Wed, December 28, 2016
Public Access


Category:
Category: All

28
December 2016
Mon Tue Wed Thu Fri Sat Sun
      1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31  
8:00am  
9:00am  
10:00am  
11:00am  
12:00pm  
1:00pm  
2:00pm  
3:00pm  
4:00pm [4:00pm] Math Colloquium
Description:
Speaker: Prof. Madhu Sudan (Harvard University) Title: The Polynomial Method and Variations Abstract: The polynomial method in combinatorics has recently emerged as a simple but strikingly powerful method to answer many fundamental questions about combinatorial parameters associated with geometric objects. I will survey some of the old and new applications of this method (focussing on the simpler proofs!) including: 1) "List-decoding bounds for Reed-Solomon codes": Given $n$ points in the plance, how many polynomials of degree $d$ can pass through $t$ of them? (Guruswami and S. '98) 2) "Bounds on Kakeya and Nikodym sets": How small can a subset of $F_q^n$ (the $n$-dimensional vector space over the finite field of cardinality $q$) be so that it contains a line in every direction. (Dvir 2008) 3) "Bounds on Joints in R^3": What is the largest number of "joints" (non-coplanar intersection of three lines) that can be formed by a set of L lines? (Guth and Katz, 2008) 4) "Bound on capsets in F_3^n": How large can a subset in F_3^n so that it contains no complete line? (Ellenberg, Gijswijt; based on Croot-Lev-Pach 2016).

5:00pm  
6:00pm