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In what follows, Section A is based on Bose and Mukherjee(2001) and Section B is repro-
duced from Bose and Dey(2001).

A. Cross-over designs

Crossover designs are used in experimental situations where a number of experimental
subjects are exposed to the treatments under study applied sequentially over a number
of time periods. They are used in a broad spectrum of research areas, some early exam-
ples being agriculture (Cochran, 1939), dairy husbandry (Cochran et. al, 1941), bioassay
procedures (Finny, 1965), clinical trials (Grizzle, 1965), psychological experiments (Kep-
pel, 1973), weather modification experiments (Mielke, 1974), tea-tasting experiments and
other areas of research.

The advantage of the crossover design is the cost and the interunit variability elim-
ination while computing treatment effects. These designs have been shown to be cost
efficient as compared to completely randomized designs or parallel designs, except in a
few extreme cases. However, since each subject is receiving a sequence of treaments over
time, in addition to the ‘direct’ effect of a treatment in the period in which it is applied, a
treatment may also have ‘carryover’ effects in one more subsequent periods. The possible
presence of these ‘carryover’ effects complicates the analysis of data from these designs.

In recent years, crossover designs have been frequently used in clinical trials (for study-
ing chronic ailments) because fewer subjects are needed than comparable parallel study
experiments and the estimators of direct treatment effects can be efficiently obtained as
between-subject variations can be eliminated.

Reserchers have considered various models for fitting repeated measures data from
cross-over designs. Williams(1949) advocated the use of ‘wash-out’ periods between suc-
cessive applications of treatments to the same experimental unit and introduced a model
that does not include ‘carry-over’ effects, assuming that the wash-out period will help to
eliminate the treatment effects left over from the previous period. However, this assump-
tion was felt to be over-simplistic for many experimental situations and later, Patterson
and others introduced a one-step carry-over in the model, assuming that the carryover
effect only persisted for one subsequent period.

However, Fleiss(1989) and Senn(1993) stated that in the context of experiments where
these designs are recently being used, a model with one-step carry-over is not realistic.

The optimality properties of cross-over designs have been extensively studied in the
literature. We refer to Stufken(1996) for a review of these results. Some researchers used
the ‘circular’ model where treatments were applied in a pre-period before observations were
taken, in order to generate carry-over effects for the first period. This greatly simplified
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the analysis. However, this was felt to be somewhat wasteful and so, later this model was
replaced by the ‘non-circular’ model where the first period had no carry-overs.

Most of the optimality results available in the literature are based on a model of Cheng
and Wu(1980) which makes several assumptions. The principal assumptions of this model
are:

1. Carry-over effects stop after the first period.
2. There is no interaction between the treatments applied in successive periods to the

same subject.
3. The subject effects are fixed effects.
4. The errors are independent with mean zero and constant variance.
Clearly, in situations where these designs are used, specially in the recent applications

of these designs, one or more of these assumptions are likely to be violated. The first
assumption is untenable in situations where the effect of a treatment does not die out
abruptly after one period, which is often the case when the interval between successive
time periods is small. Regarding assumption 2, it is known that in many situations the
successive treatments do interact and possibly the earliest data set reflecting this is in
John and Quenouille (1977, pp 211-213). In experiments where the subjects are a random
sample of possible subjects, assumption 3 will be invalid. Finally, since the same subject
is giving rise to a set of observations over time, it is unlikely that all these observations
will be uncorrelated.

Under various model assumptions, many researchers have studied the optimality pf
these deisgns and the optimal designs are highly dependent on the model assumptions.
Some have used random subject effects and an independent error assumption or fixed
subject effects with an autoregressive error assumption. Mukhopadhyay and Saha(1983)
considered optimality of some cross-over designs under a mixed effects model .

The study of cross-over designs can be considerably simplified when one has recourse
to the calculus for factorial experiments. Using this approach, optimal designs for direct
and carry-over effects have been obtained in Sen and Mukerjee(1986) for models where
assumption 2 has been relaxed. Bose and Mukherjee(2000) obtained optimal designs
for direct and carry-over effects under models which do not assume conditions 1 and
2 and Bose and Mukherjee(2001) have optimal designs for a model where all 4 of the
above conditions are removed. Bose and Dey(2001) obtained designs of small sizes which
are optimal for carry-over effects and highly efficient for direct effects. In this context
Bose(1996, 1999) are also relevant. Bose and Dey(2002) considered general expressions for
information matrices for direct and carry-over effects under a random-subject effect model
with serially correlated errors in the presence of direct versus carry-over interactions and
have proved several optimality results under this model.

Since we cannot discuss all the above work in detail here we only include here the
work by Bose and Dey(2001). This is chosen because this study clearly illustrates how the
calculus for factorial arrangements may be effectively used to obtain optimal cross-over
designs. Moreover, this study leads to efficient/optimal designs which are small in size
and so these designs will be useful to the practitioner.

B. Some small and efficient cross-over designs under a non-additive model

(Bose and Dey(2001))

Under a general non-circular, non-additive model which allows for the possible presence
of interactions among treatments applied at successive periods, small cross-over designs
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are proposed. The proposed designs are shown to be optimal for the estimation of carry-
over effects while being highly efficient for the direct effects under the stated model. The
results are shown to be robust under a random-subject-effect model. These designs had
been shown to be optimal for both direct and carry-over effects under an additive model
by Cheng & Wu(1980). Our results show that their result for carry-over effects remain
robust under non-additive models and also under random-subject effects.

1. Introduction

Cross-over designs are used for experiments in which each of the experimental subjects
or, units receive different treatments successively over a number of time periods. These
designs are widely used in clinical trials, learning experiments, animal feeding experiments,
agricultural field trials and in several other areas of experimental research.

A distinctive feature of cross-over experiments is that, an observation is affected not
only by the direct effect of a treatment in the period in which it is applied, but also by the
effect of a treatment applied in an earlier period. That is, the effect of a treatment might
also carry over to one or more of the subsequent time periods following the time of its
application. The possible presence of this carry-over effect complicates the designing and
analysis of such experiments. Considerable literature on the subject is already available
and for an excellent review of the literature, a reference may be made to Stufken (1996).

The study of optimality aspects of cross-over designs was initiated by Hedayat &
Afsarinejad (1978). Cheng & Wu (1980), Magda (1980), Kunert (1984 a,b), Stufken
(1991) and others studied the optimality properties of these designs under simple additive
models, with no possible interactions among the treatments applied in successive periods.

The available cross-over designs which are optimal over a wide class of competing
designs, are often quite large in size. However, in most experimental situations, notably
in clinical trials, the number of available experimental subjects is usually quite small and
the experiment cannot be continued for a large number of periods. To overcome this
problem, in this paper we study efficient designs that are quite small in size. To compare
t treatments, these designs require only t subjects if t is even and t or 2t subjects if t is
odd and further, require only t + 1 periods. Under a model that incorporates interaction
effects among direct and carry-over effects, apart from the individual direct and carry-over
effects, these designs are shown to be universally optimal and hence, A-, D- and E-optimal
for the carry-over effects. Under the same model, these designs are highly efficient for the
direct effects as well. Consideration of a non-additive model is motivated from practical
considerations as in many experimental situations, the interaction effects may also affect
the response. Examples of data sets are given in John & Quenouille (1977, p. 213) and
Patterson (1970), where such interaction effects are found to be statistically significant.
In such situations, the assumption of absence of interaction may not be justified and a
non-additive model seems more suitable.

The existence of these efficient designs is also discussed. Finally, we prove that all
the above mentioned results are robust under a random-subject non-additive model. The
proofs of the results rest heavily on the use of the Kronecker calculus, introduced by
Kurkjian & Zelen (1962). For a review of the calculus in the context of complete and
fractional factorials, see Gupta & Mukerjee (1989) and Dey & Mukerjee (1999) respectively.

It is interesting to note that Cheng & Wu(1980) had shown these designs to be uni-
versally optimal for the estimation of both direct and carry-over effects. Our results
demonstrate that their result for the carry-over effects remain robust under the presence
of interactions and also under random subject effects.
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2. Model and Analysis

Let Ωt,n,p be the class of all cross-over designs with t treatments applied to n units over
p periods. We introduce the following model by incorporating interactions among direct
effects and carry-over effects of the successive treatments applied to the same subject, into
the usual model in the literature; see for example, Cheng & Wu (1980).

Consider a cross-over experiment with t treatmnts applied to n experimental units
over p time periods and let d(i, j) denote the treatment applied to the jth unit at the ith
period, i = 0, 1, . . . , p− 1; j = 1, 2 . . . , n. Then the non-additive model is given by :

E(Y0j) = µ + α0 + βj + τd(0,j), 1 ≤ j ≤ n,

and

E(Yij) = µ + αi + βj + τd(i,j) + ρd(i−1,j) + γd(i,j),d(i−1,j), 1 ≤ i ≤ p− 1, 1 ≤ j ≤ n (1),

where µ, αi, βj , τd(i,j), ρd(i−1,j), γd(i,j),d(i−1,j) are respectively the general mean, the ith
period effect, the jth unit effect, the direct effect due to treatment d(i, j), the carry-over
effect due to treatment d(i− 1, j) and the interaction effect between d(i, j) and d(i− 1, j),
i = 0, 1, . . . , p− 1, j = 1, 2, . . . , n, where we define ρd(0,j) = γd(1,j),d(0,j) = 0.

Under model (1), a direct extension of the usual method of analysis and proof as
given in Cheng & Wu (1980) becomes intractable. Instead, model (2) given below, can be
conveniently studied by noting that cross-over designs may be looked upon as a t2 factorial
experiment with two factors, F1, F2, where the direct effects correspond to the main effect
F1, the carry-over effects correspond to the main effect F2 and the direct versus carry-over
interaction effect corresponds to the usual factorial interaction, F1F2. The advantage of
this formulation is that now these designs may be analysed under model (2) by applying
the calculus for factorial arrangements introduced by Kurkjian and Zelen (1962).

Model (1) may be rewritten in the following equivalent form:

E(Yij) = µ + αi + βj + λ′ijξ, 0 ≤ i ≤ p− 1, 1 ≤ j ≤ n, (2)

where, the t2 × 1 vector
ξ = (ξ00, ξ01, . . . , ξt−1,t−1)′

is the vector of the effects of t2 factorial treatment combinations;

λij = ed(i,j) ⊗ ed(i−1,j), 1 ≤ i ≤ p− 1; 1 ≤ j ≤ n, (3)

λ0j = ed(0,j) ⊗ t−11t, 1 ≤ j ≤ n, (4)

where for a pair of matrices A, B, A⊗B denotes their Kronecker product; ed(i,j) is a t×1
vector with 1 in the position corresponding to the treatment d(i, j) and zero elsewhere
and 1t is a t× 1 vector with all elements unity.

Let Xd denote the design matrix for a design d in Ωt,n,p under model (2). Then, it can
be shown from model (2) that

Xd
′Xd =



np n1′p p1′n

p−1∑
i=0

n∑
j=1

λ′ij

n1p nIp 1p1′n N ′
d

p1n 1n1′p pIn M ′
d

p−1∑
i=0

n∑
j=1

λij Nd Md Vd


, (5)
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where

Vd =
p−1∑
i=0

n∑
j=1

λijλ
′
ij , Nd = (

n∑
j=1

λ0j ,
n∑

j=1

λ1j , . . . ,
n∑

j=1

λp−1j) (6)

Md = (
p−1∑
i=0

λi1,

p−1∑
i=0

λi2, . . .

p−1∑
i=0

λin). (7)

The matrices Nd and Md in (5) are the treatment versus period and the treatment ver-
sus unit incidence matrices respectively, where the treatments are actually the t2 treatment
combinations in ξ.

¿From (5) it follows that the coefficient matrix of the reduced normal equations for
estimating ξ from a design d in Ωt,n,p is given by

Cd = Vd −
1
n

NdN
′
d −

1
p
MdM

′
d +

1
np

(Nd1p)(Nd1p)′. (8)

Let Pt be a (t− 1)× t matrix such that (t−
1
2 1t, P ′

t ) is orthogonal. Define

P 01 = (t−
1
2 1t

′)⊗ Pt, P 10 = Pt ⊗ (t−
1
2 1t

′), P 11 = Pt ⊗ Pt. (9)

Note that P 01ξ, P 10ξ and P 11ξ together represent a complete set of orthonormal treat-
ment contrasts.

Following Mukerjee (1980), it can be shown that for a design d in Ωt,n,p, the coefficient
matrix of the reduced normal equations for estimating the carry-over effects is given by

Ad = P 01Cd (P 01)′ − (P 01 Cd(P 10)′, P 01Cd(P 11)′)G−
(

P 10Cd(P 01)′

P 11Cd(P 01)′

)
, (10)

where A− denotes a generalized inverse of a matrix A, Cd is as in (8) and

G =
[

P 10Cd(P 10)′ P 10Cd(P 11)′

P 11Cd(P 10)′ P 11Cd(P 11)′

]
.

3. Optimality Results

We need the following definitions in the sequel.

Definition 3.1.A design in Ωt,n,p is called uniform if the treatments occur equally often
in each period and also equally often in each unit.

Definition 3.2.Under model (1), a design d in Ωt,n,p is called balanced if in the order of
application, no treatment is preceded by itself and each treatment is preceded by all other
treatments equally often.

Let d1 be a design obtained by repeating the last row of a balanced uniform design.
Thus, d1 is an extra-period balanced design as defined in Lucas(1957) and Patterson &
Lucas (1962). The following theorem gives the optimality properties of d1 under model
(1).

Theorem 3.1. Under model (1), a design d1 in Ωt,n,p is universally optimal for the
separate estimation of residual effects in the class of all designs in Ωt,n,p.
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Proof: The proof of the theorem rests on the following two lemmas, the proofs of which
are given in the Appendix.

Lemma 3.1. For the design d1, Ad1 is completely symmetric, where Ad1 is given by
(10) with d replaced by d1.

Lemma 3.2. The design d1 maximises the trace of Ad among all designs d in Ωt,n,p.

¿From Lemmas 3.1 and 3.2, it is clear that d1 satisfies the sufficient conditions for
universal optimality of a design as given by Kiefer (1975), for the estimation of complete
sets of orthonormal contrasts belonging to the carry-over effects. Hence the theorem is
proved.

Remark 3.1. It may be recalled that a design that is universally optimal over a class
of competing designs is also in particular, A-, D- and E-optimal over the same class of
competing designs. Thus, the design d1 is, in particular A-, D- and E-optimal for carry-
over effects in the class Ωt,n,p.

Remark 3.2. Cheng & Wu (1980) have shown that the designs d1 are universally op-
timal for both carry-over and direct effects under an additive model. Theorem 3.1 shows
that their result is robust for carry-over effects under the non-additive model as well. One
can show however that under model (1), though d1, remains universally optimal for the
carry-over effects, it does not necessarily remain universally optimal for the estimation
of the direct or the interaction effects. It can be shown using a necessary and sufficient
condition for inter-effect orthogonality in Mukerjee(1980) that while under a model with
no interactions, the design d1 permits the estimation of direct and carry-over effects or-
thogonally in the sense that the best linear unbiased estimator of a contrast among direct
effects is uncorrelated with the best linear unbiased estimator of a contrast among carry
over effects, this orthogonality does not hold under a model with interactions.

Remark 3.3. To evaluate the performance of d1 for the separate estimation of direct
effects, we compute the relative efficiency of estimation of the direct effects relative to the
carry-over effects, based on the A-efficiency or the average variance criterion. Clearly, the
upper bound of these efficiencies is unity. Table 1 lists the A-efficiencies of d1 for some
small values of t. From this table it is seen that the efficiency of d1 for the estimation of
direct effects is quite high. It follows then that the design d1 is useful in the sense that,
using this design one can estimate the carry-over effects optimally and also estimate the
direct effects with high efficiency, even under the presence of interactions.

Remark 3.4. The optimality result in Theorem 3.1 is quite general since the competing
class, Ωt,n,p, is the class of all designs with t treatments, n units and p periods. As stated
earlier, d1 is also optimal under the weaker and more commonly used A-,D- and E-
optimality criteria.

Table 1. Relative A-efficiencies of direct effects

No. of treatments 3 4 5 6
A-efficiency of direct effects 0.8136 0.9259 0.8771 0.9625

No. of treatments 7 8 9 10
A-efficiency of direct effects 0.9058 0.9783 0.9232 0.9847

4. Existence of the optimal designs
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and some examples

For any t, the minimum value of n and p for which a design d1 may exist are t and
t + 1 respectively. This is because, for a balanced uniform design to exist, it is necssary
that

(i) p ≡ 0(mod t); (ii) n ≡ 0(mod t) and (iii) n(p− 1) = µt(t− 1),

where µ is a positive integer. The question of constructing uniform balanced designs in
Ωt,t,t is completely settled for t even, and is given by the t× t Williams’ square (Williams,
1949). Thus, repeating the last row of a Williams’ square once, one can construct a design
d1 in Ωt,t,t+1, whenever t is an even integer.

When t is odd, no general result on the existence of a balanced uniform design in Ωt,t,t

is known. No such design exists for t = 3, 5, 7. Such designs for t = 9, 15, 21 and 27
have been presented by Archdeacon, Dinitz, Stinson and Tillson (1980), who call these
squares as row complete Latin squares. Such squares can be constructed for t = 39, 55, 57
by methods described in Mendelsohn (1968), Denes & Keedwell (1974) and Wang (1973).
However, for all odd t it is known that a uniform balanced design exists in 2t units and t
periods (Williams, 1949). It follows that for all odd t, d1 exists in Ωt,2t,t+1 and for some
specific odd values of t, d1 exists in Ωt,t,t+1.

In Example 4.1, designs d1 for some values of t are shown. The periods are given by
the rows and the subjects by the columns.

Example 4.1.

t = 3 t = 4 t = 5

1 2 3 1 2 3
3 1 2 2 3 1
2 3 1 3 1 2
2 3 1 3 1 2

1 2 3 4
4 1 2 3
2 3 4 1
3 4 1 2
3 4 1 2

1 2 3 4 5 3 4 5 1 2
5 1 2 3 4 4 5 1 2 3
2 3 4 5 1 2 3 4 5 1
4 5 1 2 3 5 1 2 3 4
3 4 5 1 2 1 2 3 4 5
3 4 5 1 2 1 2 3 4 5

5. Robustness of the results
under the random-subject-effect model

In analyzing data from cross-over experiments used in clinical trials, it is often desirable
to assume the subject or the patient effect to be a random variable. Under such an
assumption, the non-additive random-subject-effect model is:

Y0j = µ + α0 + βj + τd(0,j) + error, for 1 ≤ j ≤ n,

and

Yij = µ+αi+βj +τd(i,j)+ρd(i−1,j)+γd(i,j),d(i−1,j)+ error, 1 ≤ i ≤ p−1, 1 ≤ j ≤ n (11),

where µ, αi, βj , τd(i,j), ρd(i−1,j), γd(i,j),d(i−1,j) are as in (1); and the vector of subject effects
β = (β1, β2, . . . , βn)′ has the normal distribution, N(0, σ2

1In), the error vector has the
N(0, σ2Inp) distribution, β being independent of the error vector.

In consideration of Lemma 3.1, after some routine but lengthy algebra, the following
result can be proved.
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Lemma 5.1. Under model (11), for any design d in Ωt,n,p,
(a) the matrix Cd is given by

Cd = 1
σ2 Vd − σ2

1
nσ4 Nd1p1p

′N ′
d + aσ2

1
nσ2 Nd1p1p

′H ′
d

−aMdM
′
d − 1

nσ2 NdN
′
d + a

nNdH
′
d

+ aσ2
1

nσ2 Hd1p1p
′N ′

d −
a2σ2

1
n Hd1p1p

′H ′
d + a

nHdN
′
d − a2σ2

n HdH
′
d,

(12)

where a is a constant involving the design parameters, σ and σ1,
Hd = [Nd1p, · · · , Nd1p ] is a t× p matrix and Vd,Md, Nd are as in (6) and (7).

(b)
P 01Md1M

′
d1

= 0, P 01Nd1 = 0, P 01Hd1 = 0.

It follows from (12) that P 01Cd1 = mP 01Vd1 where m is a constant. Now, using steps
similar to the proof of Theorem 3.1, the following result may be proved.

Theorem 5.1: Under model (11), d1 is universally optimal for the separate estimation
of carry-over effects in the class of all designs in Ωt,n,p.

Thus the results of Theorem 3.1 remain robust under the random-subject-effect model.

Remark 5.1. Theorems 3.1 and 5.1 show that the result of Cheng & Wu(1980) men-
tioned in Remark 3.2, remains robust for carry-over effects under a model with random
subject effects and with direct-vs-carryover interactions.
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Appendix

Proof of Lemma 3.1. From (6), (7) and Definitions 3.1 and 3.2, one can show that

Vd1 = nt−3(It ⊗ 1t1t
′) + n(p− 1)t−2It ⊗ It, (A.1)

where for a positive integer s, Is stands for the identity matrix of order s. Furthermore,
we have

Nd11n = (npt−2)(1t ⊗ 1t). (A.2)

Recalling the definition of P 01 from (9) and using (A.1) and (A.2), the following statements
can be proved after some algebra:

P 01Vd1(P
01)′ = n(p− 1)t−2It−1, P 01Vd1(P

10)′ = 0, P 01Vd1(P
11)′ = 0,

P 01Nd1 = 0,

P 01(Nd11n)(Nd11
′
n)(P 01)′ = 0,

P 01(Nd11n)(Nd11
′
n)(P 10)′ = P 01(Nd11n)(Nd11

′
n)(P 11)′ = 0,

and
P 01Md1M

′
d1

= 0.

By (10), we have Ad1 = P 01Cd1(P
01)′ = P 01Vd1(P

01)′ = n(p− 1)t−2It−1. Thus Ad1 is
completely symmetric and the Lemma is proved.

Proof of Lemma 3.2. From (10) it is clear that P 01Cd(P 01)′−Ad is nonnegative definite for
all d in Ωt,n,p. Again, as Vd −Cd is nonnegative definite for all d in Ωt,n,p, P 01Vd(P 01)′ −
P 01Cd(P 01)′ is nonnegative definite for all such d. Hence,

Trace(Ad) ≤ Trace(P 01Vd(P 01)′) = Trace(P 01Cd1(P
01)′) = Trace(Ad1)

for all d in Ωt,n,p. This completes the proof.


