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TOPIC I : Optimality Status of Incomplete Layout
Three-Way Balanced Designs

The key references to this section are Agrawal (1966), Shah and Sinha (1990), Heiligers
and Sinha (1995) and Saharay (1996). Other related references are Bagchi and Shah
(1989), Hedayat and Raghavarao (1975) and Shah and Sinha (1989, 1996).

The set-up is that of a row-column design (also called a three-way design) and the model
is that of fixed effects additive model with homoscedastic errors. We say that the row and
column classifications represent known heterogeneity directions and the treatment effects
correspond to the third component of variation. Our primary task is to provide efficient
comparisons of the treatment effects. Further to this, we have two sets of differential effects,
each within a specific heterogeneity direction, to be compared (or at least eliminated).
Technically, these are referred to as row effects and column effects.

A three-way design involving R rows, C columns and v treatments is said to possess
a complete (incomplete) layout if the number of experimental units (eu’s) in the design is
equal to (less than, respectively) RC. The row-column layout is generally made available
to the experimenter who has to design treatment allocation over the eu’s. The statistical
analysis of data arising out of such a design is fairly straightforward and we refer to Shah
and Sinha (1996) for this. There are three (assignable) sources of variation: rows, columns
and treatments. These correspond to three classifications and the resulting data is often
referred to as three-way classified data in the literature.

A three-way design is said to be three-way balanced (or, totally balanced) whenever the
variances of estimates of normalized effects contrasts are the same for each classification.
We readily verify that the simplest example of a three-way balanced design is a Latin
square which is known to possess a complete layout involving the same number of rows,
columns and treatments.

Incomplete three-way balanced designs are not easy to come across. Agrawal (1966)
was the first to provide some series of such designs. Afterwards, Hedayat and Raghavarao
(1975) also provided one series of such designs.

Note that a three-way balanced design in an incomplete three-way layout provides
complete symmetry (c.s.) of the C-matrices involving comparisons of row effects, or the
column effects, or the treatment effects. In view of this kind of strong symmetry possessed
by these designs, it is reasonable to expect that such designs will be optimal for inference
on contrasts of the parameters for each of the three sources of variation: rows, columns
and treatments !!
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However, subsequent studies by Shah and Sinha (1990), Heiligers and Sinha (1995)
and Saharay (1996) proved otherwise for most of the cases. Below we present salient
features of these studies. Once for all, we use the notations Nrc, Nrt and Nct to denote
respectively the row-column, row-treatment and column-treatment incidence matrices of
appropriate orders in a given context. Likewise, Cr, Cc and Ct will denote the C-matrices
for row effects comparisons, column effects comparisons and treatment effects comparisons,
respectively.

It must be emphasized that in a given situation, we have the eu’s available only at cer-
tain positions in the row-column setting as dictated by the row-column incidence matrix
Nrc. For given Nrc, the allocation of the treatments to the eu’s is to be so chosen that the
corresponding incidence matrices Nrt and Nct are feasible and consistent with the layout
suggested by Nrc.

Three-Way Balanced Designs Based on Agrawal’s Method 1
We will first present results related to three-way balanced designs with the parameters

R = C = v = 4t + 3, v a prime, for which the row-column incidence pattern is given by

N = Nrc = (0, 1) with N + N′ = J− I

(0.1)

and

NN′ = (rt)I + tJ, r = 2t + 1. (0.2)

Method 1 of Agrawal provides a design for which Nrc = Nrt = Nct = N as in (0.1)
It follows that for Agrawal’s design

CA = Cr = Cc = Ct = [(2t2 − 1)/t][I− J/v]. (0.3)

For treatment comparisons, however, the Ct-matrix based on specified Nrc as above and
arbitrary incidence matrices Nrt and Nct is given by

Ct = (2t + 1)[I− J/(4t + 3)]− [(2t + 1)/t(4t + 3)][N′
rtNrt + N′

ctNct]
+[1/t(4t + 3)][N′

rtNNct + N′
ctN

′Nrt] (0.4)

At this stage, for the choice Nrt = N,Ct simplifies to

Ct = [(2t + 1)(4t2 + 2t + 1)/t(4t + 3)]I− [(2t + 1)/t(4t + 3)](N′
ctNct)

+[(t + 1)/t(4t + 3)](N′
ct + Nct) (0.5)

Now, we note that the last term in (0.4) has a positive coefficient. Agrawal’s choice
viz., Nct = N implies N′

ct+Nct = J−I [vide (0.1))]. This was the point made by Shah and
Sinha(1990). They argued that it is possible to make a choice of Nct in such a way that
N′

ct +Nct has 2 along the diagonal so that it contributes 2(t + 1)/t to trace(Ct) in excess
of what is obtained from Agrawal’s choice. Of course, for large values of t, this increase
may not be substantial. We now specialize to R = C = v = 7 and Nrc = (0 1 1 0 1 0 0),
a circulant of order 7 with elements [0, 1, 1, 0, 1, 0, 0] in the first row.

Shah and Sinha (1990) succeeded in finding an alternative to Agrawal’s design for
which the Ct-matrix CS−S say, satisfies the relation CS−S > CA in the Loewner Ordering
sense! However, CS−S turned out not to be completely symmetric (c.s.). Their choice
is Nct = (1 0 1 0 0 1 0). Carrying this investigation further, Heiligers and Sinha (1995)
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re-established superiority of another c.s. Ct-matrix in the same set-up. Below we display
all the three competing designs in terms of the row versus treatment incidence matrices
(with rows, columns and treatments denoted by the numbers 0, 1, . . . , 6 (mod 7):
Agrawal’s Design: Initial Row = Nrt = ( - 2 4 - 1 - - ) and other rows are to be obtained
by developing the initial row.
Shah and Sinha Design: Initial Row = Nrt = ( - 1 4 - 2 - - ) and other rows are to be
obtained by developing the initial row.
Heiligers and Sinha Design: Initial Row = Nrt = ( - 1 6 - 2 - - ) and other rows are to be
obtained by developing the initial row.
Computations yield

CA = (6− 1− 1− 1− 1− 1− 1)/7;
CS−S = (100− 2− 3− 3− 20)/7

and
CH−S = (12− 2− 2− 2− 2− 2− 2)/7 = 2CA.

It is interesting to note that Shah and Sinha design also dominates over Agrawal’s design
with respect to row effects comparisons and column effects comparisons as well.

Three-Way Balanced Designs Based on Agrawal’s Method 3

In Method 3, Agrawal has constructed three-way balanced designs with the parameters
R = C = v and Nrc = Nrt = Nct = J − I. A simpler method to construct such designs
would be to construct Latin squares of order v×v with diagonal elements all different and
then to delete the diagonal. Anyway, such designs have so much symmetry that it seems
impossible to beat them for any of the three sources of variation.

Computations yield:

CA = Cr = Cc = Ct = [v(v − 3)/(v − 2)][I− J/v]. (0.6)

Further, for arbitrary choices of Nrt and Nct subject to Nrc = J− I, it follows that

Ct = rd + [1/(v − 1)(v − 2)]rr′

− 1
v(v − 2)

[(v − 1)(N′
ctNct + N′

rtNrt) + (N′
ctNrt + N′

rtNct)] . (0.7)

At this stage, Shah and Sinha (1990) argued that Agrawal’s design has minimum trace(Ct)
in the binary class and that it is possible to increase trace(Ct) by allowing for unequal
replications.

Carrying this investigation further, Saharay (1996) made the choice: Nrt = J − I;
Nct = J−P, P being a cyclic permutation matrix of order v, different from the identity
permutation. For this choice

CS = CA + [1/v(v − 2)][2I−P−P′]. (0.8)

Since 2I − P − P′ is an nnd matrix, we have Loewner domination (LOD) of CA by CS .
Next, she established that designs with C-matrix of the form (0.8) are E-optimal. Also,
by extensive computer search, she verified that such designs are A- and D- optimal at
least for values of v up to and including 20 within the class of binary equireplicate designs.
Finally, she developed a systematic method of constructing such designs.
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We now display below the designs by Agrawal, Shah and Sinha and Saharay for the
case of v = 7. The rows, columns and treatments are denoted by the numbers 1, 2, . . . , 7.

Agrawal’s Design:
− 2 3 4 5 6 7
6 − 1 2 3 4 5
4 5 − 7 1 2 3
2 3 4 − 6 7 1
7 1 2 3 − 5 6
5 6 7 1 2 − 4
3 4 5 6 7 1 −

Shah and Sinha Design:
− 7 6 2 1 3 5
4 − 7 6 2 1 3
5 4 − 7 6 2 1
3 5 4 − 7 6 2
1 3 5 4 − 7 6
2 1 3 5 4 − 7
7 2 1 3 5 4 −

Saharay Design:
− 1 4 3 2 5 6
2 − 3 4 5 6 7
3 4 − 5 6 7 1
4 5 6 − 7 1 2
5 6 7 1 − 2 3
7 3 2 6 1 − 4
1 2 5 7 4 3 −

It is also interesting to note that in the above example, Shah and Sinha design improves
over Agrawal’s design with respect to D-optimality criterion only for treatment effects
comparisons while for row effects and column effects comparisons, it does improve over
Agrawal’s with respect to both A- and D-optimality criteria. There is no Loewner domi-
nation (LOD) of Shah and Sinha designs over Agrawal’s.

Three-Way Balanced Designs Based on Agrawal’s Method 4
In his Method 4, Agrawal (1966) constructed designs with the parameters

R = C = 4t + 3 (a prime), v = 2(4t + 3),
Nrc = J− I, Nrt = (N,N) and Nct = (N,N)
with N + N′ = J− I and N′N = (t + 1)I + tJ. (0.9)

It can be seen that this solution is obtained by duplicating the solution in Agrawal’s
Method 1. We have already observed that designs based on Method 1 can be improved.
This prompted Shah and Sinha (1990) to suggest improved designs in this situation as
well. They started with the choice Nrt = [N P], Nct = [P N] for some P where N is as
in (0.9). Then the Ct matrix assumes the form (apart from a term involving J),

Ct =

 (2t + 1)I− N′N
(4t+2) − N′P

(4t+2)

(2t + 1)I− P′P
(4t+2)

− (4t + 2)
(4t + 1)(4t + 3)

H, (0.10)
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where

H =

 P′P + (P′N+N′P)
(4t+2) + N′N

(4t+2)2 P′N + (P′P+N′N)
(4t+2) + N′P

(4t+2)2

N′N + (N′P+P′N)
(4t+2) + P′P

(4t+2)2

 . (0.11)

If we restrict to a binary equireplicate design, then trace(P′P) coincides with trace(N′N).
From (0.9) it is evident that in order to maximize trace(Ct), we have to make a choice
of P so as to minimize trace(P′N + N′P). For Agarwal’s choice P = N, we have
trace(P′N + N′P) = (2t + 1)v.

At this stage Shah and Sinha (1990) argued that it is indeed possible to make a choice
of P so that trace(P′N + N′P) << v(2t + 1). It is true for v = 7 as was illustrated by
them by taking P = (1 0 1 0 0 1 0), a circulant of order 7. It follows that the resulting
design does better than Agrawal’s design with respect to A-, D- and E-optimality criteria
for treatment effects comparisons. Further, it shows Loewner dominance over Agrawal’s
for both row effects and column effects comparisons.

Concluding Remarks

For Method 2 of Agrawal (1966), it has been conjectured in Shah and Sinha (1990)
that Agrawal’s designs are at least A- , D- and E-optimal. Optimality of Agrawal’s designs
given by Method 5 was discussed in Bagchi and Shah (1989) and also in Shah and Sinha
(1989). These designs are found to be Ψf -optimal in the class of equireplicate designs
and E- optimal in the unrestricted class. These designs are based on Nrc = J so that the
row-column classification to start with is orthogonal.

TOPIC II : Optimal Designs Under Heteroscedastic Errors
in Linear Regression

Most optimality studies in the context of linear, quadratic and polynomial regression
models deal with homoscedastic error structure. However, some recent studies also reflect
situations wherein the use of heteroscedastic error structureheteroscedastic error structure
in the context of linear regression is called for. See, for example, Abdelbasit and Plackett
(1983), Minkin (1987, 1993), Wu (1988), Sitter and Wu (1993), Khan and Yazdi (1988),
Ford et al. (1992), Atkinson and Cook (1995), Hedayat et al. (1997), Sebastiani and
Settimi (1997) and Mathew and Sinha (2001).

The key reference to this section is Liski et al (2002) and Minkin (1993) and we intend
to re-visit an interesting optimality result reported therein. It turns out that there is a
unified approach to the problem studied there. We exploit de la Garza phenomenon and
Loewner order domination (LOD) for asymmetric experimental domains and succeed in
characterizing a complete class of experiments, using continuous design theory. This study
enables us extend optimality results in Minkin (1993) in a natural manner.

A Model with Heteroscedastic Errors
Following Minkin (1993), we consider a Poisson count model

Yx ∼ Poisson[µ(x)]
with µ(x) = c(x)eθ(x), θ(x) = α + βx and β = −β∗ < 0, (0.12)
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where α and β are unknown parameters and x is a non-stochastic covariate over the domain
T = [0,∞). Further, c(x) is a known positive quantity, independent of the unknown
parameters.

Since we are primarily interested in the regression parameters, we assume,for simplicity,
that we are in a situation where we can use approximate theory and accordingly, confine
to the n-point design (vide Minkin 1993):

dn = [(0 ≤ x1 < · · · < xn < ∞; 0 < p1, p2, . . . , pn;
∑

c(xi)pi = 1]. (0.13)

Here c(x)’s are known positive (finite) real numbers.
Next we write down the log-likelihood function and hence deduce the form of the

asymptotic information matrix for the parameters as

I(α, β) =
∑

c(xi)pie
θ(xi)(1, xi)′(1, xi). (0.14)

Note that the information matrix has an equivalent representation given by

I(α, β) =
∑

Pie
θ(xi)(1, xi)′(1, xi);

Pi = c(xi)pi, 1 ≤ i ≤ n;
∑

Pi = 1. (0.15)

With reference to I, optimality problem refers to optimal choice of the xi’s and the
corresponding Pi’s subject to

∑
Pi = 1. Note that Minkin (1993) characterized the nature

of optimum design for minimizing V (β̂−1). As is typical in nonlinear settings, the optimum
design depends on the unknown parameters α and β.

The components of I are given by

I11 =
n∑

i=1

Pie
α−β∗xi , I12 =

n∑
i=1

Pixie
α−β∗xi , I22 =

n∑
i=1

Pix
2
i e

α−β∗xi . (0.16)

It now follows that without any loss of generality, we can ignore the factor eα in the
expression for I. Further, let us write β∗xi = x∗i for each i. For convenience, we re-name
the information matrix as I∗ having elements

I∗11 =
n∑

i=1

Pie
−x∗i , I∗12 =

n∑
i=1

Pixie
−x∗i , I∗22 =

n∑
i=1

Pix
2
i e

−x∗i . (0.17)

Remark : We note in passing that I∗ can be written as a convex combination of component
I∗’s based on subsets of points in T . In other words,

I∗ =
k∑

r=1

πrI
∗(r) (0.18)

where π1, π2, . . . , πk are sums over mutually exclusive and exhaustive subsets of the set of
Pi’s and the I∗(r)’s are the component information matrices based on the corresponding
mutually exclusive and exhaustive subsets of the set of xi’s with the revised P -values as
P ∗

i = Pi

πr
whenever Pi is in the rth subset of the P -values. Minkin (1993) established

that for optimal estimation of the slope parameter, an optimal design is a 2-point design
including the point 0.
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Complete Class of Designs in Minkin’s Set-Up
We provide here a unified approach to arrive at a very general result to the effect that

for inference on the regression parameters, a complete class of continuous designs must
necessarily comprise of 2-point designs including the point 0.

Towards establishing the complete class result stated above, first we start with a 2-point
design viz.,

d2 = [a, b;P,Q];
with 0 < a < b < ∞; 0 < P, Q < 1; P + Q = 1. (0.19)

Then, writing a∗ = aβ∗ and b∗ = bβ∗,

I∗11 = Pe−a∗ + Qe−b∗ ; (0.20)

I∗12 = Pae−a∗ + Qbe−b∗ ; (0.21)

I∗22 = Pa2e−a∗ + Qb2e−b∗ . (0.22)

The following is the main result in this study.
Given d2 in (0.19), there exists another 2-point design d∗2 = [0, c;λ, 1−λ] that dominates

d2 in the Loewner domination (LOD) sense i.e.

d∗2 = [0, c;λ, 1− λ] � d2 = [a, b;P,Q] (0.23)

such that I∗(d∗2)− I∗(d2) is a nnd matrix.

Proof. Utilization of (0.20) - (0.22) yields

I∗11(d
∗
2)− I∗11(d2) = λ + (1− λ)e−c∗ − Pe−a∗ −Qe−b∗ ; (0.24)

I∗12(d
∗
2)− I∗12(d2) = (1− λ)ce−c∗ − Pae−a∗ −Qbe−b∗ ; (0.25)

I∗22(d
∗
2)− I∗22(d2) = (1− λ)c2e−c∗ − Pa2e−a∗ −Qb2e−b∗ . (0.26)

We now proceed as in Liski et al. (2002), taking the clue from Pukelsheim (1993). In other
words, in the expression for the difference of the two information matrices, we equate both
the terms in (1, 1)th and (1, 2)th positions to 0 and solve for c and λ. Then we show that
the term in the (2, 2)th position is strictly positive.

The equations in terms of c∗ = cβ∗ and λ are given by

λ + (1− λ)e−c∗ = Pe−a∗ + Qe−b∗ ; (0.27)

(1− λ)ce−c∗ = Pae−a∗ + Qbe−b∗ (0.28)

whence, eliminating λ, we obtain the following equation involving c∗:

φ(c∗) = wφ(a∗) + (1− w)φ(b∗),

where φ(x∗) =
ex∗ − 1

x∗
and w =

Pa∗e−a∗

Pa∗e−a∗ + Qb∗e−b∗
. (0.29)

It is readily seen that the function φ(x∗) is convex and increasing in x∗ over [0,∞) so
that we have a unique solution for c∗ above. Moreover, a∗ < c∗ < b∗ i.e., a < c < b. Once
c∗ is known, λ is obtained from the relation
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1− λ =
P (1− e−a∗) + Q(1− e−b∗)

(1− e−c∗)
. (0.30)

It now remains to verify that 0 < λ < 1 which is equivalent to verifying that

e−c∗ < Pe−a∗ + Qe−b∗ . (0.31)

The proof of this claim is given in the Appendix.
Finally, to show strict positivity of the (2, 2)th term in (0.26), upon simplification, we

find that we have to establish the inequality: c∗ > wa∗ + (1 − w)b∗. This follows readily
from the strict convexity of the function φ(x∗) and the defining equation for c∗. This
establishes the result.

Corollary. Given dn in (0.13), there exists a 2-point design d2 = [0, c;λ, 1 − λ] that
dominates dn in the Loewner domination sense.

Proof. In view of Remark , the proof follows by induction on the number n of support
points of dn.

We have thus arrived at a characterization of a complete class of continuous designs
for inference on the regression parameters in the set-up described in (0.12) and (0.13). It
is now a routine task to determine specific optimal designs for one or both the parameters
with respect to various optimality criteria. This is studied in the next section. We note
that the asymptotic variance-covariance matrix of the maximum likelihood estimators of
α and β is obtained by inverting the information matrix I.

Specific Optimal Designs
For inference on the parameter β or on β−1 (as discussed in Minkin (1993)) with

minimum asymptotic variance i.e., maximum information, we are supposed to maximize
I∗22.1 for proper choices of c∗ and λ.

Algebraically, we have to maximize

f(s, c) = sc2e−c∗ − [sce−c∗ ]2

[1− s(1− e−c∗)]
,

where s = (1− λ). Note that this is the same as maximizing

f(s, c∗) = sc∗2e−c∗ − [sc∗e−c∗ ]2

[1− s(1− e−c∗)]
.

For fixed c∗, we can maximize the above expression in terms of s and obtain sopt(c∗) =
1

[1+e−c∗/2]
whence, upon substituting the expression for s, we need to maximize f(c∗) =

[ c∗

1+ec∗/2 ]2. It follows readily that c∗opt = 2.557; λopt = 0.218. Minkin (1993) deduced this
result through a different approach.

For inference on α, it follows that an optimal design is singular with P[x=0] = 1. For
D-optimality involving both the parameters α and β, we have to maximize f(s, c∗) =
s(1− s)c∗2e−c∗ and this yields c∗opt = 2.0, λopt = 0.5.

For A-optimality, we have to minimize f(s, c∗) = A
s + B

(1−s) , where A = ec∗

c∗2 ; B =
1 + 1

c∗2 . This yields c∗opt = 2.261, λopt = 0.444. Again, for E-optimality, we have to
maximize

f(s, c∗) = [1− L1s]− [(1− L2s)2 + Qs2]1/2,
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where L1 = 1− e−c∗ − c∗2e−c∗ , L2 = 1− e−c∗ + c∗2e−c∗ and L = 4c∗2e−2c∗ .
Numerical calculations yield: c∗opt = 2.565; λopt = 0.4002. Finally, for MV-optimality,

we need to minimize f(s, c∗) which corresponds to the larger of the two variance ex-
pressions. Routine calculations yield: c∗opt = 1 +

√
2 = 2.4142 and sopt = [1 − e−c∗ +

c∗2e−c∗ ]−1 = 0.6984 and, hence, λopt = 0.3016.

Appendix

Proof of (0.31). Note first the following chain of equivalent inequalities:

e−c∗ < Pe−a∗ + Qe−b∗ (A.1)
⇐⇒ c∗ > − log(Pe−a∗ + Qe−b∗) (A.2)
⇐⇒ φ(c∗) > φ(− log(Pe−a∗ + Qe−b∗)) (A.3)

⇐⇒ wφ(a∗) + (1− w)φ(b∗) >
e− log(Pe−a∗+Qe−b∗ ) − 1
− log(Pe−a∗ + Qe−b∗)

(A.4)

⇐⇒ P (1− e−a∗) + Q(1− e−b∗)
Pa∗e−a∗ + Qb∗e−b∗

>
(1− Pe−a∗ −Qe−b∗)

[(Pe−a∗ + Qe−b∗)(− log(Pe−a∗ + Qe−b∗))]
(A.5)

⇐⇒ [(Pe−a∗ + Qe−b∗)(− log(Pe−a∗ + Qe−b∗))]
> Pa∗e−a∗ + Qb∗e−b∗ (A.6)

⇐⇒ [1 +
P

Q
eb∗−a∗ ][b∗ − log Q− log(1 +

P

Q
eb∗−a∗)]

> b∗ +
Pa∗

Q
eb∗−a∗ (A.7)

⇐⇒ (Q + Peb∗−a∗) log(Q + Peb∗−a∗) < P (b∗ − a∗)eb∗−a∗ (A.8)
⇐⇒ (Q + Pex∗) log(Q + Pex∗)

< Px∗ex∗ ;x∗ = b∗ − a∗ > 0. (A.9)

Define δ(x∗) = Px∗ex∗ − (Q + Pex∗) log(Q + Pex∗), x∗ > 0. It is easy to verify that δ(x∗)
is increasing in x∗ since x∗ = β∗x and β∗ are positive. Further, δ(0) = 0. Hence, the
result follows.
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