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1. An Introduction to Optimality Criteria

Linear Model Set-up (fixed-effects linear model):
Observation-vector Yn×1 follows a standard linear model.

E(Y ) = Xθ, cov(Y ) = σ2In

where, Xn×t is the design matrix, θt×1 the unknown parameter, and σ2 the constant error
variance.

Normal equations for obtaining the best linear unbiased estimator (BLUE) of θ is

X ′Xθ = X ′Y.

Here, X ′X is called the “information matrix” of θ and var(θ̂) = σ2(X ′X)−1 (provided
Rank(X) = t). Let l′θ be an estimable linear parametric function. Then var(l′θ̂) =
σ2l′(X ′X)−l. We choose a design d, with design matrix Xd, whose information matrix
X ′

dXd is “large” (equivalently, (X ′
dXd)− is “small”) in some sense.

Now, suppose we are interested in a component θ1 of θ. We write

θ =
(
θ1
θ2

)
and accordingly partition X as X = (X1 X2) so that the model can be written as

E(Y ) = X1θ1 +X2θ2, cov(Y ) = σ2In.

The non-negative definite information matrix of θ1 is

I(θ1) = X ′
1X1 −X ′

1X2(X ′
2X2)−X ′

2X1.

Example of specific design models:

I. One-way Model (Completely Randomized Design)

θ1 ≡ τv×1

θ2 ≡ µ1×1
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Given a design d

X1d ≡ ((x1ij))n×v observation versus treatment matrix,

x1ij =
{

1 if ith observation arise out of application of jth treatment,
0 otherwise

X2d = 1n,

Id(θ1) = Rd − n−1rdr
′
d (= Cd),

Rd = diag(rd1, rd2, . . . , rdv),

rd =


rd1

rd2

...
rdv

 ,

rdi = Number of times treatment i is replicated in d.

II. Two-way Model (Block Design)
A block design is an arrangement of v treatments in b blocks each of size kd1, kd2, . . . , kdb

respectively. The replication of treatment i is rdi, i = 1, . . . , v.

θ1 ≡ τv×1

θ2 ≡
(
µ
β

)
(b+1)×1

Given a design d

X1d ≡ ((x1ij))n×v observation versus treatment matrix,
X2d ≡ (1n Xβd)n×(b+1),

Xβd ≡ (xβij) observation versus block matrix,

xβij =
{

1 if ith observation is from jth block
0 otherwise

Id(θ1) = Rd −NdK
−1
d N ′

d (= Cd),

where Rd = diag(rd1, rd2, . . . , rdv), Kd = diag(kd1, kd2, . . . , kdb), Nd = ((ndij))v×b is the
treatment-block incidence matrix and ndij is the number of times treatment i appears in
block j.

III. Three-way Model (Row-Column Design)
A row-column design d is an arrangement of v treatments in a k × b array of k rows

and b columns.

θ1 ≡ τv×1

θ2 ≡

 µ
r
c


(k+b+1)×1

Id(θ1) = Rd −
1
k
NdN

′
d −

1
b
MdM

′
d +

1
bk
rdr

′
d(= Cd)

where
Rd = diag(rd1, . . . , rdv)
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Nd = ((ndij))v×b treatment-column incidence
Md = ((mdij))v×k treatment-row incidence

Here, ndij (mdij) is the number of times treatment i appears in column (row) j.

Inference problem:
As we are interested in the treatment effects, the problem of inference may be specified as

Π : η = Lτ

where L is a p× v matrix with L1 = 0. Thus, η contains p treatment contrasts. (In fact,
only treatment contrasts are estimable).

With reference to Π, we call a design d as acceptable if all components of η are estimable
using d. Let Dπ be the class of all acceptable designs with reference to the problem π.
Problem π is referred to as

(1) non-singularly estimable iff Rank(L) = p

(2) non-singularly estimable full rank iff Rank(L) = p = v − 1.

For a full rank problem π, Dπ consists only of such designs {d} for which Rank(Cd) =
v − 1. Such designs are called connected designs.

In all the three types of designs considered, Cd1 = 0 and l′τ is estimable iff l belongs to
the column-space of C. Thus, l′τ need to be a treatment contrast in order to be estimable.
Rank (Cd) = v−1 iff all treatment contrasts are estimable and in that case, the underlying
design is said to be connected.

Optimality criterion to select good designs:
Suppose η̂d is the BLUE of η using a design d with var(η̂d) = Vd. It is reasonable to define
an optimality criterion as a meaningful function of Vd.

A-optimality
A design d∗ ∈ D is said to be A-optimal in D iff

tr(Vd∗) ≤ tr(Vd) for any other design d ∈ D.

The trace of Vd is minimized in the A-optimality criterion, which implies the mini-
mization of the average variance of the BLUE of the components of η.

D-optimality
A design d∗ ∈ D is said to be D-optimal in D iff

det(Vd∗) ≤ det(Vd) for any design d ∈ D.

The D-optimality criterion has the following statistical significance.
Let the observation vector Y follow a multivariate normal distribution. Then, η̂d also

follows a multivariate normal distribution. with mean η and dispersion matrix Vd.
A (1− α)% joint confidence region for η is the ellipsoid

(η − η̂d)′V −1
d (η − η̂d) ≤ σ2χ2

α(v−1) (1.1)
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where σ2 = per observation variance (known), χ2
α(v−1) = (1 − α) percentile of a central

χ2 with (v − 1) d.f.
or is the ellipsoid

(n− η̂d)′V −1
d (n− η̂d) ≤ vs2Fα(v − 1, ηe) (1.2)

where s2 = unbiased estimator of σ2 (unknown), Fα(v − 1, ne) = (1 − α) percentile of F
with (v − 1) and ne d.f.. Here, ne is the error degrees of freedom.

The volume of (1.1) (expected volume in (1.2)) is proportional to the square root of
det(Vd).

Thus, theD-optimality criterion chooses that design as the “best” for which the volume
(expected volume) of the joint confidence ellipsoid is least.

E-optimality
A design d∗ ∈ D is said to be E-optimal in D iff for all normalized treatment contrasts
l′τ with BLUE l′τ̂ ,

max
l:l′l=1

(vard∗(l′τ̂)) ≤ max
l:l′l=1

(vard(l′τ̂))

for any other design d ∈ D.
Let 0 = µd0 < µd1 ≤ · · · ≤ µd,v−1 be the eigenvalues of Cd. Then

vard(l′τ̂) = σ2l′C+
d l

where C+
d is the Moore-Penrose inverse of Cd. Also,

µ−1
d,v−1 ≤

l′C+
d l

l′l
≤ µ−1

d1

Thus, if l′l = 1, we have
σ−2 max vard(l′τ̂) = µ−1

d1

Hence, we can say, a design d∗ ∈ D is E-optimal in D iff µd∗1 ≥ µd1 where d is any
other competing design in D (i.e., d∗ minimizes the maximum variance of all normalized
treatment contrasts over d).

MV -optimality
A design d∗ ∈ D is said to be MV -optimal iff

max
i 6=j

vard∗(τ̂i − τ̂j) ≤ max
i 6=j

vard(τ̂i − τ̂j)

where d is any other competing design in D.
Here our interest is only on elementary treatment contrasts and accordingly the MV -

optimality criteria is based on only such specific contrasts.

Optimality Criterion as a Functional
Let Pτ represent a complete set of orthonormal treatment contrasts with BLUE P τ̂ . Thus,
P is of order (v − 1)× v and Rank(P ) = v − 1 with P1 = 0, PP ′ = Iv−1. Also,

σ−2 vard(P τ̂) = PC+
d P

′ = (PCdP
′)−1

Consider

A =
[
v−1/2 1′

P

]
withAA′ = A′A = Iv.
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Then, since C+
d 1 = 0

AC+
d A

′ =
(

0 0′

0 PC+
d P

′

)
,

and det(C+
d − λIv) = det(AC+

d A
′ − λIv) = −λ det(PC+

d P
′ − λIv−1).

Thus, the non-zero eigenvalues of C+
d and the eigenvalues of PC+

d P
′ are the same.

It follows that instead of minimizing a function of the eigenvalues of PC+
d P

′ to arrive at
an optimal design, one may as well minimize the same function of the non-zero eigenvalues
of C+

d .
One may thus think of an optimality criterion as a function on the set of n.n.d. sym-

metric matrices of order v with zero row sums.
Let, Bv,0 → set of all n.n.d. symmetric matrices of order v with zero row sums.
An optimality criterion φ is a function φ : Bv,0 → (−∞,∞].
A design d is φ-optimal if it minimizes φ(Cd). Note that Cd ∈ Bv,0. Thus we have,

A− optimality : φA(Cd) =
v−1∑
i=1

µ−1
di ,

D − optimality : φD(Cd) =
v−1∏
i=1

µ−1
di ≡ −

v−1∑
i=1

Log(µdi),

E − optimality : φE(Cd) = max
i

µ−1
di = µ−1

d1 .

φp- optimality
Kiefer (1974, Ann. Statist.)

Let, φp(Cd) =
[
(v − 1)−1

∑v−1
i=1 µ

−p
di

]1/p

, 0 < p < ∞. A design d∗ is φp-optimal if for
d∗, φp(Cd) is minimum over D for all p.

The φp family of optimality criteria has A−, D−, E− criterion as particular cases.

φp=1(Cd) = φA(Cd),
φp→0(Cd) = φD(Cd),
φp→∞(Cd) = φE(Cd).

Universal optimality
Kiefer (1975, Survey Design, J. N. Srivasava ed., North Holland)
(A strong family of optimality criteria which includes A-, D- and E-criteria as perticular
cases.)
d∗ ∈ D is universally optimal over D if d∗ minimizes φ(Cd), d ∈ D for any φ : Bv,0 →
(−∞,∞] satisfying

1. φ is matrix convex, i.e., φ{aC1 + (1 − a)C2} ≤ aφ(C1) + (1 − a)φ(C2) for Ci ∈
Bv,0(i = 1, 2) and 0 ≤ a ≤ 1,

2. φ(bC) is nonincreasing in the scalar b ≥ 0 for each C ∈ Bv,0,

3. φ is invariant under each simultaneous permutation of rows and columns of C in
Bv,0.
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If d∗ is universally optimal in D then tr(Cd∗) ≥ tr(Cd) for any other d ∈ D i.e.,
maximization of tr(Cd) is a necessary condition for universal optimality.

S- and MS-optimality
Shah (1960, Ann. Statist.); Eccleston and Hedayat (1974, Ann. Statist.)
A design d∗ ∈ D is S-optimal if d∗ minimizes tr(C2

d) =
∑v−1

i=1 µ
2
di for all d ∈ D.

Let tr(Cd) = A, a constant, for all d ∈ D. Then a balanced design has all its eigenvalues
equal to A/(v − 1). It is possible that such a balanced design do not exist. In that
situation an S-optimal design would be one which is “closet” to a balanced design. For
this the Euclidian distance between (µd1, µd2, . . . , µd,v−1) and (A/(v − 1), . . . , A/(v − 1))
is minimized and an S-optimal design d∗ is obtained. Here,

Distance =

{
v−1∑
i=1

µ2
di −A2/(v − 1)

}1/2

.

A design d∗ ∈ D is said to be MS-optimal if

max
d∈D

tr(Cd) = tr(Cd∗)

and
min
d∈D′

tr(C2
d) = tr(C2

d∗)

where D′ is the sub-class of all designs d ∈ D for which tr(Cd) is maximum.

Distance =
{∑

µ2
di − (

∑
µdi)2/(v − 1)

}1/2

.

Generalized Optimality Criteria
Cheng (1978, Ann. Statist.)
Consider a class of optimality functionals ψf (Cd) =

∑v−1
i=1 f(µdi) where f is defined over

(0,maxd∈D tr(Cd)) and satisfy

1. f is continuously differentiable on (0,max tr(Cd))

2. f ′ < 0, f ′′ > 0, f ′′′ < 0 on (0,max tr(Cd))

3. f is continuous at 0 or f(0) = limµd→0+f(µd) = +∞

A design d∗ ∈ D is ψf -optimal if d∗ minimizes ψf (Cd) for any d ∈ D.
Special Cases:
A- criteria f(x) = 1

x
D- criteria f(x) = − log x
S- criteria/MS- criteria f(x) = x2

φp- criteria f(x) = x−p

Distance Criterion
Sinha (1970, Calcutta Bull.)
Specific optimality criterion based on concept of Distance.

Choose a design d∗ ∈ D such that

Pr [|η̂d∗ − η| < ε] ≥ Pr [|η̂d − η| < ε]
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for all ε > 0 and d is any other design in D.

2. Optimal Block Designs : Some Results

Kiefer (1975)
Suppose d∗ ∈ D and Cd∗ satisfies

(a) Cd∗ is completely symmetric, i.e., Cd∗ = αIv + βJv (d∗ is variance balanced)

(b) tr(Cd∗) = maxd∈D tr(Cd)

then d∗ is universally optimal in D.

Universal optimality of CRD d ∈ D(v, n) with n/v = r, an integer

tr(Cd) = tr(Rd − n−1rdr
′
d)

= n− n−1
v−1∑
i=1

r2di.

Here minimization of
∑
r2di subject to

∑
rdi = n is attained when rdi = n/v = r.

So, a design d∗ with rd∗i = r for all i is universally optimal in D(v, n).

Universal optimality of Block Design in D(v, b, k)
Let d be a block design with v ≥ 3 treatments and b blocks, each of size k ≥ 2. Then

d is called a balanced block design (BBD) if

(i)
∑b

j=1 ndijndmj = λ, for i 6= m, (i.e., d is variance balanced)

(ii) |ndij − k/v| < 1, for all i, j.

Condition (ii) ⇒ ndij = [k/v] or [k/v] + 1 and (i) ⇒ variance balance. Also, conditions
(i) and (ii) ⇒ BBD is an equireplicate design. If k < v, then ndij = 0 or 1 and a BBD
reduces to a balanced incomplete block design (BIBD).

A BBD d∗ ∈ D(v, b, k) is universally optimal in D(v, b, k). We show that d∗ maximizes
tr(Cd).

tr(Cd) = tr(Rd − k−1NdN
′
d)

= bk − k−1
∑

i

∑
j

n2
dij .

Minimization of
∑∑

n2
dij subject to

∑∑
ndij = bk is attained when ndij ’s are as nearly

equal as possible, i.e., when ndij = [k/v] of [k/v] + 1.
For a design d, it can be shown that the sum of the variances of the estimates of all

elementary treatment contrasts is proportional to the sum of the reciprocals of the non-
zero eigenvalues of Cd. Thus, a design which is A-optimal for inferring on a full set of
orthonormalized treatment contrast is optimal for the estimation of the overall elementary
treatment contrasts.

When the class of designs does not contain any completely symmetric C-matrix with
maximum trace, Kifer’s sufficient condition of universal optimality cannot be used.

Yeh (1986, Biometrika)
A generalization of Kiefer’s result on universal optimality.
Suppose a class C = {Cd : d ∈ D} of matrices in Bv,0 contain a Cd∗ such that
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i) for any d ∈ D and Cd 6= 0, there exist scalars adi ≥ 0(i = 1, . . . ,m) satisfying

Cd∗ =
m∑

i=1

adiPiCdP
′
i ;

ii) tr(Cd∗) = maxd∈D tr(Cd)

where m = v! and Pi is the ith permutation matrix. Then d∗ is universally optimal in D.
A class of universally optimal binary block designs, identified by Yeh (1988, JSPI) is

given below.
Let D1 be the class of binary designs i.e. for d ∈ D, ndij = [k/v] or [k/v]+1. Consider

v ≥ 3, b = vm + n ≥ 2, k = v − 1 where m,n are integers with m ≥ 0 and 1 ≤ n < v.
Suppose d∗ is a BIBD (v, b̄ = vm, r = (v − 1)m, k = v − 1, λ = (v − 2)m) plus the last n
distinct binary blocks of size v − 1. Then d∗ is universally optimal in D1(v, b, k).

Example: v = 5, m = 1, n = 2, b = 7, k = 4. The following design is universally optimal
in D1(5, 7, 4).

1 1 1 1 2 1 1
2 2 2 3 3 2 2
3 3 4 4 4 3 3
4 5 5 5 5 4 5
b1 b2 b3 b4 b5 b6 b7

Yeh’s result can be extended for k > v.
Let v ≥ 3, b = vm + n ≥ 2, k = vx ± 1 with x ≥ 0, m ≥ 0, and 1 ≤ n < v. Suppose

d∗ is a BBD(v, b̄ = vm, k = vx ± 1) plus the last n distinct binary blocks of size vx ± 1.
Then d∗ is universally optimal over D1(v, b, k).

Example: v = 5, x = 1,m = 1, n = 2, b = 7, k = 6. The following design is universally
optimal in D1(5, 7, 6).

1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 3
4 4 4 4 4 4 4
5 5 5 5 5 5 5
1 2 3 4 5 1 2
b1 b2 b3 b4 b5 b6 b7

We note that if d∗ is a universally optimal design over D1(v, b, k) then if there exists a
universally optimal design in D(v, b, k) then d∗ is universally optimal over D(v, b, k).

Cheng (1978, Ann. Statist.)
A design d is said to be Most Balanced group divisible design (MB-GDD) if

i) ndij = [k/v] or [k/v] + 1,

ii) rdi’s are all equal,
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iii) the treatments can be divided into m groups of n each such that λii′ = λ1 if i and i′

are in the same group, and λii′ = λ2 otherwise. Here, NN ′ = ((λii′)), i, i′ = 1, . . . , v.

iv) λ2 = λ1 ± 1.

Cheng (1978) showed that MB-GDD with m = 2 and λ2 = λ1 + 1 is ψf− optimal in
D(v, b, k).

When m = 2, a MB-GDD has 2 distinct eigenvalues with multiplicities 1 and v − 2.
Earlier Takeuchi (1961, Rep. Statist. Japan Engrs.) has shown that any GDD with

λ2 = λ1 + 1, is E-optimal in D(v, b, k) and later Cheng (1980, JRSS “B”) showed that
MB-GDD with n = 2 and λ2 = λ1 − 1 is E-optimal in D(v, b, k).

Takeuchi (1961, Rep. Statist. Japan Engrs.)

Lemma 2.1: For d ∈ D(v, b, k) let F = k Cd + aI + bJ where a, b are integers chosen so
that a+ bv > 0. Then, if F is not strictly positive definite (p.d.), then

µd1 ≤ −a/k.

Proof: Let λ1, . . . , λv be the eigenvalues of F. Using the fact that k Cd and aI + bJ
commute,

λ1 = kµd0 + a+ bv = a+ bv > 0 (given)
λ2 = kµd1 + a

...
λ2 = kµd1 + a

λv = kµd1,v−1 + a

where 0 = µd0 < µd1 ≤ µd2 ≤ · · · ≤ µd1,v−1 are the eigenvalues of Cd.
Now since F is not strictly p.d., therefore miniλi ≤ 0, i.e., kµd1+a ≤ 0 or, µd1 ≤ −a/k.

Theorem 2.1: For d ∈ D(v, b, k),

µd1 ≤
1
k
{r(k − 1) +m}

where r = bk/v is an integer and m =
[

r(k−1)
(v−1)

]
. Here, [x] represents the largest integer

contained in x.
Proof: Put F = kCd − {r(k − 1) +m} I + (m+ 1)J and let λ = r(k − 1)/(v − 1).

Since −r(k−1)−m+v(m+1) = −λ(v−1)+(m+1)(v−1)+1 = (v−1)(m+1−λ)+1 > 0,
in view of Lemma 2.1, it is sufficient to show that the minimum eigenvalue of F is not
positive, or equivalently, F is not strictly p.d.

We now show that F = ((fij)) is not strictly p.d. Note that all elements of F are
integers. Now

fij = m+ 1−
b∑

u=1

niunju (i 6= j).

We shall show that fij ≥ 1 for some i 6= j. If possible suppose fij < 1 for all i 6= j. Since
fij is an integer, it follows that fij ≤ 0 for all i 6= j.

⇒ m+ 1 ≤
b∑

u=1
niunju for all i 6= j
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⇒ (m+1)v(v−1) ≤
∑ v∑

i 6=j=1

b∑
u=1

niunju =
v∑

j=1

b∑
u=1

 v∑
i=1
i6=j

niu

nju =
∑v

j=1

∑b
u=1 (k − nju)nju

= k
v∑

j=1

b∑
u=1

nju −
v∑

j=1

b∑
u=1

n2
ju ≤ (k − 1)

v∑
j=1

b∑
u=1

nju = (k − 1)kb = (k − 1)vr.

⇒ (m+ 1)(v − 1) ≤ r(k − 1)
⇒ m+ 1 ≤ r(k − 1)/(v − 1)
⇒
[

r(k−1)
(v−1)

]
+ 1 ≤ r(k−1)

(v−1) which is impossible.
Therefore,

fij ≥ 1 for some i 6= j. (2.1)

Also,

fii = k

(
ri −

1
k

b∑
u=1

n2
iu

)
− {r(k − 1) +m}+ (m+ 1)

= kri −
b∑

u=1

n2
iu − r(k − 1) + 1 for all i.

We shall show that if fii > 0 for all i then fii = 1 for all i.
Let fii > 0 for all i. Since fii is an integer for all i, we have fii ≥ 1 for all i.
If possible let fii > 1 for some i.
Then 1 ≤ fii for all i with strict inequality for some i.

⇒ v <
v∑

i=1

fii = kbk −
v∑

i=1

b∑
u=1

n2
iu − (k − 1)rv + v

≤ bk2 −
∑∑

niu − (k − 1)rv + v

= bk2 − bk − (k − 1)rv + v

= bk(k − 1)− bk(k − 1) + v

= v

i.e., v < v which is impossible. Hence

fii = 1 for all i if fii > 0 for all i. (2.2)

Case 1. If fii ≤ 0 for some i, then letting x′ = (0, 0, . . . , 1, 0, . . . , 0) = ei,
⇒ x′Fx = fii ≤ 0
⇒ F is not p.d.

Case 2. If fii > 0 for all i, then from (2.1) and (2.2) ∃ i, j for which fij ≥ 1 and
fii = fjj = 1.

Let x′ = (0, 0, 0, . . . , 1, 0, . . . ,−1, 0, . . . , 0) = eij . Then,

x′Fx = fii + fjj − 2fij (since F ′ = F )
= 2(1− fij) ≤ 0.
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⇒ F is not p.d. Hence µd1 ≤ 1
k {r(k − 1) +m} .

The above theorem gives an improved bound of µd1 than µd1 ≤ b(k−1)
(v−1) obtained earlier

which lead to E-optimality of BIBD.

Theorem 2.2: A group divisible (GD) PBIB design d∗ with λ2 = λ1 + 1 is E-optimal in
D(v, b, k).
Proof: Let Nd∗ be the incidence matrix of a GD PBIBD with parameters v = mn, b, r,
k, λ1, λ2 = λ1 + 1.
The eigenvalues of Nd∗N

′
d∗ are

θ0 = rk with multiplicity α0 = 1,
θ1 = r − λ1 with multiplicity α1 = m(n− 1),
θ2 = rk − vλ2 with multiplicity α2 = m− 1.
Recall that,
r = λ1 for a Singular GDD,
r > λ1, rk = vλ2 for a Semi-regular GDD,
r > λ1, rk > vλ2 for a Regular GDD.

Therefore

µd∗0
= r − rk

k
= 0

µd∗i
= r − 1

k
(r − λ1) =

1
k
{r(k − 1) + λ1} , i = 1, . . . ,m(n− 1)

µd∗i
= r − 1

k
(rk − vλ2) =

vλ2

k
, i = m(n− 1) + 1, . . . , v − 1

Thus µd∗1 = 1
k {r(k − 1) + λ1} = 1

k {r(k − 1) +m} (since n1λ1+n2λ2
v−1 = r(k−1)

v−1 and

λ1 ≤ r(k−1)
v−1 ≤ λ2 implies that for λ2 = λ1+1, vλ2−(r(k−1)+λ1) = (v−1)λ2−r(k−1)+1 >

0).
Hence d∗ is E-optimal in D(v, b, k).

Optimality of Dual Designs in D(v, b, k, r)
Let d ∈ D(v, b, k) with bk/v = r be an equireplicate design with incidence matrix Nd,

then d̄ is said to be dual of d if
Nd̄ = N ′

d

and then d̄ ∈ D(v̄ = b, b̄ = v, k̄ = r) and is an equireplicate design with r̄ = k.
For d ∈ D(v, b, k),

Cd = rI − k−1NdN
′
d,

and for d̄ ∈ D(v̄, b̄, k̄),

Cd̄ = r̄I − k̄−1Nd̄N
′
d̄

= kI − r−1N ′
dNd

Also, µd̄i = kµdi/r, 1 ≤ i ≤ v − 1, and if v < b, µd̄i = k, v ≤ i ≤ b− 1.
Let D(v, b, k, r) be the sub-class of designs in D(v, b, k) with constant replication r.

Thus, if d is ψf - optimal in D(v, b, k, r) then d̄ is ψf -optimal in D(v̄ = b, b̄ = v, k̄ = r, r̄ =
k). Hence duals of BBD’s are ψf -optimal in the equireplicate class of designs.

Cheng (1980, JRSS ‘B’; 1992, R.C.Bose Proc.) later established that duals of BBD’s
are E- and D- optimal in the unrestricted class D(v, b, k).
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Constantine (1981, Ann. Statist.) used “averaging technique” to show optimality of
certain designs in situations when bk/v is not an integer.

Averaging technique
For any Cd, Let

C̄d = (1/n)
n∑

i=1

Cσi

d

= (1/n)
n∑

i=1

PiCdP
′
i

where {σi} denotes a collection of n permutations on the symbols 1, . . . , v; and Pi is the
v × v (permutation) matrix representation of σi.

Then
v−1∑
i=1

f(µdi) ≥
v−1∑
i=1

f(µ̄di).

If we are able to express the r.h.s. of the above inequality in terms of the parameters
v, b, k, we would then get a lower bound for

∑
f(µdi). We then try to identify a design d∗

which attains this bound. For example, for d ∈ D(v, b, k)

v−1∑
i=1

µ−1
di ≥ (v − 1)2

b(k − 1)

µ−1
d1 ≥ (v − 1)

b(k − 1)

The following result is due to Constantine (1981, Ann. Statist.).
Let d∗ ∈ D(v, b = b̄+ x, k) be a design obtained by adding x disjoint blocks to a BIB

(v, b̄, k) or a GDD with λ2 = λ1 + 1. Then d∗ is E-optimal in D(v, b = b̄+ x, k) provided
x < v/k (in case of BIBD) and provided x < (v −m)/k (in case of GDD).

Similarly, d∗ ∈ D(v, b = b̄ − x, k) obtained by deleting x disjoint blocks from a BIB
(v, b̄, k) is E-optimal in D(v, b, k) provided v/k2 ≤ x ≤ v/k.

Later, Sathe and Bapat (1985, Calcutta Bull.), showed that deleting any x blocks,
x ≤

(
v−
√

v
v−k

)
from a BIB (v, b̄, k) yield an E-optimal design in D(v, b = b̄− x, k).

Jacroux (1983, Sankhya), obtained an upper bound for µd1 which resulted in indenti-
fying new E-optimal designs.

Let D(v, b, k) with bk = vr̄ + s, 0 ≤ s < v, r̄(k − 1) = (v − 1)λ̄+ t, 0 ≤ t < v − 1.
Then for d ∈ D(v, b, k)

µd1 ≤ (r̄(k − 1) + λ̄)/k

provided v ≤ (v − s)(v − t).
Das (1993, Sankhya), gave the following result.
Let d∗ ∈ D(v = v̄ − p, b = b̄ + x, k) be a design obtained from BIB (v̄, b̄, r, k, λ) by

adding x arbitrary blocks and collapsing p+ 1 treatments into one. Then d∗ is E-optimal
in D(v, b, k) provided

v − pr − xk ≥ 1,

v − pλ ≥ 2,

v < (v − pr − xk)(v − pλ).
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Example : Let v = 12, b = 14, k = 4, p = 1, x = 1. The design obtained by adding
1 arbitrary block and collapsing 2 treatments into one in a BIB (13,13,4,4,1) we get an
E-optimal in D(12, 14, 4) as shown below.

1 2 3 4 5 6 7 8 9 10 11 12 12 1
2 3 4 5 6 7 8 9 10 11 12 12 1 2
4 5 6 7 8 9 10 11 12 12 1 2 3 3
10 11 12 12 1 2 3 4 5 6 7 8 9 4

Here, we have added the last block {1, 2, 3, 4} and collapsed treatment numbers 13 and
12 into one, and call it treatment number 12.

Similar results hold when starting from a GDD with λ2 = λ1 + 1.
Minimally connected designs (MCD) belong to D0(v, b, k) with bk = v + b − 1. Also,

one more than MCD belong to D1(v, b, k) with bk = v + b.
Mandal, Shah, Sinha (1991, Calcutta Bull.), showed that for a design d∗ ∈ D0(v, b, k)

such that any one treatment appears in each of the b binary blocks is A-optimal in
D0(v, b, k). Such a design was also shown to be D- and E-optimal by Bapat and Dey
(1991, Prob. Letters).

Example: Let v = 19, b = 6, k = 4. Then the following design is A-, D- and E-optimal in
D(19, 6, 4).

1 1 1 1 1 1
2 5 8 11 14 17
3 6 9 12 15 18
4 7 10 13 16 19

Balasubramaniam and Dey (1996. JSPI) used graph-theoretic methods to establish
D-optimality of certain types of designs in D1(v, b, k).

Example: Let v = 15, b = 5, k = 4. Then the following design is D-optimal in D(15, 5, 4).

1 4 7 10 13
2 5 8 11 14
3 6 9 12 15
4 7 10 13 1

For further results on optimal block designs with minimal and nearly minimal number
of units, one may refer Dey, Shah and Das (1995, Statist. Sinica).

3. Optimal Block Designs for Combinatorially Aberrant
Settings

What follows is based on a talk by Dr. John P. Morgan at the Dekalb IISA Conference-
2002.

Consider the usual experimental setting of v treatments to be compared using b blocks
of experimental material such that there are k experimental units in each block. The
problem then is to find the best assignment of the treatments to the units. In other words,
the problem is to find the optimal design d ∈ D(v, b, k) where D(v, b, k) is the class of all
possible assignments of treatments into the experimental units.

We have already defined the optimality criteria in terms of functions of Cd, the C-
matrix. Cd is determined by the replications rdi and the concurrences λdii′ . Define the
associated parameters for the setting (v, b, k) as
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• r = int( bk
v ) target replication

• λ = int( r(k−1)
v−1 ) target concurrence

We consider the optimality criteria based on symmetric functions of the nonzero eigenval-
ues µd1 ≤ µd2 ≤ · · · ≤ µd,v−1 of Cd. Recall that,

A− criterion =
∑

i

µ−1
di

D − criterion = −
∑

i

log(µdi)

E − criterion = µ−1
d1

All of these are included in the family of type I optimality criterion as defined by Cheng
(1978).

One well known class of block designs is the BIBDs. A balanced incomplete block
design d ∈ D(v, b, k) is a block design satisfying the following conditions: (i) each ndij = 0
or 1, (ii) each rdi = r, (iii) each λdii′ = λ.

As seen earlier BIBDs are optimal with respect to every type I criterion (and many
others as well - Kiefer, 1975). Also, BIBDs are binary and perfectly on target.

Example : v = 7, b = 7, k = 4. Targets are r = int( 28
7 ) = 4 and λ = int( 12

6 ) = 2.
Consider the BIBD d as given below.

1 2 3 4 5 6 7
2 3 4 5 6 7 1
3 4 5 6 7 1 2
5 6 7 1 2 3 4

Here, all rdi = 4 and all λdii′ = 2.

Example: v = 9, b = 11, k = 5.

1 1 1 1 1 1 1 2 2 3 4
2 2 2 2 3 3 5 3 4 5 5
3 3 4 5 4 4 6 6 6 6 7
4 5 6 8 5 7 7 7 7 8 8
9 7 8 9 6 8 9 8 9 9 9

λmax = 4 = λ12 = λ13 = λ14 = λ15 = λ59

λmin = 2 = λ25 = λ45 = λ49

r1 = 7, r2 = r3 = · · · = r9 = 6

The target values are
r = int ( bk

v ) = int ( 55
6 ) = 6,

λ = int ( r(k−1)
v−1 ) = int ( 24

8 ) = 3.

Note that:
BIBDs are the preferred designs whenever they can be found.
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Necessary conditions for existence of a BIBD are (i) v divides bk and (ii) v(v − 1) divides
bk(k − 1).
The class D(v, b, k) is called a BIBD setting if the necessary conditions are satisfied.
BIBDs are the optimal designs in these settings (provided they exist).

Two questions that arise are:

I. If the divisibility conditions do not hold (non-BIBD settings), then what designs will
be good?

II. If the divisibility conditions do hold but BIBDs do not exist, then what designs will
be good?

Known theory points to getting the rdi and the λdii′ as close as possible to the targets
r and λ, i.e., get as close as possible to a BIBD. We motivate a possible general theory
through two examples.

Definition 3.1: A nearly balanced incomplete block design d in D(v, b, k) with concur-
rence range l, or NBBD(l), is an incomplete block design satisfying the following conditions:

(i) each ndij = 0 or 1,

(ii) each rdi = r or r + 1

(iii) maxi 6=i′,j 6=j′ |λdii′ − λdjj′ | = l, and

(iv) d minimizes tr(C2
d) over all designs satisfying (i)-(iii).

If bk/v is an integer and l = 0, this gives the BIBDs. If bk/v is an integer and l = 1,
this is the regular graph design (RGD) class of John and Mitchell (1977) for which certain
optimality properties are known. If l = 1, this is the strongly regular graph design (SRGD)
class of Jacroux (1985) for which again certain optimality properties are known. Note that
l = 1 is the best combinatorial approximation to a BIBD.

Now for given v, b, k, suppose l ≤ 1 is not achievable. In such a situation we shall call
it a combinatorially aberrant setting. The need to extend the “nearly balanced” notion
arises in settings where neither BIBDs nor NBBD(1)s exist.

Example: v = 9, b = 11, k = 5

1 1 1 1 1 1 1 2 2 3 4
2 2 2 2 3 3 5 3 4 5 5
3 3 4 5 4 4 6 6 6 6 7
4 5 6 8 5 7 7 7 7 8 8
9 7 8 9 6 8 9 8 9 9 9

λmax = 4 = λ12 = λ13 = λ14 = λ15 = λ59

λmin = 2 = λ25 = λ45 = λ39

r1 = 7, r2 = r3 = · · · = r9 = 6
This is a NBBD(2). It can be shown that λmax − λmin = 1 cannot be achieved. For this
design, three λdii′ fall short of the target λ = 3.

To look for an optimal design in a combinatorially aberrant setting, let’s guess that it
will be binary. As earlier let D(v, b, k) be the class of all possible designs, and M(v, b, k)
represent the class of binary designs.
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Now measure the combinatorial asymmetry in a binary design by

δd =
∑∑

i<i′

max {0, λ− λdii′} = the discrepancy of d.

Also define,

δ = min
d∈M

δd = the minimum discrepancy.

Example: The NBBD(2) for (v, b, k) = (9, 11, 5) has δd = 3.

From the definition of δ it follows that (i) δ > 0 ⇐⇒ l ≤ 1 not achievable, (ii) Aberrant
settings are exactly those for which δ > 0.

Lemma 3.1: In any aberrant setting, the NBBD(2) d̄ minimizes tr(C2
d) over M provided

δd̄ = δ, i.e., provided it has minimum discrepancy over all binary designs.

• This provides an angle of attack on the optimality problem.

• A type-I criterion bound can be constructed based on the first two moments of the
eigenvalues of Cd.

Let d̄ be a minimum discrepancy NBIBD(2) as in Lemma 3.1. Let

A = tr(Cd) and B = tr(C2
d) +

4
k2
.

Then for any design d ∈M,

v−1∑
i=1

f(µd̄i) < f(µ1) + (v − 3)f(µ2) + f(µ3)

and for any nonbinary design,

v−1∑
i=1

f(µd̄i) < f(µ∗1) + (v − 2)f(µ4).

Here

µ1 = an upper bound for µd1 over M
µ∗1 = an upper bound for µd1 over D/M

P =
[
(B − µ2

1)− ((A− µ1)2/(v − 2))
]1/2

µ2 =
[
(A− µ1)−

√
(v − 2)/(v − 3)P

]
/(v − 2)

µ3 =
[
(A− µ1) +

√
(v − 2)(v − 3)P

]
/(v − 2)

µ4 = [A− (2/k)− µ∗1] /(v − 2)

(For details one may refer Jacroux, 1985)
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Theorem 3.1: Let D(v, b, k) be a setting with k ≥ 3, and let d̄ be a NBBD(2) having
minimum discrepancy δd̄ = δ > 0. Then if µ1 ≤ µ2 and

v−1∑
i=1

f(µd̄i) < f(µ1) + (v − 3)f(µ2) + f(µ3) (3.1)

a ψf -optimal design in M(v, b, k) must be an NBBD(2). If, moreover, µ∗1 ≤ µ4 and

v−1∑
i=1

f(µd̄i) < f(µ∗1) + (v − 2)f(µ4) (3.2)

then a ψf -optimal design in D(v, b, k) must be an NBBD(2).

• Given any aberrant setting, one can apply this theorem after addressing the some-
times burdensome combinatorial problem of determining the exact value of δ.

• Typically δd = δ for some binary d in the subclass with all rdi ≥ r, and moreover,
δd > δ for all d not in that subclass.

• The diffculties arise in sorting through the possibilities for the “as equally replicated
as possible” designs.

Example: This d̄ for (v, b, k) = (9, 11, 5) has δd = 3 :

1 1 1 1 1 1 1 2 2 3 4
2 2 2 2 3 3 5 3 4 5 5
3 3 4 5 4 4 6 6 6 6 7
4 5 6 8 5 7 7 7 7 8 8
9 7 8 9 6 8 9 8 9 9 9

λmax = 4 = λ12 = λ13 = λ14 = λ15 = λ59

λmin = 2 = λ25 = λ45 = λ39

r1 = 7, r2 = r3 = · · · = r9 = 6
Calculations using d̄ show that the inequalities (3.1) and (3.2) of the theorem hold for

both the A- and D- criteria. Thus A- and D-optimal designs in (9, 11, 5) must be NBBDs,
provided that
(i) d̄ itself is an NBBD(2), that is, that δd = 3 is the smallest achievable δd among binary
designs with replicate range of 1 and concurrence range of 2, and
(ii) δd̄ is in fact the minimum discrepancy δ, the latter value being determined over all
binary designs.
Now we have a combinatorial problem to solve. Enumeration proves that d̄ is indeed an
NBBD(2), and turns up one other, nonisomorphic NBBD(2)

∼
d:

1 1 1 1 1 1 1 2 2 3 3
2 2 2 2 3 3 4 4 5 4 5
6 4 3 3 4 6 5 6 7 6 6
7 5 4 5 5 7 8 7 8 8 7
9 6 9 8 7 8 9 8 9 9 9

λmax = 4 = λ12 = λ13 = λ14 = λ15

λmin = 2 = λ23 = λ47 = λ56
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• The design
∼
d is inferior to d̄ in terms of the A and D criteria.

•
∼
d is superior to d̄ in terms of the MV criterion (not eigenvalue based).

• A- and D-optimality of d̄ is immediate if no design with larger concurrence range
can have smaller discrepancy.

The rest of the points are as follows:

• The discrepancy value of 3, though the smallest discrepancy for designs with con-
currence range of 2, is not the minimum discrepancy.

• This design d∗ with δd∗ = 2 is the unique NBBD(3), and establishes that δ = 2 for
D(9, 11, 5) :

1 1 1 1 1 1 1 2 3 3 4
2 2 2 2 2 3 3 5 5 4 5
7 3 3 4 4 4 4 6 6 7 6
8 5 6 5 6 6 5 7 7 8 8
9 9 8 7 9 7 8 8 9 9 9

λmax = 5 = λ12

λmin = 2 = λ23 = λ24.

• Since d∗ is the unique design achieving the minimum discrepancy δ = δd̄ − 1, it is
the only design not ruled out by the Theorem.

• Calculation of the criteria values immediately proves that the NBBD(3) d∗ is uniquely
A- and D-optimal.

• All three designs have the same tr(C2
d).

Let’s return to the BIBD settings: we have (v, b, k) satisfying the necessary BIBD condi-
tions v|bk and v(v−1)|bk(k−1). This opens the possibility of a perfectly on-target design.
But suppose no BIBD exists

• D(v, b, k) is called an irregular BIBD setting if the divisibility conditions are satisfied
but no BIBD exists.

• What is the optimal design in an irregular BIBD setting?

• (v, b, k) = (15, 21, 5) is a BIBD setting, but it is known that no BIBD exists.

• (v, b, k) = (22, 33, 8) is a BIBD setting, but existence of a BIBD is not yet settled.

The main result applied to irregular BIBD settings says

Theorem 3.2: Let D(v, b, k) be an irregular BIBD setting. Let d̄ ∈ D be a NBBD(2)
with δd̄ = δ ≤ 4. If conditions (3.1) and (3.2) hold, then a ψf -optimal design must be a
NBBD(2).

In an irregular BIBD setting, a NBBD(2) will have all rdi = r and all λdii′ ∈ {λ− 1, λ, λ+ 1}.
Corollary 3.1: Let D(v, b, k) be an irregular BIBD setting in which r ≤ 41. If there exists
a binary, equireplicate design d̄ with concurrence range 2 and δd̄ ≤ 4, then an A-optimal
design must be a NBBD(2), and a D-optimal design must be a NBBD(2).
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• The table of BIBDs in the CRC Handbook of Combinatorial Design shows 497 cases
with r ≤ 41 for which either a BIBD does not exist, or is not known.

• How do we find NBBD(2)s with δd ≤ 4 in irregular BIBD settings?

• Little has been done on design construction for these settings.

• They find a design with δd = 4 for D(22, 33, 8).

• BIBD existence is still open in this setting - should a BIBD not exist, then we have
proven that an NBBD(2) is A- and D-optimal.

The smallest irregular BIBD setting is (v, b, k) = (15, 21, 5), for which r = 7 and λ = 2.
Can we find an optimal design?

After introducing a concept of U-BIBDs, the related combinatorial problem reduces
to the determination of certain non-isomorphic U-BIBDs and to enumerate all possible
completions of these, hoping to find δ ≤ 4. These considerations lead to the following
design

1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 5 5
10 2 2 3 4 5 6 3 4 5 7 8 4 5 6 7 5 6 8 6 7
12 3 6 7 8 9 7 9 6 8 9 10 9 6 13 8 7 11 9 9 11
13 4 10 11 11 14 8 11 7 13 12 11 10 8 14 10 10 12 12 10 12
14 5 12 13 15 15 9 13 14 15 15 14 14 12 15 15 13 15 13 11 14

λ3,12 = λ6,13 = λ8,14 = λ10,15 = 1

• The enumeration shows only one other discrepancy 4 design, and none with smaller
discrepancy.

• This design is A- and D-optimal.

• Is the above design E-optimal?

• Theorem doesn’t help.

• Could δd > 4 be E-superior?

• Enumeration of all designs with δd = 5 found all were E-inferior.

• Is proof possible without enumeration of all possible cases?

A bound on µd1 by working with a submatrix of Cd is useful.
Partition Cd as

Cd =
(
Cd11 Cd12

Cd21 Cd22

)
Lemma 3.2: Let (λi, zi) be the eigenvalue/vector pairs for Cd11. Write xi = z′i1. Then

µd1 ≤ min
i

[
v − x2

i

v

]−1

λi

The lemma provides a tool for a computational attack leading to a design
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1 1 2 4 5 2 1 5 1 4 3 2 1 3 4 1 3 3 2 2 1
2 6 3 5 6 4 3 9 2 7 5 6 4 7 8 10 6 4 7 5 5
3 7 8 6 8 9 7 11 6 9 8 11 8 10 12 11 9 6 8 7 9
4 8 9 7 10 10 11 12 10 10 10 12 11 12 13 13 13 13 13 13 14
5 9 10 11 12 12 12 13 14 15 15 15 14 14 14 15 14 15 15 14 15

λ1,12 = λ1,13 = λ10,11 = λ10,13 = λ11,14 = λ12,15 = λ14,15 = 1

• This is a δd = 7 design.

• It is uniquely E-optimal.

To conclude,

• This work directs attention squarely to the complex combinatorial problem of de-
termining what incidence structures actually do exist in these settings.

• From the optimality perspective, it is now clear that the attack on irregular BIBD
settings should focus on which discrepancy patterns can actually be achieved, and
their relative merits.

• E-optimal designs need not have minimum discrepancy.

• In no setting is found an A-optimal design that did not have minimum discrepancy.

• Conjecture : A-optimal designs must be minimum discrepancy designs.
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