Date and Time: Wednesday 30 October, 11:30 am - 12:30 pm.
Venue: Ramanujan Hall, Department of Mathematics.
Title: Overview on test of randomness of a binary sequence and its
application in cryptography.
Time:
4:00pm-5:00pm
Location:
Ramanujan Hall, Department of Mathematics
Description:
Mathematics Colloquium.
Speaker: Bimal Roy.
Affiliation: ISI Kolkata.
Date and Time: Wednesday 30 October, 4:00 pm - 5:00 pm.
Venue: Ramanujan Hall, Department of Mathematics.
Title: Application of statistics in cryptography.
Time:
11:45am
Location:
Ramanujan Hall, Department of Mathematics
Description:
Commutative Algebra seminar (Please note that this talk will be via Skype).
Speaker: Soumi Tikader.
Affiliation: ISI Kolkata.
Date and Time: Thursday 31 October, 11:45 am - 12:30 pm.
Venue: Ramanujan Hall, Department of Mathematics.
Title: Orbit spaces of unimodular rows over smooth real affine algebras.
Abstract: In this talk we will discuss about the group structure on orbit
spaces of unimodular rows over smooth real affine algebras. With a few
definition and some results to start, we will prove a structure theorem of
elementary orbit spaces of unimodular rows over aforementioned ring with
the help of similar kind results on Euler class group. As a consequences,
we will prove that :
Let $X=Spec(R)$ be a smooth real affine variety of even dimension $d > 1$,
whose real points $X(R)$ constitute an orientable manifold. Then the set
of isomorphism classes of (oriented) stably free $R$ of rank $d > 1$ is a
free abelian group of rank equal to the number of compact connected
components of $X(R)$.
In contrast, if $d > 2$ is odd, then the set of isomorphism classes of
stably free $R$-modules of rank $d$ is a $Z/2Z$-vector space (possibly
trivial). We will end this talk by giving a structure theorem of Mennicke
symbols.
PS: Soumi Tikader is a post doctoral candidate.
Time:
3:30pm-5:00pm
Location:
Room No. 215 Department of Mathematics
Description:
Commutative Algebra seminar II.
Speaker: Tony Puthenpurakal.
Affiliation: IIT Bombay.
Date and Time: Thursday 31 October, 3:30 pm - 5:00 pm.
Venue: Room 215, Department of Mathematics.
Title: Triangulated categories - Lecture 2.
Abstract: We define and give elementary properties of triangulated
categories. We also give an application of triangulated categories to
linkage theory in commutative algebra.
Date and Time: Friday 01 November, 4:15 pm - 5:15 pm.
Venue: Ramanujan Hall, Department of Mathematics.
Title: Polynomial Method in Combinatorics (Part III).
Abstract: Upper bounds on the size of 3-AP free sets over finite fields:
We will discuss a recent result of Ellenberg and Gijswijt who showed that
if F is a finite field with three elements, and S is a subset of of F^n
such that S does not that does not contain three elements in an
arithmetic progression, then |S| is upper bounded by c^n for a constant c
< 3.