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1. Introduction

In this talk, we propose to discuss optimality study in the set-up of polynomial regression
designs, following Pukelsheim (1993) and Liski et al (2002). Two classic texts in this area
of research [ containing lucid descriptions of early work] are : Fedorov (1972) and Silvey
(1980).

We postulate a polynomial fit model of degree k ≥ 1.

Yij = β0 + β1xi + · · ·+ βkxk
i + eij (1.1)

where
E(eij) = 0 and V (eij) = σ2

for i = 1, 2, . . . , n and j = 1, 2, . . . , Ni. The responses Yij are uncorrelated and the
experimental conditions x1, x2, . . . , xn are assumed to lie in [−1, 1]. Note that now the ex-
perimental domain T = [−1, 1] is an interval symmetric with respect to origin. The corre-
sponding regression range χ = {(1, x, . . . , xk)′ : x ∈ T } is a one-dimensional curve embed-
ded in Rk+1. We remind ourselves that any collection dn = {x1, x2, . . . , xn; p1, p2, . . . , pn}
of n ≥ 1 distinct points xi ∈ T and positive numbers pi, i = 1, 2, . . . , n such that
n∑

i=1

pi = 1, induces a continuous design d on the regression range χ (cf. Pukelsheim (1993,

p. 32)). In what follows we will denote by D the set of all such designs. The exact design
above yields pi = Ni/N where N =

∑
Ni is the total number of observations.

We stated the well-known de la Garza (1954) phenomenon. Let dn = {x1, x2, . . . ,
xn; p1, p2, . . . , pn} with n > k + 1 be an n-point design for the LSE of β = (β0, β1, . . . ,
βk)′ in the polynomial fit model (1.1) of degree k. Then there exists a (k + 1)-point
design d∗k+1 = {x∗1, x∗2, . . . , x∗k+1; p∗1, p

∗
2, . . . , p∗k+1} for the LSE of β in (1.1) such that

I(d∗k+1) = I(dn), where I(dn) denotes the information matrix of the design dn.

1.1 Symmetric Polynomial Designs

First we consider the reflection operation. Let d ∈ D be a design for the LSE of β =
(β0, β1, . . . , βk)′ on T = [−1, 1] in the polynomial fit model (1.1). The reflected design
dR is given by dR = {−x1,−x2, . . . ,−xn; p1, p2, . . . , pn}. The designs d and dR have the
same even moments, while the odd moments of dR have a reversed sign.

If I(dR) denotes the (k + 1)× (k + 1) information matrix of dR, then

I(dR) = QI(d)Q, (1.2)
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where Q = Diag(1,−1, 1,−1, . . . ,±1) is a diagonal matrix with diagonal elements 1,−1, 1,
−1, . . . ,±1

The symmetrized design

d̄ =
1
2
(d + dR) ≡ {±xi;

pi

2
,
pi

2
|1 ≤ i ≤ n}

assigns the weights pi

2 to xi and −xi for each i. The information matrix of d̄ is

I(d̄) =
1
2
[I(d) + QI(d)Q],

where all odd moments are zero and the even moments are equal to the corresponding
moments of the original design d. Hence the averaging operation simplifies information
matrices by letting all odd moments vanish. Since I(dR) is obtained from I(d) by the
similarity transformation (1.2), I(dR) and I(d) have the same eigenvalues.

From the above, it follows that any optimality criterion which is a function of the
eigenvalues of the information matrices will be invariant with respect to the reflection
operation. It follows that superadditivity and invariance of an optimality functional φ
(with respect to the reflection) imply

φ[I(d̄)] = φ

{
1
2
[I(d) + I(dR]

}
≥ 1

2
{φ[I(d)] + φ[I(dR)]}

= φ[I(d)].

Thus symmetrization improves the value of the criterion φ, or at least maintains the
same value, provided that φ is superadditive and invariant with respect to the reflection.
Therefore, for such criteria, we may confine ourselves to the class of symmetric designs.

1.2 Symmetric Designs for Quadratic Regression

Let dn denote a symmetric n-point design on T = [−1, 1] for the LSE of β = (β0, β1, β2}′
in the quadratic regression model

Yij = β0 + β1xi + β2x
2
i + eij (1.3)

with the assumptions similar to the general polynomial fit model (1.1). It follows that

I(dn) =

 1 0 µ2

0 µ2 0
µ2 0 µ4

 .

Whenever n > 3, we may obtain the same information matrix by using d3 = {−a, 0, a;
w/2, 1−w,w/2} by choosing a =

√
µ4/µ2 and w = µ2

2/µ4. This is the spirit of de la Garza
(DLG) Phenomenon. Henceforth, we will confine only to 3-point symmetric designs.

Now we prove for the model (1.3) the following result.

Theorem. Let d3 be any 3-point symmetric design for the LSE of β = (β0, β1, β2)′ in (1.3)
with its support points in the interior of T . Then there exists a symmetric 3-point design
d∗3 = {−1, 0, 1; p

2 , 1− p, p
2} with p < 1 such that d∗3 � d3 in the sense that I(d∗3) ≥ I(d3).
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We skip the proof and instead refer to Liski et al (2002).
Now the A-optimal design, D-optimal design, E-optimal design and MV-optimal design

can be determined in a straightforward manner. Note that in terms of matrix means φt,
−∞ ≤ t ≤ 1, φ−1, φ0 and φ−∞ are the A-optimality criterion, D-optimality criterion, and
E-optimality criterion respectively. The characteristic function of I(dp) corresponding to
a 3-point design dp is

f(λ) = (p− λ)[(1− λ)(p− λ)− p],

which yields the eigenvalues of I(dp):

λ1 =
1
2
(p + 1) +

1
2

√
5p2 − 2p + 1,

λ2 = p,

λ3 =
1
2
(p + 1)− 1

2

√
5p2 − 2p + 1.

The optimal designs are given in Liski et al (2002).
In the above, MV-optimal design is based on the criterion of minimization of the larger

of the two variances of the estimators involving the linear and the quadratic terms.
It is clear from the nature of the above designs that, within the class of 3-point designs,

further Loewner order domination is not possible. So there exists no Loewner optimal de-
sign. In spite of this limitation, it would be natural to examine the nature of a complete
class of designs for a general polynomial regression model. Pukelsheim [(1993); Claim
10.7] states that d is admissible in (1.1) if and only if d has at most k−1 support points in
the open interval (−1, 1), besides including the extreme points +1/− 1. Thus the (k +1)-
point designs dk+1 = {−1, t2, . . . , ts, 1; p1, p2, . . . , ps, pk+1} with t2, t3, . . . , tk ∈ (−1, 1)

and
s+1∑
i=1

pi = 1 are admissible. This gives a starting point to look for spesific optimal de-

signs. Pukelsheim (1993) has listed A-optimal designs, E-optimal designs and D-optimal
designs for polynomial regression from the 1st to the 10th degree over [−1, 1]. The the-
oretical developments leading to such computations are all explained in Pukelsheim (1993).

2. Multi-Factor First-Degree Polynomial Fit
Models

Let us first look at an m-factor first-degree polynomial fit model

Yij = β1xi1 + β2xi2 + · · ·+ βmxim + eij (2.1)

with m regressor variables, n experimental conditions xi = (xi1, xi2, . . . , xim)′, i = 1, 2,
. . . , n ; j = 1,2,. . . , Ni where the model has no constant term. In polynomial fit models
of the previous section the experimental domain is T = [−1, 1].

For the above m-way polynomial fit model (2.1) the experimental domain T is a subset
of the m-dimensional Euclidean space Rm. In this section we consider two extensions of
the one-dimensional domain T = [−1, 1]: A Euclidean ball of radius

√
m and a symmetric

m-dimensional hypercube T = [−1, 1]m with half of sidelength 1. Later in this section we
also study an m-way first-degree polynomial fit model with a constant term.
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2.1 Designs in a Euclidean Ball

We assume now that the experimental domain for the model (2.1) is an m-dimensional
Euclidean ball of radius

√
m, that is T√m = {x ∈ Rm : ||x|| ≤

√
m}, where ‖ · ‖ denotes

the Euclidean norm.
Denote µjk =

n∑
i=1

pixijxik for j, k = 1, 2, . . . , m. Then the information matrix of an

n-point design
d = {x1,x2, . . . ,xn; p1, p2, . . . , pn} (2.2)

is of the form

I(d) =
n∑

i=1

pixix′i =


µ11 µ12 . . . µ1m

µ21 µ22 . . . µ2m
...

...
. . .

...
µm1 µm2 . . . µmm

 . (2.3)

Consider an n-point design (2.2), n ≥ m. Let

λ1w1w′
1 + λ2w2w′

2 + · · ·+ λmwmw′
m

be the spectral decomposition of I(d), where wi and λi (> 0) are orthonormal eigenvectors
and the eigenvalues of I(d), respectively. Note that

tr[I(d)] =
m+1∑
i=1

λi

=
n∑

i=1

pix′ixi ≤ m,

since by assumption xi ∈ T√m for all i = 1, 2, . . . , n.
Denote w̃i =

√∑n
i=1 λiwi and ri = λi∑n

i=1
λi

, i = 1, 2, . . . , m and consider the m-point

design
d̃ = {w̃1, w̃2, . . . , w̃m; r1, r2, . . . , rm}.

Clearly, w̃i ∈ T√m, i = 1, 2, . . . , m, and the designs d̃ and d have the same information
matrix, i.e. d̃ and d are information equivalent designs. Thus for any n-point design d for
the LSE of β in (2.1) there exists an information equivalent m-point design d̃ from the
regression range T√m such that the support vectors are orthogonal. We say that d̃ is an
orthogonal design. This incidentally demonstrates validity of the DLG phenomenon in the
present set-up as well.

Now we will prove that any design d for the LSE of β = (β1, β2, . . . ,
βm)′ in (2.1) can be dominated by a suitably defined orthogonal design as well. Hence an
optimal design, if it exists, is necessarily an orthogonal design.

Theorem 1. Let d be an n-point design for the LSE of β = (β1, β2, . . . , βm)′ in (2.1),
n ≥ m. Then there exists an m-point orthogonal design d̂ that dominates d in the Loewner
Order Domination sense.

Proof. Let any n-point design d with n ≥ m be given. Then there exists, as shown
above, an information equivalent m-point design d̃ = {v1,v2, . . . ,vm; r1, r2, . . . , rm} with
orthogonal support vectors vi ∈ T√m, i = 1, 2, . . . , m. Then we can always define an
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m-point design d̂ = {v̂1, v̂2, . . . v̂m; r1, r2, . . . rm} with v̂i =
√

mvi/‖vi‖. Note that d̂ is
an orthogonal design on the ball T√m.

Next, we prove that d̂ dominates d in the Loewner sense. Since ‖vi‖/
√

m ≤ 1 for i = 1,
2, . . . , m, we have

I(d̂)− I(d̃) =
m∑

i=1

ri

(
1− ‖vi‖2

m

)
v̂iv̂′i ≥ 0, (2.4)

and consequently d̂ � d̃. Since I(d) = I(d̃), we have I(d̂) ≥ I(d). This justifies the claim.

We consider now the m-factor first-degree polynomial fit model

Yij = β0 + β1xi1 + · · ·+ βmxim + eij , i = 1, 2, . . . , n; j = 1, 2, . . . , Ni (2.5)

with a constant term β0. The regression range of an n-point design d for LSE of β in (2.5)
is of the form

χ =
{(

1
x

)
| x ∈ T√m

}
⊂ T√m+1. (2.6)

The information matrix of an n-point design d in (2.2) is of the form

I(d) =
n∑

i=1

pi

(
1
xi

)
(1,x′i) =


1 µ01 . . . µ0m

µ10 µ11 . . . µ1m
...

...
. . .

...
µm0 µm1 . . . µmm

 , (2.7)

where, additionally, µ0k =
n∑

i=1

pixik, k = 1, 2, . . . , m.

Consider an n-point design d, n ≥ m + 1. Let

λ1w1w′
1 + λ2w2w′

2 + · · ·+ λm+1wm+1w′
m+1 = I(d)

be the spectral decomposition of I(d), where wi and λi > 0 are orthonormal eigenvectors
and the eigenvalues of I(d) respectively. Note that

tr[I(d)] =
m+1∑
i=1

λi

=
n∑

i=1

pi(1 + x′ixi) ≤ m + 1,

since by assumption xi ∈ T√m for all i = 1, 2, . . . , n.

Denote w̃i =

√
m+1∑
i=1

λiwi and ri = λi
m+1∑
i=1

λi

, i = 1, 2, . . . , m + 1, and consider the

(m + 1)-point design

d̃ = {w̃1, w̃2, . . . , w̃m+1; r1, r2, . . . , rm+1}.

Clearly, the support vectors w̃ ∈ T√m+1, i = 1, 2, . . . , m + 1 are orthognal, and the
designs d̃ and d have the same information matrix, i.e. d̃ and d are information equivalent
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designs. Thus, for any n-point design d from the regression range (2.6) for the LSE of β
in (2.5) there exists an information equivalent (m + 1)-point design d̃ from the regression
range T√m+1 such that the support vectors are orthogonal, i.e. d̃ is an orthogonal design.

If the vectors xi ∈ T√m, i = 1, 2, . . . , m + 1 fulfill the conditions

1 + x′ixi = 1 + m, 1 + x′ixj = 0 (2.8)

for all 1 ≤ i 6= j ≤ m+1, then the vectors span a convex body in Rm called a regular sim-
plex (cf. Pukelsheim (1993), p. 391). A design d = {x1,x2, . . . ,xm+1; p1, p2, . . . , pm+1}
which places weights pi, i = 1, 2, . . . , m + 1, on the vertices of a regular simplex in Rm

is called a simplex design. A design with equal weights p1 = p2 = . . . = pm+1 = 1
m+1 is

called a uniform simplex design. If the vectors x1, x2, . . . , xm+1 satisfy the conditions
(2.8), then the vectors (1,x′1), (1,x′2), . . . , (1,x′m+1) are orthogonal, they belong to the
boundary of Tm+1 and are of the form (2.6). Given an orthogonal design on a Euclidean
ball (the support vectors belong to the boundary), then any other orthogonal design can
be obtained from it by orthogonal rotation of support vectors.

It is obvious that we can always find m + 1 orthogonal vectors (1,x′i)
′, i = 1, 2, . . . ,

m + 1 such that every xi belongs to the boundary of T√m. For m = 1 the support points
are x1 = 1 and x2 = −1 so that (1, 1)′ and (1,−1)′ satisfy the conditions (2.8). The
support points x1, x2, x3 satisfying the conditions (2.8) belong to the boundary of T√2

and they span an equilateral triangleequilateral triangle on the sphere T√2. For example
the support points (1, 1)′, − 1

2 (1 +
√

3, 1−
√

3)′, − 1
2 (1−

√
3, 1 +

√
3)′, and every rotation

of them span an equilateral triangle.
We consider now design optimality criteria φ which are isotonic with respect to the

Loewner ordering. We prove that any design d for the LSE of β in (2.5) can be dominated
by an (m + 1)-point simplex design. Hence an optimal design with respect to φoptimality
criterion, if it exists, can be found among the (m + 1)-point simplex designs.

Theorem 2. Let d be an n-point design for the LSE of β in (2.5) over the ball T√m+1, n ≥
m+1 and let φ be any optimality criterion that is (1) isotonic with respect to the Loewner
ordering and (2) depends on the information matrix only through its eigenvalues. Then
there exists an (m + 1)-point simplex design d∗ that dominates d with respect to φ, i.e.
φ(I(d∗)) ≥ φ(I(d)).

Proof. Let any n-point design d with n ≥ m + 1 be given. Then there exists as
shown above, an information equivalent (m + 1)-point design d̃ = {w1,w2, . . . ,wm+1;
r1, r2, . . . , rm+1} with orthogonal support vectors wi ∈ T√m+1, i = 1, 2, . . . , m +
1. Then we can always define such an (m + 1)-point design du = {u1,u2, . . . ,um+1;
r1, r2, . . . , rm+1} that ui =

√
m + 1wi/‖wi‖. Now du is an orthogonal design on the ball

T√m+1. We note that the range of du is not of the form (2.6).
We have noted earlier that we can find m + 1 orthogonal vectors (1, x

′

i)
′,

i = 1, 2, . . . ,m+1 such that every xi belongs to the boundary of T√m. Let ûi = (1, x
′

i)
′

for every i. It then follows that

û′iûi = 1 + x̂′ix̂i = 1 + m, û′iûj = 1 + x̂′ix̂j = 0

Thus d∗ = {û1, û2, . . . , ûm+1; r1, r2, . . . , rm+1} is an orthogonal design on the ball
T√m+1. Since any other orthogonal design on the ball can be obtained by an orthogonal
rotation of d∗, we can find an (m+1)× (m+1) orthogonal matrix P such that ûi = Pui
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for each i. Clearly, the range of d∗ is of the form given by (2.6). We note that d∗ is a
regular simplex design.

Next we prove that d∗ dominates d with respect to criterion φ. The argument used to
prove (2.4) shows that I(du) ≥ I(d̃) = I(d). Further, I(du) = P′I(d∗)P and hence, I(du)
and I(d∗) have the same eigenvalues. Thus by the assumption (2), φ(I(d∗)) = φ(I(du)). It
is now clear that d∗ dominates d with respect to φ. We note that the range of d∗ is of the
form (2.6) and hence d∗ is a valid design for the model given by (2.5). Hence the proof is
complete.

Let X denote a model matrix whose rows are the support vectors (1 x′1)
′, (1 x′2)

′,
. . . , (1 x′m+1)

′ of a simplex design d(m+1). For such a design

I(d(m+1)) = X′DX, D = Diag(p1, p2, . . . , pm+1)

and the model matrix X is square. The non-zero eigenvalues of X′DX and DXX′ are the
same and

DXX′ = (m + 1)D = (m + 1) Diag(p1, p2, . . . , pm+1).

Thus optimum designs with respect to matrix mean criteria are easy to determine. A
design with equal weights p1 = p2 = · · · = pm+1 = 1/(m + 1), called a uniform simplex
design, is A-, D- and E-optimal design.

3. Designs in a Unit Hypercube

A symmetric m-dimensional unit-cube [−1, 1]m is a natural extension of [−1, 1]. Note that
[−1, 1]m is the convex hull of its extreme points, the 2m vertices of [−1, 1]m. It is known
that in order to find optimal support points, we need to search the extreme points of the
regression range χ only. If the support of a design contains other than extreme points,
then it can be Loewner dominated by a design with extreme support points only. This
result was basically presented by Elfving (1952, 1959). A unified general theory is given
by Pukelsheim ((1993); Chapter 8).

As an example consider a 2-factor first degree model (2.1) that has no constant term.
The experimental domain T is the square [−1, 1]2. The extreme points (vertices) of [−1, 1]2

are (
1
1

)
,

(
1
−1

)
,

(
−1
1

)
and

(
−1
−1

)
.

Suppose now that the support of a design d consists of the extreme points only. Then the
information matrix of d takes finally the form

I(d) = p

(
1 1
1 1

)
+ (1− p)

(
1 −1
−1 1

)
=

(
1 2p− 1

2p− 1 1

)
(3.1)

with 0 < p < 1, since
(

1
1

)
(1 1) =

(
−1
−1

)
(−1 − 1),

(
1
−1

)
(1 − 1) =

(
−1
1

)
(−1 1).

The eigenvalues of I(d) are λ1,2 = 1±(2p−1). Thus the optimum values of various matrix
means criteria φt are easy to determine. The 2-point design

d
(2)
1
2

=
{(

1
1

)
,

(
−1
1

)
;

1
2

}
(3.2)
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is A-, D- and E-optimal.
Note that any extreme point design with 2, 3 or 4 support points such that the to-

tal weight at the points
(

1
1

)
and

(
−1
−1

)
is equal to p yields the same information

matrix (2.9), i.e. they constitute a class of information equivalent designs. The infor-

mation equivalent 2-point designs with the support
{(

1
1

)
,

(
1
−1

)}
,
{(

1
1

)
,

(
−1
1

)}
,{(

−1
−1

)
,

(
1
−1

)}
and

{(
−1
−1

)
,

(
−1
1

)}
have the minimal support size. For example, a

3-point design
{(

1
1

)
,

(
1
−1

)
,

(
−1
1

)
; 1

2 , p2, p3

}
with p2 + p3 = 1

2 is information equiv-

alent to (2.10), and hence also it is A-, D- and E-optimal.

Now consider the model (2.5) with m = 2. The information matrix of d defined below
for the LSE of β in (2.5) is

I(d) =

 1 p1 + p2 − p3 − p4 p1 − p2 − p3 + p4

p1 + p2 − p3 − p4 1 p1 + p2 − p3 − p4

p1 − p2 − p3 + p4 p1 + p2 − p3 − p4 1

 (3.3)

when the support of d is


 1

1
1

 ,

 1
1
−1

 ,

 1
−1
−1

 ,

 1
−1
1

 and pi > 0, i = 1, 2, 3,

4 with p1 + p2 + p3 + p4 = 1 are the corresponding weights. It may be noted that it is
enough to concentrate on the above extreme points (in the suport of d) even for a model
with the intercept term.

Let λ1, λ2, λ3 denote the eigenvalues of the information matrix (2.11). Then by
Hadamard’s inequality (Horn and Johnson (1985), p. 477)

|I(d)| = λ1λ1λ2 ≤ 1. (3.4)

Equality holds in (2.12) if and only if I(d) is equal to I3, and I(d) = I3 exactly when
p1 = p2 = p3 = p4 = 1

4 . Consequently, the design that assigns uniform weights 1
4 to

each of these four extreme points of the regression range is the D-optimal design. Since
λ1 + λ2 + λ3 = 1, the design is also A- and E- optimal. There is no 3-point design
d(3) = {x1,x2,x3; p1, p2, p3} such that I(d(3)) = I3. This is easy to show if the support
is chosen to be any 3-point subset of the vertices of the regression range χ. Therefore a
3-point design cannot be D-, A- and E- optimal at the same time !!

We now turn to the general case for arbitrary but fixed m(> 2). Note that the complete
factorial design which assigns equal weight 2−m to each of the 2m extreme points of the
form {±1, ± 1, . . . ,±1} provides an information matrix exactly equal to Im+1.

Liski et al (2002) have illustrated optimality of such designs.

Remark. Though the complete factorial design assigning uniform weight 1/2m to each of
the n = 2m vertices of the m dimensional cube [−1, 1]m is optimal, its support size 2m

grows very quickly when the dimsension m increases.
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For certain values of m there exists a design d(m+1) = {x1,x2, . . . ,xm+1; p1, p2, . . . pm+1}
with the minimum support size m + 1 for which I(dm+1) = Im+1. An (m + 1)× (m + 1)
matrix X with entries 1 and −1 is called a Hadamard matrix (denoted by Hm+1) if
X′X = (m + 1)Im+1. Then the model matrix X is square and hence |X′DX| = |DXX′|.
Now by Hadamard’s inequality∣∣∣I(d(m+1))

∣∣∣ = λ1λ2 · · ·λm+1 ≤
m+1∏
i=1

pi(1 + x′ixi) ≤ 1. (3.5)

Equality holds if and only if the matrix XX′ is diagonal, that is if 1 + x′ixj = 0 for all
i 6= j ≤ m + 1, and p1 = p2 = · · · = pm+1 = 1

m+1 .
If the model matrix X of an (m + 1)-point design d(m+1) is an (m + 1) × (m + 1)

Hadamard matrix Hm+1, then I(d(m+1)) = Im+1. Note that the design d(m+1) with
I(d(m+1)) = Im+1 is a uniform simplex design which assigns weight 1/(m + 1) to each
of the vertices x1, x2, . . . , xm+1 of a regular simplex. The support points xi ∈ {±1}m,
i = 1, 2, . . . , m + 1 are also vertices of the m dimensional cube [−1, 1]m ⊂ T√m. It is
known that if a Hadamard matrix of order k exists then k = 2 or k = 4q for some positive
integer q. Although it has not yet been shown that Hadamard matrices of order 4q exist
for all q ≥ 1, many infinite families of Hadamard matrices have been constructed. These
include all values of q which are of practical interest. A useful reference is Hedayat and
Wallis (1978).

In conclusion, we note that optimal designs with both the support sizes m + 1 and
2m are available whenever Hm+1 exists. It would be interesting to examine what other
support sizes also provide optimal desgns.

In this context, Liski et al (220@0 have discussed an important result due to Caratheodory
and examined its performance vis-a-vis Hadamard and factorial bounds.
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