Department of Mathematics, IIT Bombay ${ }^{1}$ April 3, 2024
 Course Curriculum Booklet

Contents

1 B.S. program in Mathematics 3
1.1 Curriculum for those who joined in July 2023 or later 3
2 Integrated M.Sc. program in Mathematics 5
2.1 Minimum Requirements 5
2.2 Curriculum for students switching after first year 6
2.3 Curriculum for students switching after second year 8
3 Conversion from B.S. in Mathematics to dual degree M.Sc. in Mathematics 11
4 Conversion from B.S. in Mathematics to dual degree M.Sc. in Statistics 13
4.1 Introduction 13
4.2 Degree requirements 13
4.3 List of courses 13
5 Interdisciplinary dual degree program in Mathematics 15
5.1 Introduction 15
5.2 Degree requirements 15
6 Interdisciplinary dual degree program in Statistics 17
6.1 Introduction 17
6.2 Degree requirements 17
7 Two year M.Sc. program in Mathematics 21
7.1 Curriculum 21
8 Two year M.Sc. program in Statistics 23
8.1 Curriculum 23
9 List of Electives 25

[^0]9.1 Ph.D. courses 27
10 List of all Mathematics Courses 29
11 List of all Statistics Courses 139

Chapter 1

B.S. program in Mathematics

1.1 Curriculum for those who joined in July 2023 or later.

First Semester					
Course	Name	L	T	P	C
CH117	Chemistry Lab				3
GC101	Gender in the work- place				4
MA105	Calculus	3	1	0	8
MA113	Mathematics and Its History	2	1	0	6
MA114	Introduction to Math- ematical Concepts	3	0	0	6
MS101	Makerspace				8
NOCS01	National Cadet Corps National Sports Or- ganization National Sports Organization National Service Scheme				

Second Semester					
Course	Name	L	T	P	C
CS101	Computer Programming and Utilization				6
$\begin{aligned} & \hline \text { HSS/ } \\ & \text { IDC/ } \\ & \text { ENT } \end{aligned}$	Introduction to HASMED				8
MA110	Linear Algebra and Differential Equations	3	1	0	8
NOCS02	National Cadet Corps National Sports Organization National Sports Organization National Service Scheme				$\begin{aligned} & \mathrm{P} / \\ & \mathrm{NP} \end{aligned}$
PH110	Introduction to Classical and Quantum Physics	3	1	0	8
PH117	Physics Lab				3

Third Semester					
Course	Name	\mathbf{L}	\mathbf{T}	\mathbf{P}	C
EC101	Economics				6
MA401	Linear Algebra	3	1	0	8
MA403	Real Analysis	3	1	0	8
MA419	Basic Algebra	3	1	0	8
SI427	Probability 1	3	1	0	8

Fourth Semester					L
T	P	C			
Course	Name				3
ES250	Environmental Stud- ies				3
HS250	Environmental Stud- ies				
MA406	General Topology	3	1	0	8
MA410	Multivariable Calcu- lus	2	1	0	6
MA412	Complex Analysis	3	1	0	8

Fifth Semester

Course	Name	\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{C}
HSxxx	Introduction to Lit- erature/ Philosophy/ Sociology				6
MA417	Ordinary Differential Equations	3	1	0	8
SI419	Combinatorics	3	1	0	8
SI507	Numerical Analysis	3	1	0	8
	Inst Elective				6

Seventh Semester

Course	Name	\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{C}
MA503	Functional Analysis	3	1	0	8
MA515	Partial Differential Equations	3	1	0	8
	Dept Elective				6
	Dept Elective				6
	Inst Elective				6

Sixth Semester

Course	Name	L	T	P	C
MA408	Measure Theory	3	1	0	8
MA414	Algebra 1	2	1	0	6
	Dept Elective				6
	Dept Elective				6
	Inst Elective				6

Eighth Semester

Course	Name	L	T	\mathbf{P}	\mathbf{C}
	Dept Elective				6
	Dept Elective				6
	Dept Elective				6
	Dept Elective				6
	Inst Elective			6	

Chapter 2

Integrated M.Sc. program in Mathematics

2.1 Minimum Requirements

The minimum requirements for students to obtain a 5 -year Integrated M.Sc. degree are as follows:
(1) Number of core courses: 2 HSS courses + HSS Environmental Science + CESE Environmental Science + 10 MA courses (excludes MA 1xx courses) $=14$.
(2) Compulsory Project in the 5th year.
(3) Number of Credits in core courses (counted as above): 92
(4) Number of credits for the project: 30
(5) Minimum number of Department electives: 9
(6) Minimum no of credits in department electives (including the Advanced Electives): 54
(7) Minimum no of Institute electives: 2
(8) Minimum No of credits in institute electives: 12
(9) Minimum No of credits: 330

2.2 Curriculum for students switching after first year

Third Semester		
Code	Course Title	C
MA401	Linear Algebra	8
MA403	Real Analysis	8
MA419	Basic Algebra	8
SI419	Combinatorics	6

Fourth Semester		
Code	Course Title	C
MA214	Numerical Analysis	8
MA406/	General Topology/Complex	8
MA412	Analysis	6
MA410	Multivariable Calculus	6
MA414	Algebra I	8

Fifth Semester		
Code	Course Title	C
HS301	Ordinary Differential Equa-	8
MA417	Ord tions	8
SI427	Probability I	6
	Dept Elective	6
	Inst Elective	

Sixth Semester		
Code	Course Title	C
ES200	Environmental Science	3
HS200	Environmental Science	3
MA406/ MA412	General Topology/Complex Analysis	8
MA408	Measure Theory	8
SI404	Applied Stochastic Pro- cesses	8
	Inst Elective	6

Seventh Semester		
Code	Course Title	C
MA503	Functional Analysis	8
MA515	Partial Differential Equa- tions	8
	Dept Elective	6
	Dept Elective	6
	Inst Elective	6

Eighh Semester		
Code	Course Title	C
MA450	Independent study	6
	Dept Elective	6
	Inst Elective	6

Ninth Semester		
Code	Course Title	C
	Advance Elective	6
	Dept Elective	6
	Dept Elective	6
	Dept Elective	6
	Project	12

Tenth Semester		
Code	Course Title	C
	Advance Elective	6
	Dept Elective	6
	Project	18

Total credits for eight semesters $=264$.

Independent Study: The student should pursue a topic of his or her choice for one semester under the supervision of a faculty member. The course is the analogue of the "Seminar" courses that undergraduate students were required to take in previous years. The Independent Study should end with a presentation to the supervising faculty member and the preparation of a brief report of about ten pages.

Department Electives may include any Department Elective offered or Ph.D. course offered in the relevant semester. The existing departmental rules for prerequisites for these courses will apply.

The Advanced Elective listed in Semesters 9 and 10 must be one of the core Ph.D. courses (that is, not a "Topics" course). These are:

For Semester 9 (Advanced Elective): MA 813 (Algebra I), MA 819 (Measure Theory), MA 815 (Differential Topology), MA 817 (Partial Differential Equations), MA 833 (Weak Convergence and Martingale Theory), MA 821 (Theory of Estimation)

For Semester 10 (Advanced Elective): MA 812 (Algebra II), MA 814 (Complex Analysis), MA 816 (Algebraic Topology), MA818 (Partial Differential Equations II), MA 820 (Stochastic Processes), MA 822 (Testing of Hypothesis), MA 824 (Functional Analysis

2.3 Curriculum for students switching after second year

2.3.1 Eligibility

The department will use its discretion to admit students who apply for a branch change after their second year. Students will not be admitted after their second year unless they have already completed MA 403 (Real Analysis) and at least one of MA 406 (General Topology), MA 410 (Multivariable calculus), MA 412 (Complex Analysis), MA 419 (Basic Algebra) or MA 414 (Algebra I). Other criteria, such as performance in these courses, may also be used to determine eligibility.

Fifth Semester		
Code	Course Title	C
HS301		6
MA401	Linear Algebra	8
MA417	Ordinary Differential Equa- tions	8
MA419	Basic Algebra	8
SI419	Combinatorics	6

Sixth Semester*		
Code	Course Title	C
ES200	Environmental Science	3
HS200	Environmental Science	3
MA406	General Topology	8
MA408	Measure Theory	8
MA410	Multivariable Calculus	6
MA412	Complex Analysis	8
MA414	Algebra I	8
SI416	Optimization	8

*In Semester 6, it is expected that the student will take 4 out of the 5 MA courses.

Seventh Semester		
Code	Course Title	C
MA503	Functional Analysis	8
MA515	Partial Differential Equa- tions	8
SI427	Probability I	8
	Dept Elective	6
	Inst Elective	6

Eighh Semester		
Code	Course Title	C
MA450	Independent study	6
SI404	Applied Stochastic Pro- cesses	8
	Dept Elective	6
	Dept Elective	6
	Dept Elective	6
	Inst Elective	6

Ninth Semester		
Code	Course Title	C
	Advance Elective	6
	Dept Elective	6
	Dept Elective	6
	Dept Elective	6
	Project	12

Tenth Semester		
Code	Course Title	C
	Advance Elective	6
	Dept Elective	6
	Dept Elective	6
	Project	18

Total credits for six semesters $=220$.

Independent Study: The student should pursue a topic of his or her choice for one semester under the supervision of a faculty member. The course is the analogue of the "Seminar" courses that undergraduate students were required to take in previous years. The Independent Study should end with a presentation to the supervising faculty member and the preparation of a brief report of about ten pages.

Department Electives may include any Department Elective offered or Ph.D. course offered in the relevant semester. The existing departmental rules for prerequisites for these courses will apply.

The Advanced Elective listed in Semesters 9 and 10 must be one of the core Ph.D. courses (that is, not a "Topics" course). These will be courses with numbers MA8xx.

For Semester 9 (Advanced Elective): MA 813 (Algebra I), MA 819 (Measure Theory), MA 815 (Differential Topology), MA 817 (Partial Differential Equations), MA 833 (Weak Convergence and Martingale Theory), MA 821 (Theory of Estimation)

For Semester 10 (Advanced Elective): MA 812 (Algebra II), MA 814 (Complex Analysis), MA 816 (Algebraic Topology), MA818 (Partial Differential Equations II), MA 820 (Stochastic Processes), MA 822 (Testing of Hypothesis), MA 824 (Functional Analysis

Chapter 3

Conversion from B.S. in Mathematics to dual degree M.Sc. in Mathematics

B.S. students wishing to switch to the dual degree program should write a letter to the Convener of the DUGC, asking for admission to the program, after completing their sixth semester, and no later than the end of the second month (usually February) of their seventh semester.

A student wishing to enter the dual degree program, at the time of applying, should have a CPI of at least 7.00 and no backlog courses.

Students meeting the admission criteria will be given provisional admission to the dual degree program by the DUGC. This admission will be confirmed at the beginning of the ninth semester if the student has no backlog courses.

Students entering the dual degree program in the fifth year will follow the course structure of the final year of the five-year Integrated M.Sc. program in mathematics. Students will have to do a Project over two semesters. Specifically the course structure will be the following:

- Semester 9: 1 Advanced Elective (Ph.D. level course) (6 credits), 3 Departmental Electives (18 credits) and 1 Project (12 credits). Total: 36 credits.
- Semester 10: 1 Advanced Elective (Ph.D. level course) (6 credits), 2 Departmental Electives (12 credits) and 1 Project (18 credits). Total: 36 credits

Thus students opting for this program will do an additional 72 credits of coursework and project work.

Chapter 4

Conversion from B.S. in Mathematics to dual degree M.Sc. in Statistics

4.1 Introduction

The BS in Mathematics + MSc in Statistics dual degree at IIT Bombay is designed to help BS Mathematics students with an interest in Statistics and Data Science to augment their undergraduate academic programs with an additional one year specialization in Statistics and Probability. The curriculum includes both basic and advanced courses in Statistics and Probability. Motivated students will benefit from the presence of active research group in the area. The number of enrollments in this program is capped at 5 .
B.S. students wishing to switch to the dual degree program should write a letter to the Convener of the DUGC, asking for admission to the program, after completing their sixth semester, and no later than the end of the second month (usually February) of their seventh semester.

A student wishing to enter the dual degree program, at the time of applying, should have a CPI of at least 7.00 and no backlog courses.

Students meeting the admission criteria will be given provisional admission to the dual degree program by the DUGC. This admission will be confirmed at the beginning of the ninth semester if the student has no backlog courses.

4.2 Degree requirements

Students entering the dual degree program after completion of 6 th Semester (latest by 2 months after starting of their 7th Semester) need to complete
(a) at least 2 electives from the below list SI courses by 8th semester.
(b) at least 18 credits based on courses from the below list of SI courses in each of 9th and 10th semester.
(c) a project of 18 credits in each of 9th and 10th semester.

4.3 List of courses

(1) SI404 Applied Stochastic Processes
(2) SI422 Regression Analysis
(3) SI424 Statistical Inference I
(4) SI416 Optimization
(5) SI426 Algorithms
(6) SI431 Introduction to Data Analysis using R
(7) SI503 Categorical Data Analysis
(8) SI505 Multivariate Analysis
(9) SI509 Time Series Analysis
(10) SI515 Statistical Techniques in Data Mining
(11) SI526 Experimental Designs
(12) SI527 Introduction to Derivative Pricing
(13) SI534 Non-parametric Statistics
(14) SI513 Theory of Sampling
(15) SI514 Statistical Modelling
(16) SI536 Analysis of Multi-Type and Big Data
(17) SI537 Probability 2
(18) SI539 Random Graphs
(19) SI541 Statistical Epidemiology
(20) SI543 Asymptotic Statistics
(21) SI544 Martingale theory
(22) SI546 Statistical Inference II
(23) SI548 Computational Statistics

Thus students opting for this program will need do at least an additional 72 credits of coursework and project work in fifth year.

Chapter 5

Interdisciplinary dual degree program in Mathematics

5.1 Introduction

The IDDDP in Mathematics at IIT Bombay is designed to help students with an interest in mathematics to augment their undergraduate academic programs with an additional one year specialization in mathematics. The curriculum includes basic courses in algebra, combinatorics, calculus and analysis, differential equations, and probability. More advanced courses in these subjects, as well as in geometry, topology, number theory, numerical analysis, statistics, and theoretical computer science will be on offer. Motivated students will benefit from the presence of active research groups in all of these areas.

Students wishing to get admission into the IDDDP in Mathematics should write a letter to the Convener of the DUGC (Mathematics), asking for admission to the program.

5.2 Degree requirements

Let S be the following collection of courses:
(1) MA401 Linear Algebra
(2) MA403 Real Analysis
(3) MA417 ODE
(4) MA419 Basic Algebra
(5) MA406 General Topology
(6) MA408 Measure Theory
(7) MA410 Multivariable Calculus
(8) MA412 Complex Analysis
(9) MA414 Algebra-1 (Galois Theory)
(10) MA503 Functional Analysis
(11) MA515 PDE
(12) MA523 Basic Number Theory
(13) SI419 Combinatorics
(14) SI427 Probability 1
(15) SI507 Numerical Analysis

Candidates interested in the IDDDP of the Mathematics Department should satisfy the following criteria:
(1) By end of 3rd year (while applying) the applicant should have
(a) $\mathrm{CPI} \geqslant 8.0$,
(b) no FF/FR in any MA/SI courses at any point of time,
(c) an average CPI $\geqslant 8.5$ in the courses from S completed by the applicant, and
(d) completed at least 4 courses from S.
(2) By the end of 4th year, the applicant should have completed
(a) any required courses offered by other departments (e.g, CS101, ES200, HS200, etc.), and
(b) at least 7 courses from S (in consultation with the faculty advisor). ${ }^{1}$
(3) At the end of their fifth year, the student should have done at least 12 courses from $S .{ }^{2}$
(4) In the fifth year, the applicant should take at least 5 departmental courses in each semester. Number of courses may be reduced with the approval of faculty advisor if the student is doing a project. ${ }^{3}$
(5) A project will be of 36 credits. The student should overall complete 124 credits (of MA $4 \mathrm{xx}, 5 \mathrm{xx}, 8 \mathrm{xx}$ courses) to get the degree. ${ }^{4}$

[^1]
Chapter 6

Interdisciplinary dual degree program in Statistics

6.1 Introduction

The IDDDP in Statistics at IIT Bombay is designed to help students with an interest in Statistics and Data Science to augment their undergraduate academic programs with an additional one year specialization in Statistics. The curriculum includes both basic and advanced courses in Statistics and Probability. Motivated students will benefit from the presence of active research group in the area. The number of enrollments in this program is capped at 5 .

Students wishing to get admission into the IDDDP in Statistics should write a letter to the Convener of the DUGC (Mathematics), asking for admission to the program.

6.2 Degree requirements

Let S_{1} be the following set of courses:
(1) MA403 Real Analysis
(2) SI404 Applied Stochastic Processes
(3) SI422 Regression Analysis
(4) SI424 Statistical Inference I
(5) SI427 Probability 1

Let S_{2} be the following set of courses:
(1) MA401 Linear Algebra
(2) SI416 Optimization
(3) SI419 Combinatorics
(4) SI426 Algorithms
(5) SI431 Introduction to Data Analysis using R
(6) SI503 Categorical Data Analysis
(7) SI505 Multivariate Analysis
(8) SI509 Time Series Analysis
(9) SI515 Statistical Techniques in Data Mining
(10) SI526 Experimental Designs
(11) SI527 Introduction to Derivative Pricing
(12) SI534 Non-parametric Statistics

Let S_{3} be the following set of courses:
(1) SI507 Numerical Analysis
(2) SI513 Theory of Sampling
(3) SI514 Statistical Modelling
(4) SI536 Analysis of Multi-Type and Big Data
(5) SI537 Probability 2
(6) SI539 Random Graphs
(7) SI541 Statistical Epidemiology
(8) SI543 Asymptotic Statistics
(9) SI544 Martingale theory
(10) SI546 Statistical Inference II
(11) SI548 Computational Statistics

Candidates interested in the IDDDP in Statistics should satisfy the following criteria:
(1) By end of 3rd year (while applying) the applicant should have
(a) $\mathrm{CPI} \geqslant 8$,
(b) completed MA403 (Real Analysis) and at least 3 courses out of remaining 4 in S_{1},
(c) no FF/FR in any MA/SI courses at any point of time.
(2) By the end of 4th year, the applicant should have completed
(a) any required courses offered by other departments (e.g, CS101, ES200, HS200, etc.), and
(b) at least 8 courses from S_{1} or S_{2}.
(3) At the end of the fifth year, the student should have done at least 12 courses from S_{1} or S_{2} or S_{3}.
(4) In 2.(b) and 3., a student can replace a particular course in S_{2} or S_{3} with an advanced PhD level course in the same broad area in consultation with the faculty advisor.
(5) The student should overall complete 124 credits (of the courses from above lists and/or project) to get the degree. A project will be of 36 credits.

Chapter 7

Two year M.Sc. program in Mathematics

7.1 Curriculum

First Semester					
Course	Name	L	T	P	C
SI427	Probability 1	3	1	0	8
MA401	Linear Algebra	3	1	0	8
MA403	Real Analysis	3	1	0	8
MA417	Ordinary Differential Equations	3	1	0	8
MA419	Basic Algebra	3	1	0	8

Second Semester					
Course	Name	L	T	P	C
MA406	General Topology	3	1	0	8
MA408	Measure Theory	3	1	0	8
MA410	Multivariable Calcu- lus	2	1	0	6
MA412	Complex Analysis	3	1	0	8
MA414	Algebra 1	3	1	0	8

Third Semester

Course	Name	\mathbf{L}	\mathbf{T}	\mathbf{P}	C
MA503	Functional Analysis	3	1	0	8
MA515	Partial Differential Equations	3	1	0	8
MA593	Project (Optional)				4
	Dept Elective				6
	Dept Elective				6
	Dept Elective				6

Fourth Semester

Course	Name	L	T	\mathbf{P}	\mathbf{C}
ES250	Environmental Stud- ies				3
HS250	Environmental Stud- ies			3	
MA598	Project/Dept Elec- tive/Inst Elective			6	
	Dept Elective			6	
	Dept Elective			6	
	Dept Elective			6	
	Dept Elective			6	

Chapter 8

Two year M.Sc. program in Statistics

8.1 Curriculum

First Semester					
Course	Name	\mathbf{L}	T	P	C
SI419	Combinatorics	3	1	0	8
SI423	Linear Algebra and its Applications	3	1	0	8
SI427	Probability 1	3	1	0	8
SI429	Real analysis	3	1	0	8
SI431	Introduction to Data Analysis using R	2	0	2	6

Second Semester					
Course	Name	L	T	P	C
SI404	Applied Stochastic Processes	3	1	0	8
SI416	Optimization	2	1	0	6
SI422	Regression Analysis	3	1	0	8
SI424	Statistical Inference 1	3	1	0	8
SI426	Algorithms	3	1	0	8

Third Semester					
Course	Name	\mathbf{L}	T	\mathbf{P}	\mathbf{C}
ES250	Environmental Stud- ies				3
HS250	Environmental Stud- ies				3
SI503	Categorical Analysis	3	1	0	8
SI505	Multivariate Analysis	3	1	0	8
SI593	Project 1 (Optional)				4
	Dept Elective	3	1	0	8
	Dept Elective	3	1	0	8

Fourth Semester					
Course	Name	\mathbf{L}	T	\mathbf{P}	\mathbf{C}
SI509	Time Series Analysis	3	1	0	8
SI526	Experimental Designs	2	1	0	6
SI598	Project/Dept Elec- tive/Inst Elective				6
	Dept Elective	2	1	0	6
	Dept Elective	2	1	0	6
	Dept Elective	2	1	0	6

Chapter 9

List of Electives

Odd Semester Electives	
Course	Name
MA521	Theory of Analytic Functions
MA523	Basic Number Theory
MA525	Dynamical Systems
MA538	Representation Theory of Finite Groups
MA539	Spline Theory and Variational Methods
MA556	Differential Geometry
MA581	Elements of Differential Topology
MA5101	Algebra 2
MA5103	Algebraic Combinatorics 2 1 0 6
MA5105	Coding Theory
MA5107	Continuum Mechanics
MA5109	Graph Theory
MA5111	Theory of Finite Semigroups
MA5113	Category Theory 1
MA5115	Hopf Algebras
SI507	Numerical Analysis
SI513	Theory of Sampling
SI515	Statistical Techniques in Data Mining
SI537	Probability 2
SI539	Random Graphs
SI541	Statistical Epidemiology
SI543	Asymptotic Statistics

Even Semester Electives	
Course	Name
MA504	Operators on Hilbert Spaces
MA510	Introduction to Algebraic Geometry
MA518	Spectral Approximation
MA524	Algebraic Number Theory
MA526	Commutative Algebra
MA528	Hyperplane Arrangements
MA530	Nonlinear Analysis
MA532	Analytic Number Theory
MA534	Modern Theory of PDE
MA540	Numerical Methods for Partial Differential Equations
MA562	The Mathematical Theory of Finite Ele- ments
MA5102	Basic Algebraic Topology
MA5104	Hyperbolic Conservation Laws
MA5106	Introduction to Fourier Analysis
MA5108	Lie Groups and Lie Algebras
MA5110	Non-commutative Algebra
MA5112	Introduction to Mathematical Methods
MA5116	Species and Operads
MA5118	Category Theory 2
MA606	Coxeter Groups
SI416	Optimization
S514	Statistical Modelling
SI527	Introduction to Derivative Pricing
S553	Nonparametric Statistics
S536	Analysis of Multi-Type and Big Data
S544	Martingale theory
S546	Statistical Inference II
S5548	Computational Statistics
S550	Weak Convergence and Empirical Processes

9.1 Ph.D. courses

Apart from the above listed electives, a student may also opt for a Ph.D. level course as an elective subject to the approvals from the course instructor and the faculty advisor. The list of Ph.D. courses offered in the department are as follows:

Odd Semester Electives	
Course	Name
MA811	Algebra 1
MA813	Measure Theory
MA815	Differential Topology
MA817	Partial Differential Equations 1
MA833	Weak Convergence and Martin- gale Theory
MA839	Advanced Commutative Algebra
MA841	Topics in Algebra 1
MA843	Topics in Analysis 1
MA845	Topics in Combinatorics 1
MA847	Topics in Geometry 1
MA849	Topics in Topology 1
MA851	Topics in Number Theory 1
MA853	Topics in Differential Equations 1
MA855	Topics in Numerical Analysis 1
MA857	Topics in Probability 1
MA859	Topics in Statistics I
MA861	Combinatorics 1
MA863	Theoretical Statistics 1
MA864	Topics in Category Theory 1

Even Semester Electives	
Course	Name
MA812	Algebra 2
MA814	Complex Analysis
MA816	Algebraic Topology
MA818	Partial Differential Equations 2
MA820	Stochastic Processes
MA823	Probability
MA824	Functional Analysis
MA842	Topics in Algebra 2
MA844	Topics in Analysis 2
MA846	Topics in Combinatorics 2
MA848	Topics in Geometry 2
MA850	Topics in Topology 2
MA852	Topics in Number Theory 2
MA854	Topics in Differential Equations 2
MA856	Topics in Numerical Analysis II
MA858	Topics in Probability II
MA860	Topics in Statistics II
MA862	Combinatorics 2
MA865	Topics in Category Theory 2
MA867	Statistical Modelling - 1

Chapter 10

List of all Mathematics Courses

MA001 31
MA002 32
MA105 33
MA106 34
MA108 35
MA109 36
MA110 37
MA111 38
MA113 39
MA114 41
MA205 42
MA207 43
MA214 44
MA401 45
MA403 46
MA406 47
MA408 48
MA410 49
MA412 50
MA414 51
MA417 52
MA419 54
MA450 55
MA503 56
MA504 57
MA510 58
MA515 59
MA518 60
MA521 61
MA523 62
MA524 63
MA525 64
MA526 65
MA528 66
MA530 67
MA532 68
MA533 69
MA534 70
MA538 71
MA539 72
MA540 73
MA556 74
MA562 75
MA581 76
MA593 77
MA598 78
MA5101 79
MA5102 80
MA5103 81
MA5104 82
MA5105 83
MA5106 84
MA5107 85
MA5108 86
MA5109 87
MA5110 88
MA5111 89
MA5112 90
MA5113 91
MA5115 92
MA5116 93
MA5118 94
MA606 95
MA811 96
MA812 97
MA813 98
MA814 99
MA815 100
MA816 101
MA817 102
MA818 103
MA820 104
MA823 105
MA824 106
MA833 107
MA839 108
MA841 109
MA842 110
MA843 111
MA844 112
MA845 114
MA846 115
MA847 116
MA848 117
MA849 118
MA850 119
MA851 120
MA852 121
MA853 122
MA854 124
MA855 125
MA856 126
MA858 127
MA859 128
MA860 129
MA861 130
MA862 131
MA863 132
MA864 133
MA865 134
MA867 135
MA899 136
MAS801 138
MAS802 138

Course Code	MA 001
Course Name	Preparatory Mathematics 1
Total Credits	0
Type	T
Lecture	3
Tutorial	2
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. nil
Description	Complex numbers as ordered pairs. Argand's diagram. Triangle inequality. De Moivre's Theorem. Algebra: Quadratic equations and expressions. Permutations and combina- tions. Binomial theorem for a positive integral index. Coordinate Geometry: Locus, Straight lines. Equations of circle, parabola, ellipse and hyperbola in standard forms. Parametric representation. Vectors: Addition of vectors. Multiplication by a scalar. Scalar product, cross product and scalar triple product with geometrical applications. Matrices and Determinants: Algebra of matrices. Determinants and their properties. Inverse of a matrix. Cramer's rule.

Course Code	MA 002
Course Name	Preparatory Mathematics 2
Total Credits	0
Type	T
Lecture	3
Tutorial	2
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1.
Description	Function, Inverse function, Elementary functions and their graphs, Limit, Con- tinuity, Derivative and its geometrical significance. Differentiability. Deriva- tives of sum, difference, product and quotient of functions. Derivatives of poly- nomial, rational, trigonometric, logarithmic, exponential, hyperbolic, inverse trigonometric and inverse hyperbolic functions. Differentiation of compos- ite and implicit functions. Tangents and Normals, Increasing and decreasing functions. Maxima and Minima. Integrations as the inverse process of differ- entiation, Integration by parts and by substitution. Definite integrals and its application to the determination of areas.

Course Code	MA 105
Course Name	Calculus
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	Y
Prerequisite	Nil
Text Reference	2. Hughes-Hallett et al., Calculus - Single and Multivariable (3rd Edition), John-Wiley, 2003
1980. Apostol, Calculus, Volumes 1 \& 2 (2nd Edition), Wiley Eastern,	
4. G. B. Thomas and R. L. Finney, Calculus and Analytic Geometry (9th	
Edition), ISE Reprint, Addison-Wesley, 1998.	

Course Code	MA 106
Course Name	Linear Algebra
Total Credits	4
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	Y
Prerequisite	Nil
Text Reference	1. H. Anton, Elementary Linear Algebra with Applications (8th Edition), John Wiley, 1995. 2. G. Strang, Linear Algebra and its Applications (4th Edition), Thomson, 2006. 3. S. Kumaresan, Linear algebra - A Geometric Approach, Prentice Hall of India, 2000. 4. E. Kreyszig, Advanced Engineering Mathematics (8th Edition), John Wiley, 1999.
Description	Vectors in \mathbb{R}^{n}, linear independence and dependence, linear span of a set of vectors, vector subspaces of \mathbb{R}^{n}, basis of a vector subspace. Systems of linear equations, matrices and Gauss elimination, row space, null space, and column space, rank of a matrix. Determinants and rank of a matrix in terms of determinants. Abstract vector spaces, linear transformations, matrix of a linear transformation, change of basis and similarity, rank-nullity theorem. Inner product spaces, Gram-Schmidt process, orthonormal bases, projections and least squares approximation. Eigenvalues and eigenvectors, characteristic polynomials, eigenvalues of special matrices (orthogonal, unitary, hermitian, symmetric, skew-symmetric, normal), algebraic and geometric multiplicity, diagonalization by similarity transformations, spectral theorem for real symmetric matrices, application to quadratic forms.

Course Code	MA 108
Course Name	Differential Equations
Total Credits	4
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	Y
Prerequisite	Nil
Text Reference	1. E. Kreyszig, Advanced Engineering Mathematics (8th Edition), John Wiley, 1999. Edition), John Wiley, 2005.
3. T. M. Apostol, Calculus, Volume 2 (2nd Edition), Wiley Eastern, 1980.	

Course Code	MA 109
Course Name	Calculus 1
Total Credits	4
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	Y
Prerequisite	Nil
Text Reference	1. Hughes-Hallett et al., Calculus - Single and Multivariable (3rd Edition), John-Wiley, 2003
2. James Stewart, Calculus (5th Edition), Thomson, 2003.	
1980.	
4. G. B. Thomas and R. L. Finney, Calculus and Analytic Geometry (9th	
Edition), ISE Reprint, Addison-Wesley, 1998.	

Course Code	MA 110
Course Name	Linear Algebra and Differential Equations
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	Y
Prerequisite	Nil
Text Reference	1. H. Anton, Elementary Linear Algebra with Applications (8th Edition), John Wiley, 1995. 2. G. Strang, Linear Algebra and its Applications (4th Edition), Thomson, 2006. 3. S. Kumaresan, Linear algebra - A Geometric Approach, Prentice Hall of India, 2000. 4. E. Kreyszig, Advanced Engineering Mathematics (8th Edition), John Wiley, 1999. 5. W. E. Boyce and R. DiPrima, Elementary Differential Equations (8th Edition), John Wiley, 2005. 6. T. M. Apostol, Calculus, Volume 2 (2nd Edition), Wiley Eastern, 1980.
Description	Vectors in \mathbb{R}^{n}, linear independence and dependence, linear span of a set of vectors, vector subspaces of \mathbb{R}^{n}, basis of a vector subspace. Systems of linear equations, matrices and Gauss elimination, row space, null space, and column space, rank of a matrix. Determinants and rank of a matrix in terms of determinants. Abstract vector spaces, linear transformations, matrix of a linear transformation, change of basis and similarity, rank-nullity theorem. Inner product spaces, Gram-Schmidt process, orthonormal bases, projections and least squares approximation. Eigenvalues and eigenvectors, characteristic polynomials, eigenvalues of special matrices (orthogonal, unitary, hermitian, symmetric, skew-symmetric, normal), algebraic and geometric multiplicity, diagonalization by similarity transformations, spectral theorem for real symmetric matrices, application to quadratic forms. Exact equations, integrating factors and Bernoulli equations. Orthogonal trajectories. Lipschitz condition, Picard's theorem, examples of non-uniqueness. Linear differential equations generalities. Linear dependence and Wronskians. Dimensionality of space of solutions, Abel-Liouville formula. Linear ODE with constant coefficients, characteristic equations. Cauchy-Euler equations. Method of undetermined coefficients. Method of variation of parameters. Laplace transform generalities. Shifting theorems.

Course Code	MA 111
Course Name	Calculus 2
Total Credits	4
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	Y
Prerequisite	Nil
Text Reference	1. Hughes-Hallett et al., Calculus - Single and Multivariable (3rd Edition), John-Wiley, 2003. T. M. Apostol, Calculus, Volumes 1 \& 2 (2nd Edition), Wiley Eastern, 1980.
4. G. B. Thomas and R. L. Finney, Calculus and Analytic Geometry (9th	
Edition), ISE Reprint, Addison-Wesley, 1998.	

Course Code	MA 113
Course Name	Mathematics and Its History
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. (JB) The Ascent of Man, by Jacob Bronowski; BBC Books 2. (BS) The Ascent of Science, by Brian L. Silver; Oxford University Press. 3. (EM) This is Biology, by Ernst Mayr; Harvard University Press. 4. (Stillwell) Mathematics and its History, by John Stillwell; Springer (Undergraduate Texts in Mathematics). 5. (PCM) The Princeton Companion to Mathematics, edited by Timothy Gowers, June Barrow Green, and Imre Leader; Princeton University Press. 6. (Burton) Elementary number theory, by D. M. Burton; 6th edition, McGraw-Hill, 2007. 7. (Goldberg) Methods of real analysis, by R. R. Goldberg; Oxform \& IBH Pub. (Indian Edition), 1970. 8. (JJ) Elementary number theory, by G. A. Jones and J. M. Jones; Springer Math Undergrad Series, 1998.
Description	Continued on next page ...

Course Code	MA 113 (... continued from previous page)
Course Name	Mathematics and Its History
Description	Part I 1. Copernican revolution, Galileo versus Church, Kepler and Newton (JB - Chapter 6 and 7). 2. Enlightenment movement and Romantic movement and further professionalisation (BS - Chapter 6, 7 and 11). 3. Industrial revolution and engines (JB - Chapter 8) 4. Electromagnetism (BS - Chapter 8) 5. Darwin and Mendel (JB - Chapter 9 and 12; BS - Chapter 23). Part II 1. History of Algebra: Quadratic equations, solutions to cubics and quartics, higher degree equations and insolvability. algebra and geometry of complex numbers, fundamental theorem of algebra (Stillwell - Chapters 6 and 14). 2. History of Calculus and Geometry: The regular polyhedra, conic sections, coordinate geometry (Stillwell - Chapter 2 and 7). Early results on areas and volumes, maxima, minima and tangents, infinite series, Leibniz's calculus (Stillwell - Chapter 9). The isoperimetric inequality (PCM - III. 94 , IV. 26 and V.19). 3. History of Number Theory and Combinatorics: Pythagorean triples, prime numbers, Euclidean algorithm, chinese remainder theorem, Pell's equation (Stillwell - Chapters 3, and 5). Divisibility, Bezout's identity, prime factorisation, fundamental theorem of arithmetic, division algorithms, GCD and LCM (Burton - Chapter 2, JJ - Chapter 1 and 2). Pigeonhole principle, Konigsberg problem (Stillwell - Chapter 25). 4. Elementary Concepts: Statements and quantifiers, sets, functions and methods of proofs (Goldberg Chapter 1, Burton - Chapter 1, Jones and Jones - Appendix A). Relations, equivalence, partitions, modular arithmetic (JJ - Appendix B, Section 3.1, 5.1-$5.3,6.1,8.2-8.5)$. Uncountability of R (Goldberg - Chapter 1). Double and triple integration, Jacobians and change of variables formula. Parametrization of curves and surfaces, vector fields, line and surface integrals. Divergence and curl. Theorems of Green, Gauss, and Stokes.

Course Code	MA 114
Course Name	An Introduction to Mathematical Concepts
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. T. M. Apostol, Mathematical Analysis, (2nd edition) Narosa Publicating House, 1974. 2. D. M. Burton, Elementary number theory, 6th edition, McGraw-Hill, 2007. 3. J. B. Conway, Functions of one complex variable, 2nd edition, Springer, 1978. 4. J. P. D'Angelo and D. B. West, Mathematical thinking: Problem-solving and Proofs, 2nd edition,Prentice Hall, 1997. 5. R. R. Goldberg, Methods of real analysis, Oxform \& IBH Pub. (Indian Edition), 1970. 6. P. R. Halmos, Naive set theory, Springer 1960 (Reprint 2017). 7. G. A. Jones and J. M. Jones, Elementary number theory, Springer Math Undergrad Series, 1998 (Indian edition available). 8. A. Kumar and S. Kumerasan, A Basic course in real analysis, CRC Press, 2014.
Description	Elementary Concepts: Statements and Quantifiers, Sets, Functions and Methods of proofs (Goldberg, Ch 1) (Burton, Ch 1) (Jones and Jones Appendix A). Basic Real Analysis: Least upper bound and applications, Archimedean property, Density of $\mathbb{Q}, \mathbb{R} \backslash \mathbb{Q}$, Greatest integer function, Nested Interval Theorem, Uncountability of \mathbb{R} (Goldberg, Ch 1). Sequence of Real numbers: (Goldberg, Ch 2). Operations, Monotone sequences, Cauchy sequences. Convergence of Series: Convergence and divergence, Test for absolute convergence (Goldberg, Ch 3). Basic Algebra: Divisibility, Bezout's Identity, Prime Factorisation, Fundamental Theorem of Arithmetic, Division Algorithms, GCD and LCM (Burton, Ch. 2) (Jones and Jones Ch. 1 and 2). Relations, Equivalence, Partitions, Modular Arithmetic, Euler and Mobius functions and inversion. Groups and Subgroups (basic properties and examples) (Jones and Jones Appendix B, Sec 3.1, 5.1-5.3, 6.1, 8.2-8.5). Complex Plane: Polar representation and roots of unity, lines and half planes in \mathbb{C}, \mathbb{C} as a vector space over \mathbb{R}, conjugation as a linear map over \mathbb{R}, extended complex plane and its spherical representation (Conway, Ch. 1).

Course Code	MA 205
Course Name	Complex Analysis
Total Credits	4
Type	T
Lecture	3
Tutorial	0
Practical	1
Selfstudy	0
Half Semester	Y
Prerequisite	Nil
Text Reference	1. R. V. Churchill and J. W. Brown, Complex variables and applications (7th Edition), McGraw-Hill (2003)
2. J. M. Howie, Complex analysis, Springer-Verlag (2004)	
Applications, Cambridge University Press, 1998 (Indian Edition)	

Course Code	MA 207
Course Name	Differential Equations 2
Total Credits	4
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	Y
Prerequisite	Nil
Text Reference	1. E. Kreyszig, Advanced engineering mathematics (8th Edition), John Wi- ley (1999).
Edition), John Wiley (2005)	
3. R. V. Churchill and J. W. Brown, Fourier series and boundary value	
problems (7th Edition), McGraw-Hill (2006).	

Course Code	MA 214
Course Name	Introduction to Numerical Analysis
Total Credits	8
Type	T
Lecture	1
Tutorial	0
Practical	0
Selfstudy	N
Half Semester	1. S. D. Conte and Carl de Bo or, Elementary Numerical Analysis- An Algorithmic Approach (3rd Edition), McGraw-Hill, 1980.
Prerequisite	C. E. Froberg, Introduction to Numerical Analysis (2nd Edition), Addison-Wesley, 1981.
Text Reference Kreyszig, Advanced engineering mathematics (8th Edition), John Wi-	
ley (1999).	

Course Code	MA 401
Course Name	Linear Algebra
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. K. Hoffman and R. Kunze, Linear Algebra, Pearson Education (India), 2003. Vang, Linear Algebra, Undergraduate Texts in Mathematics, Springer-
3. P. Lax, Linear Algebra, John Wiley \& Sons, 1997.	
4. H.E. Rose, Linear Algebra, Birkhauser, 2002.	
Description	Vector spaces over fields, subspaces, bases and dimension. Systems of linear equations, matrices, rank, Gaussian elimination. Linear transformations, rep- resentation of linear transformations by matrices, rank-nullity theorem, du- ality and transpose. Determinants, Laplace expansions, cofactors, adjoint, Cramer‘s Rule. Eigenvalues and eigenvectors, characteristic polynomials, min- imal polynomials, Cayley-Hamilton Theorem, triangulation, diagonalization, rational canonical form, Jordan canonical form. Inner product spaces, Gram- Schmidt ortho-normalization, orthogonal projections, linear functionals and adjoints, Hermitian, self-adjoint, unitary and normal operators, Spectral The- orem for normal operators. Bilinear forms, symmetric and skew-symmetric bilinear forms, real quadratic forms, Sylvester's law of inertia, positive defi- niteness.

Course Code	MA 403
Course Name	Real Analysis
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. T. Apostol, Mathematical Analysis, 2nd Edition, Narosa, 2002. 2. K. Ross, Elementary Analysis: The Theory of Calculus, Springer Int. Edition, 2004. 3. W. Rudin, Principles of Mathematical Analysis, 3rd Edition, McGrawHill, 1983.
Description	Review of basic concepts of real numbers: Archimedean property, Completeness. Metric spaces, compactness, connectedness, (with emphasis on \mathbb{R}^{n}). Continuity and uniform continuity. Monotonic functions, Functions of bounded variation; Absolutely continuous functions. Derivatives of functions and Taylor's theorem. Riemann integral and its properties, characterization of Riemann integrable functions. Improper integrals, Gamma functions. Sequences and series of functions, uniform convergence and its relation to continuity, differentiation and integration. Fourier series, pointwise convergence, Fejer's theorem, Weierstrass approximation theorem.

Course Code	MA 406
Course Name	General Topology
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 403 (Real Analysis)
Text Reference	1. M. A. Armstrong, Basic Topology, Springer (India), 2004. 2. K. D. Joshi, Introduction to General Topology, New Age International, 2000. 3. J. L. Kelley, General Topology, Van Nostrand, 1955.J. R. Munkres, Topology, 2nd Edition, Pearson Education (India), 2001. 4. G. F. Simmons, Introduction to Topology and Modern Analysis, McGraw-Hill, 1963.
Description	Topological Spaces: open sets, closed sets, neighbourhoods, bases, sub bases, limit points, closures, interiors, continuous functions, homeomorphisms. Examples of topological spaces: subspace topology, product topology, metric topology, order topology. Quotient Topology: Construction of cylinder, cone, Moebius band, torus, etc. Connectedness and Compactness: Connected spaces, Connected subspaces of the real line, Components and local connectedness, Compact spaces, HeineBorel Theorem, Local -compactness. Separation Axioms: Hausdorff spaces, Regularity, Complete Regularity, Normality, Urysohn Lemma, Tychonoff embedding and Urysohn Metrization Theorem, Tietze Extension Theorem. Tychnoff Theorem, One-point Compactification. Complete metric spaces and function spaces, Characterization of compact metric spaces, equicontinuity, Ascoli-Arzela Theorem, Baire Category Theorem. Applications: space filling curve, nowhere differentiable continuous function. Optional Topics: Topological Groups and orbit spaces, Paracompactness and partition of unity, Stone-Cech Compactification, Nets and filters.

Course Code	MA 408
Course Name	Measure Theory
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 403 (Real Analysis)
Text Reference	1. P.R. Halmos, Measure Theory, Graduate Text in Mathematics, Springer- Verlag, 1979.
2. Inder K. Rana, An Introduction to Measure and Integration (2nd Edi-	
tion), Narosa Publishing House, New Delhi, 2004.	
3. H.L. Royden, Real Analysis, 3rd Edition, Macmillan, 1988.	

Course Code	MA 410
Course Name	Multivariable Calculus
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 403 (Real Analysis)
Text Reference	1. W. Fleming, Functions of Several Variables, 2nd Edition, SpringerVerlag, 1977. 2. J.R. Munkres, Analysis on Manifolds, Addison-Wesley,1991. 3. W. Rudin, Principles of Mathematical Analysis, 3rd Edition, McGrawHill, 1984. 4. M. Spivak, Calculus on Manifolds, A Modern Approach to Classical Theorems of Advanced Calculus, W. A. Benjamin, Inc., 1965.
Description	Functions on Euclidean spaces, continuity, differentiability, partial and directional derivatives, Chain Rule, Taylor's Theorem, Inverse Function Theorem, Implicit Function Theorem, Regular and critical values, Applications. Riemann Integral of real-valued functions on Euclidean spaces, measure zero sets, Fubini's Theorem, Partition of unity, change of variables, Integration by parts. Partition of unity, change of variables, Integration by parts. Integration on chains, tensors, differential forms, Poincare Lemma, singular chains, Stokes* Theorem for integrals of differential forms on chains (general version), Fundamental theorem of calculus.

Course Code	MA 412
Course Name	Complex Analysis
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. J.B. Conway, Functions of One Complex Variable, 2nd Edition, Narosa, New Delhi, 1978.
2. R. Remmert, Theory of Complex Functions, Springer Verlag, 1991.	
4. A.R. Shastri, An Introduction to Complex Analysis, Macmilan India,	
New Delhi, 1999.	

Course Code	MA 414
Course Name	Algebra 1
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 401 (Linear Algebra), MA 419 (Basic Algebra)
Text Reference	1. M. Artin, Algebra, Prentice Hall of India, 1994. 2. D.S. Dummit and R. M. Foote, Abstract Algebra, 2nd Edition, John Wiley, 2002. 3. J.A. Gallian, Contemporary Abstract Algebra, 4th Edition, Narosa, 1999. 4. N. Jacobson, Basic Algebra I, 2nd Edition, Hindustan Publishing Co., 1984, W.H. Freeman, 1985.
Description	Fields, Characteristic and prime subfields, Field extensions, Finite, algebraic and finitely generated field extensions, Classical ruler and compass constructions, Splitting fields and normal extensions, algebraic closures. Finite fields, Cyclotomic fields, Separable and inseparable extensions. Galois groups, Fundamental Theorem of Galois Theory, Composite extensions, Examples (including cyclotomic extensions and extensions of finite fields). Norm, trace and discriminant. Solvability by radicals, Galois' Theorem on solvability. Cyclic extensions, Abelian extensions, Polynomials with Galois groups S_{n}. Transcendental extensions.

Course Code	MA 417
Course Name	Ordinary Differential Equations
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. M. Hirsch, S. Smale and R. Deveney, Differential Equations, Dynamical Systems and Introduction to Chaos, Academic Press, 2004 2. L. Perko, Differential Equations and Dynamical Systems, Texts in Applied Mathematics, Vol. 7, 2nd Edition, Springer Verlag, New York, 1998. 3. M. Rama Mohana Rao, Ordinary Differential Equations: Theory and Applications. Affiliated East-West Press Pvt. Ltd., New Delhi, 1980. 4. D. A. Sanchez, Ordinary Differential Equations and Stability Theory: An Introduction, Dover Publ. Inc., New York, 1968.
Description	Review of solution methods for first order as well as second order equations, Power Series methods with properties of Bessel functions and Legendre polynomials. Existence and Uniqueness of Initial Value Problems: Picard's and Peano's Theorems, Gronwall's inequality, continuation of solutions and maximal interval of existence, continuous dependence. Higher Order Linear Equations and linear Systems: fundamental solutions, Wronskian, variation of constants, matrix exponential solution, behaviour of solutions. Two Dimensional Autonomous Systems and Phase Space Analysis: critical points, proper and improper nodes, spiral points and saddle points. Asymptotic Behavior: stability (linearized stability and Lyapunov methods). Boundary Value Problems for Second Order Equations: Green's function, Sturm comparison theorems and oscillations, eigenvalue problems.

Course Code	MA 419
Course Name	Basic Algebra
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
	1. M. Artin, Algebra, Prentice Hall of India, 1994.
Text Reference	2. D. S. Dummit and R. M. Foote, Abstract Algebra, 2nd Edition, John 1999.

$\left.\begin{array}{|l|l|}\hline \text { Course Code } & \text { MA 419 (... continued from previous page) } \\ \hline \text { Course Name } & \text { Basic Algebra } \\ \hline & \begin{array}{l}\text { Review of basics: Equivalence relations, partitions, division algorithm for in- } \\ \text { tegers, primes, unique factorization, congruences, Chinese Remainder Theo- } \\ \text { rem, Euler } \varphi \text {-function. Permutations, sign of a permutation, inversions, cycles } \\ \text { and transpositions. Rudiments of rings, fields, elementary properties, polyno- } \\ \text { mials in one, several variables, divisibility, irreducible polynomials, Division } \\ \text { algorithm, Remainder Theorem, Factor Theorem, Rational Zeros Theorem, } \\ \text { Relation between the roots and coefficients, Newton's Theorem on symmetric } \\ \text { functions, Newton's identities, Fundamental Theorem of Algebra. Rational } \\ \text { functions, partial fraction decomposition, unique factorization of polynomials } \\ \text { in several variables, Resultants and discriminants. Groups, subgroups, factor } \\ \text { groups, Lagrange‘s Theorem, homomorphisms, normal subgroups. Quotients } \\ \text { of groups, Basic examples of groups: symmetric groups, matrix groups, group }\end{array} \\ \text { of rigid motions of the plane and finite groups of motions. Cyclic groups, } \\ \text { generators and relations, Cayley‘s Theorem, group actions, Sylow Theorems. }\end{array}\right\}$

Course Code	MA 450
Course Name	Independent Study
Total Credits	6
Type	S
Lecture	0
Tutorial	0
Practical	6
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	Independent Study: The student should pursue a topic of his or her choice for one semester under the supervision of a faculty member. The course is the analogue of the Seminar courses that undergraduate students were required to take in previous years. The Independent Study should end with a presentation to the supervising faculty member and the preparation of a brief report of about ten pages.
Description	

Course Code	MA 503
Course Name	Functional Analysis
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 401 (Linear Algebra), MA 408 (Measure Theory)
Text Reference	1. J.B. Conway, A Course in Functional Analysis, 2nd Edition, Springer, Berlin, 1990. 2. C. Goffman and G. Pedrick, A First Course in Functional Analysis, Viley \& Sons, New York, 1978.
4. B.V. Limaye, Functional Analysis, 2nd Edition, New Age International,	
New Delhi, 1996.	

Course Code	MA 504
Course Name	Operators on Hilbert Spaces
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 503 (Functional Analysis)
	1. B.V. Limaye, Functional Analysis, 2nd Edition, New Age International, 1996.
Text Reference	3. C. Goffman and G. Pedrick, First Course in Functional Analysis, Prentice Hall, 1974.
4. I. Gohberg and S. Goldberg, Basic Operator Theory, Birkhauser, 1981.	
5. E. Kreyzig, Introduction to Functional Analysis with Applications, John	
Wiley \& Sons, 1978.	

Course Code	MA 510
Course Name	Introduction to Algebraic Geometry
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 414 (Algebra 1)
Text Reference	2. W.S. Abhyankar, Algebraic Geometry for Scientists and Engineers, Amer- ican Mathematical Society, 1990.
4. M. Reid, Undergraduate Algebraic Geometry, Cambridge University	
Press, Cambridge, 1990.	

Course Code	MA 515
Course Name	Partial Differential Equations
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 410 (Multivariable Calculus), MA417 (Ordinary Differential Equations)
Text Reference	1. E. DiBenedetto, Partial Differential Equations, Birkhauser, 1995.
2. L.C. Evans, Partial Differential Equations, Graduate Studies in Mathe-	
matics, Vol. 19, American Mathematical Society, 1998.	
4. E. Zauderer, Partial Differential Equations of Applied Mathematics, 2nd	
Edition, John Wiley and Sons, 1989.	

Course Code	MA 518
Course Name	Spectral Approximation
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 503 (Functional Analysis)
Text Reference	1. M. Ahues, A. Largillier and B. V. Limaye, Spectral Computations for Bounded Operators, Chapman and Hall/CRC, 2000. Press, 1983. Spectral Approximation of Linear Operators, Academic
3. T. Kato, Perturbation Theory of Linear Operators, 2	
Verd Edition, Springer-	
Description	

Course Code	MA 521
Course Name	Theory of Analytic Functions
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 403 (Real Analysis), MA412 (Complex Analysis)
Text Reference	1. L. Ahlfors, Complex Analysis, 3rd Edition, McGraw-Hill, 1979. 2.B. Conway, Functions of One Complex Variable, 2nd Edition, Narosa, 4. R. Narasimhan, Theory of Functions of One Complex Variable, Springer (India), 2001.
5. W. Rudin, Real and Complex Analysis, 3rd Edition, Tata McGraw-Hill,	
1987.	

Course Code	MA 523
Course Name	Basic Number Theory
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 419 (Basic Algebra)
Text Reference	1. W.W. Adams and L.J. Goldstein, Introduction to the Theory of Num- bers, 3rd Edition, Wiley Eastern, 1972. University Press, 1984.
3. I. Niven and H.S. Zuckerman, An Introduction to the Theory of Numbers,	
4th Edition, Wiley, 1980.	

Course Code	MA 524
Course Name	Algebraic Number Theory
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 414 (Algebra 1)
Text Reference	1. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd Edition, Springer-Verlag, Berlin, 1990. 2. Sang, Algebraic Number Theory, Addison- Wesley, 1970.
3. D. A. Marcus, Number Fields, Springer-Verlag, 1977.	
Description	Algebraic number fields. Localisation, discrete valuation rings. Integral ring extensions, Dedekind domains, unique factorisation of ideals. Action of the Galois group on prime ideals. Valuations and completions of number fields, discussion of Ostrowski's theorem, Hensel's lemma, unramified, totally rami- fied and tamely ramified extensions of p-adic fields. Discriminants and Ram- ification. Cyclotomic fields, Gauss sums, quadratic reciprocity revisited. The ideal class group, finiteness of the ideal class group, Dirichlet units theorem.

Course Code	MA 525
Course Name	Dynamical Systems
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 417 (Ordinary Differential Equations)
Text Reference	1. L. Perko, Differential Equations and Dynamical Systems, Springer Ver- lag, 1991. 2. M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems 2. P. Hartman, Ordinary Differential Equations, 2nd edition, SIAM 2002. 4. C. Chicone, Ordinary Differential Equations with Applications, 2nd Edi- tion, Springer, 2006.
	Linear Systems: Review of stability for linear systems of two equations. Local Theory for Nonlinear Planar Systems: Flow defined by a differen- tial equation, Linearization and stable manifold theorem, Hartman-Grobman theorem, Stability and Lyapunov functions, Saddles, nodes, foci, centers and nonhyperbolic critical points. Gradient and Hamiltonian systems. Global Theory for Nonlinear Planar Systems: Limit sets and attractors, Poincare map, Poincare Benedixson theory and Poincare index theorem. Bifurcation Theory for Nonlinear Systems: Structural stability and Peixoto's theorem, Bifurcations at nonhyperbolic equilibrium points.
Description	

Course Code	MA 526
Course Name	Commutative Algebra
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 5101 (Algebra 2)
Text Reference	1. D. Eisenbud, Commutative Algebra (with a view toward algebraic ge- ometry), Graduate Texts in Mathematics 150, Springer-Verlag, 2003.
\quad2. W. Matsumura, Commutative ring theory, Cambridge Studies in Ad- bridge Studies in Advanced Mathematics No. 39, Cambridge University Press, 1998.	
	Dimension theory of affine algebras: Principal ideal theorem, Noether nor- malization lemma, dimension and transcendence degree, catenary property of affine rings, dimension and degree of the Hilbert polynomial of a graded ring, Nagata's altitude formula, Hilbert's Nullstellensatz, finiteness of inte- gral closure. Associated primes of modules, degree of the Hilbert polyno- mial of a graded module, Hilbert series and dimension, Dimension theorem, Hilbert-Samuel multiplicity, associativity formula for multiplicity, Complete local rings: Basics of completions, Artin-Rees lemma, associated graded rings of filtrations, completions of modules, regular local rings Basic Homological algebra: Categories and functors, derived functors, Hom and tensor prod- ucts, long exact sequence of homology modules, free resolutions, Tor and Ext, Koszul complexes. Cohen-Macaulay rings: Regular sequences, quasi-regular sequences, Ext and depth, grade of a module, Ischebeck's theorem, Basic properties of Cohen-Macaulay rings, Macaulay's unmixed theorem, Hilbert- Samuel multiplicity and Cohen-Macaulay rings, rings of invariants of finite groups.Optional Topics: Face rings of simplicial complexes, shellable simpli- cial complexes and their face rings. Dedekind Domains and Valuation Theory.
Description	

Course Code	MA 528
Course Name	Hyperplane Arrangements
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. P. Orlik and H. Terao, Arrangements of hyperplanes, Springer, 1992. 2. C. De Concini and C. Procesi,.Topics in hyperplane arrangements, poly- topes and boxsplines. Springer, 2011.
4. M. Aguiar and S. Mahajan. Topics in hyperplane arrangements. AMS,	
2017.	

Course Code	MA 530
Course Name	Nonlinear Analysis
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 503 (Functional Analysis)
Text Reference	1. M.C. Joshi and R.K. Bose, Some Topics in Nonlinear Functional Analy- sis, Wiley Eastern Ltd., New Delhi, 1985.
2. E. Zeilder, Nonlinear Functional Analysis and Its Applications, Vol. I	
(Fixed Point Theory), Springer Verlag, Berlin, 1985.	

Course Code	MA 532
Course Name	Analytic Number Theory
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 414 (Algebra I), MA 412 (Complex Analysis)
Text Reference	1. S. Lang, Algebraic Number Theory, AddisonWesley, 1970. 2. J.P. Serre, A Course in Arithmetic, SpringerVerlag, 1973. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, $\quad 1976$.
Description	The Wiener-Ikehara Tauberian theorem, the Prime Number Theorem. Dirich- let's theorem for primes in an Arithmetic Progression. Zero free regions for the Riemann-zeta function and other L-functions. Euler products and the func- tional equations for the Riemann zeta function and Dirichlet L-functions. Mod- ular forms for the full modular group, Eisenstein series, cusp forms, structure of the ring of modular forms. Hecke operators and Euler product for modular forms. The L-function of a modular form, functional equations. Modular forms and the sums of four squares. Optional topics: Discussion of L-functions of number fields and the Chebotarev Density Theorem. Phragmen-Lindelof Prin- ciple, Mellin inversion formula, Hamburger's theorem. Discussion of Modular forms for congruence subgroups. Discussion of Artin's holomorphy conjecture and higher reciprocity laws. Discussion of elliptic curves and the Shimura- Taniyama conjecture (Wiles' Theorem)

Course Code	MA 533
Course Name	Advanced Probability Theory
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	6
Half Semester	N
Prerequisite	Nil
Text Reference	1. P. Billingsley, Probability and Measure, 3rd Edition, John Wiley and Sons, New York, 1995. 2. A. Rosenthal, A First Look at Rigorous Probability, World Scientific,
4. K.L. Chung, A Course in Probability Theory, Academic Press, New York,	
1974.	

Course Code	MA 534
Course Name	Modern Theory of PDE
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 503 (Functional Analysis), MA 515 (Partial Differential Equations)
Text Reference	1. S. Kesavan, Topics in Functional Analysis Wiley Eastern Ltd., New Delhi, 1989.
2. M. Renardy and R.C. Rogers, An Introduction to Partial Differential	
2004.	
3. L.C. Evans, Part Edition, Springer Verlag International Edition, New York,	
ciety, Providence, 1998.	

Course Code	MA 538
Course Name	Representation Theory of Finite Groups
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 414 (Algebra 1)
Text Reference	1. M. Burrow, Representation Theory of Finite Groups, Academic Press, \quad 1965.
3. S. Lang, Algebra, 3rd Edition, Springer (India), 2004.	
4. J.-P. Serre, Linear Representation of Groups, Springer-Verlag, 1977.	

Course Code	MA 539
Course Name	Spline Theory and Variational Methods
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. C. De Boor, A Practical Guide to Splines, Springer-Verlag, Berlin, 1978. \quad Narosa Publishing House, New Delhi, 2000.
3. P.M. Prenter, Splines and Variational Methods, Wiley-Interscience, 1989.	

Course Code	MA 540
Course Name	Numerical Methods for Partial Differential Equations
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 515 (Partial Differential Equations), SI 517 (Numerical Analysis)
Text Reference	1. K. W. Morton and D. Mayers, Numerical Solution for Partial Differential Equations, 2nd edition, Cambridge, 2005. 2. G. D. Smith, Numerical Solutions of Partial Differential Equations, 3rd Edition, Calrendorn Press, 1985. 3. J. C. Strikwerda, Finite difference Schemes and Partial Differential Equations, Wadsworth and Brooks/ Cole, 1989. 4. J. W. Thomas, Numerical Partial Differential Equations : Finite Difference Methods, Texts in Applied Mathematics, Vol. 22, Springer Verlag, 1999. 5. J. W. Thomas, Numerical Partial Differential Equations: Conservation Laws and Elliptic Equations, Texts in Applied Mathematics, Vol. 33, Springer Verlag, 1999. 6. R. Mitchell and S. D. F. Griffiths, The Finite Difference Methods in Partial Differential Equations, Wiley and Sons, NY, 1980.
Description	Finite differences: Grids, Finite-difference approximations to derivatives. Linear Transport Equation: Upwind, Lax-Wendroff and Lax-Friedrich schemes, von-Neumann stability analysis, CFL condition, Lax-Richtmyer equivalence theorem, Modified equations, Dissipation and dispersion. Heat Equation: Initial and boundary value problems (Dirichlet and Neumann), Explicit and implicit methods (Backward Euler and Crank-Nicolson schemes) with consistency and stability, Discrete maximum principle, ADI methods for two dimensional heat equation (including LOD algorithm). Poisson's Equation: Finite difference scheme for initial and boundary value problems, Discrete maximum principle, Iterative methods for linear systems (Jacobi, Gauss-Seidel, SOR methods and Conjugate Gradient method), Peaceman-Rachford algorithm (ADI) for linear systems. Wave Equation: Explicit schemes and their stability analysis, Implementation of boundary conditions.Lab Component: Exposure to MATLAB and computational experiments based on the algorithms discussed in the course.

Course Code	MA 556
Course Name	Differential Geometry
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 410 (Multivariable Calculus)
Text Reference	1. M. doCarmo, Differential Geometry of Curves and Surfaces, Prentice Hall, 1976.
2. J.J. Stoker, Differential Geometry, Wiley-Interscience, 1969.	
4. J. A. Thorpe, Elementary Topics in Differential Geometry, Springer (In-	
dia), 2004.	

Course Code	MA 562
Course Name	The Mathematical Theory of Finite Elements
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 515 (Partial Differential Equations), MA 503 (Functional Analysis)
Text Reference	1. K. E. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, Springer- Verlag, 1994. 2. P.G. Ciarlet, The Finite Element Methods for Elliptic Problems, North Holland, 1978.
nite Element Methods, Cambridge University Press, 1987.	

Course Code	MA 581
Course Name	Elements of Differential Topology
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 410 (Multivariable Calculus)
Text Reference	1. B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry Methods and Applications Part II: The Geometry and Topology of Manifolds, Springer-Verlag, 1985. 2. V. Guillemin and A Pollack, Differential Topology Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1974. 3. J. Milnor, Topology from the Differential View-point, University Press of Virginia, Charlottsville 1990. 4. A. R. Shastri, Elements of Differential Topology, CRC Press, 2011.
Description	Differentiable Manifolds in \mathbb{R}^{n} : Review of inverse and implicit function theorems; tangent spaces and tangent maps; immersions; submersions and embeddings. Regular Values: Regular and critical values; regular inverse image theorem; Sard's theorem; Morse lemma. Transversality: Orientations of manifolds; oriented and mod 2 intersection numbers; degree of maps. Application to the Fundamental Theorem of Algebra. *Lefschetz theory of vector fields and flows: Poincare-Hopf index theorem; Gauss-Bonnet theorem. *Abstract manifolds: Examples such as real and complex projective spaces and Grassmannian varieties; Whitney embedding theorems. (*indicates expository treatment intended for these parts of the syllabus.)

Course Code	MA 593
Course Name	Project (Optional)
Total Credits	4
Type	
Lecture	
Tutorial	
Practical	
Selfstudy	
Half Semester	
Prerequisite	
Text Reference	1.
Description	

Course Code	MA 598
Course Name	Project 2 (Optional)
Total Credits	6
Type	
Lecture	
Tutorial	
Practical	
Selfstudy	
Half Semester	
Prerequisite	
Text Reference	1.
Description	

Course Code	MA 5101
Course Name	Algebra 2
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 414 (Algebra 1)
Text Reference	1. M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Alge- bra, Addison Wesley, 1969.
2. D. S. Dummit and R. M. Foote, Abstract Algebra, 2nd Edition, John and 1989.	
4. S. Lang, Algebra, 3rd Edition, Springer (India), 2004.	

Course Code	MA 5102
Course Name	Basic Algebraic Topology
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 406 (General Topology)
Text Reference	1. M. J. Greenberg and J. R. Harper, Algebraic Topology, Benjamin, 1981. 2. W. Fulton, Algebraic topology: A First Course, Springer-Verlag, 1995. 3. A. Hatcher, Algebraic Topology, Cambridge Univ. Press, Cambridge, 2002. 4. W. Massey, A Basic Course in Algebraic Topology, Springer-Verlag, Berlin, 1991. 5. J. R. Munkres, Elements of Algebraic Topology, Addison-Wesley, 1984. 6. J. J. Rotman, An Introduction to Algebraic Topology, Springer (India), 2004. 7. H. Seifert and W. Threlfall, A Textbook of Topology, translated by M. A. Goldman, Academic Press, 1980. 8. J. W. Vick, Homology Theory: An Introduction to Algebraic Topology, 2nd Edition, Springer-Verlag, 1994.
Description	Paths and homotopy, homotopy equivalence, contractibility, deformation retracts. Basic constructions: cones, mapping cones, mapping cylinders, suspension. Fundamental groups. Examples (including the fundamental group of the circle) and applications (including Fundamental Theorem of Algebra, Brouwer Fixed Point Theorem and Borsuk-Ulam Theorem, both in dimension two). Van Kampen's Theorem, Covering spaces, lifting properties, deck transformations. Universal coverings (existence theorem optional). Singular Homology. Mayer-Vietoris Sequences. Long exact sequence of pairs and triples. Homotopy invariance and excision theorem (without proof). Applications of homology: Jordan-Brouwer separation theorem, invariance of dimension, Hopf's Theorem for commutative division algebras with identity, Borsuk-Ulam Theorem, Lefschetz Fixed Point Theorem.

Course Code	MA 5103
Course Name	Algebraic Combinatorics
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 401 (Linear Algebra)
Text Reference	1. N. Alon, Combinatorial Nullstellensatz, Combinatorics, Probability, and Computing, Vol. 8 (1999), pp. 7-29. 2. R. P. Stanley, Algebraic Combinatorics: Walks, Trees, Tableaux, and More, Springer, 2013. 3. C. Godsil and G. F. Royle, Algebraic Graph Theory, Springer, 2001. 4. F. Chung, Spectral Graph Theory, CBMS Regional Conference Series in Math., No. 92, American Mathematical Society, 1991. 5. L. Babai and P. Frankl, Linear Algebra Methods in Combinatorics, Department of Computer Science, University of Chicago, Preliminary version, 1992.
Description	A selection of topics from the following: Algebraic Graph theory: adjacency and Laplacian matrices of a graph, MatrixTree theorem, Cycle space and Bond space. Algebraic Sperner theory: Sperner property of posets, algebraic characterization of strong Sperner property, unimodality of q-binomial coefficients. Young Tableaux: Up-Down operators on the Young lattice and counting tableaux, RSK correspondence. Enumeration under group action: Burnside's lemma, Polya theory. Spectral Graph theory: Isoperimetric problems, Flows and Cheeger constants, Quasirandomness, expanders, and eigenvalues, random walks on graphs. The Combinatorial Nullstellensatz and some of its applications. Linear Algebra methods in Combinatorics. Association Schemes. Electrical Networks and resistances. Connections to Graph sparsification.

Course Code	MA 5104
Course Name	Hyperbolic Conservation Laws
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 515 Partial Differential Equations
Text Reference	1. L. C. Evans, Partial Differential Equations, American Mathematical So- ciety, 2010. 2. A. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer, 1996. Dimensional Cauchy Problem, Oxford University Press, 2000.
4. J. Smoller, Shock Waves and ReactionDiffusion Equations, Springer,	
1994	

Course Code	MA5105
Course Name	Coding Theory
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 401 (Linear Algebra)
Text Reference	1. J. H. van Lint, Introduction to Coding Theory, Springer, 1999. 2. W. C. HacWilliams and N. J. A. Sloane, The Theory of Error Correcting \quad Cambridge University Press, 2003. North-Holland, 1977.
	4. S. Ling and C. Xing, Coding Theory: A First Course, Cambridge Uni- versity Press, 2004.
	Basic Concepts: Idea behind use of codes, block codes and linear codes, rep- etition codes, nearest neighbour decoding, syndrome decoding, requisite basic ideas in probability, Shannon's theorem (without proof). Good linear and non- linear codes: Binary Hamming codes, dual of a code, constructing codes by various operations, simplex codes, Hadamard matrices and codes constructed from Hadamard and conference matrices, Plotkin bound and various other bounds, Gilbert-Varshamov bound. Reed-Muller and related codes: First or- der Reed-Muller codes, RM code of order r, Decoding and Encoding using the algebra of finite field with characteristic two. Perfect codes: Weight enumer- ators, Kratchouwk polynomials, Lloyd's theorem, Binary and ternary Golay codes, connections with Steiner systems. Cyclic codes: The generator and the check polynomial, zeros of a cyclic code, the idempotent generators, BCH codes, Reed-Solomon codes, Quadratic residue codes, generalized RM codes. Optional topics; Codes over $\mathbb{Z}_{4}:$ rived Quaternary codes over \mathbb{Z}_{4}, binary codes de- the minimum distance of Goppa codes, generalized BCH codes, decoding of Goppa codes and their asymptotic behaviour.Algebraic geometry codes: alge- braic curves and codes derived from them, Riemann-Roch theorem (statement only) and applications to algebraic geometry codes.
Description	

Course Code	MA5106
Course Name	Introduction to Fourier Analysis
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 403 (Real Analysis)
Text Reference	1. R. S. Strichartz, A Guide to Distributions and Fourier Transforms, CRC Press, 1994. 2. E. M. Stein and R. Shakarchi, Fourier Analysis: An Introduction, Prince- ton University Press, 2003.
3. I. Richards and H. Youn, Theory of Distributions: A Nontechnical In-	
troduction, Cambridge University Press, 1990.	

Course Code	MA 5107			
Course Name	Continuum Mechanics			
Total Credits	6			
Type	T			
Lecture	2			
Tutorial	1			
Practical	0			
Selfstudy	0			
Half Semester	N			
Prerequisite	MA 417 (Ordinary Differential Equations) and MA 410 (Multivariable Calcu- lus)			
Text Reference	2. M. Gurtin, An Introduction to Continuum Mechanics, Academic press, 1981. 2. J. N. Reddy, An Introduction to Continuum Mechanics with Applica- tions, Cambridge University Press, 2008.			
4. N. Reddy, Principles of Continuum Mechanics: A Study of Conserva-				
tion Principles with Applications, Cambridge University Press, 2010.		$	$	5. Y. R. Talpaert, Tensor analysis and Continuum Mechanics, Springer,
:---				
2003.				
6. R. Temam and A. Miranville, Mathematical Modelling in Continuum				
Mechanics, Cambridge University Press, 2005.				

Course Code	MA 5108
Course Name	Lie Groups and Lie Algebras
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 401 (Linear Algebra) and MA 403 (Real Analysis)
Text Reference	1. J.Stillwell, Naive Lie Theory, Springer, 2008. 2. A. Kirillov Jr., Introduction to Lie Groups and Lie Algebras, Cambridge University Press, 2008.
Description	Introduction, Examples: Rotations of the plane, Quaternions and space ro- tations, SU(2) and SO(3), The Cartan-Dieudonné Theorem, Quaternions and rotations in R4, SU(2)xSU(2) and SO(4). Matrix Lie groups: definitions and examples. The symplectic, orthogonal and unitary groups, connectedness, compactness. Maximal tori. centres and discrete subgroups The exponential map, Lie algebras The matrix exponential, tangent spaces, the Lie algebra of a Lie group. Complexification, the matrix logarithm, the exponential map, One parameter subgroups, the functor from Lie groups to Lie algebras The adjoint mapping, normal subgroups and Lie algebras The Campbell-Baker-Hausdorff Theorem, simple connectivity, simply connected Lie groups and their charac- terization by Lie algebras, covering groups.

Course Code	MA5109
Course Name	Graph Theory
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	2. D. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, \quad Springer-Verlag, 2008.
	Basic Concepts: various kinds of graphs, simple graphs, complete graph, walk, tour, path and cycle, Eulerian graph, bipartite graph (characterization), Havel-
Hakimi theorem and Erdos-Gallai theorem (statement only), hypercube graph, Petersen graph, trees, forests and spanning subgraphs, distances, radius, di- ameter, center of a graph, the number of distinct spanning trees in a complete graph. Trees: Kruskal and Prim algorithms with proofs of correctness, Di- jkstra's a algorithm, Breadth first and Depth first search trees, rooted and binary trees, Huffman's algorithm Matchings: augmenting path, Hall's match- ing theorem, vertex and edge cover, independence number and their connec- tions, Tutte's theorem for the existence of a 1-factor in a graph, Connectiv- ity k-vertex and edge connectivity, blocks, characterizations of 2- connected graphs, Menger's theorem and applications, Network flows, Ford- Fulkerson algorithm, Supply-demand theorem and the Gale-Ryser theorem on degree sequences of bipartite graphs Graph Colourings chromatic number, Greedy algorithm, bounds on chromatic numbers, interval graphs and chordal graphs (with simplicial elimination ordering), Brook's theorem and graphs with no triangles but large chromatic number, chromatic polynomials. Hamilton prop- erty Necessary conditions, Theorems of Dirac and Ore, Chvatal's theorem and toughness of a graph, Non-Hamiltonian graphs with large vertex degrees. Pla- nar graphs Embedding a graph on plane, Euler's formula, non-planarity of K5 and K3,3, classification of regular polytopes, Kuratowski's theorem (no proof), 5-colour theorem. Ramsey theory Bounds on R(p, q), Bounds on Rk(3): colouring with k colours and with no monochromatic K3, application to Schur's theorem, Erdos and Szekeres theorem on points in general position avoiding a convex m-gon.	
Description	

Course Code	MA5110
Course Name	Non-commutative Algebra
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 419 (Basic Algebra)
Text Reference	1. N. Jacobson, Basic Algebra, Vol. I and II, Dover Publications, 2009. 2. S. Lang, Algebra, 3rd Edition, Springer Verlag, 2002 Springer, 2001. First Course in Noncommutative Rings, 2nd edition,
	4. A. Knapp, Advanced Algebra, Birkhauser, 2007.
	Wedderburn-Artin Theory: semisimple rings and modules, Weddereburn and Artin's structure theorem of semisimple rings. Jacobson radical theory: Jacobson radical, Jacobson semisimple rings (or semiprimitive rings), nilpotent ideal, Hopkins and Levitzki theorem, Jacob- son radical under base change, semisimplicity of group rings. Prime and primitive rings: prime and semiprime ideal (and ring), primitive ring and ideal, Jacobson-Chevalley's density theorem, Structure theorem for left primitive rings, Jacobson-Herstein's commutativity theorem. Introduction to division rings: Wedderburn's (little) theorem, algebraic divi- sion algebras over reals (Frobenius theorem), construction of division algebras, polynomials over division rings. Ordered structures in rings: orderings and preorderings in rings, formally real ring, ordered division rings. Local rings, semilocal rings and idempotents: Krull-Schmidt-Azumaya theo- rem on uniqueness of indecomposable summands of a module, stable range of a ring and cancellation of modules. Brauer group and Clifford algebras.

Course Code	MA 5111
Course Name	Theory of Finite Semigroups
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	1. P. Grillet. Semigroups. an introduction to the structure theory, Marcel Dekker Inc., 1995
Text Reference	2. J. Rhodes and B. Steinberg, The q-theory of finite semigroups. Springer, 2009
4. M. Aguiar and S. Mahajan. Topics in hyperplane arrangements. AMS,	
2017	

Course Code	MA5112
Course Name	Introduction to Mathematical Methods
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	MA 515 (Partial Differential Equations)
Text Reference	1. C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill Book Co., 1978. 2. R. Courant \& D. Hilbert, Methods of Mathematical Physics, Vol. I \& II, Wiley Eastern, 1975. 3. J. Kevorkian and J.D. Cole, Perturbation Methods in Applied Mathematics, Springer Verlag, 1985. 4. S. G. Mikhlin, Variation Methods in Mathe-matical Physics, Pergaman Press, Oxford 1964. 5. J. A. Murdock, Perturbations Theory and Methods, John Wiley and Sons, 1991. 6. P. D. Miller, Applied asymptotic analysis, American Mathematical Society, 2006. 7. M. L. Krasnov et.al., Problems and exercises in the calculus of variations, Mir Publishers, 1975. 8. M. Krasnov et. al., Problems and exercises in integral equations, Mir Publishers, 1971.
Description	Asymptotic expansions: Watson's lemma, method of stationary phase and saddle point method. Applications to differential equations. Behaviour of solutions near an irregular singular point, Stoke's phenomenon. Method of strained coordinates and matched asymptotic expansions, Lindstedt expansions. Calculus of variations: Classical methods.Integral equations: Volterra integral equations of first and second kind. Iterative methods and Neumann series.

Course Code	MA 5113
Course Name	Category Theory 1
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. Aguiar and Mahajan, Monoidal functors, species and Hopf algebras, American Mathematical Society, 2010. 2. Awodey, Category theory, Oxford University Press, 2010. 3. Borceau, Handbook of categorical algebra, Volumes 1, 2, 3, Cambridge University Press, 1994. 4. Leinster, Higher categories, Higher operads, Cambridge University Press, 2004. 5. Leinster, Basic category theory, Cambridge University Press, 2014. 6. Mac Lane, Categories for the working mathematician, Springer, 1998. 7. Riehl, Category theory in context, Aurora, Dover Publications, 2016.
Description	Categories, functors, natural transformations. Limits and colimits. Adjoint functors and universal constructions. Functor categories, comma categories, quotient categories. Cauchy completeness, Karoubi envelopes. Cartesian categories, group objects. The above concepts can be motivated and discussed by connecting them to other areas of mathematics depending on the interests of the instructor and students.

Course Code	MA 5115
Course Name	Hopf Algebras
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
	1. M. Sweedler, Hopf algebras, W.A.Benjamin, Inc, NewYork, 1969.
Text Reference	2. C. Kassel, Quantum groups, Springer, 1995. 4.Aguiar, S. Mahajan. Bimonoids for hyperplane arrangements, CUP, 2020

Course Code	MA 5116
Course Name	Species and Operads
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. F.Bergeron, G.Labelle, P.Leroux. Combinatorial species and tree-like structures. CUP, 1998. 2. M.Markl, S.Shnider, J. Stasheff. Operads in Algebra, Topology and Physics, AMS, 2002. 3. M.Aguiar, S. Mahajan. Bimonoids for hyperplane arrangements, CUP, 2020. 4. J-L.Loday, B.Vallette. Algebraic operads, Springer, 2012 5. T.Leinster. Higher operads, Higher categories. CUP, 2004. 6. M.Aguiar and S.Mahajan. Monoidal Functors, species and Hopf algebras, AMS, 2010.
Description	Species. Exponential Species, species of linear orders and other examples. Cauchy, Hadamard and substitution products on species and universal constructions. Power series/Generating function of species Operads. Commutative, associative and Lie operads and other examples, Algebras over operads, Koszul theory of Operads, Species and operads for hyperplane arrangements

Course Code	MA 5118
Course Name	Category Theory 2
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	6
Half Semester	N
Prerequisite	Nil
Text Reference	1. Aguiar and Mahajan, Monoidal functors, species and Hopf algebras, American Mathematical Society, 2010. 2. Awodey, Category theory, Oxford University Press, 2010. 3. Borceau, Handbook of categorical algebra, Volumes 1, 2, 3, Cambridge University Press, 1994. 4. Leinster, Higher categories, Higher operads, Cambridge University Press, 2004. 5. Leinster, Basic category theory, Cambridge University Press, 2014. 6. Mac Lane, Categories for the working mathematician, Springer, 1998. 7. Riehl, Category theory in context, Aurora, Dover Publications, 2016.
Description	Monoidal categories, monoids, comonoids. Symmetric monoidal categories, braidings, Hopf monoids. Higher monoidal categories. 2-categories, bicategories, higher categories. Monads, distributive laws, higher monads. The above concepts can be motivated and discussed by connecting them to other areas of mathematics depending on the interests of the instructor and students.

Course Code	MA 606
Course Name	Coxeter Groups
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. J.Humphreys, Reflection groups and Coxeter groups, CUP, 1990 2. A.Bjorner and F.Brenti, Combinatorics of Coxeter groups, Springer, 2005.
4. M.Davis. The geometry and topology of Coxeter groups, Princeton Uni-	
versity Press, 2008.	

Course Code	MA 811
Course Name	Algebra 1
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. Dummit, Foote: Abstract algebra, second edition, Wiley student edi- tions, 2005.
3. Jacobson: Basic algebra, II, Dover publications, 2009.	
4. Lang: Algebra, third edition, Springer-Verlag, GTM 211, 2002	

Course Code	MA 812
Course Name	Algebra 2
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	2. (DFF) Dummit, Foote: Abstract algebra, second edition, Wiley student \quad editions, 2005. (J2) Jacobson: Basic algebra, II, Dover publications, 2009. 4. (L) Lang: Algebra, third edition, Springer-Verlag, GTM 211, 2002
	A review of modules over a PID. [DF-12, J1-3, L-III.7] Noetherian modules and rings: Primary decomposition, Nakayama's lemma, filtered and graded modules, the Hilbert polynomial, Artinian modules and rings. [DF-15, J2-3, L-X] Semisimple and simple rings: Semisimple modules, Jacobson density theorem, semisimple and simple rings, Wedderburn-Artin structure theorems, Jacobson radical, the effect of a base change on semisimplicity. [DF-18, J2-3, J2-4, L-XVII] Representations of finite groups: Basic definitions, characters, class func- tions, orthogonality relations, induced representations and induced characters, Frobenius reciprocity, decomposition of the regular representation, supersolv- able groups, representations of symmetric groups. [DF-18, DF-19, J2-5, L- XVIII] Categories and functors: Definitions and examples, functors and natural trans- formations, the equivalence of categories, products and coproducts, the Hom functor, representable functors, universals and adjoints, direct and inverse lim- its, free objects. [DF-Appendix II, J2-1, L-I.11] Homological algebra: Additive and abelian categories, complexes and homol- ogy, long exact sequences, homotopy, resolutions, derived functors, Ext, Tor, cohomology of groups, extensions of groups. [DF-17, J2-6, L-XX]
Description	

Course Code	MA 813
Course Name	Measure Theory
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. K. Chandrasekharan, A Course on Topological Groups, Hindustan Book Agency, 1996.
2. L. Nachbin, The Hana, An Introduction to Measure and Integration, 2nd Ed., Amer-	
ican Mathematical Society, 2002.	

Course Code	MA 814
Course Name	Complex Analysis
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1996. 2. S. Lang, Complex Analysis, 4th Ed., Springer, 1999. 3. D. H. Luecking and L. A. Rubel, Complex Analysis: A Functional Analysis Approach, Springer-Verlag, 1984. 4. R. Narasimhan and Y. Nievergelt, Complex Analysis in One Variable, Birkhäuser, 2001. 5. R. Remmert, Theory of Complex Functions, Springer (India), 2005. 6. W. Rudin, Real and Complex Analysis, McGraw Hill, 1987.
Description	Review of basic complex analysis: Cauchy's theorem, Liouville's theorem, power series representation, open mapping theorem, calculus of residues. Harmonic functions, Poisson integral, Harnack's theorem, Schwarz reflection principle. Maximum modulus principle, Schwarz lemma, Phragmen-Lindelof method. Runge's theorem, Mittag-Leffler theorem, Weierstrass theorem, conformal equivalence, Riemann mapping theorem, characterisation of simply connected regions, Jensen's formula. Analytic continuation, monodromy theorem, Little Picard theorem.

Course Code	MA 815
Course Name	Differential Topology
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, Springer-Verlag, New York, 1982.
3. G. E Bredon, Topology and Geometry, Springer-Verlag, New York, 1997.	

Course Code	MA 816
Course Name	Algebraic Topology
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. M.J. Greenberg and J. R. Harper, Algebraic Topology, Benjamin, 1981. 2. W. Fulton, Algebraic topology: A First Course, Springer-Verlag, 1995. 3. A. Hatcher, Algebraic Topology, Cambridge Univ. Press, Cambridge, 2002. 4. W. Massey, A Basic Course in Algebraic Topology, Springer-Verlag, Berlin, 1991. 5. J.R. Munkres, Elements of Algebraic Topology, Addison Wesley, 1984. 6. J.J. Rotman, An Introduction to Algebraic Topology, Springer (India), 2004. 7. H. Seifert and W. Threlfall, A Textbook of Topology, Academic Press, 1980.
Description	Paths and homotopy, homotopy equivalence, contractibility, deformation retracts. Basic constructions: cones, mapping cones, mapping cylinders, suspension. Cell complexes, subcomplexes, CW pairs. Fundamental groups. Examples (including the fundamental group of the circle) and applications (including Fundamental Theorem of Algebra, Brouwer Fixed Point Theorem and BorsukUlam Theorem, both in dimension two). Van Kampen's Theorem. Covering spaces, lifting properties, deck transformations, universal coverings. Simplicial complexes, barycentric subdivision, stars and links, simplicial approximation. Simplicial Homology. Singular Homology. Mayer-Vietoris sequences. Long exact sequence of pairs and triples. Homotopy invariance and excision. Degree. Cellular Homology. Applications of homology: Jordan-Brouwer separation theorem, Invariance of dimension, Hopf's Theorem for commutative division algebras with identity, Borsuk-Ulam Theorem, Lefschetz Fixed Point Theorem. Optional Topics: Outline of the theory of: cohomology groups, cup products, Kunneth formulas, Poincare duality.

Course Code	MA 817
Course Name	Partial Differential Equations 1
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil 2. L C. Kesavan, Topics in Functional Analysis and Applications, New Age International Pvt. Ltd., 1989.
Text Reference	2. M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Springer-Verlag, 2004.
4. B. Folland, Introduction to Partial Differential Equations, 2nd Ed.,	
Prentice-Hall of India, 1995.	

Course Code	MA 818
Course Name	Partial Differential Equations 2
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	2. L. C. Evans, Partial Differential Equations, American Mathematical So- ciety, 1998. Equations, Springer, 2004. Springer, 2000.
4. B. Dacorogna, Direct Methods in Calculus of Variation, Springer 1989.	
5. P. Prasad and R. Ravindran, Partial Differential Equations, Wiley East-	
ern, 1985.	

Course Code	MA 820
Course Name	Stochastic Processes
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	N
Half Semester	1. Norris J. R. Markov chains, Cambridge University press, Cambridge, 1997. Prerequisite Text Refflin Company, USA, 1972.
3. David A. Levin, Yuval Peres and Elizabeth L. Wilmer, Markov chains	
and mixing times, AMS Providence, 2008.	

Course Code	MA 823
Course Name	Probability
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. K L Chung, A course in probability theory, 3rd edition, Academic Press, San Dieago, 2001. 2. P. Billingsley, Probability and measure, 3rd edition, John Wiely and Sons, New York, 1995. 3. Robert B. Ash, Probability and measure theory, 2nd edition, Academic Press, San Diego, 2008. 4. K B Athreya and S N Lahiri, Probability Theory, TRIM 41, Hindustan Book Agency, New Delhi, 200
Description	Review of probability space. Random variables in \mathbb{R} and \mathbb{R}^{n}, distribution of random variables, Expectation of a R-valued random variable, Change of variable formula, Fatou's lemma, monotone convergence theorem, dominated convergence theorem, Markov inequality, Jensen's inequality, notion of independence of sigma-fields and random variables, product of distributions, Fubini's theorem. Convergence almost surely, in probability, in law, convergence in moments, Borel-Cantelli lemma, Uniform integrability of sequence of random variables. Characteristic functions, convolution of distributions, Uniqueness theorem, inversion theorem. Weak law of large numbers, strong law of large numbers, Lindberg-Feller central limit theorem, Law of iterated logarithms. Radon Nikodym theorem (reading exercise), Condition expectation definition, existence and its properties, regular conditional law

Course Code	MA 824
Course Name	Functional Analysis
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
	1. M. Ahues, A. Largillier and B. V. Limaye, Spectral Computations for Bounded Operators, Chapman \& Hall/CRC, 2001.
Text Reference	2. S. Lang, Complex Analysis, 4th Ed., Springer, 1999. V. Limaye, Functional Analysis, 2nd Ed., New Age International Pub- lishers, 1996.
5. F. Riesz and B. SzNagy, Functional Analysis, Dover Publications, 1990.	
6. W. Rudin, Functional Analysis, Tata McGraw Hill, 1974.	

Course Code	MA 833
Course Name	Weak Convergance and Martingale Theory
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. P. Billingsley, Convergence of Probability Measures, Wiley, 1999. 2. R.J. Elliot, Stochastic Calculus and Applications, Springer-Verlag, 1982. 3. K.R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, 1967. 4. A.W. Van-der-Vaart and J.A. Wellner, Weak Convergence and Empirical Processes: With Applications to Statistics, Springer-Verlag, 1996. 5. D. Williams, Probability with Martingales, Cambridge Mathematical Textbooks, 1991.
Description	Review of conditional expectations. Martingales in discrete and continuous time. Square integrable Martingales. Weak convergence in metric spaces with special reference to $C([0,1])$ space. Dependent variables. Diffusion processes and mixing. Martingale Central Limit Theorem.

Course Code	MA 839
Course Name	Advanced Commutative Algebra
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. W.Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge University Press, 1992. J. Herzog and T. Hibi, Monomial Ideals, Springer 2011.
Description	Face rings of simplical complexes, rings of invariants of finite groups, local cohomology of modules and its applications to Cohen-Macaulay Gorenstein rings and face rings of simplicial complexes

Course Code	MA 841
Course Name	Topics in Algebra 1
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. S. S. Abhyankar, Lectures on Algebra, Vol. I, World Scientific, Hacken- sack, NJ, 2006. \quadCambridge University Press, 1998 \quad 3. H. Matsumura, Commutative Ring Theory, Cambridge University Press, 1989.
	A selection of topics from the following: Regular sequences, grade and depth. Projective dimension, Auslander- Buchsbaum formula. Koszul complex. Rank of modules. Buchsbaum- Eisenbud acyclicity criterion. Graded rings and modules. Basic properties of graded modules: associated primes, dimension etc. Hensel's Lemma, Newton' Theorem and Weierstrass Preparation Theorem. Chevalley's Theorem on invariants of a finite pseudo-reflection group acting on the polynomial ring. The Jacobian criterion for regularity. Divisor class group of a noetherian nor- mal domain and its properties under ring extensions etc. Applications to unique factorization. Cohen-Macaulay rings. Homological characterization of regular local rings. Injective hulls, Matlis Duality. Local cohomology. Basic properties. Invariance under flat and finite base changes. Canonical module: Existence and basic properties. Local duality and applications. Canonical module of graded rings.
Description	

Course Code	MA 842
Course Name	Topics in Algebra 2
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. S. S. Abhyankar, Lectures on Algebra, Vol. I, World Scientific, Hacken- sack, NJ, 2006.
2. Wruns and J. Herzog, Cohen-Macaulay Rings, Revised second edition, 3. H. Matsumura, Commutative Ring Theory, Cambridge University Press, 1989.	
Description	A selection of topics from the following: Cohen-Macaulay rings and modules, Canonical Module, Gorenstein rings. Hilbert functions and multiplicities, Macaulay's Theorem Stanley-Reisner rings, shellability. Semigroup rings and rings of invariants Determinantal rings, Straightening law. Big Cohen-Macaulay modules, Hochster's finiteness theorem.

Course Code	MA 843
Course Name	Topics in Analysis 1
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. R.C. Gunning, Introduction to holomorphic functions of several variables. Vol. I. Function theory, Wadsworth and Brooks/Cole, 1990. 2. A.W. Knapp, Advanced real analysis, Birkhauser, 2005. 3. S. Lang and W. Cherry, Topics in Nevanlinna theory, Springer-Verlag, 1990. 4. R. Narasimhan, Several complex variables, University of Chicago Press, 1995. 5. E.M. Stein, Harmonic Analysis: Real Variable Methods,Orthogonality, and Oscillatory Integrals, Princeton University Press, 1993. 6. S. Thangavelu, An Introduction to the Uncertainty Principle: Hardy's Theorem on Lie Groups, Birkhauser, 2004.
Description	A selection of topics from the following: Singular Integrals (Calderon-Zygmund theory), the Kakeya problem, the Uncertainty Principle, the almost everywhere convergence of Fourier series, multilinear operators between Lp spaces. Pseudodifferential operators, Index theorems. Advanced complex analysis in one variable: Nevanlina theory, the existence of quasi-conformal maps, iterated polynomial maps, complex dynamics, compact Riemann surfaces, the Corona theorem. Holomorphic functions in several complex variables: elementary properties of functions of several complex variables, analytic continuation, subharmonic functions, Hartog's theorem, automorphisms of bounded domains.

Course Code	MA 844
Course Name	Topics in Analysis 2
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
	. M. Ahues, A. Largillier, B.V. Limaye, Spectral Computation for bounded

2. K.E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, 1997.
3. G. Bachman, L. Narici and E. Beckenstein, Fourier and Wavelet Analysis, Springer-Verlag, 2000.
4. S. K. Berberian, Lectures in Functional Analysis and Operator Theory, Narosa Publishing House, 1979.
5. F. Chatelin, Spectral Approximation of Linear Operators, Academic Press, 1983.
6. J.B. Conway, A Course in Functional Analysis, Springer-Verlag, 1985.
7. P.L. Duren, Theory of Hp spaces, Dover Publications, 2000.
8. W. Hackbusch, Integral Equations: Theory and Numerical Treatment, Birkhauser, 1995.
9. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, 1995.
10. R. Kress, Linear Integral Equations, Second Edition, Springer-Verlag, 1999.
11. P. Koosis, Introduction to Hp spaces, 2nd Edition, Cambridge University Press, 1999.
12. C.S. Kubrusly, An Introduction to Models and Decompositions in Operator Theory, Birkhauser, 1997.

Course Code	MA 844 (... continued from previous page)
Course Name	Topics in Analysis 2
Text Reference	13. G.J. Murphy, C*-Algebras and Operator Theory, Academic Press Inc., 1990. 14. W. Rudin, Real and Complex Analysis, McGraw-Hill, 1987. 15. W. Rudin, Functional Analysis, McGraw Hill, 1991.
	16. A. Vretblad, Fourier Analysis and its Applications, Springer-Verlag, 2005.
	A selection of topics from the following: Fourier Series and Fourier Transforms: Orthonormal Sequences in In- ner Product Spaces, Fourier Series, Riemann-Lebesgue Lemma, Conver- gence/Divergence of Fourier Series, Fejer Theory, Fourier Transform, Inversion Theorem, Approximate Identities, Plancherel Theorem Hp spaces: Harmonic and Subharmonic Functions, Hp spaces, Nevanlinna Class of Functions, Boundary Values, Non-tangential Limits, F. and M. Riesz Theorem, Inner Functions, Outer Functions, Factorization Theorems, Beurl- ing's Theorem Banach Algebras: Examples of Banach Algebras, Spectrum, Gelfand Repre- sentation, C*-Algebras, Positive Linear Functionals, Gelfand-Naimark Repre- sentation Elements of Operator Theory: Hilbert Space Operators, Parts of Spectrum, Orthogonal Projections, Invariant Subspaces, Reducing Subspaces, Shifts, De- compositions of Operators Perturbation Theory for Linear Operators: Analyticity of the resolvent opera- tor, spectral projection and the weighted mean of the eigenvalues, The method of majorizing series, Spectral Decomposition Theorem. Spectral Approximation: Norm and nu- convergence, Iterative refinement methods such as the Rayleigh-Schrodinger series and methods based on the fixed point techniques, error estimates. Approximate solutions of Operator Equations: Galerkin, Iterated Galerkin and Nystrom methods, Condition Numbers, Two Grid Methods.

Course Code	MA 845
Course Name	Topics in Combinatorics 1
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. C. Berge, Principles of Combinatorics, Academic Press, 1972. 2.G. Macdonald, Symmetric functions and Hall polynomials. Second edition, Oxford University Press, 1995. Brooks/Cole, 1986.
Description	A selection of topics from the following: Basic Combinatorial Objects : Sets, multisets, partitions of sets, partitions of numbers, finite vector spaces, permutations, graphs etc. Basic Counting Coefficients: The twelve fold way, binomial, q-binomial and the Stirling coefficients, permutation statistics, etc. Sieve Methods : Principle of inclusion-exclusion, permutations with restricted positions, Sign-reversing involutions, determinants etc. Combinatorial reciprocity. Theory of Symmetric functions.

Course Code	MA 846
Course Name	Topics in Combinatorics 2
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. M. Aigner, Combinatorial Theory, Springer-Verlag, New York, 1979. 2. G.E. Sagan, The Symmetric Group: Representations, Combinatorial Al- gorithms and Symmetric Functions, Wadsworth and Brooks/Cole, 1991.
4. R. P. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth and	
Brooks/Cole, Monterey, CA, 1986.	

sity Press, Cambridge, 1999.\end{array}\right|\)

Course Code	MA 847
Course Name	Topics in Geometry 1
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. J. M. Lee, Riemannian Manifolds: An Introduction to Curvature, Springer-Verlag, New York, 1997. 2. W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd edition, Academic Press, 2002. 3. M. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, 1976. 4. S. Kumaresan, A Course in Differential Geometry and Lie Groups, Hindustan Book Agency, 2002. 5. J. Milnor, Morse Theory, Princeton University Press, 1963.
Description	A selection of topics from the following: Review of the theory of curves and surfaces in the Euclidean 3-space. Differentiable manifolds, and Riemannian structures. Connections, and curvature tensor. The theorems of Bonnet-Meyers and Hadamard. Manifolds of constant curvature.

Course Code	MA 848
Course Name	Topics in Geometry 2
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. S. S. Abhyankar, Algebraic Geometry for Scientists and Engineers, Amer- ican Mathematical Society, Providence, RI, 1990.
2. D. Eisenbud and J. Harris, The Geometry of Schemes, Springer-Verlag,	
2000. R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977.	
2. I. R. Shafarevich, Basic Algebraic Geometry, Vol. 1 and 2, Second edi-	
tion, Springer-Verlag, 1994.	

Course Code	MA 849
Course Name	Topics in Topology 1
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. B. Gray, Homotopy Theory, Academic Press, 1975. 2. A. Hatcher, Algebraic Topology, Cambridge University Press 2002. 3. G. W. Whitehead, Elements of Homotopy Theory, Springer Verlag, 1978. 4. P. Hilton, Homotopy Theory and Duality, Gordon and Beach Sc. Publishers, 1965. 5. N. Steenrod, The Topology of Fibre Bundles, 7th reprint, Princeton University Press, 1999. 6. R. M. Switzer, Algebraic topology: Homotopy and Homology, Springer Verlag, 2002.
Description	A selection of topics from the following: CW complexes, Homotopy groups, Cellular Approximation. Whitehead's theorem, Hurewicz theorem. Excision, Fibre bundles, Long exact sequences. Postnikov Towers, Obstruction Theory. Stable homotopy groups. Spectral Sequences, Serre Class of abelian groups.

Course Code	MA 850
Course Name	Topics in Topology 2
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. G. E. Bredon, Introduction to Compact Transformation Groups, Aca- demic Press 1972.
Springer-Verlag, New York, 1985.	
3. W. Y. Hsiang, Cohomology Theory of Topological Transformation	
Groups, Springer-Verlag, 1975.	

Course Code	MA 851
Course Name	Topics in Number Theory 1
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	2. S. Lang, Algebraic number theory., Second edition, Springer-Verlag, New Yity Press, Automorphic forms and representations, Cambridge Univer- 3. H. Iwaniec and E. Kowalski, Analytic number theory, American Mathe- matical Society, Providence, RI, 2004.
4. H. Hida, Modular forms and Galois cohomology, Cambridge University	
Press, Cambridge, 2000.	

Course Code	MA 852
Course Name	Topics in Number Theory 2
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. S. Lang, Algebraic number theory., Second edition, Springer-Verlag, New York, 1994. 2. Bump, Automorphic forms and representations, Cambridge Univer- sity matical Society, Providence, RI, 2004.
4. H. Hida, Modular forms and Galois cohomology, Cambridge University	
Press, Cambridge, 2000.	

Course Code	MA 853
Course Name	Topics in Differential Equations 1
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983. 2. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, 1984. 3. D. Serre, Systems of Conservation Laws, Vols. 1, 2, Cambridge University Press, 2000. 4. L. Evans, Weak Convergence Methods for Nonlinear PDEs, CBMS Regional Conference series in Math., American Mathematical Society, Providence RI, 1990 5. A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North Holland, 1978. 6. M. Struwe, Variational Methods: Applications to nonlinear PDEs and Hamiltonian systems, Springer-Verlag, 1990.
Description	A selection of topics from the following: 1. Schauder theory, regularity for second order elliptic equations. Nonlinear analysis and its applications to nonlinear PDEs: Fixed point methods, variational methods, monotone iteration, degree theory. 2. Evolution equations: Existence via semigroup theory 3. Nonlinear Hyperbolic systems: Theory of well posedness, compensated compactness, 4. Young measures; propagation of oscillations, weakly nonlinear geometric optics.

Course Code	MA 854
Course Name	Topics in Differential Equations 2
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
	1. D. K. Arrowsmith, C. M. Place: An Introduction to Dynamical Systems, Cambridge University Press, 1990.
Text Reference	4. Puckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Sys- tems, and Bifurcations of Vector Fields. Springer-Verlag, 2002. Theory of Nonlinear Differential Equations, Cambridge University Press, 1994.
5. Palis and W. C. de Melo, Geometric Theory of Dynamical Systems,	
Springer-Verlag, 1982.	

Course Code	MA 854 (... continued from previous page)
Course Name	Topics in Differential Equations 2
	A selection of topics from the following: Diffeomorphisms and flows: Elemen- tary dynamics of diffeomorphisms, flows and differential equations, conjugacy, equivalence of flows, Sternberg's theorem on smooth conjugacy (statement only), Hamiltonian flows and Poincare maps. Local properties of flows and diffeomorphisms: Hyperbolic fixed points, Hartman-Grobman theorems for maps and flows, Normal forms for vector fields, Centre manifolds. Structural stability and hyperbolicity: Structural stability for linear systems, Flows on 2-dimensional manifolds, Peixoto's characterisation of structural stability on unit disc, Anosov and Horseshoe diffeomorphisms, Homoclinic points, Mel- nikov function. Bifurcations and Perturbations: Saddle-node and Hopf bifur- cations, Andronov-Hopf bifurcation, The logistic map, Arnold's circle map; Perturbation theory: Melnikov's method for the study of perturbation of com- pletely integrable systems. Floquet theory and Hill's equation and some of its applications. Two dimensional systems: Poincare-Bendixon theorem, Index of planar vector fields and the Poincare Hopf index theorem for two dimensional manifolds. Van der Pol's equation, Duffing's equation, Lorenz's equation. First integrals and functional independence of first integrals, notion of complete in- tegrability, Jacobi multipliers, Liouville's theorem on preservation of phase volume, Jacobi's last multiplier theorem and its applications.

Course Code	MA 855
Course Name	Topics in Numerical Analysis 1
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. Axelsson, O. Iterative Solution Methods, Cambridge University Press, 1994. 2. Briggs, W. L., Henson, V. E. and McCormick, S. F. A Multigrid tutorial, SIAM, 2000. 3. Godlewski, E. and Raviart, P. -A. Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer, 1995. 4. Kroner, D. Numerical Schemes for Conservation Laws. John Wiley, 1997. 5. LeVeque, R. J. Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002. 6. LeVeque, R. J. Numerical Methods for Conservation Laws. Birkhauser, 1992. 7. Quarteroni, A. and Valli, A. Numerical Approximation of Partial Differential Equations, Springer, 1997. 8. Ueberrhuber, C. W. Numerical Computation: Methods, Software and Analysis, Springer-Verlag, 1997.
Description	A selection of topics from the following: Review of finite difference methods for elliptic, parabolic and hyperbolic problems. Stability, consistency and convergence theory. Finite difference schemes for scalar conservation laws (Lax-Friedrichs, Upwind, Lax-Wendroff, etc.), Conservative schemes and their numerical flux functions, Consistency, Lax-Wendroff Theorem, CFL Condition, Nonlinear Stability and TVD property, Monotone Difference schemes, Numerical entropy condition, Convergence result. Finite difference Schemes for one-dimensional system of conservation laws, approximate Riemann solvers, Godunov's method, High resolution methods, Multidimensional approaches. Large Scale Scientific Computing: Classical Iterative Methods for solving Linear systems, Large Sparse Linear Systems, Storage Schemes, GMRES algorithm, Preconditioned Conjugate Gradient method and Multi-grid method, Newton's Method and some of its variations for solving nonlinear systems.

Course Code	MA 856
Course Name	Topics in Numerical Analysis II
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. Z. Chen, Finite Element Methods And Their Applications, SpringerVerlag, New York, 2005. 2. S. C. Brenner and R. L. Scott, The Mathematical Theory of Finite Element Methods, 2nd Edition, Springer-Verlag, New York, 2002. 3. M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, John Wiley and Sons, 2000. 4. V. Thomee, Galerkin Finite Element Methods for Parabolic Problems, 2nd Edition, Springer-Verlag, Berlin, 2006.
Description	A selection of topics from the following: Mixed Finite Element Methods: Examples of mixed variational formulationsprimal, dual formulations; abstract mixed formulations, discrete mixed formulations, existence-uniqueness of solutions, convergence analysis, implementation procedures. Adaptive FEM: A study of -Explicit A posteriori error estimators, Implicit A posteriori estimators, Recovery based error estimators, Goal Oriented adaptive mesh refinement for second order elliptic boundary value problems. Discontinuous Galerkin Methods for second order elliptic boundary value problems: Global element methods, Symmetric Interior Penalty Method, Discontinuous hp- Galerkin Method, Non-symmetric interior penalty method: Consistency, approximation properties, existence and uniqueness of solutions, error estimates, implementation procedures. FEM for parabolic problems: The standard Galerkin method, semidiscretization in space. discretization in space and time, the discontinuous Galerkin Method, a mixed method, implementation procedures. Elements of Multigrid Methods: Multigrid Components - Interpolation, restriction Coarse-grid correction, V, W, and FMG cycles, Implementation, Convergence analysis, Performance diagnostics.

Course Code	MA 858
Course Name	Topics in Probability II
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. V.S. Borkar, Optimal control of diffusion processes, Longman Scientific and Technical, Harlow (copublished by John Wiley), 1989. 2. Dualart, The Malliavin calculus and related topics, Springer-Verlag, 1995.
Description	A selection of topics from the following: Stochastic optimal control: compactness of laws, dynamic programming prin- ciple. Malliavin calculus and applications to finance: Wiener-Ito chaos expansion, Shorohod integral, Integration by parts formula, Clark- Ocone formula and application to finance.

Course Code	MA 859
Course Name	Topics in Statistics I
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. J. George Shanthikumar and Moshe Shaked (1994) Stochastic Orders and their Applications, Academic press. 2. C.D. Lai and M. Xie (2006) Stochastic Ageing and Dependence for Re- liability, Springer Verlag.
Description	A selection of topics from the following: Univariate Stochastic Orders-hazard rate order, likelihood ratio order, mean residual rate order. Univariate variability orders- convex order, dispersive or- der, peakedness order. Univariate monotone convex and related orders. Multi- variate stochastic orders. Multivariate variability and related orders. Statisti- cal Inference for stochastic ordering. Applications in reliability theory, biology, economics and scheduling.

Course Code	MA 860
Course Name	Topics in Statistics II
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. A. W. Van der Vaart, Asymptotic Statistics, Cambridge University Press, 2000. 2. U. Grenander, Abstract Inference, John Wiley, 1981. 3. P. McCullagh and J. A. Nelder, Generalized Linear Models, 2nd Edition, Chapman and Hall/CRC, 1994. 4. L. Fahrmeir and G. Tutz, Multivariate Statistical Modeling based on Generalized Linear Models, 2nd Edition, Springer-Verlag, 1994. 5. R. H. Myers, D. C. Montgomery and G. Geoffrey Vining, Generalized Linear Models with applications in Engineering and Sciences, WileyInterscience, 2001.
Description	A selection of topics from the following: Inference in Semi-parametric models: Models with infinite imensional parameters, Efficient estimation and the delta method, Score and information operators, Estimating equations, Maximum Likelihood estimation, Testing. Generalized linear models: Components of a GLM, estimation techniques, diagnostics, continuous response models, Binomial response models, Poisson response models, overdispersion, multivariate GLMs, quasi likelihoods, generalized estimating equations, generalized linear mixed models, programming in R and SAS.

Course Code	MA 861
Course Name	Combinatorics 1
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	2. Enumerative Combinatorics - Stanley, Vol.1 (2nd Edition) and 2, Cam- bridge University Press. Jukna, Springer, 2nd Edition. Pomputing the Continuous Discretely : Integer-point Enumeration in
4. Combinatorics of Finite Sets - Anderson, Dover Books on Mathematics.	
5. Modern Graph theory - Bollobas, Graduate Texts in Mathematics,	
Springer.	

Course Code	MA 862
Course Name	Combinatorics 2
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. Enumerative Combinatorics - Stanley, Vol. 1 (2nd Edition) and 2, Cambridge University Press. 2. Extremal Combinatorics With Applications in Computer Science - Stasys Jukna, Springer, 2nd Edition 3. The Symmetric Group : Representations, Combinatorial Algorithms, and symmetric functions - Bruce Sagan, Graduate texts in Mathematics, Springer, 2nd ed. 4. Representation Theory : A combinatorial Viewpoint - A. Prasad, Cambridge University Press 5. Combinatorics of Coxeter Groups : Bjorner and Brenti, Graduate Texts in Mathematics, Springer. 6. Symmetric Functions and Hall Polynomials - Macdonald, Oxford Mathematical monographs. 7. Linear Algebra methods in Coombinatorics - Babai/Frankl, lecture notes. 8. The Polynomial method in Combinatorics - survey paper by T. Tao 9. Incidence Theorems and Their Applications - Z. Dvir, Foundations and Trends in Theoretical Computer Science, Now Publishers Inc.
Description	Advanced Enumeration: Permutation Statistics and generalizations to Coxeter groups, Enumeration with Symmetric Functions, RSK Algorithm, Frobenius characteristic, The Jacobi-Trudi identity, Murnaghan-Nakayama Lemma, Littlewood-Richardson rule. Linear algebra methods in Combinatorics, The polynomial method, combinatorial Nullstellensatz and applications.

Course Code	MA 863	
Course Name	Theoretical Statistics 1	
Total Credits	6	
Type	T	
Lecture	3	
Tutorial	0	
Practical	0	
Selfstudy	0	
Half Semester	N	
Prerequisite	Nil	
	. Main text: Jun Shao, Mathematical Statistics, 2nd Ed., Springer, 2003.	

Text Reference

(a) Theoretical Statistics, D.R. Cox, D.V. Hinkley CRC Press
(b) E. L. Lehmann, Theory of Statistical Inference, Wiley, 1983.
(c) E. L. Lehmann, Testing Statistical Hypotheses, Wiley, 1986.

1. Parametric models, exponential and location-scale family, Sufficiency, Minimal Sufficiency, Complete Statistic, Decision Rule, Loss Function and Risk, Point estimators, consistency, asymptotic bias, variance and MSE, asymptotic inference.[Chapter 2]
2. UMVUE, U-statistics, Asymptotic Unbiased estimator, V-statistics [Chapter 3]
3. Bayes Decision and Bayes estimators, Invariance, Minimaxity and admissibility, MLE and efficient estimation method. [Chapter 4]
4. The NP Lemma, monotone likelihood ratio, UMP test for one sided and two sided hypothesis, UMP Unbiased test, UMP invariant test, likelihood ratio test, chi-squared test, Sign, permutation and rank test, Kolmogorov- Smirnov and Cramer-von Mises test and asymptotic test [Chapter 6.]

Course Code	MA 864			
Course Name	Topics in Category Theory 1			
Total Credits	6			
Type	T			
Lecture	3			
Tutorial	0			
Practical	0			
Selfstudy	0			
Half Semester	N			
Prerequisite	Nil			
	1. Aguiar and Mahajan, Monoidal functors, species and Hopf algebras, American Mathematical Society, 2010.			
Text Reference	4. Gorceau, Handbook of categorical algebra, Volumes 1, 2 and 3, Category theory, Oxford University Press, 2010. bridge University Press, 1994.			
5. Hirschhorn, Model categories and their localizations, American Mathe-				
matical Society, 2003.		$	$	6. Leinster, Higher categories, Higher operads, Cambridge University Press,
:---				
2004.				
7. Leinster, Basic category theory, Cambridge University Press, 2014.				

Course Code	MA 865
Course Name	Topics in Category Theory 2
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. Aguiar and Mahajan, Monoidal functors, species and Hopf algebras, American Mathematical Society, 2010. 2. Awodey, Category theory, Oxford University Press, 2010. 3. Borceau, Handbook of categorical algebra, Volumes 1, 2 and 3, Cambridge University Press, 1994. 4. Goerss and Jardine, Simplicial homotopy theory, Birkhauser, 1997. 5. Hirschhorn, Model categories and their localizations, American Mathematical Society, 2003. 6. Leinster, Higher categories, Higher operads, Cambridge University Press, 2004. 7. Leinster, Basic category theory, Cambridge University Press, 2014. 8. Mac Lane, Categories for the working mathematician, Springer, 1998
Description	Monoidal categories, monoids, comonoids. Symmetric monoidal categories, braidings, Hopf monoids. Higher monoidal categories. Enriched categories, 2-categories, bicategories, higher categories. Monads, distributive laws, higher monads. The above concepts can be motivated and discussed by connecting them to other areas of mathematics depending on the interests of the instructor and students.

Course Code	MA 867
Course Name	Statistical Modelling - 1
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
	1. Main Text: Linear Models by S.R. Searle (1971) Wiley \& SonsOther
Text Reference	2. Additional Reference: Linear Model Methodology by A. I. Khuri (2009) CRC Press
1. Full rank model (Chapters 3 and 4)	
2. Models with rank deficiency (Chapter 5: Sections 5.1,5.2,5.3,5.4,5.5)	

Course Code	MA 899
Course Name	Communication Skills
Total Credits	6
Type	N
Lecture	1
Tutorial	2
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. Alley, Michael The Craft of ScientificPresentations, Springer (2003). 2. Booth, Wayne C., Gregory G. Colomb, and JosephM. Williams, The Craft of Research, The Universityof Chicago Press, 3rd edition, (2008). 3. Keshav. S, How to read a paper. ACM SIGCOMM Comp. Commun. Rev., 37, 2007. 4. Monippally, M. M., Pawar, B.S. Academic Writing:A Guide for Management Students and Researchers,Response Books, (2010). 5. Purdue Online Writing Lab (OWL),https://owl.purdue.edu/ 6. Strunk Jr., William; E. B. White, The Elements of Style, Fourth Edition, Longman; 4th edition (1999). 7. Truss, Lynne Eats, Shoots \& Leaves: The ZeroTolerance Approach to Punctuation Gotham;(2006). 8. Whitesides, George M. Whitesides Group: Writing a Paper, Advanced Materials 16 (2004).
Description	Continued on next page ...

Course Code	MA 899 (... continued from previous page)
Course Name	Communication Skills
	Context of communication: Recognizing our capability and roles as profes- sionals. Scientific Method: Question and answer aspects of technical commu- nication; Scientific Methodology and its relationship to technical communi- cation;Surveying literature: Categories; reading and organizing scientific lit- erature; search engines and tools. Listening and Note taking: 5-R method and mind-mapping.Technical writing: Report organization; Journal selec- tion; Introduction, conclusion, and abstract writing. Speaking \& Presentation skills: Organization of presentation slides (number, content, and formatting);
	Oral presentations; Audience/context dependent practices; Nonverbal aspects: body language, eye-contact, personal appearance, facing large audience. El- evator pitch: Pitches for technical audience and policymakers. Workplace communication: Sensitivity towards gender and diversity; Email communi- cation and netiquettes.Ethics in academic communication: Intellectual Prop- erty,copyrights and plagiarism; Authorship; Data ethics; Biases and balanced criticism of literature;Suggested additional topics relevant to disciplines: Data representation, Group discussion and interviews; accessible scientific writing, report writing using LaTeX, Proofreading, etc

Course Code	MAS801
Course Name	Seminar
Total Credits	4
Type	S
Lecture	0
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1.
Description	

Course Code	MAS802
Course Name	Seminar
Total Credits	4
Type	S
Lecture	0
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1.
Description	

Chapter 11

List of all Statistics Courses

SI404 140
SI416 141
SI419 142
SI422 143
SI423 144
SI424 145
SI426 146
SI427 147
SI429 148
SI431 149
SI503 150
SI505 151
SI507 152
SI509 153
SI513 154
SI514 155
SI515 156
SI526 157
SI527 158
SI534 159
SI536 160
SI537 161
SI539 162
SI541 163
SI543 164
SI544 165
SI546 166
SI548 167
SI550 168
SI593 169
SI598 170

Course Code	SI 404
Course Name	Applied Stochastic Processes
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. U. N. Bhat, Elements of Applied Stochastic Processes, Wiley, 1972. 2. V.G. Kulkarni, Modeling and Analysis of Stochastic Systems, Chapman and Hall,London, 1995. Stochastic Models in Queuing Theory, Academic Press, 1991.
4. R. Nelson, Probability, Stochastic Processes,and Queuing Theory: The	
Mathematics of Computer Performance Modelling, Springer-Verlag, New	
York, 1995.	

Course Code	SI 416
Course Name	Optimization
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. Beale, E.M.L., and Mackley, L., Introduction to Optimization, John Wiley \& Sons, Hoboken, 1988. 2. Chavatal, V., Linear Programming, W.H. Reeman and Company, New York, 1983. 3. Chong, E.P.K. and Zak, S.H., An Introduction to Optimization, 4th Edition, John Wiley \& Sons, Hoboken, 2013. 4. Joshi, M.C., and Moudgalya, K., Optimization: Theory and Practice, Narosa, New Delhi, 2004. 5. Nocedal, J. and Wright, S. J., Numerical Optimization, 2nd Edition, Springer, New York, 2006. 6. Vanderbei, R.J., Linear Programming Foundations and Extensions, 3rd Edition, Springer, New York, 2008.
Description	Unconstrained optimization using calculus (Taylor's theorem, convex func- tions, coercive functions). Unconstrained optimization via iterative methods (Newton's method, Gradient/ conjugate gradient based methods, QuasiNewton methods). Constrained optimization (Penalty methods, Lagrange multipliers, Karush-Kuhn-Tucker conditions). Introduction to Linear Programming: Lines and hyperplanes, Convex sets, Convex hull, Formulation of a Linear Programming Problem, Theorems dealing with vertices of feasible regions and optimality, Graphical solution. Simplex method (including Big M method and two-phase method), Dual problem, Duality theory, Dual simplex method, Revised simplex method

Course Code	SI 419
Course Name	Combinatorics
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	2. Bona, M. A walk through Combinatorics, 4th edition, World Scientific, edition, Oxford University Press, 2009. 2. Lehman, E., Leighton, F. T., and Meyer, A. R. (2019) Mathematics for Computer science, (Freely available online), 2019.
Description	Counting Basic Combinatorial objects: Sets, Multisets, Partitions of sets, Partitions of numbers, Permutations, Trees, Partially ordered sets.Generating functions, Recurrence relations, Principle, of Inclusion-Exclusion.Graph The- ory Graphs and Directed graphs, Paths, Walks, Connectivity, Matchings in bipartite graphs, Network flows, Dilworths theorem.

Course Code	SI 422
Course Name	Regression Analysis
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	SI 427 (Probability 1)
Text Reference	1. Draper, N. and Smith,H. Applied Regression Analysis, 3rd Edition, John Wiley and Sons Series in Probability and Statistics, New York, 1998. 2. Montgomery, D., Peck, E., Vining, G. Introduction to Linear Regression Analysis, 5th Edition, John Wiley, New York, 2012. 3. Sen, A. and Srivastava, M. Regression Analysis Theory, Methods \& Applications, 1st Edition, Springer-Verlag Berlin Heidelberg, New York, 1990. 4. Kutner, M., Nachtsheim, C., Neter, J. and Li, W. Applied Linear Statistical Models, 5th Edition, McGraw-Hill Companies, Boston, 2005.
Description	Simple and multiple linear regression models - estimation, tests and confidence regions. Simultaneous testing methods- Bonferroni method etc. Analysis of Variance for simple and multiple regression models. Analysis of residuals. Lack of fit tests. Checks (graphical procedures and tests) for model assumptions: Normality, homogeneity of errors, independence, correlation of covariates and errors. Multicollinearity, outliers, leverage and measures of influence. Model selection (stepwise, forward and backward, best subset selection) and model validation. Discussion of algorithms for model selection. Regression models with indicator variables. Polynomial regression models. Regression models with interaction terms. Transformation of response variables and covariates. Variance stabilizing transformations, Box-Cox method. Ridge's regression. Weighted Regression.

Course Code	SI 423
Course Name	Linear Algebra and its Applications
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	2. Rao, A.R., and Bhimashankaram, P., Linear algebra, 2nd edition, Hin- Phistan book agencey, New Delhi, 2000.
3. Strang, Gnsel, A.J., Linear Spence, L.E., Linear algebra, 4th edition,	
Learning, Toronto, 2006.	

Course Code	SI 424
Course Name	Statistical Inference 1
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. Casella, G. and Berger, R. Statistical Inference, 1st Edition, Duxbury Press, Pacific Grove, 2002. 2. Hogg, R., McKean. J. and Craig, A., Introduction to Mathematical Statistics, 8th Edition, Pearson, Boston, 2019. Sons, New York, 1983.
4. Lehmann, E and Romano, J. Testing Statistical Hypotheses, 3rd Edition,	
Springer-Verlag New York, 2005.	
5. DeGroot, M. and Schervish, M. Probability and Statistics, 4th Edition,	
Addison Wesley, Boston, 2002.	

Course Code	SI 426
Course Name	Algorithms
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. Dasgupta, S., Papadimitriou, C., and Vazirani, U. Algorithms, Tata McGraw-Hill, 2008. 2. Cormen, T., Leiserson, C., Rivest, R., and Stein, C. Introduction to Algorithms, 3rd edition, MIT Press, 2009.
Description	Basics: Algorithm analysis and asymptotic notation, Linked lists. Graphs: Breadth first search, Depth first search, Strongly connected components. Di- vide and Conquer: Merge sort, Fast Fourier transform. Greedy Algorithms: Dijkstra's algorithm, Minimum spanning tree algorithms, Huffman codes and data compression. Dynamic programming: Longest increasing sequences, edit distance, shortest paths. Network flows: Maxflow Mincut theorem, max flow algorithms, application to bipartite matchings. Introduction to Randomized algorithms: randomized quick sort, global mincut, hashing.

Course Code	SI 427
Course Name	Probability 1
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. Athreya K.B. and Lahiri S. N., Probability Theory, Hindustan Book Agency, 2006. 2. Billingsley, P., Probability and Measure, 2nd edition, John Wiley \& Sons, New York, 1995. 3. Hoel, P.G., Port, S.C., and Stone, C.J., Introduction to Probability Theory, Universal Book Stall, New Delhi, 1998. 4. Karr, A.F., Probability, Springer-Verlag, New York, 2003. Rosenthal, J.S., A first look at rigorous Probability theory, 2nd edition, World Scientific, 2006. 5. Ross, S., A first course in Probability, 9th Edition, Pearson, Delhi, 2019.
Description	Random phenomena, sample spaces, events, sigma algebra, probability space, properties of probability, conditional probability, independence, Bayes formula, Polya's urn model. Discrete random variable, probability mass function, independent random variables, sum of random variables, random vector, expectation of discrete random variable, properties of expectation and variance. Continuous random variable, distribution function, density of a continuous random variable, expectation, change of variable formula, random vector, joint distribution of random variables, joint density, distribution of sums and products of random variables, conditional density, conditional expectation, order statistics, moment generating function, characteristic function, brief introduction to moment problem. Inequalities: Markov, Chebyshev, Schwarz and Chernoff bound. Convergence in probability, almost sure convergence, convergence in distribution, relation between these three modes of convergences, weak law of large numbers (WLLN), strong law of large numbers (SLLN), central limit theorem (CLT).

Course Code	SI 429
Course Name	Real analysis
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. Ajit kumar, and Kumaresan, S., A basic course in Real analysis, CRC Press, Boca Raton, 2014. 2. Apostol, T.M., Mathematical analysis, 2nd edition, Narosa Publishers, New Delhi, 2002. 3. Bartle, R.G., and Sherbert, D. R., Introduction to Real analysis, 4th edition, John Wiley, New York, 2011. 4. Ghorpade, S.R., and Limaye, B.V., A course in Calculus and Real analysis, Springer (India), New Delhi, 2006. 5. Ross, K.A., Elementary analysis: The theory of Calculus, 2nd edition, Springer (India), New Delhi, 2013. 6. Tao T., Analysis I, 3rd Edition, Hindustan Book Agency, New Delhi, 2006.
Description	Review of sequences and series of real numbers. Limit superior and limit inferior, Cauchy sequences and completeness of \mathbb{R}. Tests for convergence of series of real numbers. Basic notions of Metric Spaces with emphasis on \mathbb{R}^{n}. Heine Borel Theorem. Continuity and Uniform continuity. Derivatives. Mean Value Theorem and applications. Functions of bounded variation. Riemann- Stieltjes integral. Improper integrals and Gamma function. Sequences and series of functions. Uniform convergence, interchanging limits with integrals and derivatives. Arzela-Ascoli theorem (statement only). Functions of sev- eral variables: Partial derivative, directional derivative, total derivative; Mean value theorem, Taylor's theorem.

Course Code	SI 431			
Course Name	Introduction to Data Analysis using R			
Total Credits	6			
Type	T			
Lecture	2			
Tutorial	0			
Practical	2			
Selfstudy	0			
Half Semester	N			
Prerequisite	Nil			
	1. FOSSEE, Spoken tutorials at https://r.fossee.in/ James, G., Witten, D., Hastie, T., and Tibshirani, R., An introduction to statistical learning with applications in R, Springer, New York, 2013.			
2. Wickham, H., Advanced R, CRC press, New York, 2.Wickham, H., and				
Grolemund, G., R for Data Science, O'Reilly Media Inc, Canada, 2017.		$	$	Overview of R software, Data Frames, R Scripts, creating, import-
:---				
ing/exporting and merging of data sets, creating matrices and basic matrix				
operations in R, 2d/3d plotting, programming in R (for, if else, do and while				
loops), functions, creating report using R markdown. Exploring data us-				
ing R, Scatter plot, histogram, bar chart, pie chart, box plot, basic statis-				
tics computation (mean, median, variance etc.) Generating random samples				
from standard distributions (such as Bernoulli, Poisson, Normal, Exponential				
etc.) and comparing theoretical pdfs/pmfs using histograms/frequency distri-				
butions, quantiles of sampling distributions (t, chi and F distribution) Maxi-				
mization/minimization of functions in R (some algorithm), MLE estimation.				
Polynomial fitting of scatter plot, introducing regression line, least squares				
estimates, residual plots, testing normality of residuals (qqplot), goodness of				
fit measures and tests, testing of regression parameters, simulation of regres-				
sion model, empirical distribution of least square estimator and its compari-				
son with theoretical distribution. Simulation of multivariate normal random				
vectors, estimation of mean and covariance matrix, eigen values and eigen vec-				
tor of variance covariance matrix, spectral decomposition covariance matrix.				
Generating dependent random variables with some models like (random walk,				
AR(1), MA(1) etc).				

Course Code	SI 503
Course Name	Categorical Data Analysis
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. A. Agresti, Categorical Data Analysis, 3rd Edition, Wiley, November 2012. 2. A. Agresti, An Introduction to Categorical Data Analysis,2nd Edition, Wiley, March 2007. 3. E.B. Andersen, The Statistical Analysis of Categorical Data, Springer for Science, 1997. 4. R.F. Gunst and R.L. Mason, Regression Analysis and its Applications A Data Oriented Approach, Marcel Dekkar, 1980. 5. T.J. Santner and D. Duffy, The Statistical Analysis of Discrete Data, Springer-Verlag, 1989. 6. A.A. Sen and M. Srivastava, Regression Analysis - Theory, Methods and Applications, Springer-Verlag, 1990
Description	Two-way contingency tables: Table structure for two dimensions. Ways of comparing proportions. Measures of associations. Sampling distributions. Goodness-of-fit tests, testing of independence. Exact and large sample inference. Models of binary response variables. Logistic regression. Logistic models for categorical data. Probit and extreme value models. Log-linear models for two and three dimensions. Fitting of logit and log-linear models. Loglinear and logit models for ordinary variables. Regression: Simple, multiple, non-linear regression, likelihood ratio test, confidence intervals and hypotheses tests, tests for distributional assumptions Collinearity, outliers, analysis of residuals. Model building, Principal component and ridge regression. Lab component: Relevant real life problems to be done using statistical Software Packages such as SAS etc.

Course Code	SI $\mathbf{5 0 5}$
Course Name	Multivariate Analysis
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	SI 424 (Statistical Inference 1)
Text Reference	1. T.W. Anderson, An Introduction to Multivariate Statistical Analysis, 3rd Ed., Wiley, July 2003.
2. R. Gnanadesikan, Methods for Statistical Data Analysis of Multivariate Analysis, 6th Edition, Wiley, April 2007.	
4. M.S. Srivastava and E.M. Carter, An Introduction to Multivariate Statis-	
tics, North Holland, 1983.	

Course Code	SI $\mathbf{5 0 7}$
Course Name	Numerical Analysis
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	2. K.E. Atkinson, An Introduction to Numerical Analysis, Wiley, 1989. 2.D. Conte and C. De Boor, Elementary Numerical Analysis An Algo- ferential Equations, Cambridge Univ. Press, Cambridge, 1996. 4.H. Golub and J.M. Ortega, Scientific Computing and Differential Equations: An Introduction to Numerical Methods, Academic Press, 1992.
5. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 2nd ed.,	
Texts in Applied Mathematics, Vol. 12, Springer Verlag, New York,	
1993.	

Course Code	SI 509
Course Name	Time Series Analysis
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	SI 424 (Statistical Inference 1)
Text Reference	1. Brockwell P. and Davis R., Introduction to Time Series and Forecasting, Springer, New York, 2000. 2. Brockwell P. and Davis R., Time Series: Theory and Methods, Springer, New York, 1991. 3. Box G.E.P., Jenkins G., Reinsel G. and Ljung, Time Series AnalysisForecasting and Control, 5th Edition, Wiley, New York, 2016. 4. Chatfield C., The Analysis of Time Series - An Introduction, 6th Edition, Chapman and Hall / CRC, New York, 2016. 5. Shumway R.H. and Soffer D.S., Time Series Analysis and Its Applications, 4th Edition, Springer, New York, 2016. 6. Weiss C. H., An Introduction to Discrete-Valued Time Series Data, John Wiley \& Sons, Inc., Chichester, 2018.
Description	Stationary processes - strong and weak, linear processes, estimation of mean and covariance functions. Wald decomposition Theorem. Modeling using ARMA processes, estimation of parameters testing model adequacy, Order estimation. Prediction in stationary processes, with special reference to ARMA processes. Frequency domain analysis - spectral density and its estimation, transfer functions. Nonlinear ARCH and GARCH models. Discrete-Valued time series models.

Course Code	SI 513
Course Name	Theory of Sampling
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. Chaudhuri, A. and Stenger, H., Survey Sampling: Theory and Methods, Chapman and Hall/CRC, Boca Raton, 2005. 2. Cochran, W.G., Sampling Techniques, 3rd Edition, John Wiley and Sons, New York, 1977. 3. Des Raj, Sampling Theory, McGraw-Hill Book Co., New York, 1978. 4. Mukhopadhyay, P., Theory and Methods of Survey Sampling, PrenticeHall of India New Delhi, 1998.
Description	Principals of sample survey, Probability sampling, Non-probability sampling, Simple random sampling, Estimation of population total, Variance estimation, finite population correction, Random sampling with replacement, linear estimators of population mean, Sampling for proportions and percentages, sample size estimation for proportion as well as continuous data in random sampling. Stratified random sampling, Estimator of population total and its variance, Optimum allocation, comparison between stratified and simple random sampling, Stratified sampling for proportion and sample size estimation, construction of strata, Number of strata, Quota sampling. Ratio estimator, estimation of variance from sample, comparison between ratio estimator and best linear unbiased estimator, bias of ratio estimates, ratio estimates in stratified sampling. Regression estimators, Large sample comparison with ratio estimate. Single stage cluster sampling with equal and unequal cluster sizes, Sampling with probability proportion to size, selection with unequal probabilities with and without replacement, the Horvitz Thompson estimator, Brewer's method, Murthy's method, Rao, Hartley and Cochran method. Two stage sampling with units of equal and unequal sizes. Introduction to randomized response techniques with examples and estimation.

Course Code	SI 514
Course Name	Statistical Modeling
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. T. Hastie, and R. Tibshirani, Generalized Additive Models, Chapman and Hall, London, 1990. 1989. Seber, and C.J. Wild, Nonlinear Regression, John Wiley \& Sons, 3. W. Hardle, Applied Nonparametric Regression, Cambridge University Press, London, 1990.
Description	Nonlinear regression, Nonparametric regression, generalized additive models, Bootstrap methods, kernel methods, neural network, Artificial Intelligence, a few topics from machine learning.

Course Code	SI 515
Course Name	Statistical Techniques in Data Mining
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. L. Breiman, J.H. Friedman, R.A. Olschen and C.J. Stone, Classification of Regresion Trees, Wadsowrth Publisher, Belmont, CA, 1984. 2. D.J. Hand, H. Mannila and P. Smith, Principles of Data Minng, MIT Press,Cambridge, MA 2001. 3. M.H. Hassoun, Fundamentals of Artificial Neural Networks, PrenticeHall of India,New Delhi January 2003. 4. T. Hastie, R. Tibshirani \& J. H. Friedman, The elements of Statistical Learning: Data Mining, Inference \& Prediction, 2nd Edition, Springer Series in Statistics, Springer-Verlag, New York February 2009. 5. R.A. Johnson and D.W. Wichern, Applied Multivariate Statistical 6th Edition Pearson April 2007. 6. S. James Press, Subjective and Objective Bayesian Statistics: Principles, Models, and Applications, 2nd Edition, Wiley, 2002.
Description	Introduction to Data Mining and its Virtuous Cycle. Cluster Analysis: Hierarchical and Non-hierarchical techniques. Classification and Discriminant Analysis Tools: CART, Random forests, Fisher's discriminant functions and other related rules, Bayesian classification and learning rules. Dimension Reduction and Visualization Techniques: Multidimensional scaling, Principal Component Analysis, Chernoff faces, Sun-ray charts.Algorithms for data-mining using multiple nonlinear and non-parametric regression. Neural Networks: Multi-layer perceptron, predictive ANN model building using back-propagation algorithm. Exploratory data analysis using Neural Networks self organizing maps. Genetic Algorithms, Neuro-genetic model building. Discussion of Case Studies.

Course Code	SI $\mathbf{5 2 6}$
Course Name	Experimental Designs
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	SI 424 (Statistical Inference 1)
Text Reference	1. A.M. Kshirsagar, A First Course in Linear Models, Marcel Dekker, 1983. 2. D.C. Montgomery, Design and Analysis of Experiments, 8th Ed., John
3. C.F.J. Wu and M. Hamada, Experiments: Planning Analysis, and Pa-	
rameter Design Optimization, John Wiley \& Sons, 2nd Edition 2009.	

Course Code	SI $\mathbf{5 2 7}$
Course Name	Introduction to Derivative Pricing
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	SI 427 (Probability 1) and SI 537 (Probability 2)
Text Reference	1. D. G. Luenberger, Investment Science, Oxford University Press, 1998. 2. J. C. Hull, Options, Futures and Other Derivatives, 4th Edition, Prentice-Hall, 2000.
Prentice Hall, 1985.	
4. C. P Jones, Investments, Analysis and Measurement, 5th Edition, John	
Diles and Sons, 1996.	

Course Code	SI 534
Course Name	Nonparametric Statistics
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	SI 424 (Statistical Inference 1)
Text Reference	1. W.W. Daniel, Applied Nonparametric Statistics, 2nd ed., Boston: PWSKENT, 1990. 2. M. Hollandor, and D.A. Wolfe, Non-parametric Statistical Inference, McGraw-Hill, 1973. 3. E.L. Lehmann, Nonparametric Statistical Methods Based on Ranks, McGraw-Hill, 1975. 4. J.D. Gibbons, Nonparametric Statistical Inference Marcel Dekker, NewYork, 1985. 5. R.H. Randles and D.A. Wolfe, Introduction to the Theory of Nonparametric Statistics, Wiley, New York, 1979. 6. P. Sprent, Applied Nonparametric Statistical Methods, Chapman and Hall, London, 1989. 7. B.C. Arnold, N. Balakrishnan and H. N. Nagaraja, First Course in Order Statistics. John Wiley, NewYork, 1992. 8. J.K. Ghosh and R.V. Ramamoorthi, Bayesian Nonparametrics, Springer Verlag, NY, 2003.
Description	Kolmogorov-Smirnov Goodness of Fit Test. The empirical distribution and its basic properties. Order Statistics. Inferences concerning Location parameter based on one-sample and two-sample problems. Inferences concerning Scale parameters. General Distribution Tests based on Two or More Independent Samples. Tests for Randomness and equality of distributions. Tests for Independence. The one-sample regression problem. Asymptotic Relative Efficiency of Tests. Confidence Intervals and Bounds.

Course Code	SI $\mathbf{5 3 6}$
Course Name	Analysis of Multi-Type and Big Data
Total Credits	6
Type	T
Lecture	3
Tutorial	0
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
1. Bollen K.A. Structural Equations with Latent Variables, New York: John	
Wiley, 1989.	
2. Bollen K.A. Latent Curve Models: A Structural Equation Perspective.	
Hoboken: John Wiley, 2006.	
3. Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical	
Learning. Berlin: Springer, 2009.	
4. B Ühlmann, P. and van de Geer, S. Statistics for High-Dimensional Data:	
Methods, Theory and Applications. Berlin: Springer, 2011.	

Course Code	SI 537
Course Name	Probability 2
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. Athreya, K.B. and Lahiri, S. N., Measure Theory and Probability Theory, Springer, New York, 2006. 2. Ash, R. B., Probability and measure theory, Second edition, Academic Press, Burlington, 2000. 3. Billingsley, P., Probability and Measure, Anniversary Edition, John Wiley \& Sons, Hoboken, 2012. 4. Chung, K. L., A Course in Probability Theory, Third edition, Academic Press, San Diego, 2001. 5. Durret, R., Probability: Theory and Examples, Fifth edition, Cambridge University Press, Cambridge, 2019. 6. Pollard, D., A user's guide to Measure Theoretic Probability, Cambridge University Press, Cambridge, 2002.
Description	Probability space, random variables $\left(\mathbb{R}, \mathbb{R}^{d}\right)$ valued, distributions of random variables, change of variables formula, expectation of \mathbb{R} valued random variable, Jensen's inequality, Holder's inequality, Chebyshev's inequality, Fatou's lemma, monotone convergence theorem, dominated convergence theorem, product measure, Fubini's theorem, notion of independence of sigma-fields and random variables, Kolmogorov's consistency theorem. Convergence in probability, almost sure convergence, convergence in distribution, convergence in L^{p}, relation between different modes of convergence, Borel-Cantelli lemma, characteristic function, inversion formula, continuity theorems, Scheffe's lemma, uniform integrability, tightness, Helly's selection principle, moment problem. Weak law of large numbers, strong law of large numbers, central limit theorem. Radon Nikodym theorem (statement only), conditional expectation: definition and its properties.

Course Code	SI 539
Course Name	Random graphs
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. Bela Bollobas, Random Graphs, second edition, Cambridge University Press, Cambridge, 2001. 2. Rick Durrett, Random Graph Dynamics, Cambridge University Press, Cambridge, 2010. 3. Alan Frieze and Michal Karonski, Introduction to Random Graphs, Cambridge University Press, Cambridge, 2016. 4. Remco van der Hofstad, Random Graphs and Complex Networks, Vol 1, Cambridge University Press, Cambridge, 2017. 5. Svante Janson, Tomasz Luczak and Andrzje Rucinski, Random Graphs, Wiley, 2000.
Description	Review of probabilistic tools: Markov inequality, Chebyshev's inequality, concentration inequalities: Hoeffding, Efron-Stein, Azuma-Hoeffding, Mcdiarmid (statements only). Modes of convergences. Some real life examples, two basic models of random graphs (Erdos-Renyi model $G(n, M)$ and Erdos-RenyiGilbert model $G(n, p)$) and relationship between them, monotonicity, thresholds and sharp thresholds, evolution: sub-critical phase, super-critical phase, phase transition, connectivity, threshold for connectivity, dense and sparse random graphs, degree sequence and asymptotic distribution of degrees, sub-graph counts, its asymptotic distribution and thresholds for sub- graph containment. Introduction to other random graph models: Generalized binomial model, Exponential random graph models, Configuration model, Preferential attachment model, Stochastic block model, examples.

Course Code	SI 541
Course Name	Statistical Epidemiology
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. Lawson, A. Statistical Methods in Spatial Epidemiology, 2nd Edition, Wiley, New York, 2006.
2014. Kalbfleisch, J. and Prentice, R. The Statistical Analysis of Failure Time	
Data, 2nd Edition, Wiley, New York, 2002.	

Edition, John Wiley \& Sons., Hoboken, 2003.\end{array}\right|\)

Course Code	SI $\mathbf{5 4 3}$
Course Name	Asymptotic Statistics
Total Credits	8
Type	T
Lecture	3
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	SI 427 (Probability 1) and SI 424 (Statistical Inference 1)
Text Reference	1. DasGupta A., Asymptotic Theory of Statistics and Probability, Springer, New York, 2008. ley, New York, 2009.
3. van der vaart A. W. and Wellner J. A., Weak Convergence and Empirical	
Processes, Springer, New York, 1996.	

Course Code	SI 544			
Course Name	Martingale theory			
Total Credits	6			
Type	T			
Lecture	2			
Tutorial	1			
Practical	0			
Selfstudy	0			
Half Semester	N			
Prerequisite	SI 427 (Probability 1) and SI 537 (Probability 2)			
Text Reference	1. Athreya, K.B. and Lahiri, S.N., Probability Theory, Hindustan Book Agency, 2006. 2. Billingsley, P., Probability and Measure, Anniversary Edition, John Wi- ley and Sons, Hoboken, 2012.			
3. Chung, K. L., A Course in Probability Theory, Third edition, Academic				
Press, San Diego, 2001.		$	$	4. Williams, D., Probability with martingales, Cambridge University Press,
:---				
Cambridge, 1991.				

Course Code	SI 546	
Course Name	Statistical Inference II	
Total Credits	6	
Type	T	
Lecture	2	
Tutorial	1	
Practical	0	
Selfstudy	0	
Half Semester	N	
Prerequisite	SI 424 (Statistical Inference 1)	
	Casella G. and Berger R.L., Statistical Inference, Wadsworth, a part of	

Text Reference

4. Lehmann E.L., Theory of Point Estimation, Springer, New York, 1998.
5. Lehmann E.L. and Romano J.P., Testing of Statistical Hypotheses, Springer, New York, 2011.
6. Huber P. J. and Ronchetti E.M., Robust Statistics, Wiley, New York, 2009.
7. Shao J., Mathematical Statistics, Springer, New York, 2003.

Minimaxity and admissibility: Minimax estimation, admissibility and minimaxity in exponential families, admissibility and minimaxity in group families, Simultaneous estimation. Maxmin tests and invariance, Hunt-stein Theorem, Most stringent tests. Multiple testing via Maximin procedures and Scheffé's S-method.
U-statistics: Variance computation and projection method. Convergence of U statistics (one sample and two samples). Linear rank statistics. Asymptotic normality under null hypothesis. Pitman's Asymptotic relative efficiency, Noether's theorem for evaluating asymptotic relative efficiency. Bahadur's efficiency. Resampling techniques. Robust inference: Break-down point in finite sample, Influence curve. M-estimator, L-estimator, Restimator, minimum distance estimator and Pitman's estimator. Relations to minimax estimator and equivariant estimators. Robust tests and confidence sets.

Course Code	SI 548
Course Name	Computational Statistics
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	1. Efron B. and Tibshirani R.J., An Introduction to the Bootstrap, Chapman and Hall, New York, 1993. 2. Gentle J.E., Elements of Computational Statistics (ECS), SpringerVerlag, New York, 2002. 3. Gentle J.E., Computational Statistics, Statistics and Computing Series, Springer-Verlag, New York, 2009. 4. Gelman A., Carlin J. B., Stern H. S., and, Dunson D. B., Vehtari A., and Rubin D.B., Bayesian Data Analysis, 3rd Edition, CRC Press, Taylor and Francis Group, Boca Raton, 2014. 5. Givens G. H. and Hoeting J. A., Computational Statistics, 2nd Edition, John Wiley and Sons, Inc., Hoboken, New Jersey, 2013. 6. Lange K., Numerical Analysis for Statisticians, 2nd Edition, SpringerVerlag, New York, 2002. 7. Little R.J.A. and Rubin D.B., Statistical Analysis with Missing Data, 2nd Edition, Wiley, New York, 2019. 8. Liu J., Monte Carlo Strategies in Scientific Computing, Springer-Verlag, New York, 2001. 9. Rice J.A., Mathematical Statistics and Data Analysis, 2nd Edition, Duxbury Press, Belmont, California, 1995.
Description	Introduction to Bayesian Theory and methods; non-informative priors and conjugate priors; posterior inference (with special reference to one parameter exponential family)-credible intervals and hypothesis testing; hierarchical and empirical Bayesian models; computational techniques for use in Bayesian analysis, especially the use of simulation from posterior distributions, with emphasis on the WinBUGS package as a practical tool. MCMC simulation (Markov chains; Metropolis-Hastings algorithm; Gibbs sampling; convergence), EM algorithm, Bootstrap (Bootstrapping; jackknife resampling; percentile confidence intervals). Permutation tests.

Course Code	SI $\mathbf{5 5 0}$
Course Name	Weak convergence and empirical processes
Total Credits	6
Type	T
Lecture	2
Tutorial	1
Practical	0
Selfstudy	0
Half Semester	N
Prerequisite	Nil
Text Reference	2. Pillingsley, Patrick. Convergence of probability measures. John Wiley of Mathematical Statistics, 1990. Shorack, Galen R., and Jon A. Wellner. Empirical processes with ap- plications to statistics. Society for Industrial and Applied Mathematics, 2009.
4. van der Vaart, Aad W. and Wellner, Jon. Weak convergence and em-	
Business Media, 2013.	

Course Code	SI 593
Course Name	Project 1 (Optional)
Total Credits	4
Type	
Lecture	
Tutorial	
Practical	
Selfstudy	
Half Semester	
Prerequisite	
Text Reference	1.
Description	

Course Code	SI 598
Course Name	Project 2 (Optional)
Total Credits	6
Type	
Lecture	
Tutorial	
Practical	
Selfstudy	
Half Semester	
Prerequisite	
Text Reference	1.
Description	

[^0]: ${ }^{1}$ The latest version of this file can be found at https://www.math.iitb.ac.in/ \longrightarrow Academic Programs \longrightarrow Curriculum Booklet. Created and maintained by Shri Ashutosh R. Mulik and Professor Ronnie Sebastian. Please write to ronnie@iitb.ac.in if you find any errors.

[^1]: ${ }^{1} \mathrm{~A}$ student can replace a particular course in S with an advanced PhD level course in the same broad area in consultation with the faculty advisor. These advanced courses can be found here.
 ${ }^{2}$ A student can replace a particular course in S with an advanced PhD level course in the same broad area in consultation with the faculty advisor. These advanced courses can be found here.
 ${ }^{3}$ Doing a project will be strongly encouraged if the student already has sufficient background in mathematics.
 ${ }^{4}$ Rules paraphrased in terms of credit requirements on the suggestion of Dean (AP) on 14 September 2023.

