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1 Introduction

A mixture experiment involves mixing various proportions of two or more components to make different compositions of an end product. Mixture components proportions xi are subject to the constraints

0<xi<1
i=1,2,…, q and (xi=1





(1.1)

where q is the number of components. As a result the factor space reduces to regular (q-1) dimensional simplex sq-1 For q=2 it is a straight line x1+x2=1 and for q=3 it is an equilateral triangle.


The components proportions are also often subject to single or multiple-components constraints. The constraints in equation (1.1) yield a simplex experimental region, while single or mulyiple-component constraints generally yield a polyhedral constrained region. Cornell (2002) discussed experimental design methods for simplex and constrained region mixture experiments.


Scheffe (1958, 1963) introduced the {q,m} simplex lattice designs and simplex-centroid designs. 

1.1 
Simplex Lattice Design

The {q,m} simplex lattice designs are characterised by the symmetric arrangements of points within the experimental region and a well chosen polynomial equation to represent the response surface over the entire simplex region. The polynomial has exactly as many parameters as there are number of points in the associated simplex lattice design.

The {q,m} simplex lattice design given by Scheffe (1958) consists of q+m-1Cm points where each component proportion takes (m+1) equally spaced values xi=0,1/m,2/m,…,1; i=1,2,…,q, ranging between 0 and 1 and all possible mixtures with these component proportions are used.

For example: a {3,2} simplex lattice will consist of  3+2-1C2 i.e. 4C2=6 points. Each xi can take m+1=3 possible values xi=0, ½,1 with which the possible design points are (1,0,0), (0,1,0), (0,0,1), (½,½,0), (0, ½,½), (½,0, ½). 

1.2
The Canonical Polynomials

Scheffe (1958) introduced canonical polynomials to be used with his simplex lattice designs. These polynomials are obtained by modifying the usual polynomial model in xi by using the restriction (xi=1. 

The number of terms in {q,m} polynomial or canonical polynomial is (q+m-1Cm) and this number is equal to the number of points that make up the associated {q,m} simplex lattice design. For  example, for m=1 the linear canonical model is

(=((ixi

                  




(1.2)

The number of terms in equation (1.2) is q, which is the number of points in the {q,1} lattice.

For m=2, the second degree canonical polynomial is

( = ((ixi + (((ijxixj





(1.3)

The number of terms in (1.3) is q+q(q-1)/2 = q(q+1)/2.

The full cubic canonical polynomial or (q,3) polynomial is 

(=((ixi + (((ijxixj+(((ijxi(xi-xj)+ ((((ijkxixjxk


(1.4)

A simpler formula for a special case of the cubic polynomial is the special cubic polynomial

(=((ixi + (((ijxixj+ ((((ijkxixjxk




(1.5)

the number of terms in (1.5) is q(q2 + 5)/6.

There is one-to-one relationship between the number of points in the {q,m} simplex lattice and the {q,m} polynomials. As a result, the parameters in the polynomial can be expressed as simple function of expected responses at the point of {q,m} simplex lattice. For the second degree model of equation (1.3), we have

(i=(i, (ij=4(ij – 2((i + (j)





(1.6)

where (i is the response to pure mixture with proportion 100% of components i, (ij is the response to binary mixture with equal proportions (50%:50%) of components i ,and j. 

For higher degree case, m>2, the formulas can be written in a similar manner.

1.3
Estimating the parameter in the {q,m} polynomials.

One might conjecture that to estimate the parameters in the canonical polynomials using observed values of the response at the lattice points, the computing formulas for bi and bij will be identical to equation (1.6) with the observed values substituted in equation (1.6) in place of (i and (ij. To show this we consider fitting of the three component second degree model in equation (1.3) to the data values collected at the points of a {3,2} simplex lattice design.

Let the observed value of the response in the uth trial be denoted by yu (1<u<N) be

Yu=(u + (u

where (u for all u; 1<u<N are uncorrelated and identically distributed random errors with zero mean and variance (2. Replace (i and (ij with yi and yij, respectively, in equation (1.6) and letting bi and bij denote the estimates of (i and (ij, respectively, we find that

bi=yi,
i=1,2,…,q



bij=4yij – 2(yi+yj), i,j=1,2,….,q, i<j




(1.7)

Let ri, rj and rij replicate observations are collected at xi=1,xj=0; xi=0, xj=1; and at xi=xj=½, xk=0, i<j, k(i,j respectively, then we have 
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(1.8)

The means and the variances of the distribution of the estimates bi and bij, given that the observations were collected at the points of the lattice only, are
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(1.9)

= -2(2/ri
Cov(bij,bik)= 4(2/ri, 
j(k

1.3.1
Variance of the estimate Y^(x)
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A formula for the variance of the estimate Y^(x) can be obtained by replacing the parameter estimates bi and bij by their respective linear combinations of the averages yi and yij, then the variance of Y^(x)  can be written as a function of yi and yij. The estimate of response is
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(1.10)


              (1.11)


where ai = xi(2xi-1) and aij = 4xixj, i,j=1,2,….,q, i<j.
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The coefficients ai and aij are fixed, as the values of xi are specified. Since yi and yij are averages of ri and rij observations respectively, the variance of Y^(x) is 
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(1.12)

The hypothesis is set according to the response property under study.

The analysis of variance table is of the form:

	Source of

Variation
	Degrees of

Freedom
	Sum of
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1.4
The Simplex Centroid design and the associated Polynomial Model

Scheffe (1963) gave simplex centroid designs which consists of 2q-1 points with q permutations of (1,0,0,…, 0) (i.e. q pure blends), (qC2) permutations of (½,½,0,…0) (i.e. (qC2) binary blends),…, and the overall centroid (1/q, 1/q,…, 1/q)(i.e. the q-nary blend).

For q=3, the simplex centroid design consists of seven points (1,0,0), (0,1,0), (0,0,1), (½,½,0), (0, ½,½), (½,0, ½) and (1/3,1/3,1/3). 

Scheffe(1963) defined the special cenonical polynomial for these designs which is given by

(=((ixi + ((ijxixj  + …..+ (12…qx1x2…..xq



(1.13)

This polynomial has the same number of terms (or parameters to be estimated) as there are points in the associated simplex centroid design.

The 2q-1 parameters in the polynomial equation (1.13) are expressible as linear functions of the expected responses at the points of the simplex centroid design. For example, if we substitute (i, (ij and (ijk into equation (1.13) for the response to xi=1, xj=0, j(i; to xi=xj=1/2, xk=0, i<j, k(i,j; and to xi=xj=xk=1/3 respectively then the parameters are

(i=(i

(ij=2{21(ij – i1((i + (j)}

(ijk=3{32(ij – 22((ij + (ik + (jk) + 12((i + (j + (k) }

(1.14)

More generally, if we write Sr to denote any subset (i1,i2,…,ir) of r elements of {1,2,…,q}, then the general formula for the model parameters is 

(rs = r{rr-1Lr(sr) – (r-1)r-1Lr-1(sr) + …. + (-1)r-11r-1L1(sr)}

      = r{((-1)r-ttr-1Lt(sr)}




(1.15)

where Lr(Sr) is the sum of the responses of all rCt of the t-nary mixtures with equal proportions from the r components in Sr. 


Estimates of the parameters can be obtained by replacing expected response by their observed values. Similarly variances and covariances can be obtained.

2 Axial Designs

The (q,m} simplex-lattice and q-component simplex-centroid designs are boundary designs in that, with the exception of the overall centroid, the points of these designs are positioned on the boundaries (vertices, edges, faces, etc.) of the simplex factor spaced. Axial designs on the other hand, are designed consisting mainly of complete mixture or q-component blends where most of the points are positioned inside the simplex. Axial designs have been recommended for use when component effects are to be measured and in screening experiments, particularly when first-degree models are to be fitted.

Designs with points lying on the axis of components that is imaginary line extending the base points xi=0, xj=1/(q-1) v i(j to the vertex where xi=1, xj=0 v i(j are called axial designs.Let us write the matrix form of the first-degree model 
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as (=x/( where x=(x1,x2,…,xq)/. If r observations are collected at each design points than the variance covariance matrix of the parameter vector b=(b1,b2,…,bq)/ of estimates of the parameters in the model is is given as:



V(b) = [dI + eJ] (2



(2.1)

where

d = (q-1)2/(r(2q2)

e = (2q2 – (q-1)2/( r(2q3)


(2.2)

3
Mixture Experiments Involving Process Variables
In some mixture experiments, the response depends not only on the proportion of the mixture components present in the mixture but also on the processing conditions. Process variables are factors in an experiment that do not form any portion of the mixture but whose levels when changed could affect the blending properties of the ingredients. The models involve both mixture variables and process variables. 

The methodology used to construct mixture designs involving process variables is composition of two smaller designs, one being a mixture designs for the mixture components only and the other being factorial/fractional factorial design for the process variables. For example, with two mixture components having the proportions x1 and x2 suppose there are also two process variables, denoted by z1 and z2 and each process variable is to be studied at two levels. If a three term quadratic model in x1 and x2 is to be fitted to data collected at the point of a {2,2} simplex lattice, the combined {2,2} lattice  x 22 frctorial arrangement can be used. The three terms quadratic model in two components
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(3.1)

when combined with the four term main and interaction effect model in z1 and z2
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(3.2)

produces the 12-term combined model
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(3.3)

where 
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(3.4)

For the data analysis the matched\mixed fractions are used for the process variables, where the matched fraction design consists of same fraction in the process variables at each and all mixture blends and the mixed fraction design consists of different fractions in the process variables at various mixture blends. These two options help us in studying possible biases that might be present in the combined models. Also these are helpful in breaking some of the alias chains between the two factor interactions.
4
Orthogonal Block Designs for Mixture Experiments

Block designs for mixture experiments are groups of mixture blends where each group or block is assumed to differ from other groups or blocks by an additive constant. A design is said to block orthogonally with respect to the blending properties of the components if the estimates of the blending properties in the fitted model are uncorrelated with and are unaffected by the effects of the blocks. In mixture experiments involving process variables, if response is expressed as a sum of the function of mixture components and a function of process variables, then the parameters in mixture part and process part can be estimated independent of each other using orthogonal  block designs. In this case the model is
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(4.1)

where (j is the block difference parameter, for j=1,2,….,t-1 with t as the number of blocks and Q(() as the model in mixture components. 

Nigam(1970,1976) derived conditions for estimation of the parameters of Scheff(’s quadratic model in the presence of block effects and constructed designs, which satisfy these blocking conditions. The conditions given by Nigam are
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(4.2)

where nw is the number of points in wth block.  

John(1984) gave simplified conditions  
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and constructed designs using latin squares.

As an example, for q=3, we have  the following two blocks of four blends each, which satisfy the conditions given in (4.2).
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(4.4)
Here a,b,c are non-negative numbers with a+b+c=1.0. The centroid is added to remove singularity which is due to the fact that the cross product terms x1x2, x1x3 and x2x3 are not linearly independent. 

Czitrom (1988, 1989) obtained D-optimal designs for Scheff(’s quadratic model in three and four components for the orthogonal designs of John(1984). Draper et al.(1993) discussed mixture designs for  four components in orthogonal blocks.  They used four standard latin squares of order four which are 
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(4.5)
Each of these squares generates five other squares by permuting second, third and fourth column, making 24 latin squares in total. The two squares SI(4) and SIV(4) given in Table 4.1 are then selected from squares generated from square 4, in such a way that the conditions given by John (1984) are satisfied. These two squares provide two orthogonal blocks of size four. These squares are mates and have identical pattern of cross product sums namely, A, B, B, B, B, A for x1x2, x1x3, x1x4, x2x3, x2x4 and x3x4 with A = 2(ab+cd) and 
B = (ac+ad+bc+bd). For estimation of 10 parameters of the quadratic model and the block difference, two new blends must be added.




TABLE 4.1


BLOCK I



BLOCK II

SI(4)
a  b  c  d
SIV(4)
a  b  d  c


b  a  d  c

b  a  c  d


c  d  b  a

c  d  a  b


d  c  a  b

d  c  b  a

SI(3)
a  b  c  d 
SV(3)
a  d  c  b


b  c  d  a

b  a  d  c


c  d  a  b

c  b  a  d


d  a  b  c

d  c  b  a


The bottom portion of Table 4.1 are squares SI(3) and SV(3) generated from squares 3 by using same permutations on square 3. These two squares are mates. A new common blend  (usually the centroid) is added to each block to achieve non-singularity of the design.




The study was extended by Prescott et al.(1993) for five components and this was further generalized by Lewis et al.(1994) for q components. 

5
Other Mixture Model Forms

Scheffe’s polynomial models are adequate for the systems that are well behaved. To investigate other types of systems, functional forms other than that of Scheffe’s polynomials are more appropriate and introduced in liturature by Draper and John (1977), Becker (1968), Cox (1971), Darroch and Waller (1985), Aitchinson and Bacon-Shone (1984).

Draper and John (1977) introduced models containing inverse terms: To mode the extreme change in the response behaviour as the value of one or more components tends to a boundary of the simplex (i.e. when one or more xi (0), 
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These models are augmentations of the Scheffe’s polynomials with the additional terms of the form xi-1 included to account for the possible extreme change in the response as xi approaches zero. It is assumed that the value of xi never reaches zero, but that the value could be very close to the zero; i.e. xi((i, >0; where (i is a very small quantity that is defined for each application of these models.




Becker (1968) introduced three models for the situations where some components are inert or have additive effects. These models are:












(5.5)

where


for model H1


(5.6)








       for model H2


(5.7)



       for model H3


(5.8)

and
2<n<q

If  in H2 any denominator is zero, the value of the corresponding term is taken to be zero. The models are applied in different scientific areas and are homogenous of degree one.

Aitchinson and Bacon-Shone (1984) introduced the following log contrast models 
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(5.7)

Since we cannot take logarithms of zero, these models are applied only to mixtures which are strictly positive simplex.

Darroch and Waller (1985) suggested the following additive model for experiments with mixtures


(5.8)

This model is additive in mixture components in the sense that it is a sum of separate functions of x1,x2,….,xq. When mixture components very x1,x2,….,xq,vary but the sums x1,x2,….,xs and xs+1,….,xq are fixed, (1<s<q) then the total effect is the sum of the effects of varying x1,x2,….,xs and xs+1,….,xq respectively. This model is suitable for the design of industrial products where mixture components have additive effects on response function. 


Cox (1971) gave the following models:

First degree model
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Second degree model
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where  ((x) is written to mean the expected response at the point x.

6
K- Models

Draper and Pukelshiem  (1998) proposed a set of mixture models refered to as K-models. K-models are alternative representation of mixture models. The models are based on kronecker algebra of vectors and matrices. K-models offer attractive symmetries, compact notations and homogeneous model functions. The expected response to any mixture experiment, when studied using   K-models, is homogeneous in ingredients. The mixture ingredients, xi, can conveniently be written as a q x 1 vector x=(x1, x2, x3, ------xq)(. The kronecker square is a vector of q2 cross products xi xJ arranged lexicographically. 

x ( x = (x1x1, x1x2,…..,x1xq, x2x1, …x2xq,….xqx1, ….., xqxq)(

(6.1)

where symmetry is attained along with duplication of terms.

The kronecker cube x ( x ( x is a q3 x 1 vector of all the terms of the form xixjxk arranged lexicographically such that 

 x ( x ( x = (x1 x1 x1, x1x1x2,.., x1x1xq, x1x2x2,…, x1x2xq,…, xqxqx1,…, xqxqxq)(
(6.2)

The K-models are given as
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(6.5)

The third order terms of the form ijk are repeated six times and those of the form iij are repeated three times. The repetition of terms leads to over parameterized model such that the parameter vector is rank deficient. Thus the moment matrix of K-models has few null vectors. To overcome this situation the parameter of repeated mixed terms are taken to be common with the increased multiplicity and the size of model is reduced. The homogeneous representation of K-models should not be mistaken to mean that we loose linear terms in second-degree K-models or linear and quadratic terms in third degree K-models. The response function of reduced K-models has same number of parameters as are there in the S-models i.e. second degree K-models has q+1C2 parameter and the third degree model K-model has q+2C3 parameters. 

The K-models are best-studied using permutation ally invariant or exchangeable designs. Draper and Pukelshiem (1999) showed that for first degree K-model vertex point designs are unique optimal design under the Kiefer Ordering. Kiefer ordering comprises of two steps. The first step is the majorization ordering to improve balanced ness. The second step is an improvement relative to the usual Loewners matrix ordering within the class of exchangeable moment matrices. Many design problems enjoy symmetry properties, in that they remain invariant under a group of linear transformation. Thus use of invariant design for homogenous symmetric K-models helps to obtain the prime attributes of good experimental designs i.e. symmetry and balancedness. Draper and Pukelshiem (1999) and Draper, Heilger and Pukelshiem (2000) showed that for the second-degree mixture model the set of weighted centroid designs constitutes the convex complete class for Kiefer ordering. For four ingredients, the class is minimal complete. However for q( 5 the set of weighted centroid design is complete. 
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