additive (resp. multiplicative) shuffle

algebra if it satisfies the following conditions.

(1) dimΣ + 1 ≤ dimk A ≤ dimΣ + 2.
(2) A has a basis of the form σ0 = 1,σ1,σ2,. . . where σj is an element of kΣj ,

the span of simplices of rank j.
(3) A = k[σ1] ⊆ kΣ.
(4) A contains an additive (resp. multiplicative) shuffle semigroup S as a span-

ning set.

An alternate way to express condition (4) is to say that there exists an injective
semigroup map S →֒ A such that the image spans A. Note that the definition of a
shuffle algebra A depends on the Coxeter complex Σ under consideration. In fact,
conditions (1), (2) and (3) say that the algebra A is in tune with the geometry of Σ.
Hence it is more correct to write a shuffle algebra as a pair (A,Σ). But we will not
bother with this since the Coxeter complex Σ will always be clear from context.

The above definition is mainly motivated by the infinite families An−1, Bn and
Dn. The significance of this definition for the sporadic Coxeter groups of type E6,
E7, etc. is not clear. We have imposed the strictest possible conditions that our
examples led us to. As a result, some of the algebras we consider are not shuffle
algebras; for example, the double shuffle constructions in Sections 4.2 and 5.2.
Hence a more flexible definition might work better, say for the classification of
shuffle algebras.

Ken Brown [10] showed that if k has characteristic 0 and σ is a non-negative
integral linear combination in the canonical basis of kΣ consisting of all simplices
then k[σ] is split-semisimple, that is, k[σ] ∼= kn for n = dimk k[σ]. To guarantee
this result for an arbitrary field he introduced an additional condition on σ. We will
always assume that k has characteristic 0. Also σ will always be a non-negative in-
tegral linear combination in the canonical basis of kΣ. Hence it follows by condition
(3) that the shuffle algebras we consider are split-semisimple.

2.2. The main result and method of proof. For notation, refer to Section 1.2
and Figures 2,3 and 4 in Appendix B.3.

Theorem 1. For the choices of σ shown in Table 1, the algebra k[σ] is a shuffle

algebra.

Note that σu+σv +σs1 + . . .+σsn−2
+σu,v 6∈ kΣ1. Hence for this σ, the algebra

A = k[σ] violates condition (2). However we regard this as a minor point. The
other examples not covered by this theorem are the joker shuffles which will be
discussed in Section 7.

To prove the theorem, we need to define elements σj ∈ kΣj and a shuffle semi-
group S for each σ. These will be explicitly constructed in the next three sections.
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They will always have a nice interpretation in terms of card shuffles. This explains
our terminology of shuffle semigroups.

Proposition 1. Let A be an n-dim algebra containing a spanning semigroup S.
Suppose that there exist characters χ1,. . . ,χn of S and elements e1,. . . ,en of A such

that for every s ∈ S, we have

(*) s =

n∑

i=1

χi(s)ei.

Then A
∼=
−→ kn with ei as the primitive idempotents. Also the χi’s extend to

characters of A.

Proof. The elements e1,. . . ,en of A span S which in turn spans A. Since dimk A = n
this implies that e1,. . . ,en form a basis for A. This yields a vector space iso-

morphism Φ : A
∼=
−→ kn, where

∑n
i=1 aiei 7→ (a1, . . . , an). Hence for s ∈ S,

s 7→ (χ1(s), . . . , χn(s)). Since χ1, . . . , χn are characters of S, we have Φ(s1s2) =
Φ(s1)Φ(s2) for s1, s2 ∈ S. The fact that Φ respects the algebra structures on a
spanning set S of A implies that it is in fact an algebra homomorphism. �

This proposition is more relevant to the multiplicative examples. It also applies
to the additive examples. But since they are simpler they are tractable by other
means also. To prove Theorem 1, we construct by hand, elements σj ∈ kΣj and
a spanning shuffle semigroup S in A = k[σ1, . . . , σn]. The characters χ of S that
we will use will be of the form χ(a) = ca if S is additive and χ(a) = ac if S is
multiplicative. Here c is a fixed non-negative integer. The specific values of c that
we need to choose depend on the example at hand. Proposition 1 will then give
an explicit isomorphism of A with kn. This will imply that in fact A = k[σ1] and
hence is a shuffle algebra. Note that along the way, we will also obtain that A is
split-semisimple and formulas for the primitive idempotents in A.

The Coxeter complexes Σ of type An−1, Bn and Dn can be described using the
language of “ordered partitions”. Also, chambers of Σ can be described as a “deck
of cards”. This is explained in Appendices B.4, B.5 and B.6 respectively. The
descriptions for type B and D are not in the literature. So we give full details.
We follow the convention that “left to right” for an ordered partition is “top to
bottom” for a deck of cards. It is essential to be familiar with this language to fully
understand the examples. In Sections 3.1 and 3.3, we explain the side shuffle (σ =
σs1) and riffle shuffle (σ = σs1 + . . .+ σsn−1

) of type An−1. They are the simplest
of the additive and multiplicative examples respectively and serve to illustrate the
method in each case.

3. Examples of type An−1

We consider three examples; the side shuffle, the two sided shuffle and the riffle
shuffle. The first two are additive in nature while the third is multiplicative. We also
give involutive and joker analogues of two of these shuffles in Section 7. Elements
of the label set I will be written as s1, s2, . . . , sn−1; see Figure 2 in Appendix B.3.
Recall that σJ , the sum of simplices of type J , for J ⊆ I form a basis for (kΣ)W .
Hence these elements will play a key role in the analysis.
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3.1. The side shuffle. This is more commonly known as the random-to-top shuffle
or the Tsetlin library. We may also call it the one sided shuffle. It arises in the study
of dynamic list-management in computer science. See Fill [14] and the references
cited there. The eigenvalues for this random walk were first found by Phatarfod [20];
see also [4, 5, 10, 11, 13, 14] for other proofs.

The element of interest is σ = σs1 , that is, it is the sum of all vertices of type s1.
In terms of ordered partitions, σs1 is the sum of all ordered two block partitions
of [n] such that the first block is a singleton. As explained in Section 1.1, there
is a random walk on a deck of n cards associated to σ. It consists of removing a
card at random and replacing it on top. When n = 4, for example, ({2}, {1, 3, 4})
is a typical summand of σ. Its product with the deck ({1},{2},{3},{4}) gives
({2},{1},{3},{4}), that is, the overall effect is to remove the card labeled 2 and put
it on top. Note that the normalization factor in this case is n, consistent with the
convention of Section 1.2.

In addition to σ = σ1, we define σj = σJj
where Jj = {s1, . . . , sj} ⊆ I for

j = 1, . . . , n − 1. To explain in words, σ1 is the sum of all the vertices of type s1,
σ2 is the sum of all the edges of type s1s2 and so on till σn−1 which is the sum of
all chambers of Σ. As ordered partitions, σj is the sum of all ordered (j + 1) block
partitions of [n] such that the first j blocks are singletons. Also for convenience,
we define σn = σn−1. Just like σ1, we can describe the random walk on a deck of
n cards associated to σj .

σj : Choose j distinct cards at random and put them on top in a random order.
Note that σn was previously defined in an artificial way. But the random walk
description for σn makes perfect sense and we now see the motivation in setting
σn = σn−1. The two are identical as random walks and by our convention have the
same normalization factor of n!. From now on, we will leave out the discussion on
normalization. We now present two methods to analyze k[σ1].

The shuffle method.
Put σ0 = 1. Define a-shuffles Sa for a ≥ 0 by

(1) Sa =
n∑

j=0

S(a, j)σj ,

where S(a, j) are the Stirling numbers of the second kind. They count the number
of ways in which a elements can be divided into j non-empty subsets. We make the
convention that S(a, j) = 0 for a < j. Also S(0, 0) = 1 and S(a, 0) = 0 for a > 0.
Note that S0 = 1 and S1 = σ1. The motivation behind this definition will soon
become clear. Unlike for σj , the description of Sa in terms of ordered partitions is
not clear. However, the associated random walk on a deck of n cards can be readily
described.

Sa : Pick a card at random and mark it. Repeat this process a times. There is
no restriction on the number of times a given card may get marked. Move all the
marked cards to the top in a random order.

To see the equivalence of the two definitions, note that Sa can be expressed as
a sum indexed by the number of distinct cards that get marked. Suppose that j
distinct cards get marked. By our marking scheme for Sa, there are exactly S(a, j)
ways in which the same set of j cards gets marked. This leads to equation (1). With
the probabilistic interpretation for Sa, one obtains that SaSb = Sa+b. This relation
was the main motivation behind the definition of Sa. Since S1 = σ1, it implies that
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Sa = σa
1 . Thus we obtain an additive shuffle semigroup S = {Sa : a ≥ 0} which

spans A = k[σ1] = k[S1]. We can deduce from equation (1) that σ0 = 1,σ1,. . . ,σn−1

lie in A. Also they span S and hence A. Since they are linearly independent in
(kΣ)W , it now follows that they form a basis for A. Hence A is a shuffle algebra.

The analysis so far shows that the choice of the element σj ∈ Σj was forced
on us by σ1. We will see this more directly in the second method. Now we show
that A ∼= kn and compute the primitive idempotents in A. We do this by molding
equation (1) in the shape of equation (*) of Proposition 1. The key step is to use
the following explicit formula for the Stirling numbers S(a, j); see [23, pg 34].

S(a, j) =

j∑

i=0

(−1)j−i

(
j

i

)
ia

j!
,

with the convention that 00 = 1. Substituting the above expression in the formula
for Sa and rearranging terms, we get for a ≥ 0

Sa =

n∑

i=0

iaei, where ei =

n∑

j=i

(−1)j−i

(
j

i

)
σj

j!
.

Observe that en−1 = 0 because σn−1 = σn. The remaining ei’s are clearly non-zero.
Now apply Proposition 1 to S and A along with the n characters of S given by

χi(Sa) = ia for i = 0, 1, 2, . . . , n − 2, n. This gives A
∼=
−→ kn. The isomorphism

maps Sa to (0a, 1a, 2a, . . . , (n− 2)a, na). These give the possible set of eigenvalues
of Sa considered as an operator on any A-module. The formulas for the primitive
idempotents ei’s are identical to those obtained in [10]. The minimal polynomial
for Sa is given by x(x − 1)(x − 2a) · · · (x − (n − 2)a)(x − na). If we expand this
polynomial, substitute x = Sa and use equation (1) then we obtain some identities
involving the Stirling numbers.

The direct method.
We first claim that σjσ1 = jσj + σj+1 if j < n − 1 and σn−1σ1 = nσn−1. We

see this from the ordered partition description of the σ’s. A typical summand of
σj is ({1},{2},· · · ,{j},{j + 1, · · · , n}). This term appears j times in the product
σjσ1; the j summands of σ1 that contribute being the ones in which the element in
the singleton block is one of 1, 2, . . . , j. This yields jσj . The remaining terms yield
σj+1 and the claim follows. For j = 1, the claim says that σ2

1 = σ1 + σ2. Thus
σ2 = σ2

1 − σ1 is determined by σ1 and the same is true for σ3 and so on. More
precisely, by induction we obtain

(2) σj+1 = σ1(σ1 − 1) . . . (σ1 − j).

This along with σn−1σ1 = nσn−1 implies that both σ0 = 1,σ1,. . . ,σn−1 and σ0
1 ,σ

1
1 ,

. . .,σn−1
1 form a basis for A. The basic relation satisfied by σ1 is σn−1(σ1 − n) = 0,

that is, σ1(σ1− 1) . . . (σ1−n+2)(σ1 −n) = 0, which is a polynomial of degree n in

σ1. Since dimk A = n, it follows that A
∼=
−→ k[x]

x(x−1)...(x−n+2)(x−n) , where the map

sends σ1 to x. This shows that A is split semisimple. Note that this time we did
not use Proposition 1 to arrive at this conclusion.

We now give algebraic motivation for equation (1) by rederiving it here. Right
now σj is defined only for 0 ≤ j ≤ n− 1. But we may extend the definition of σj to
any j using equation (2). With this extension, one may check that σn = σn−1 and
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σj = 0 for j > n. We now find a formula for σj
1 by inverting equation (2) formally.

Write

σa
1 =

a∑

j=0

S(a, j)σj

for some constants S(a, j). Multiply both sides on the right by σ1 and use the
relation σjσ1 = jσj + σj+1 to obtain the recursion: S(a, j) = jS(a− 1, j) + S(a−
1, j − 1) with S(a, a) = S(a, 1) = 1. The recursion and the initial conditions show
that S(a, j) are the Stirling numbers of the second kind. We now define the a-shuffle
Sa to be σa

1 . This gives equation (1). By our definition, it follows directly that
SaSb = Sa+b. Note that this time we did not rely on any probabilistic interpretation
of Sa to derive this additive relation.

Remark. Consider the map k[x] ։ A which sends x to σ1. Along with {xj}j≥0,
the other sequence which played a prominent role in our analysis was {x(j)}j≥0,
where x(j+1) = x(x− 1) . . . (x− j). Both these sequences are polynomial sequences
of binomial type [1]. This kind of structure seems to be common to all the additive
examples. The first sequence is always the same but the second sequence varies.
And the relation between the two gives us various analogues of the Stirling numbers.

It is possible to write down an explicit formula for σiσj . We state it here for
completeness.

σiσj =

min(i,j)∑

k=0

k!

(
i

k

)(
j

k

)
σi+j−k.

There is also a q-analogue of the side shuffle which we will explain in Section 8.

Remark. The direct method works for all additive examples, including the gener-
alization to buildings (Section 8). However it fails on multiplicative examples like
riffle shuffles. On the other hand, the shuffle method works for all examples except
the ones on buildings.

3.2. The two sided shuffle. This example is similar to the side shuffle and it will
be useful to keep the analogy in mind. It does not seem to have been considered
before. The element of interest is σ = σs1 + σsn−1

. In terms of ordered partitions,
σ is the sum of all ordered two block partitions of [n] such that either the first
block or the second block is a singleton. The associated random walk on a deck of
cards consists of removing a card at random and replacing it either on top or at
the bottom. In other words, we make use of both sides of the deck instead of just
one; whence the name.

In addition to σ = σ1, we define σj =
∑j

k=0

(
j
k

)
σJj,k

, where Jj,k = {s1, . . . , sk}∪
{sn−(j−k), . . . , sn−1} ⊆ I for j = 1, . . . , n−1. Note that Jj,k is the union of the first
k and last j − k elements of the label set. Hence the cardinality of Jj,k is always j.
Also as ordered partitions, σJj,k

is the sum of all ordered (j+1) block partitions of
[n] such that the first k and the last j − k blocks are singletons. As is evident from
the formula, expressing σj in this language is not pleasant. However the probability
description will be simple as we will see. Also put σ0 = 1 and σn = 2σn−1. Now
define a-shuffles Sa for a ≥ 0 by

(3) Sa =
n∑

j=0

S(a, j)σj ,
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where S(a, j) counts the number of ways in which a set of a elements can be divided
into j non-empty subsets, where in each subset the elements are further divided
into two subsets. We will call the S(a, j)’s the signed Stirling numbers. They
satisfy the recursion: S(a, j) = 2jS(a− 1, j) + S(a− 1, j − 1) with S(a, a) = 1 and
S(a, 1) = 2a−1. An explicit formula is as under.

S(a, j) =

j∑

i=0

(−1)j−i

(
j

i

)
(2i)a

2jj!
.

Note that S0 = 1 and S1 = σ1. These definitions are motivated by the following
interpretations of the random walks associated to σj and Sa.

σj : Choose j cards at random. Split these into two distinct piles such that the

split (k, j − k) is given weight
(
j
k

)
. Move the cards in the first pile to the top in a

random order and those in the second pile to the bottom in a random order.
Sa : Pick a card at random and mark it T or B. Repeat this process a times. If

at any time we choose a card that has already been marked then we overwrite that
mark. We weight this event by

(
j
k

)
, where j = the number of marked cards, and

k = the number of cards marked T . Now move all cards marked T to the top and
those marked B to the bottom in a random order.

First check that σn = 2σn−1. Next note that σj can be expressed as a sum
depending on the number of cards k that are moved to the top. Since the splits are
weighted, we pick a factor of

(
j
k

)
. This leads us to the equation for σj in terms of

the σJj,k
’s that we wrote earlier. The interpretation of Sa is slightly subtle. As for

the side shuffle, express Sa as a sum indexed by the number of distinct cards that
get marked. Suppose that j distinct cards get marked. By our marking scheme for
Sa, there are exactly 2jS(a, j) ways in which the same set of j cards gets marked.
This is because we use distinct labels T and B. However, the extra factor of 2j

is compensated in the next step where we use the last label on a marked card to
decide whether it goes to the top or the bottom.

As for the previous side shuffle example, the probabilistic description implies the
relation SaSb = Sa+b. And A = k[σ1] = k[S1] is a shuffle algebra containing the

additive shuffle semigroup S = {Sa : a ≥ 0}. Further A
∼=
−→ kn, where Sa maps to

(0a, 2a, 4a, . . . , (2n− 4)a, (2n)a). The formula for the primitive idempotents in A is
given by

ei =

n∑

j=i

(−1)j−i

(
j

i

)
σj

2jj!
.

This time the relation σn = 2σn−1 forces en−1 = 0. Also equation (3) can be
rewritten as

Sa =
n∑

i=0

(2i)aei.

We now sketch the direct method. The description of the σ’s as ordered partitions
is not very pleasant. However one can still use it to see that σjσ1 = 2jσj + σj+1 if
j < n− 1 and σn−1σ1 = 2nσn−1. By induction we obtain

(4) σj+1 = σ1(σ1 − 2) . . . (σ1 − 2j).

This along with σn−1σ1 = 2nσn−1 implies that both σ0 = 1,σ1,. . . ,σn−1 and σ0
1 =

1,σ1
1 ,. . . ,σ

n−1
1 form a basis for A. The basic relation satisfied by σ1 is σ1(σ1 −

2) . . . (σ1 − 2n + 4)(σ1 − 2n) = 0. Hence A
∼=
−→ k[x]

x(x−2)...(x−2n+4)(x−2n) , where σ1



10 SWAPNEEL MAHAJAN

maps to x. This shows that A is split semisimple. Inverting equation (4) formally
and using the relation σjσ1 = 2jσj + σj+1 leads to the recursion of the signed
Stirling numbers written earlier and hence to equation (3), where Sa = σa

1 .

3.3. Riffle shuffle. A riffle shuffle is a common method people use for shuffling
a deck of cards. The analysis we give parallels that of Bayer and Diaconis [2].
The difference is that we prefer to work with (kΣ)W , which is the more geometric
description of Solomon’s descent algebra. Also they work with a different basis of
the descent algebra.

The Gilbert-Shannon-Reeds mathematical model for riffle shuffling consists of
first cutting the deck into two parts, making the cut according to a binomial prob-
ability distribution, and then interleaving the two parts in such a way that every
interleaving is equally likely. A natural generalization is the a-shuffle in which we
cut the deck into a parts (rather than just 2) and then interleave them.

From our point of view, it is more natural to consider the inverse riffle shuffle
S2 and more generally the inverse a-shuffle Sa. It has the following description as
a random walk on a deck of n cards.

Sa : Label each card randomly with an integer from 1 to a. Move all the cards
labeled 1 to the bottom of the deck, preserving their relative order. Next move all
the cards labeled 2 above these again preserving their relative order and so on.

We can understand the inverse a-shuffle Sa as an element of (kΣ)W . We begin
with the element σ1 = σs1 + · · ·+ σsn−1

; that is, σ1 is the sum of all the vertices in
Σ. In terms of ordered partitions, it is the sum of all ordered two block partitions
of [n]. This is closely related to the inverse riffle shuffle, in fact, S2 = σ1 + 2σ0,
where σ0 = 1 is the one block partition. We will show this in more generality.

Let σi be the sum of all the simplices of rank i in Σ for i = 1, . . . , n − 1. Then
define shuffles Sa for a ≥ 1 by

(5) Sa =
n∑

j=1

(
a

j

)
σj−1.

Note that S1 = σ0. In terms of ordered partitions, σj−1 is the sum of all ordered
j block partitions of [n]. To express Sa in this language, we need the notion of a
weakly ordered partition of [n]. It is an ordered partition of [n] in which the blocks
are allowed to be empty. Note that there are exactly

(
a
j

)
weakly ordered a block

partitions that give the same ordered j block partition of [n]. It follows that Sa is
the sum of all weakly ordered a block partitions of [n]. If we assign labels 1, 2, . . . , a
to these weakly ordered a blocks such that the leftmost block is labeled a and the
rightmost is labeled 1, then we obtain the random walk description for Sa that we
started with. It is clear from both viewpoints that SaSb = Sab. This gives us a
multiplicative shuffle semigroup S = {Sa : a ≥ 1} contained in A = k[σ1, . . . , σn−1].
It now follows that σ0 = 1,σ1,. . . ,σn−1 is a basis for A. In fact we will show that
A = k[σ1] = k[S2].

First we show that A ∼= kn. Expand each
(
a
j

)
as a polynomial in a (with no

constant term).

(
a

j

)
=

a(a− 1) . . . (a− j + 1)

j!
=

1

j!

j∑

i=1

s(j, i)ai
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for some constants s(j, i). To be precise, s(j, i) is the coefficient of xi in the poly-
nomial x(x − 1) · · · (x − j + 1). These are the Stirling numbers of the first kind.
Substituting the above expression in the formula for Sa and rearranging terms, we
get for a ≥ 1

Sa =
n∑

i=1

aiei, where ei =
n∑

j=i

s(j, i)
σj−1

j!
.

All the ei’s are clearly non-zero. Now apply Proposition 1 to S and A along with the

n characters of S given by χi(Sa) = ai for i = 1, 2, . . . , n. This gives A
∼=
−→ kn. The

isomorphism maps Sa to (a1, a2, . . . , an). These give the possible set of eigenvalues
of Sa considered as an operator on any A-module. They are distinct for a 6= 1 and
hence Sa generates A for all a ≥ 2. In particular, we obtain A = k[σ1] = k[S2].
Hence A is a shuffle algebra.

Also the minimal polynomial for Sa on any faithful A-module is given by (x −
a)(x − a2) · · · (x − an). Write it as

∑n
i=0 Pn,ix

i. Now if we substitute x = Sa and
use equation (5) then we obtain identities involving binomial coefficients, namely∑n

i=0 Pn,i

(
ai

j

)
= 0 for j = 1, 2, . . . , n. It would be nice to have an explicit formula

for the coefficients Pn,i also.
The analysis that we gave for this example was the analogue of the shuffle method

of the previous two examples. The direct computational method of those exam-
ples is not feasible here. Writing a formula for σjσ1 is not easy because of the
multiplicative nature of the example.

3.4. Connection with Fulman’s work. Let W be a finite irreducible Coxeter
group of rank n. Let Σ be its Coxeter complex, L its associated lattice and supp :
Σ → L the support map (Appendix A.4). Fulman [16] considered the following
weight distribution (for x 6= 0 a real number) on the faces of Σ.

wF =
χ(L≤suppF , x)

xn|supp−1(suppF )|
.

Here the numerator is the characteristic polynomial of the sublattice L≤suppF of
L consisting of elements whose support is less than suppF . The formula above is
a restatement of [16, Theorem 6] in geometric language. Further Fulman shows
that the random walk associated to this weight distribution has eigenvalues 1

xi for
0 ≤ i ≤ n [16, Theorem 5].

Two of our examples, namely the ones in Sections 3.3 and 4.2(odd part), arise
in this way. We only explain the first example. The second one is similar. We
begin by noting that for the Coxeter groups of types A and B, the characteristic
polynomial has a simple form, namely,

χ(L≤suppF , x) = ΠrkF−1
i=0 (x− (ki+ 1)),

where we put k = 1 for type A and k = 2 for type B. We concentrate on the An−1

case. We substitute x = a, a positive integer. From the above discussion and the
simple description of the support map (Appendix B.4), we have

wF =
(a− 1)(a− 2) . . . (a− rkF )

an−1(rkF + 1)!
=

1

an

(
a

rkF + 1

)
.
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If we ignore the normalization factor an then we see that

∑

F∈Σ

wFF =

n∑

j=1

(
a

j

)
σj−1.

From equation (5), we see that these are the inverse a-shuffles Sa of Section 3.3.
Also note that the eigenvalues we got, namely, ai for 1 ≤ i ≤ n coincide with
Fulman’s, 1

ai for 0 ≤ i ≤ n− 1, up to the normalization factor an.

4. Examples of type Bn

We consider two examples, the side shuffle and the riffle shuffle. They should
not be regarded as mere generalizations of the ones discussed so far. In fact, we
will see in Section 6 that they are in a sense more fundamental and have a right to
exist on their own. In this section, the term partition always refers to a partition
of type Bn; see Appendix B.5. Also elements of the label set I will be written as
s1, s2, . . . , sn = t; see Figure 3 in Appendix B.3. We recall that the random walk
operates on a signed deck of cards. It is a deck where each card is either face up or
face down.

4.1. The side shuffle. The element of interest is σ = σs1 . In terms of partitions,
σs1 is the sum of all three block partitions such that the first (and hence the last)
block is a singleton. The associated random walk on a deck of n signed cards
consists of removing a card at random and replacing it on top with either the same
sign or its reverse both with equal probability. Note that the normalization factor
is 2n.

In addition to σ = σ1, we define σj = σJj
where Jj = {s1, . . . , sj} ⊆ I for

j = 1, . . . , n. To explain in words, σ1 is the sum of all the vertices of type s1, σ2

is the sum of all the edges of type s1s2 and so on till σn which is the sum of all
chambers of Σ. As partitions, σj is the sum of all (2j+1) block partitions such that
the first (and hence the last) j blocks are singletons. Define a-shuffles for a ≥ 0 by

Sa =
n∑

j=0

S(a, j)σj ,

where S(a, j) are the signed Stirling numbers defined in Section 3.2. The associated
random walks on a deck of n signed cards are as follows:

σj : Choose j cards at random. Move them to the top in a random order. Now
with equal probability either flip or do not flip the sign of the chosen cards.

Sa : Pick a card at random and with equal probability either flip or do not flip its
sign. Repeat this process a times. There is no restriction on the number of times
the same card may get picked. Move all the picked cards to the top in a random
order.

The interpretation of Sa involves the same kind of subtlety as the two sided
shuffle of type An−1 discussed in Section 3.2. We observe that SaSb = Sa+b. After
this, the analysis works exactly like the two sided shuffle for type An−1. The only
difference is that en−1 6= 0 since we do not have any relation like σn = 2σn−1.

The algebra A = k[σ1] is a shuffle algebra and A
∼=
−→ kn+1, where Sa maps to

(0a, 2a, 4a, . . . , (2n− 2)a, (2n)a).
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Like the additive examples of type An−1, we can also use the direct method here.
Using the partition description of the σ’s, it is easy to see that σjσ1 = 2jσj + σj+1

if j ≤ n− 1 and σnσ1 = 2nσn and the rest is similar.

4.2. The riffle shuffle. This example is motivated by the riffle shuffle of type
An−1. For riffle shuffling a signed deck of cards, we first cut the deck into two
parts, making the cut according to a binomial probability distribution, then turn
the second part face up and then interleave the two parts in such a way that every
interleaving is equally likely. For the a-shuffle we cut the deck into a parts, then
turn the parts in even positions face up and then interleave them.

The algebra generated by these shuffles has been considered by F. Bergeron and
N. Bergeron [3, Section 6]. They also gave an explicit description of the 3-shuffle.

We now describe the inverse a-shuffles Sa. It is convenient to split the description
into two cases depending on the parity of a. They can be described using the inverse
a-shuffles of Section 3.3 and a special shuffle S2. We will call S2 the inverse signed

riffle shuffle or the inverse riffle shuffle of type Bn.
S2: For every card, we either flip or do not flip its sign with equal probability.

The cards with unchanged signs move to the top in the same relative order and the
rest move to the bottom in the reverse relative order.

S2a: We do a usual inverse a-shuffle with labels 1, 2, . . . , a. Then within each of
the a blocks with a fixed label we do an inverse signed riffle shuffle S2.

S2a+1: We do a usual inverse (a + 1)-shuffle with labels 0, 1, 2, . . . , a. Then we
do an inverse signed riffle shuffle S2 on each block except the one labeled 0.

These shuffles are multiplicative. One can check directly that SaSb = Sab for any
a, b ≥ 1 irrespective of parity. However, we will derive this relation by considering
the shuffles Sa as elements of (kΣ)W . It is natural to first analyze the even and odd
shuffles separately and then to put them together later. This will yield two shuffle
algebras and a double shuffle algebra.

The even part.
The element of interest is σ1 = σt. In terms of partitions, σt is the sum of all

three block partitions such that the second (zero) block is empty.
If we try to analyze σ2

1 , σ
3
1 and so on then we observe that they involve only

those partitions that have an empty zero block. In geometric language, they involve
only those faces whose type contains the letter t. This motivates the definition of
σj which we now give. Put σj =

∑
|J|=j,t∈J σJ for j = 1, 2, . . . , n. In terms of

partitions, σj is the sum of all (2j + 1) block partitions such that the zero block
is empty. In the spirit of the riffle shuffle of type An−1, we define shuffles S2a for
a ≥ 1 by

(6) S2a =

n∑

j=1

(
a

j

)
σj .

Note that S2 = σ1. Also put S1 = σ0 = 1. To express S2a in words, we use
the notion of a weak partition that we defined in Appendix B.5. It is a partition
in which the signed blocks are also allowed to be empty. Since the partitions are
anti-symmetric, there are exactly

(
a
j

)
weak (2a + 1) block partitions that give the

same (2j + 1) block partition. It follows that S2a is the sum of all weak (2a + 1)
block partitions such that the zero block is always empty; so we have up to 2a non-
empty blocks. This explains the term “2a-shuffle”. If we assign labels 1, 2, . . . , a
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in decreasing order to the first a blocks with the leftmost (signed) block labeled a,
then we obtain the random walk description for S2a that we started with.

With the partition description, it is immediate that S2aS2b = S4ab. This gives
us a multiplicative shuffle semigroup {S2a : a > 0} ∪ S1 contained in k[σ1, . . . , σn].
It now follows that σ0 = 1,σ1,. . . ,σn is a basis for k[σ1, . . . , σn].

The odd part.
This case is completely analogous to the even case, the only difference being

that now we put no restriction on the zero block. We begin with the element
σ′
1 = σs1 + · · ·+ σsn ; that is, σ

′
1 is the sum of all the vertices in Σ. We also define

σ′
j as the sum of all the simplices of rank j in Σ for j = 1, . . . , n. In terms of

partitions, σ′
j is the sum of all (2j + 1) block partitions. Note that σ′

n = σn. Also
put σ′

0 = σ0 = 1. Next define shuffles S2a+1 for a ≥ 0 by

(7) S2a+1 =

n∑

j=0

(
a

j

)
σ′
j .

To express S2a+1 in words, we again use the notion of a weak partition. Exactly
as in the even case, it follows that S2a+1 is the sum of all weak (2a + 1) block
partitions. The random walk description is obtained by assigning labels 0, 1, . . . , a
in decreasing order to the first (a+1) blocks with the leftmost (signed) block labeled
a.

With the partition description it is immediate that S2a+1S2b+1 = S(2a+1)(2b+1).
This gives us a multiplicative shuffle semigroup {S2a+1 : a ≥ 0} contained in
k[σ′

1, . . . , σ
′
n]. It now follows that σ′

0 = 1,σ′
1,. . . ,σ

′
n is a basis for k[σ′

1, . . . , σ
′
n].

Even + odd.

We now put the even and odd parts together. Define S = {S2a : a ≥ 1}∪{S2a+1 :
a ≥ 0}. It is immediate from the descriptions of S2a and S2a+1 in terms of partitions
that SaSb = Sab for all a, b ≥ 1 irrespective of parity. Thus we get a multiplicative
shuffle semigroup S as a spanning set in A = k[σ1, . . . , σn, σ

′
1, . . . , σ

′
n]. Hence A is

a 2n-dimensional algebra with basis σ0 = 1, σ1, σ
′
1, . . . , σn−1, σ

′
n−1, σn = σ′

n.
We now show that A ∼= k2n. Following the example of the riffle shuffle of type

An−1, we write equation (6) as

(8) S2a =
n∑

i=1

(2a)iei, where ei =
n∑

j=i

s(j, i)
σj

2jj!
.

Here s(j, i) is the coefficient of xi in the polynomial x(x−2)(x−4) · · · (x−2(j−1)).
It is 2j−i times the s(j, i) that occurred in the riffle shuffle of type An−1. For
notational convenience, we set e0 = 0. Similarly, we rewrite equation (7) as

(9) S2a+1 =
n∑

i=0

(2a+ 1)ie′i, where e′i =
n∑

j=i

s(j, i)′
σ′
j

2jj!
.

Here s(j, i)′ is the coefficient of xi in the polynomial (x−1)(x−3) · · · (x− (2j−1)).
Note that e′n = en = σn

2nn! . We next define two different kinds of characters of S.

For any non-negative integer i, define χi(Sa) = ai for a ≥ 1. Also define χ′
i(S2a) = 0

for a ≥ 1 and χ′
i(S2a+1) = (2a+ 1)i for a ≥ 0. Now observe that for any s ∈ S

s =

n∑

i=1

χi(s)ei +

n∑

i=0

χ′
i(s)(e

′
i − ei).
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This can be checked separately for s = S2a, S2a+1 using equations (8) and (9).
The second summation actually goes only till n − 1, since e′n = en. Now apply
Proposition 1 to S and A along with the 2n characters χi for i = 1, . . . , n and χ′

i

for i = 0, 1, . . . , n− 1 to conclude that A ∼= k2n.

The shuffle algebras.

It is clear that k[σ1, . . . , σn]
∼=
−→ kn+1, where the n + 1 factors correspond

to the idempotents e′0, e1, e2, . . . , en. The isomorphism maps the shuffles S2a to
(0, (2a)1, (2a)2, . . . , (2a)n). This shows that k[σ1, . . . , σn] = k[σ1] is a shuffle alge-
bra.

To see that k[σ′
1, . . . , σ

′
n]

∼= kn+1, first note that χ′
i(s) = χi(s) for s ∈ {S2a+1 :

a ≥ 0}. Hence we need to lump together the factors corresponding to ei and e′i−ei.

Thus we get k[σ′
1]

∼=
−→ kn+1, with e′0, e

′
1, e

′
2, . . . , e

′
n as the primitive idempotents.

The isomorphism maps S2a+1 to ((2a + 1)0, (2a + 1)1, (2a + 1)2, . . . , (2a + 1)n).
Hence k[σ′

1, . . . , σ
′
n] = k[σ′

1] is also a shuffle algebra.
It also follows that A = k[σ1, σ

′
1]. It is not a shuffle algebra because the first

three conditions are each violated by a factor of two. For example, in condition (3),
instead of a single generator σ1, we have two generators σ1 and σ′

1. Hence we refer
to it as a double shuffle algebra.

5. Examples of type Dn

We consider two examples, the side shuffle and the riffle shuffle. In this section,
the term partition always refers to a partition of type Dn; see Appendix B.6.
Elements of the label set I will be written as s1, s2, . . . , sn−2, u, v; see Figure 4 in
Appendix B.3. We also recall that the random walk operates on an almost signed
deck of cards or a deck of type Dn. It is a deck in which every card, except the
bottommost, is signed. Also, one of the two basic algebras of Section 5.2 will not
strictly satisfy condition (2) in the definition of a shuffle algebra. This is relevant
to the remark after Theorem 1.

5.1. The side shuffle. The element of interest is σ = σs1 . In terms of partitions,
σs1 is the sum of all three block partitions such that the first (and hence the last)
block is a singleton. The associated random walk on an almost signed deck of n
cards consists of removing a card at random and replacing it on top with either the
same sign or its reverse both with equal probability. If the bottommost unsigned
card is chosen then we give it a sign and then erase the sign on the new bottommost
card.

In addition to σ = σ1, we define σj = σJj
where Jj = {s1, . . . , sj} ⊆ I for

j = 1, . . . , n− 2. Note that the choice for σn−1 is not immediately obvious. We set
σn−1 = σ{s1,...,sn−1,u,v}. The motivation becomes clearer from the following. As
partitions, σj is the sum of all (2j + 1) block partitions such that the first (and
hence the last) j blocks are singletons. Observe that for j = n−1, this does give us
the above definition of σn−1. We also set σn = 2σn−1. Define a-shuffles for a ≥ 0
by

Sa =
n∑

j=0

S(a, j)σj ,

where S(a, j) are the signed Stirling numbers defined in Section 3.2. The associated
random walks on a deck of type Dn are as follows.
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σj : Choose j cards at random. Move them to the top in a random order. Now
with equal probability either flip or do not flip the sign of the chosen cards. If the
bottommost unsigned card is one of the chosen cards then we give it a sign and
then erase the sign on the new bottommost card.

Sa : Assign the sign + to the bottommost card. Now do the side shuffle Sa of
type Bn. Drop the sign of the bottommost card.

Observe that σn = 2σn−1. We did not have any such relation for the side
shuffle of type Bn. It is interesting how this relation emerges by just making the
bottommost card unsigned. Also observe that SaSb = Sa+b. At this point, it is
clear that the rest of the analysis is identical to the two sided shuffle for type An−1

and we omit it.

5.2. The riffle shuffle. The shuffles Sa in this example can be described in the
same way as the a-shuffles of type Bn with a minor modification. This is because
we are now operating on a deck of type Dn rather than of type Bn. The difference
between the two is that in the former the bottommost card is unsigned. For the a-
shuffle of type Dn, we first assign a sign to the bottommost card of the deck. Then
we do an a-shuffle of type Bn. And finally, we drop the sign of the bottommost
card. We now describe Sa, the inverse a-shuffle of type Dn.

Sa : Assign the sign + to the bottommost card. Now do an inverse a-shuffle of
type Bn. Drop the sign of the bottommost card.

Note that the two descriptions are inverses of each other. However the normal-
ization factors (Section 1.2) differ by a factor of 2. We mention that the geometric
description that will follow matches the factor computed from the second descrip-
tion. We now give another equivalent description of the inverse shuffles using the
analogy with the type B situation rather than using it directly. For that, we first
define the inverse riffle shuffle of type Dn.

For every signed card, we either flip or do not flip its sign with equal probability.
The cards whose signs were flipped move below the unsigned card (in the reverse
relative order). The rest stay on top.

Note that after this shuffle, we may not have a deck of typeDn, since the unsigned
card is not necessarily at the bottom. Hence we define a correction operation which
assigns a sign to the unsigned card and then erases the sign of the bottommost card.
We now give a description of our shuffles as operators on a deck of type Dn.

S2a: We do a usual inverse a-shuffle with labels 1, 2, . . . , a. Then within each
block with a fixed label we do an inverse riffle shuffle of type Dn or Bn depending on
whether the block contains the unsigned card or not. Lastly, we do the correction.

S2a+1: We do a usual inverse (a + 1)-shuffle with labels 0, 1, 2, . . . , a. Then we
repeat the above on each block except the one labeled 0 and then do the correction.

Note that S2 is just an inverse riffle shuffle of type Dn followed by the correction.

The even part.
The element of interest is σ1 = σu + σv. In terms of partitions, σ1 is the sum of

all three block partitions such that the central block is empty.
Put σj =

∑
|J|=j,u∈J σJ +

∑
|J|=j,v∈J σJ for j = 1, 2, . . . , n. Explicitly for n = 3,

we have σ1 = σu + σv, σ2 = σ{s,u} + σ{s,v} + 2σ{u,v}, σ3 = 2σ{s,u,v}. Note that
we consider only those faces whose type contains either u or v. If it contains both
u and v then we put a coefficient of 2 in front. In terms of partitions, σj is the
sum of all (2j + 1) block partitions such that the central block is empty. In this
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description, we follow the convention that the partitions ({1, 2}, {3}, {}, {3}, {2, 1})
and ({1, 2}, {3}, {}, {3}, {2, 1}) are counted separately, even though they are both
equal to ({1, 2}, {3, 3}, {2, 1}). This explains the coefficient of 2 in front of faces
whose type contains both u and v.

The odd part.
The element of interest is σ′

1 = (σu + σv) + (σs1 + . . . + σsn−2
) + σ{u,v}. Note

that in contrast to all our examples so far, σ′
1 is a combination of elements of

kΣ1 and kΣ2; that is, it contains elements of different ranks. Next we define
σ′
j = σj +

∑
|J|=j,u/∈J,v/∈J σJ +

∑
|J|=j+1,{u,v}⊂J σJ for j = 1, 2, . . . , n. Here σj

is as defined in the even case. Thus we see that σ′
j is a combination of elements

of kΣj and kΣj+1. This is the only example where the geometric description of
the objects of interest is somewhat complicated. For better motivation, we now
consider partitions. We have already interpreted σj in terms of partitions. Note
that the two summation terms that we added give the sum of all (2j + 1) block
partitions with a non-empty central block. Hence we see that σ′

j is the sum of all
(2j+1) block partitions. While counting partitions, we adopt the same convention
as in the even case.

The shuffle algebras.

We define shuffles S2a and S2a+1 by equations (6) and (7) and the analysis is
identical word for word to the case of Bn. We only point out that partition now
means partition of type Dn and σj and σ′

j refer to the definitions that we made
above. The shuffles can be described using weak partitions and this leads to the two
random walk interpretations that we gave earlier. They are slightly complicated
now because of the more involved nature of the partitions of type Dn. We also
conclude that k[σ1] and k[σ′

1], apart for condition (2), are shuffle algebras. And we
may refer to k[σ1, σ

′
1] as a double shuffle algebra.

A clear conceptual explanation of the close connection between the riffle shuffles
of type Bn and Dn is given in the next section.

Remark. The riffle shuffle examples in Sections 3.3 and 4.2(odd part) show that
for types An−1 and Bn, σiσj = σjσi, where σi is the sum of all the simplices of
rank i. This is because σi and σj are elements of a commutative (shuffle) algebra.
The fact that σiσj = σjσi can also be proved by a direct geometric argument. The
key property is that the simplicial complex induced on the support of any face of
the Coxeter complex of type An−1 or Bn is again of the same type. This property
fails for Dn. It is incomplete in this geometric sense. Note that the σi’s as defined
above did not play any role in the riffle shuffle for Dn. In fact, their role for type
Dn in this theory is far from being clear.

6. Maps between Coxeter complexes

Recall that the reflection arrangements of type Bn, Dn and An−1 are given by the
hyperplanes xi = ±xj , xi = 0; xi = ±xj and xi = xj (1 ≤ i < j ≤ n) respectively.
Let Σ(Bn), Σ(Dn) and Σ(An−1) be the corresponding Coxeter complexes. Observe
that the arrangement for Dn (resp. An−1) is obtained from the one for Bn (resp.
Dn) by deleting some hyperplanes. Following the discussion in Appendix A.5, we
have forgetful maps

Σ(Bn) → Σ(Dn) → Σ(An−1).



18 SWAPNEEL MAHAJAN

These are semigroup homomorphisms and they induce algebra homomorphisms
kΣ(Bn) → kΣ(Dn) → kΣ(An−1). Further we will see that the maps restrict to
the corresponding descent algebras (see Section 1.2). We will use the language of
partitions to make these maps more explicit. A generalization of the first map to
buildings will be given in Section 8.3. A different set of maps will be discussed in
Section 7.

s1

s1

s1

s1

s2

s2

s2

t

t

u

v

Σ 3 Σ(B  ) Σ 3(D  ) (A  )2

Figure 1. The case n = 3.

Figure 1 shows the intersection of the hyperplane arrangements for B3, D3 and A2

with the boundary of a cube centered at the origin. For B3 and D3, this gives us
the corresponding Coxeter complex. For A2, we do not quite get Σ(A2) because
the braid arrangement is not essential. So we cut the braid arrangement by the
hyperplane x1 + x2 + x3 = 0. The complex Σ(A2) can be seen in Figure 1 as the
dotted hexagon with three vertices each of type s1 and s2. Also in Figure 1, we
have labeled only some of the vertices since they uniquely determine the remaining
labels.

6.1. The map Σ(Bn) → Σ(Dn). For the case Bn (resp. Dn), we split the partition
description for a face F into 4 (resp. 3) cases; see Appendix B.5 and B.6. From those
descriptions, it is straightforward to describe the map. Let K ⊂ {s1, . . . , sn−2}.

(i) A face of type K in Σ(Bn) maps to a face of type K in Σ(Dn).
(ii) A face of type K ∪ t in Σ(Bn) maps to a face either of type K ∪ u or K ∪ v

depending on a parity condition.
(iii) A face of type K ∪ sn−1 in Σ(Bn) maps to a face of one higher dimension

whose type is K ∪ {u, v}. For n = 3, this is also clear from Figure 1, where
we see that {s2} 7→ {u, v} and {s1, s2} 7→ {s1, u, v}.

(iv) A face of type K ∪ {sn−1, t} in Σ(Bn) maps to a face of type K ∪ {u, v}.

The maps in the first three cases are bijective. More precisely, the faces of type K
in Σ(Bn) are in bijection with the faces of type K in Σ(Dn) and so on. However in
the last case, the map is two to one. This is again illustrated in Figure 1, where we
see that there are two faces of type {s1, s2, t} which map to a face of type {s1, u, v}.

Recall that σJ is the sum of all faces of type J . From the above discussion
it follows that for the map kΣ(Bn) → kΣ(Dn), we have σK 7→ σK , σK∪sn−1

7→
σK∪{u,v}, σK∪t 7→ σK∪u + σK∪v and σK∪{sn−1,t} 7→ 2σK∪{u,v}.

6.2. The map Σ(Bn) → Σ(An−1). It is easier to describe this composite map than
the map from Σ(Dn) to Σ(An−1). In contrast to the previous map, this composite
map is hard to describe using face types but easy to describe using partitions. To
obtain an ordered partition of [n], starting with an anti-symmetric ordered partition
of [n, n], we simply forget the set [n]. For example, ({2}, {3}, {1, 1}, {3}, {2}) maps
to ({2}, {1}, {3}). We explain some special cases.
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Observe that a face of type s1 maps to a face either of type s1 or sn−1 depending
on whether the element in the singleton first block has a plus sign or minus. It
follows that for the map kΣ(Bn) → kΣ(An−1), σs1 maps to σs1 + σsn−1

. This is
the primary reason why the side shuffle of type Bn is more closely related to the
two-sided shuffle (rather than the side shuffle) of type An−1.

Next we show that inverse a-shuffles map to inverse a-shuffles. For that observe
that weak (2a+1) block partitions of type Bn correspond to weak (2a+1) block par-
titions of type An−1. For example, ({2}, {}, {1, 1}, {}, {2}) ↔ ({}, {}, {1}, {}, {2}).
Similarly, weak (2a+ 1) block partitions of type Bn with an empty zero block cor-
respond to weak 2a block partitions of type An−1. For example, when a = 1, we
get that σt maps to σs1 + . . .+σsn−1

+2σ0. In other words, the inverse riffle shuffle
of type Bn maps to the inverse riffle shuffle of type An−1.

6.3. Maps between side shuffles. We recall the definitions of σj for the side
shuffles of type Bn and Dn and the two-sided shuffle of type An−1.

Bn : σj = σJj
where Jj = {s1, . . . , sj} ⊆ I for j = 1, . . . , n.

Dn : σj = σJj
where Jj = {s1, . . . , sj} ⊆ I for j = 1, . . . , n − 2 and Jn−1 =

{s1, . . . , sn−1, u, v}. Also σn = 2σn−1.

An−1 : σj =
∑j

k=0

(
j
k

)
σJj,k

where Jj,k = {s1, . . . , sk} ∪ {sn−(j−k), . . . , sn−1} ⊆ I
for j = 1, . . . , n− 1 and σn = 2σn−1.

We claim that σj 7→ σj 7→ σj under the maps kΣ(Bn) → kΣ(Dn) → kΣ(An−1).
From the discussion in Section 6.1, it is easy to see the claim for the first map. A
point worth noting is that σn 7→ 2σn−1 and the claim holds for j = n because of
the relation σn = 2σn−1 for Dn. Similarly, using the discussion in Section 6.2, one
can see the claim for the composite map. In earlier sections, the introduction of σn

and the relation σn = 2σn−1 for types Dn and An−1 was somewhat artificial and
justified only from the random walk perspective. However we now also see it from
a geometric perspective.

Recall that the shuffles are given by the same formula Sa =
∑n

j=0 S(a, j)σj

in all three cases, with S(a, j) being the signed Stirling numbers. Hence we get
Sa 7→ Sa 7→ Sa. To summarize, we have:

{
side shuffle
of type Bn

}
։

{
side shuffle
of type Dn

}
∼=
−→

{
two sided shuffle
of type An−1

}

σj 7→ σj 7→ σj

Sa 7→ Sa 7→ Sa

6.4. Maps between riffle shuffles. Recall the definitions of σj and σ′
j for the riffle

shuffles of type Bn and Dn from Sections 4.2 and 5.2. Following the discussion in
Section 6.1, it is clear that Σ(Bn) → Σ(Dn) maps σj to σj and σ′

j to σ′
j . So the

map restricted to the algebras A = k[σ1, σ
′
1] is an algebra map that maps a basis

to a basis. Hence it is an isomorphism. It also clearly maps Sa to Sa. Again we
see that the somewhat unmotivated definitions of σj and σ′

j for Dn have a more
natural meaning as the images of the corresponding elements in Σ(Bn).

For the map Σ(Bn) → Σ(An−1), the discussion at the end of Section 6.2 and the
interpretation of the inverse a-shuffles Sa as weak partitions shows that Sa 7→ Sa.
This gives us a surjective map A = k[σ1, σ

′
1] = k[S2, S3] → A = k[S2]. However we

do not know a good way to describe the images of σj and σ′
j under this map. To
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summarize, we have:
{

riffle shuffle
of type Bn

}
∼=
−→

{
riffle shuffle
of type Dn

}
։

{
riffle shuffle
of type An−1

}

σj 7→ σj 7→ ?
σ′
j 7→ σ′

j 7→ ?
Sa 7→ Sa 7→ Sa

Remark. The Coxeter complex of type Bn is a good place to look for shuffle alge-
bras. The images of these shuffle algebras under our maps would then yield shuffle
algebras (in a suitably generalized sense) of type Dn and An−1. Among the exam-
ples in this paper, the only one that we failed to describe in this manner was the
side shuffle of type An−1.

7. Shuffles on cards with an involution and a joker

The previous section shows that the Dn shuffles could have been found from the
Bn shuffles had we not known them previously. Though we did not obtain new
shuffles in Section 6, we can apply the same principle to obtain some new shuffles
of type An, A2n−1 and A2n.

7.1. The maps. The maps which give rise to these shuffles can be assembled as
follows.

(10)

Σ(Bn) −−−−→ Σ(An) −−−−→ Σ(An−1)∥∥∥
x

x

Σ(Bn) −−−−→ Σ(A2n) −−−−→ Σ(A2n−1)

The composite map Σ(Bn) →֒ Σ(A2n−1) and its generalization to buildings (Sec-
tion 8.2) was pointed out by Ken Brown.

7.1.1. The maps Σ(Bn) → Σ(An) → Σ(An−1). Comparing with the maps in Sec-
tion 6, we have replaced the middle object Σ(Dn) by Σ(An). The composite map,
however, will be the same as before. To define the two intermediate maps, we view
Σ(An) a little differently.

Consider the braid arrangement in R
n+1 which corresponds to the Coxeter com-

plex Σ(An). The arrangement is not essential because the intersection of all the
hyperplanes is the line x1 = x2 = . . . = xn+1. The standard way to make the
arrangement essential is to take the quotient of Rn+1 by this line (Appendix A.6).
Another way is to cut it by the hyperplane xn+1 = 0. The choice of this hyper-
plane is somewhat arbitrary and hence the action of Sn+1 is now a little awkward.
Nevertheless we obtain an essential arrangement given by the hyperplanes xi = xj

and xi = 0, where 1 ≤ i < j ≤ n. We study Σ(An) using this arrangement. It is
most natural to identify the chambers in Σ(An) with a deck with n+ 1 cards, one
of which we regard as special and call the joker. And refer to the remaining cards
as playing cards.

First note that deleting the hyperplanes xi = −xj from the arrangement for Bn

gives this arrangement. Also deleting the hyperplanes xi = 0 from this one gives the
usual braid arrangement for An−1. Hence following Appendix A.5, we get forgetful
maps Σ(Bn) → Σ(An) → Σ(An−1). They can be described using the language of
partitions.
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The map Σ(Bn) → Σ(An). Starting with an anti-symmetric ordered partition of
[n, n], we simply forget the set [n] and add the element n + 1 to the zero block.
This gives us an ordered partition of [n+ 1]. The map is non-decreasing on ranks.

The map Σ(An) → Σ(An−1). Given an ordered partition of [n+ 1], we omit the
element n+1 and obtain an ordered partition of [n]. If the element n+1 occurred
as a singleton block then we also delete the block. The map either preserves rank
or decreases it by 1.

We give two examples illustrating the maps Σ(B3) → Σ(A3) → Σ(A2).

({2}, {3}, {1, 1}, {3}, {2}) 7→ ({2}, {1, 4}, {3}) 7→ ({2}, {1}, {3}).
({2, 3}, {1, 1}, {3, 2}) 7→ ({2}, {1, 4}, {3}) 7→ ({2}, {1}, {3}).

In the first example, the rank is preserved by both maps; whereas in the second,
the first map increases rank by one. This is because we have a block, namely {2, 3}
containing both positive and negative numbers.

7.1.2. The maps Σ(Bn) → Σ(A2n) → Σ(A2n−1). Consider R
2n with coordinates

x1, x2, . . . , xn, y1, y2, . . . , yn. Such paired coordinates arise from vector spaces with
involution. Using this setup, the faces of Σ(A2n−1), which correspond to the braid
arrangement in R

2n, can be described as ordered partitions on the set [n, 1]∪ [1, n].
The chambers are a deck of cards with an involution.

Similarly, by considering coordinates x1, x2, . . . , xn, y1, y2, . . . , yn, xn+1 = yn+1,
the faces of Σ(A2n−1), can be described as ordered partitions on the set [n, 1] ∪
[1, n] ∪ {n+ 1}. The chambers are a deck of cards with an involution and a joker.

The map Σ(Bn) → Σ(A2n) replaces 0 by n+1 and the map Σ(A2n) → Σ(A2n−1)
deletes n + 1. The vertical maps in diagram (10) are defined similarly. It follows
directly from the definition that they are all semigroup homomorphisms.

7.2. The shuffles. We describe in detail the joker shuffles that arise from the maps
Σ(Bn) → Σ(An) → Σ(An−1).

7.2.1. The two sided joker shuffle. Using Section 6 as a guide, we may draw the
following picture.

{
side shuffle
of type Bn

}
∼=
−→

{
two sided joker

shuffle of type An

}
։

{
two sided shuffle
of type An−1

}

σj 7→ σj 7→ σj

Sa 7→ Sa 7→ Sa

Note that the central column is being defined here. Observe that for the side shuffle
of type Bn, any partition that plays a role consists of singleton blocks (except the
zero block). Due to this special property of the partitions involved, the first map
is rank preserving. This implies that it is an isomorphism. It is also clear that we
have a shuffle algebra— the two sided joker shuffle algebra k[σ1].

In terms of ordered partitions, σ1 is the sum of all ordered two block partitions
of [n + 1] such that one of the blocks is a singleton. Also the element n + 1 must
always be in the larger of the two blocks. For example, for n = 2,

σ1 = ({1}, {2, 3}) + ({2}, {1, 3}) + ({2, 3}, {1}) + ({1, 3}, {2}).

Observe that this element is not invariant under the action of S3. It follows in
general that the shuffle algebra k[σ1] is not a subalgebra of (kΣ)W , where Σ =
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Σ(An) and W = Sn+1. This is the first example of this kind. Due to this, there is
no nice geometric definition for σj .

The random walk associated to σ1 has a similar description to the two sided
shuffle, namely, we remove a playing card at random and replace it either on top
or at the bottom. Note that we are not permitted to pull out the joker. The
descriptions for σi and Sa follow the same pattern as the two sided shuffle and we
omit them.

Recall that we had the relation σn = 2σn−1 for the two sided shuffle of type
An−1. We no longer have such a relation. As already explained, this is clear from
the geometry because the ranks of the two sides do not match. However we urge you
to look at this relation from the viewpoint of probability and see how the presence
of the joker breaks it down.

7.2.2. The joker riffle shuffle. We start with the following picture.
{

riffle shuffle
of type Bn

}
∼=
−→

{
joker riffle shuffle

of type An

}
։

{
riffle shuffle
of type An−1

}

σj 7→ σj 7→ ?
σ′
j 7→ σ′

j 7→ ?
Sa 7→ Sa 7→ Sa

Again the central column is being defined here. As an example, for the joker riffle
shuffle of type A2,

σ1 = ({1, 2}, {3}) + ({3}, {1, 2}) + ({1}, {3}, {2}) + ({2}, {3}, {1}).
σ′
1 = σ1 + ({1}, {2, 3}) + ({2, 3}, {1}) + ({2}, {1, 3}) + ({1, 3}, {2}).

It is not hard to see that in general σi and σ′
i consist of some terms of rank exactly

i and other higher rank terms. Also note that in σi, the element n + 1 always
appears as a singleton, whereas that is not the case for σ′

i. This shows that σ0 =
1, σ1, σ

′
1, . . . , σn−1, σ

′
n−1, σn = σ′

n are linearly independent in kΣ(An). Hence the
first map is an isomorphism. Thus we get a double shuffle algebra of type An. We
first express the shuffles using partitions.

S2a: It is the sum of all weak 2a + 1 block partitions of [n + 1] such that the
middle block is always the singleton {n+ 1}.

S2a+1: It is the sum of all weak 2a+ 1 block partitions of [n+ 1] such that the
element n+ 1 always lies in the middle block.

We now discuss the shuffle descriptions. They are similar to the inverse a-shuffles
except that the joker is given special treatment.

S2a: Label the joker by the integer a+1. Then label the playing cards randomly
with an integer from 1 to 2a+ 1 except a+ 1.

S2a+1: Label the joker by the integer a + 1. Then label the playing cards
randomly with an integer from 1 to 2a+ 1.

After the labeling is done, the rest of the shuffle is same as the inverse a-shuffle.

7.2.3. Shuffles on a deck with an involution. The map Σ(Bn) →֒ Σ(A2n−1) gives
rise to two sided and riffle shuffles on a deck with an involution. To give some
flavor, the generator σ1 for the two sided shuffle has the following description.

Remove a card at random and replace it on top. And remove its partner (image
under the involution) and replace it at the bottom.
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Note that the dimension of the algebra k[σ1] is roughly half the dimension of
Σ(A2n−1). Similarly we obtain joker analogues of these shuffles on a deck with an
involution and a joker. We leave the details to the reader.

8. Generalization to buildings

We first give a brief review of buildings. For the general theory, see [9, 21, 24].
Let W be a Coxeter group and Σ(W ) its Coxeter complex. Roughly, a building
∆ of type W is a union of subcomplexes Σ (called apartments) which fit together
nicely. Each apartment Σ is isomorphic to Σ(W ). As a simplicial complex, ∆ is
pure and labeled. The term pure means that all maximal simplices (chambers)
have the same dimension. For any two simplices in ∆, there is an apartment Σ
containing both of them. Using this fact, we can define a product on ∆ as follows.

For x, y ∈ ∆, we choose an apartment Σ containing x and y and define xy to
be their product in Σ. Since Σ is a Coxeter complex, we know how to do this.
Furthermore, it can be shown that the product does not depend on the choice of Σ.
So this defines a product on ∆ with the set of chambers C contained as an ideal. As
in Section 1.1, we can now define a random walk on C starting with a probability
distribution on ∆. Unfortunately, the product on ∆ is not associative, that is, ∆ is
no longer a semigroup. As a result, kC is not a module over k∆ and so our algebraic
methods break down. However, we know three examples where they do work. This
is because in these cases, the subalgebra of interest, namely k[σ], turns out to be
associative.

A theorem of Tits [24, Theorem 11.4] says that if ∆ is a finite, irreducible
Moufang building then it is the building of an absolutely simple algebraic group
G over a finite field Fq. The buildings we consider satisfy this hypothesis; hence
in each example we will also specify the algebraic group G. The group G acts by
simplicial type-preserving automorphisms on ∆. To avoid getting into details, we
just mention that the action of G is very closely related to the geometry of the
building.

In this section, we consider three examples, which are q-analogues of the side
shuffles of type An−1, Bn and Dn. The example of type An−1 was first studied by
Brown and Diaconis (unpublished) and later by Brown [10]. The examples of type
Bn and Dn are new. We use the same definitions for the σj ’s as before, except that
we now apply them to the building ∆ rather than the Coxeter complex Σ. We will
use the notation [j] = 1 + q + . . .+ qj−1 to denote the q-numbers. They will show
up a lot in our analysis.

8.1. The q-side shuffle for An−1. We first briefly describe the building of type
An−1 associated to the algebraic group GLn(Fq) (also SLn(Fq)). Let V be the
n-dimensional vector space over Fq and Ln be the lattice of subspaces of V . The
building of type An−1 associated to GLn(Fq), which we denote ∆(An−1), is simply
the flag (order) complex ∆(Ln). It is a labeled simplicial complex. A vertex of
∆(Ln) is by definition a proper subspace of V and we label it by its dimension. To
be consistent with earlier notation, we label the vertices s1, . . . , sn−1 instead of just
1, . . . , n− 1. In particular, vertices of type s1 are the one dimensional subspaces of
V .

Let Bn be the Boolean lattice of rank n consisting of all subsets of an n-set
ordered under inclusion. Note that the order complex ∆(Bn) is the Coxeter complex
of type An−1, which we earlier denoted by Σ(An−1). Also note that a choice of
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a basis for V gives an embedding of Bn into Ln. The subcomplexes ∆(Bn), for
various embeddings Bn →֒ Ln, play the role of apartments. Alternatively, it is also
useful to think of Bn as a specialization of Ln for the degenerate case q = 1. In this
sense ∆(Ln) = ∆(An−1) may be regarded as a q-analogue of ∆(Bn) = Σ(An−1).
For the rest of the section we will denote the building ∆(Ln) by ∆.

The product in ∆ can be made more explicit. A face of ∆ is a chain in Ln and
a chamber is a maximal chain in Ln. For x, y ∈ ∆, the face xy is the chain in
Ln obtained by refining the chain x by the chain y, using meets and joins as in a
Jordan–Hölder product. This is a generalization of the product in Σ(An−1), which
we defined in terms of refinement of one ordered partition by another.

We now present the q-analogue of the Tsetlin library or the side shuffle of type
An−1 (Section 3.1). Let σ1 be the sum of all the vertices of type s1, σ2 be the sum
of all the edges of type s1s2 and so on till σn−1 which is the sum of all chambers of
∆. The number of summands in σj , which is same as the number of faces of type
s1s2 . . . sj , is [n][n − 1] . . . [n − j + 1]. It follows directly from the definition that
σjσ1 = σ1σj = [j]σj + qjσj+1 if j < n− 1 and σn−1σ1 = [n]σn−1. As a consistency
check, we can also verify that the number of terms on each side is the same. These
facts imply that σ1 is power associative. Hence we may write the following without
ambiguity.

(11) q(
j+1

2 )σj+1 = σ1(σ1 − [1]) . . . (σ1 − [j]).

This along with σn−1σ1 = [n]σn−1 implies that both σ0 = 1,σ1,. . . ,σn−1 and
σ0
1 = 1,σ1

1 ,. . . ,σ
n−1
1 form a basis for the associative algebra A = k[σ1]. The ba-

sic relation satisfied by σ1 is σ1(σ1 − [1]) . . . (σ1 − [n − 2])(σ1 − [n]) = 0. Hence

A
∼=
−→ k[x]

x(x−[1])...(x−[n−2])(x−[n]) , where σ1 maps to x. Since the roots are distinct

we conclude that A is split semisimple.
As before, we extend the definition of σj to any j using (11) to obtain σn = σn−1

and σj = 0 for j > n. Inverting equation (11) formally, we obtain

σa
1 =

a∑

j=0

S(a, j)σj

where S(a, j) satisfies the recursion: S(a, j) = [j]S(a − 1, j) + qj−1S(a − 1, j − 1)

with S(a, 1) = 1 and S(a, a) = q(
a

2). The numbers S(a, j) give a q-analogue to
the Stirling numbers of the second kind. For more information on these numbers,
see [25] and the references therein.

Remark. The analysis we gave for this example was the analogue of the direct
method of Section 3.1. The difficulty with the shuffle method is that we do not
know of a good random walk interpretation of σa

1 . However as the direct method
shows, the algebra A satisfies all the properties of an additive shuffle algebra (ex-
cept that now we are in the more general context of buildings). There are also
natural ways to define the q-analogue of the two-sided shuffle and the riffle shuffle.
However the method breaks down because the basic elements of interest are not
power associative.

8.2. The q-side shuffle for Bn. There are two possibilities for the building of
type Bn depending on whether the associated algebraic group is the symplectic
group Sp2n(Fq) or the orthogonal group O2n(Fq). We consider them separately.
They may both be regarded as q-analogues of the Coxeter complex Σ(Bn). The
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side shuffle for Bn generalizes to both cases. As expected, the computations have
the same spirit as the previous section.

The symplectic case. Let V be a (even dimensional) vector space over Fq with
a skew-symmetric non-degenerate bilinear form Q. More explicitly, V has a basis
e1, e2, . . . , en, f1, f2, . . . , fn such that Q(ei, fi) = 1, Q(fi, ei) = −1 and all other
pairings between basis vectors are zero. The symplectic group Sp2n(Fq) is the
group of automorphisms of V that preserve the bilinear form Q.

The building of type Bn associated to the symplectic group ∆1(Bn) is the flag
(order) complex of all isotropic subspaces of V . The explicit description of the
product in ∆1(Bn) is similar to that in ∆(An−1). The easiest way to describe it is
via an inclusion

∆1(Bn) →֒ ∆(A2n−1),

where we map a flag of isotropic spaces 0 < V1 < . . . < Vl < V to the flag 0 < V1 <
. . . < Vl ≤ V ⊥

l < . . . < V ⊥
1 < V . This generalizes the map Σ(Bn) →֒ Σ(A2n−1)

considered in Section 7.
Let σ1 be the sum of all the vertices of type s1, σ2 be the sum of all the edges of

type s1s2 and so on till σn which is the sum of all chambers of ∆1(Bn). It follows
from the definition that σjσ1 = σ1σj = (1 + q2n−j)[j]σj + qjσj+1 if j ≤ n − 1
and σnσ1 = σ1σn = [2n]σn. An easy way to check this is to first figure out the
coefficient of σj+1. It is q

j , the same answer that we got for the An−1 case. There
is no difference in the two situations with respect to this coefficient. With this
information, we can find the coefficient of σj by simply counting the number of
terms involved on both sides. The number of summands in σj , which is same as
the number of faces of type s1s2 . . . sj , is [2n][2n− 2] . . . [2n− 2j +2]. The identity
is then a consequence of the simple relation [2n] = (1 + q2n−j)[j] + qj [2n− 2j]. It
is a good exercise to compute the coefficient of σj directly.

These facts imply that σ1 is power associative. Hence we may write the following
without ambiguity.

(12) q(
j+1

2 )σj+1 = σ1(σ1 − (1 + q2n−1)[1]) . . . (σ1 − (1 + q2n−j)[j]).

This along with σnσ1 = [2n]σn implies that both σ0 = 1,σ1,. . . ,σn and σ0
1 =

1,σ1
1 ,. . . ,σ

n
1 form a basis for the associative algebra A = k[σ1]. The basic relation

satisfied by σ1 is σ1(σ1 − (1 + q2n−1)[1]) . . . (σ1 − (1 + qn+1)[n− 1])(σ1 − [2n]) = 0.

Hence A
∼=
−→ k[x]

x(x−(1+q2n−1)[1])...(x−(1+qn+1)[n−1])(x−[2n]) . This shows that A is split

semisimple.
As before, we extend the definition of σj to any j using (12) to obtain σj = 0

for j > n. Inverting equation (12) formally, we obtain

σa
1 =

a∑

j=0

S(a, j)σj

where S(a, j) satisfies the recursion: S(a, j) = (1+ q2n−j)[j]S(a−1, j)+ qj−1S(a−

1, j − 1) with S(a, 1) = (1 + q2n−1)a−1 and S(a, a) = q(
a

2). The numbers S(a, j)
give a q-analogue to the signed Stirling numbers. Note that they now depend on n.
We do not know whether they have been considered before or whether they have
an explicit formula.

The orthogonal case. Let V be a (even dimensional) vector space over Fq with a
symmetric non-degenerate bilinear form Q. We also assume that V has an isotropic
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subspace of dimension n. More explicitly, V has a basis e1, e2, . . . , en, f1, f2, . . . , fn
such that Q(ei, fi) = Q(fi, ei) = 1 and all other pairings between basis vectors
are zero. The orthogonal group O2n(Fq) is the group of automorphisms of V that
preserve the bilinear form Q.

The building of type Bn associated to the orthogonal group ∆2(Bn) is the
flag (order) complex of all isotropic subspaces of V . The analysis parallels the
symplectic case. With the same definitions of the σj ’s, we get σjσ1 = σ1σj =
(1 + q2n−j−1)[j]σj + qjσj+1 if j ≤ n − 1 and σnσ1 = σ1σn = (1 + qn−1)[n]σn.
The reason for the difference is that now the number of summands in σj is (1 +
qn−1)[n](1 + qn−2)[n − 1] . . . (1 + qn−j)[n − j + 1]. The rest is similar to the sym-
plectic case. We now obtain a different q-analogue of the signed Stirling numbers
that satisfy the recursion: S(a, j) = (1+ q2n−j−1)[j]S(a−1, j)+ qj−1S(a−1, j−1)

with S(a, 1) = (1 + q2n−2)a−1 and S(a, a) = q(
a

2).

Remark. The building ∆2(Bn) that we considered here is not thick. Classically,
the group O2n(Fq) is considered to be of type Dn since there is a thick building
∆(Dn) associated to it. We will discuss this next. For more information on this,
see [9, pgs 123-127].

8.3. The q-side shuffle for Dn. Let V and Q be as in the orthogonal case of
Section 8.2. The building of type Dn, which we denote by ∆(Dn), is the flag
complex of the following so-called “oriflamme geometry”. The vertices in ∆(Dn)
are the non-zero isotropic subspaces of V of dimension 6= n−1. Two such subspaces
are called incident if one is contained in the other or if both have dimension n and
their intersection has dimension n − 1. A simplex in ∆(Dn) is a set of pairwise
incident vertices.

There is a natural product preserving map ∆2(Bn) → ∆(Dn), which generalizes
the map Σ(Bn) → Σ(Dn) in Section 6.1. To describe this map, we identify the
vector space V and the bilinear form Q in the two cases. A vertex in ∆2(Bn) is a
non-zero isotropic subspace of V . If it has dimension 6= n − 1 then we map it to
itself. Otherwise there are exactly two maximal isotropic subspaces of dimension n
in V that contain it. And we map it to the edge joining the two vertices in ∆(Dn)
representing these two subspaces. This again explains how a vertex of type sn−1

maps to an edge of type uv.
The image of the shuffle algebra k[σ1] in ∆2(Bn) under the above map yields a

shuffle algebra in ∆(Dn). As a q-analogue of the map between side shuffles of type
Bn and Dn, we obtain a map

{
q-side shuffle
of type Bn

}
−→

{
q-side shuffle
of type Dn

}

σj 7→ σj

The σj ’s on the right are defined as for the side shuffle of type Dn and we again
get the relation σn = 2σn−1. The basic relation satisfied by σ1 is σ1(σ1 − (1 +
q2n−2)[1]) . . . (σ1 − (1 + qn+1)[n− 2])(σ1 − (1 + qn−1)[n]) = 0. Note that the term
corresponding to n− 1 is absent. The rest of the analysis is routine and we omit it.

Remark. In light of the discussion in Section 6, we may say the following. The
failure to define a q-two sided shuffle of type An−1 is the result of our failure to
define a product preserving map ∆(Dn) → ∆(An−1). Also we failed to define a
q-riffle shuffle of type Bn and as a result also failed to get q-riffle shuffles for the
other two types.
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9. Future prospects

We conclude by suggesting some problems for future consideration.

Shuffle algebras. One problem is to classify them with minor modifications of
the definition if necessary. Notice that we never talked of a two sided shuffle of
type Bn or a joker analogue of the side shuffle of type An. Can these fit into the
framework of shuffle algebras or are there genuine geometric obstructions that make
them non-examples?

There are also more intricate shuffles called affine shuffles. Apparently, the affine
shuffles of type Bn coincide with our inverse a-shuffles of type Bn [15, Proposition
1]. Also there is no good description available for the affine shuffles of type An. We
ask whether affine shuffles can be understood geometrically in terms of the affine
Coxeter complex and the above connection clarified.

Buildings and complex reflection groups. There is no good theory for random
walks on buildings the major difficulty being the non-associativity of the product.
Our methods in Section 8 suggest that one should classify the power associative
elements of k∆ for a building ∆ and also product preserving maps between build-
ings. We may also ask if k[σ] is split-semisimple for a power associative element of
k∆.

In this paper, we considered only real reflection groups. The difficulty in passing
to the complex case is the absence of an analogue of the Coxeter complex. As an
example, consider the complex reflection group Sn⋉Z

n
r . For r = 2, it specializes to

the Coxeter group of type Bn. The first step would be to generalize the semigroup
of ordered partitions of type Bn. However, it is not clear how to do this.

Multiplicities and derangement numbers. In [10], Brown defined a random
walk associated to matroids. And he related the eigenvalue multiplicities to invari-
ants of the lattice of flats. He called these invariants the generalized derangement
numbers. The motivating examples are the side and q-side shuffle of type An−1 and
the generic multiplicities then are the usual and q-derangement numbers. In this
sense, we may think of ordinary matroids as related to the Coxeter group of type
An−1.

There is a notion of a W -matroid [8] for any Coxeter group W . We ask whether
it is possible to generalize the above to this setting. As a positive result in this direc-
tion, Bidigare [4, pgs 147-148] showed that for the side shuffle of type Bn, the generic
multiplicities are the signed derangement numbers. Further for the side shuffle of
type Dn, we have showed that the generic multiplicities are the derangement num-
bers of type Dn. To define these, one restricts to signed permutations with an even
number of negative signs. They satisfy the recursion dk − 2kdk−1 = (−1)k(k + 1)
with d0 = 1, d1 = 0 and d2 = 3 as the first few values.

Appendix A. The hyperplane face semigroup

Most of this section and a part of the next is taken directly from [10]. More
details concerning the material reviewed here can be found in [5, 6, 7, 9, 11, 19, 26].
Throughout this section A = {Hi}i∈I denotes a finite set of affine hyperplanes in
V = R

n. Let H+
i and H−

i be the two open halfspaces determined by Hi; the choice
of which one to call H+

i is arbitrary but fixed.
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A.1. Faces and chambers. The hyperplanes Hi induce a partition of V into
convex sets called faces (or relatively open faces). These are the nonempty sets
F ⊆ V of the form

F =
⋂

i∈I

Hεi
i ,

where εi ∈ {+,−, 0} and H0
i = Hi. Equivalently, if we choose for each i an affine

function fi : V → R such that Hi is defined by fi = 0, then a face is a nonempty
set defined by equalities and inequalities of the form fi > 0, fi < 0, or fi = 0, one
for each i ∈ I. The sequence ε = (εi)i∈I that encodes the definition of F is called
the sign sequence of F and is denoted ε(F ).

The faces such that εi 6= 0 for all i are called chambers. They are convex open
sets that partition the complement V −

⋃
i∈I Hi. In general, a face F is open relative

to its support, which is defined to be the affine subspace

suppF =
⋂

εi(F )=0

Hi.

Since F is open in suppF , we can also describe suppF as the affine span of F .

A.2. The face relation. The face poset of A is the set F of faces, ordered as
follows: F ≤ G if for each i ∈ I either εi(F ) = 0 or εi(F ) = εi(G). In other words,
the description of F by linear equalities and inequalities is obtained from that of G
by changing zero or more inequalities to equalities. We say that F is a face of G.
Note that the chambers are precisely the maximal elements of the face poset. We
denote the set of chambers by C.

A.3. Product. The set F of faces is also a semigroup. Given F,G ∈ F , their
product FG is the face with sign sequence

εi(FG) =

{
εi(F ) if εi(F ) 6= 0

εi(G) if εi(F ) = 0.

This has a geometric interpretation: If we move on a straight line from a point of F
toward a point of G, then FG is the face we are in after moving a small positive
distance. Hence, we may think of FG as the projection of G on F . Notice that the
face relation can be described in terms of the product: One has

(13) F ≤ G ⇐⇒ FG = G.

Also note that the set of chambers C is an ideal of F .

A.4. The semilattice of flats. A second poset associated with the arrangement
A is the semilattice of flats, also called the intersection semilattice, which we denote
by L. It consists of all nonempty affine subspacesX ⊆ V of the formX =

⋂
H∈A′ H,

where A′ ⊆ A is an arbitrary subset (possibly empty). We order L by inclusion.
[Warning: Many authors order L by reverse inclusion.] Notice that any two el-
ements X,Y have a least upper bound X ∨ Y in L, which is the intersection of
all hyperplanes H ∈ A containing both X and Y ; hence L is an upper semilattice

(poset with least upper bounds). It is a lattice if the arrangement A is central, i.e.,
if
⋂

H∈A H 6= ∅. Indeed, this intersection is then the smallest element of L, and a
finite upper semilattice with a smallest element is a lattice [23, Section 3.3]. The
support map gives a surjection

supp: F ։ L,
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which preserves order and also behaves nicely with respect to the semigroup struc-
ture. Namely, we have

(14) supp(FG) = suppF ∨ suppG

and

(15) FG = F ⇐⇒ suppG ≤ suppF.

A.5. The forgetful map. Let A = {Hi}i∈I and A′ = {Hi}i∈I′ be two hyperplane
arrangements such that I ′ ⊂ I, that is, the arrangement A′ is obtained from A by
deleting some of the hyperplanes. Let F(A) and F(A′) be the respective hyperplane
face semigroups. Then there is a natural map F(A) → F(A′). An element of F(A)
is a face F with a sign sequence, say ε = (εi)i∈I . We map it to the face of A′ with
the sign sequence ε′ = (εi)i∈I′ . In other words, we forget the signs of the elements
of I that are not in I ′. It is clear that this map is a semigroup homomorphism
and preserves the face relation. The second fact is implied by the first in view of
equation (13).

A.6. Spherical representation. Suppose now that A is a central arrangement,
i.e., that the hyperplanes have a nonempty intersection. We may assume that this
intersection contains the origin. Suppose further that

⋂
i∈I Hi = {0}, in which case

A is said to be essential. (There is no loss of generality in making this assump-
tion; for if it fails, then we can replace V by the quotient space V/

⋂
i Hi.) The

hyperplanes then induce a cell-decomposition of the unit sphere, the cells being
the intersections with the sphere of the faces F ∈ F . Thus F , as a poset, can be
identified with the poset of cells of a regular cell-complex Σ, homeomorphic to a
sphere. Note that the face F = {0}, which is the identity of the semigroup F , is not
visible in the spherical picture; it corresponds to the empty cell. The cell-complex
Σ plays a crucial role in [11], to which we refer for more details.

Thus the cell-complex Σ is a semigroup which we call the hyperplane face semi-
group. The maximal cells (which we again call chambers and denote C) is an ideal
in Σ.

Appendix B. Reflection arrangements

We work with an arbitrary finite Coxeter group W and its associated hyperplane
face semigroup Σ (the Coxeter complex of W ). But we will explain everything in
concrete terms for the cases W = An−1, Bn, Dn. This should make the discussion
accessible to readers unfamiliar with Coxeter groups.

B.1. Finite reflection groups. We begin with a very quick review of the basic
facts that we need about finite Coxeter groups and their associated simplicial com-
plexes Σ. Details can be found in many places, such as [9, 17, 18, 24]. A finite

reflection group on a real inner-product space V is a finite group of orthogonal
transformations of V generated by reflections sH with respect to hyperplanes H
through the origin. The set of hyperplanes H such that sH ∈ W is the reflection

arrangement associated with W . Its hyperplane face semigroup Σ is called the
Coxeter complex of W . Geometrically, this complex is obtained by cutting the unit
sphere in V by the hyperplanes H, as in Section A.6. (As explained there, one
might have to first pass to a quotient of V .) It turns out that the Coxeter complex
Σ is always a simplicial complex. Furthermore, the action of W on V induces an
action of W on Σ, and this action is simply-transitive on the chambers. Thus the
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set C of chambers can be identified with W , once a “fundamental chamber” C is
chosen.

B.2. Types of simplices. The number r of vertices of a chamber of Σ is called
the rank of Σ (and of W ); thus the dimension of Σ as a simplicial complex is r− 1.
It is known that one can color the vertices of Σ with r colors in such a way that
vertices connected by an edge have distinct colors. The color of a vertex is also
called its label, or its type, and we denote by I the set of all types. We can also
define type(F ) for any F ∈ Σ; it is the subset of I consisting of the types of the
vertices of F . For example, every chamber has type I, while the empty simplex
has type ∅. The action of W is type-preserving; moreover, two simplices are in the
same W -orbit if and only if they have the same type.

B.3. The Coxeter diagram. Choose a fundamental chamber C. It is known that
the reflections si in the facets of C generate W . In fact, W has a presentation of
the form < s1, . . . , sr | (sisj)

mij > with mii = 1 and mij = mji ≥ 2. This data is
conveniently encoded in a picture called the Coxeter diagram of W . This diagram
is a graph, with vertices and edges, defined as follows: There are r vertices, one
for each generator i = 1, 2, . . . , r, and the vertices corresponding to i and j are
connected by an edge if and only if mij ≥ 3. If mij ≥ 4 then we simply label the
edge with the number mij . The figures show the Coxeter diagrams which are of
interest to us, namely the ones of type An−1, Bn and Dn. It is customary to use
the generators of W , or the vertices of the Coxeter diagram to label the vertices of
its Coxeter complex Σ. A vertex of the fundamental chamber C is labeled si if it
is fixed by all the fundamental reflections except si. Since W acts transitively on C
and the action is type-preserving, this determines the type of all the vertices of Σ.

......
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..

s1

................................................................................................................................. ......
.....................................
..

s2

.................................................................................................... . . . .................................................................................................... ......
.....................................
..

sn−1

Figure 2. Coxeter Diagram of Type An−1
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.....................................
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s2

.................................................................................................... . . . .................................................................................................... ......
.....................................
..

sn−1

.................................................................................................................................

4

......
.....................................
..

sn=t

Figure 3. Coxeter Diagram of Type Bn

B.4. The Coxeter group of type An−1. The Coxeter group W = Sn acts on
R

n by permuting the coordinates. The arrangement in this case is the braid ar-

rangement in R
n. It is discussed in detail in [4, 5, 6, 11]. It consists of the

(
n
2

)

hyperplanes Hij defined by xi = xj , where 1 ≤ i < j ≤ n. Each chamber is deter-
mined by an ordering of the coordinates, so it corresponds to a permutation. The
faces of a chamber are obtained by changing to equalities some of the inequalities
defining that chamber.
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Figure 4. Coxeter Diagram of Type Dn

We fix x1 < x2 < . . . < xn to be the fundamental chamber C. The supports
of the facets of C are hyperplanes of the form xi = xi+1, where 1 ≤ i ≤ n − 1.
The reflection in the hyperplane xi = xi+1 corresponds to the generator si that
interchanges the coordinates xi and xi+1. The chamber C has n − 1 vertices,
namely

s1 : x1 < x2 = . . . = xn,
s2 : x1 = x2 < x3 = . . . = xn,. . .,
sn−1 : x1 = . . . = xn−1 < xn.

The labels s1,s2,. . .,sn−1 are assigned by the rule mentioned in Appendix B.3.
Applying the action of W we see, for example, that xπ(1) < xπ(2) = . . . = xπ(n)

gives all vertices of type s1 as π varies over all permutations of [n] = {1, . . . , n}.
We encode the system of equalities and inequalities defining a face F by an

ordered partition (B1, . . . , Bk) of [n]. Here B1, . . . , Bk are disjoint nonempty sets
whose union is [n], and their order counts. Thus the simplices of Σ are ordered
partitions B = (B1, . . . , Bl) of the set [n]. For example, the vertices of type s1 are
ordered two block partitions such that the first block is a singleton.

The product in Σ (Appendices A.3 and A.6) is also easy to describe. We multiply
two ordered partitions by taking intersections and ordering them lexicographically;
more precisely, if B = (B1, . . . , Bl) and C = (C1, . . . , Cm), then

BC = (B1 ∩ C1, . . . , B1 ∩ Cm, . . . , Bl ∩ C1, . . . , Bl ∩ Cm) ,̂

where the hat means “delete empty intersections”. The 1-block ordered partition
is the identity. The associated lattice L (Appendix A.4) is the lattice of unordered
set partitions. The support map B ։ L forgets the ordering of the blocks.

Note that B is a face of C if and only if C consists of an ordered partition of
B1 followed by an ordered partition of B2, and so on, that is, if and only if C is a
refinement of B. The chambers are the ordered partitions into singletons, so they
correspond to the permutations of [n] or a deck of n cards.

B.5. The Coxeter group of type Bn. The group of signed permutations W =
Sn ⋉ Z

n
2 acts on R

n with the subgroup Sn permuting the coordinates and the
subgroup Z

n
2 flipping the signs of the coordinates. The reflection arrangement in

this case consists of the hyperplanes defined by xi = ±xj and xi = 0, where
1 ≤ i < j ≤ n. A chamber is given by an ordering of the coordinates, their negatives
and zero. For example, for n = 3, x2 < −x3 < x1 < 0 < −x1 < x3 < −x2 specifies
a chamber. Note that the inequalities that appear on the left of 0 completely
determine a chamber (and the same is true for any face since it is obtained by
changing to equalities some of the inequalities defining a chamber). Thus we see
that a chamber corresponds to a signed permutation.
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We fix x1 < x2 < . . . < xn < 0 to be the fundamental chamber C. The supports
of the facets of C are hyperplanes of the form xi = xi+1, where 1 ≤ i ≤ n − 1
and xn = 0. The generators si interchange the coordinates xi and xi+1 and the
generator t flips the sign of xn. The n vertices of C along with their labels are as
follows.

s1 : x1 < x2 = . . . = xn = 0,
s2 : x1 = x2 < x3 = . . . = xn = 0,. . .,
sn−1 : x1 = x2 = . . . = xn−1 < xn = 0,
t : x1 = x2 . . . = xn < 0.

Applying the group action, we see, for example, that the vertices of type t have the
form ε1x1 = ε2x2 . . . = εnxn < 0 where εi ∈ {±1}.

It is convenient to describe a face F by an anti-symmetric ordered partition
(B1, . . . , Bk, Z,Bk, . . . , B1) of [n, n] = {1, . . . , n, 1, . . . , n}. We will call this a par-

tition of type Bn. For example, for n = 3, the face x2 < −x3 < x1 = 0 = −x1 <
x3 < −x2 is written ({2}, {3}, {1, 1}, {3}, {2}). The set Z satisfies Z = Z and is
allowed to be empty. We call it the zero block. It is the only set that is allowed to
contain both a number and its negative. Also, the sets B1, . . . , Bk are necessarily
non-empty. We also define a weak partition of type Bn to be a partition as above
but where the sets B1, . . . , Bk are allowed to be empty. Note that for a face F , the
zero block of its partition is empty if and only if the type of F contains the letter
t. We split the description for a face F into four cases, depending on whether the
type of F contains

(i) neither sn−1 nor t:
An ordered partition (B1, . . . , Bk, Z,Bk, . . . , B1) of [n, n] of type Bn with

the added restriction that the zero block Z has at least 4 elements.
(ii) t but not sn−1:

An ordered partition (B1, . . . , Bk, Z,Bk, . . . , B1) of [n, n], with the re-
striction that the zero block is empty and Bk has at least 2 elements.

(iii) sn−1 but not t:
An ordered partition (B1, . . . , Bk, Z,Bk, . . . , B1) of [n, n], with the re-

striction that the zero block has exactly 2 elements.
(iv) both sn−1 and t:

An ordered partition (B1, . . . , Bk, Z,Bk, . . . , B1) of [n, n], with the re-
striction that the zero block is empty and Bk has at exactly 1 element.

The product in Σ is defined exactly as for the An−1 case, where we refine the first
partition by the second. Note that B is a face of C if and only if C is a refinement
of B.

As mentioned earlier, the second half of the partition following Z contains no
new information. Hence we may describe a k − 1 dimensional face by a (k + 1)
block partition (B1, . . . , Bk, Z) of [n]. We think of B1, . . . , Bk as signed sets and
Z (possibly empty) as an unsigned set. The chambers are then (n + 1) block
partitions into n singletons and an empty zero block, so they correspond to signed
permutations of [n] or a deck of n signed cards. A good way to describe it is as a
deck where each card is either face up or face down. We will call such a deck as a
deck of type Bn. However, the product and the face relation is not so natural now.
So we will mainly use the first description.
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B.6. The Coxeter group of type Dn. The group of even signed permutations
W = Sn ⋉G is an index 2 subgroup of the group of signed permutations Sn ⋉Z

n
2 .

Here G is the index 2 subgroup of Z
n
2 consisting of n-tuples that have an even

number of negative signs. The groupW acts on R
n with the subgroup Sn permuting

the coordinates and the subgroup G flipping the signs of the coordinates. The
reflection arrangement in this case consists of the hyperplanes defined by xi = ±xj ,
where 1 ≤ i < j ≤ n. It is obtained from the reflection arrangement of type Bn by
deleting the coordinate hyperplanes xi = 0 for 1 ≤ i ≤ n. On the level of chambers,
this has the effect of merging together pairs of adjacent chambers of the Coxeter
complex of type Bn; see Figure 1. For example, the chamber of the Coxeter complex
of type Dn, x1 < x2 < . . . < xn−1 < ±xn < −xn−1 < . . . < −x1 (which we fix
as our fundamental chamber C) is the union of the two chambers of the Coxeter
complex of type Bn, namely, x1 < x2 < . . . < xn < 0 and x1 < x2 < . . . < −xn < 0.
The supports of the facets of C are hyperplanes of the form xi = xi+1, where
1 ≤ i ≤ n − 1 and xn−1 = −xn. The generators si interchange the coordinates
xi and xi+1, the generator u interchanges the coordinates xn−1 and xn and the
generator v interchanges xn−1 and xn and flips the signs of both. The n vertices of
C along with their labels are as follows.

s1 : x1 < x2 = . . . = xn = 0,
s2 : x1 = x2 < x3 = . . . = xn = 0,. . .,
sn−2 : x1 = x2 = . . . = xn−2 < xn−1 = xn = 0,
u : x1 = x2 . . . = xn−1 = −xn < xn = −xn−1 = . . . = −x2 = −x1,
v : x1 = x2 . . . = xn−1 = xn < −xn = −xn−1 = . . . = −x2 = −x1.

Applying the group action, we see, for example, that the vertices of type u and v
both have the form ε1x1 = ε2x2 = . . . = εnxn < −εnxn = . . . = −ε2x2 = −ε1x1,
where εi ∈ {±1} and they are distinguished by the parity of the product ε1ε2 . . . εn.
Also observe that the edge of the fundamental chamber C of type {u, v} is given
by x1 = x2 . . . = xn−1 < ±xn < −xn−1 = . . . = −x2 = −x1.

As in the Bn case, we describe a face F by an anti-symmetric ordered par-
tition (B1, . . . , Bk, C,Bk, . . . , B1) of [n, n]. We repeat that the sets B1, . . . , Bk

are non-empty and cannot contain both a number and its negative. We call the
block C = C in the middle, the central block rather than the zero block. It
always has an even number of elements. Furthermore, we impose the relation
(B1, . . . , Bk−1, C,Bk−1, . . . , B1) = (B1, . . . , Bk−1, Bk, C

′, Bk, Bk−1, . . . , B1) where
C ′ is empty, C has exactly two elements, namely, a number and its negative, and
C = Bk ∪C ′∪Bk. We split the description for a face F into three cases, depending
on whether the type of F contains

(i) neither u nor v:
An ordered partition (B1, . . . , Bk, C,Bk, . . . , B1) of [n, n], with the re-

striction that the central block C (in this case, we may think of it as the
zero block) has at least 4 elements.

(ii) exactly one of u and v:
An ordered partition (B1, . . . , Bk, C,Bk, . . . , B1) of [n, n], with the re-

striction that C is empty and Bk has at least 2 elements.
(iii) both u and v:

An ordered partition (B1, . . . , Bk−1, C,Bk−1, . . . , B1) of [n, n], with the
restriction that C has exactly 2 elements, namely, a number and its nega-
tive.
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An ordered partition (B1, . . . , Bk−1, Bk, C
′, Bk, Bk−1, . . . , B1) where C ′

is empty and Bk has exactly 1 element.

Here the number k is always the rank of the face. The first three descriptions are
obtained directly from the equalities and inequalities that define a face. The reason
why we call C the central block rather than the zero block should be clear now. The
motivation for the second description in case (iii) is as follows. To give an example,
the product of ({2, 3}, {1, 5, 4}, {4, 5, 1}, {3, 2}) with ({4, 1, 5}, {2, 3, 3, 2}, {5, 1, 4}),
must be ({2, 3}, {1, 5}, {4, 4}, {5, 1}, {3, 2}). But if we refine the first partition by
the second then we get ({2, 3}, {1, 5}, {4}, {4}, {5, 1}, {3, 2}). This partition has
two singletons in the middle and does not fit any of the first three descriptions
given above. So we allow ourselves to merge the two singletons in the middle. This
identification allows us to multiply two partitions B and C in the same way as
before; that is, we refine B using C.

As in the Bn case, if we throw off the (redundant) second half of the partition
then we see that chambers correspond to an almost signed deck of cards or a deck

of type Dn. It is a deck in which every card, except the bottommost, is signed. We
also define a weak partition of type Dn to be a partition of type Dn where the sets
B1, . . . , Bk are allowed to be empty.
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