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1 Introduction

The problem of characterization and construction of optimal designs under both discrete
and continuous set up using the well known A-, D- and E- and universal optimality criteria
has been extensively studied in the literature. See for example , Shah and Sinha(1989),
Pukelsheim(1993). However, the study of the distance optimality criterion put forward
by Sinha(1970) in certain treatment designs settings has received relatively less attention.
Recently there has been a growing interest in this direction (cf. Liski, Luoma, Mandal
and Sinha (1998); Liski, Luoma and Zaigraev (1999); Mandal, Shah and Sinha(2000),
SahaRay and Bhandari(2001), Liski, Mandal, Shah, Sinha(2002)). Our present discussion
is based on the papers cited above. In the process we first touch upon the definition of DS
optimality criterion and then discuss its properties and finally characterize DS optimal
designs in various settings. We also mention about the connection of this optimality
criterion with the well known D- and E- criteria.

We start with a classical linear model

Y ∼ N(Xβ, σ2IN ) (1.1)

where the N ×1 response vector Y = (Y1, . . . , YN )′ follows a multivariate normal distribu-
tion, X = (X1, . . . , XN )′ is the N ×m design matrix, and β = (β1, . . . , βm)′ is the m× 1
parameter vector. E(Y ) = Xβ, and D(Y ) = σ2IN are respectively the expectation vector
and the dispersion matrix of Y .

Let β̂
d

be the least square estimator(LSE) of β in (1.1) using the design d ∈ C where C
denotes the class of competing designs. We are interested in characterizing an experimental
design d∗ which maximises the probability

Pr [ ‖β̂
d
− β‖ < ε ] ∀ε > 0 (1.2)

over the class C of all competing designs d , where ‖β̂
d
− β‖ = [(β̂

d
− β)′(β̂

d
− β)]1/2 , the

Euclidean norm of β̂
d
− β. As this criterion aims at minimizing the distance between the

true parameter value and its estimate in a stochastic sense, it is abbreviated as the DS
(Distance Stochastic)- optimality criterion in the literature.

Definition 1.1 A design d∗ ∈ C is said to be DS(ε) optimal for the LSE of β if for a
given ε > 0, it maximizes the probability Pr [ ‖β̂

d
− β‖ < ε ] over the class C of all

competing designs d .
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Definition 1.2 A design d∗ ∈ C is said to be DS optimal for the LSE of β if d∗ is DS(ε)
optimal for all ε > 0, i.e.

Pr [ ‖β̂
d∗
− β‖ < ε ] ≥ Pr [ ‖β̂

d
− β‖ < ε ] ∀ε > 0 (1.3)

and for any competing design d ∈ C .

Note that the DS optimality criterion is defined via peakedness of the distributions of
β̂

d∗
and β̂

d
. According to a definition proposed by Birnbaum (1948), a random variable

Y1 is more peaked about µ1 than is a random variable Y2 about µ2 if

Pr [ ‖Y1 − µ1‖ ≤ ε ] ≥ Pr [ ‖Y2 − µ2‖ ≤ ε ] ∀ε > 0 (1.4)

When µ1 = µ2 = 0, we simply say that Y1 is more peaked than Y2. Sherman(1955)
generalised this definition to the multivariate case.

There is also a similarity between the DS-optimality criterion and Pitman nearness.
However, Pitman nearness is a stochastic criterion for comparing estimators while DS
optimality criterion is for comparison of designs.

Let us first consider a line fit model through the origin

Yij = βxi + εij , (1.5)

where
E(εij) = 0, V (εij) = σ2

for i = 1, 2, . . . , n and j = 1, 2, . . . , ni . The responses Yij ’s are uncorrelated normal

random variables. Then (β̂−β)2

V (β̂)
= χ2

1 follows the central χ2 distribution with 1 d.f and

Pr [ |β̂ − β| ≤ ε ] = Pr [ (β̂ − β)2 ≤ ε2) = P (χ2
1 ≤

ε2

σ2

n∑
i=1

nixi
2) (1.6)

Let χ = [a, b] be the regression range and let dp = {a, b; p} with 0 ≤ p ≤ 1 denote a
design that assigns the weights p and 1 − p to the regression values b and a respectively.
If |b| > |a|, then the unique maximum of the probability (1.6) is P (χ2

1 ≤ ε2nb2

σ2 ). Thus
d1 = {a, b; 1} is the unique DS optimal design. Similarly, if |b| < |a|, then d0 = {a, b; 0} is
the unique DS optimal design. Finally, if χ2 = [−a, a]; then every design dp = {−a, a; p}
with any 0 ≤ p ≤ 1 is DS optimal.

In fact under model (1.5) with normally distributed errors, the statements
(i) Pr [ |β̂d∗ − β| ≤ ε ] ≥ Pr [ |β̂d − β| ≤ ε ] for all ε > 0
(ii) Pr [ |β̂d∗ − β| ≤ ε ] ≥ Pr [ |β̂d − β| ≤ ε ] for some ε > 0
(iii) V (β̂d∗) ≤ V (β̂d)
are equivalent (cf. Stepniak 1989).

We now consider a more general solution where β may not be estimable. Let η
k×1

=
Lk×mβm×1

be the vector of the linear parametric functions of interest to us. We confine
only to the class C of the designs d (i.e. the so called design matrix Xd) under which all
the components of η are estimable. Let the Best Linear Unbiased Estimator (BLUE ) of
η using the design d be denoted by η̂

d
, where

η̂
d

= Lβ̂
d
,
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Let η̂
d1

and η̂
d2

be the LSE’s of η̂ in (1.1) under the designs d1 and d2 respectively. If for
a given ε > 0,

Pr [ ‖η̂
d1
− η‖ < ε ] ≥ Pr [ ‖η̂

d2
− η‖ < ε ], (1.7)

then the design d1 is at least as good as d2 with respect to the DS(ε) criterion. A design d∗
is said to beDS(ε) optimal for the LSE of η if for a given ε > 0, it maximizes the probability
Pr [ ‖η̂

d
−η‖ < ε ]. When d∗ is DS(ε) optimal for all ε > 0, we say that d∗ is DS-optimal.

In the particular case k = 1, the DS criterion coincides with the DS(ε) criterion for a
given ε > 0. Note that according to the usual definition of Stochastic ordering for random
variables (see Marshall & Olkin 1979, p. 481) ‖η̂

d1
−η‖ is stochastically less than ‖η̂

d2
−η‖

if (1.7) holds for all ε > 0.
For the time being, we assume η to be nonsingularly estimable i.e rank(L) = k.
Let σ2Σd be he dispersion matrix and I(d) = 1

σ2 Σ−1
d be the information matrix of

η̂
d

under the given model. Let TΛdT
′ be the spectral decomposition of I(d) where T is

an orthogonal k × k matrix and Λd = Diag(λd1, . . . , λd,k) is the diagonal matrix of the
eigenvalues of I(d), arranged in decreasing order. Define

Z =
1
σ

Λ1/2
d T ′(η̂

d
− η),

so that
Z ∼ Nk(0, Ik).

Then

Pr [ ‖η̂
d
− η‖ < ε ] = Pr [(η̂

d
− η)′(η̂

d
− η) < ε2 ] (1.8)

= Pr[ Z ′Λ−1Z ≤ ε2/σ2 ]

= Pr[
∑ Zi

2

λdi
≤ δ2 ] (1.9)

for δ = ε/σ.
Thus ∀ δ2 > 0, the DS(ε) optimality criterion depend on I(d) only through its eigenvalues
λ = (λd1, . . . , λdk)′ .

We define the criterion function ψε or equivalently ψδ as

ψε(I(d)) = Pr [ ‖η̂
d
− η‖2 < ε2 ] and ψδ(λd) = Pr[

∑ Zi
2

λdi
≤ δ2 ] (1.10)

It is clear that ψε(I(d)) = ψδ(λd) for δ = ε
σ > 0.

As a function of δ2 the DS(ε) optimality criterion ψδ(λd) is the cumulative distribution
function of

∑ Zi
2

λdi
for every λd ∈ IRk

+.

2 Properties of the DS optimality criterion

In the below we sometimes skip the suffix d to avoid notational complexity. Let the
information matrix of the design di be denote by Ii.
It directly follows from (1.10) that

ψε(aI) = ψ√aε(I) and ψδ(aλd) = ψ√aδ(λ)
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for all a > 0. It is clear that the optimality criterion ψε for given ε > 0 induces an ordering
among the designs and among the corresponding information matrices of designs. A design
d1 is said to be at least as good as d2 relative to the criterion ψε if ψε(I1) ≥ ψε(I2) which
in other words mean that the informaton matrix I1 is at least as good as I2 with respect
to ψε .

2.1 Isotonicity and Admissibility

The function ψε preserves the matrix ordering.

Theorem 2.1 The DS criterion is isotonic relative to Loewner ordering i.e.

I1 ≥ I2 > 0 ⇒ ψε(I1) ≥ ψε(I2) for all ε > 0.

Proof :
I1 ≥ I2 ⇒ λ1i ≥ λ2i ∀i = 1, . . . , k.

Hence the event E1 : {Z :
∑ Zi

2

λ2i
≤ δ2} implies the event E2 : {Z :

∑ Zi
2

λ1i
≤ δ2} and

consequently ψε(I2) =Pr (
∑ Zi

2

λ2i
≤ δ2) ≤ Pr(

∑ Zi
2

λ1i
] ≤ δ2) = ψε(I1) ∀ε > 0.

A reasonable weakest requirement for an information matrix I is that there be no
competing information matrix Ĩ which is better than I in the Loewner ordering sense. We
say that an information matrix I is admissible when every competing moment matrix Ĩ
with Ĩ ≥ I is actually equal to I (cf. Pukelsheim 1993, chapter 10 ). A design d is rated
admissible when its information matrix I(d) is admissible. The admissible designs form
a competing class (Pukelsheim 1993, Lemma 10.3). Thus every inadmisible information
matrix may be improved. If I is inadmissible, then there exists an admissible information
matrix Ĩ 6= I such that Ĩ ≥ I . Since ψε is isotonic relative to Loewner ordering, DS(ε)
optimal designs as well as DS- optimal ones can be found in the set of admissible designs.

2.2 Schur Concavity

The notion of majorization proves useful in the study of the function ψδ(λd). Majorization
concerns the diversity of the components of a vector. (cf. Marshall and Olkin 1979, p.7).

Let a = (a1, . . . , ak)′, and b = (b1, . . . , bk)′ be two k × 1 vectors and a(1) ≤ . . . ≤
a(k), b(1) ≤ . . . ≤ b(k) be the ordered components.

Definition 2.2 : For a, b ∈ IRk, a is said to majorize b, written a � b if∑p
i=1 a(i) ≤

∑p
i=1 b(i) p = 1, . . . , k − 1,∑k

i=1 a(i) =
∑k

i=1 b(i).

}
(2.1)

Definition 2.3 : For a, b ∈ IRk, a is said to weakly supermajorize b, written a w � b if∑p
i=1 a(i) ≤

∑p
i=1 b(i) p = 1, . . . , k. (2.2)

Majorization provides a partial ordering on IRk. The order a � b implies that the elements
of a are more diverse than the elements of b. Then for example, a � ā = (ā, . . . , ā) for all
a,∈ IRk, where ā = 1

k

∑k
i=1 ai. Functions which reverse the ordering of majorization are

said to be Schur Concave (cf. Marshall and Olkin 1979, p. 54).

Definition 2.4 : A function f(x) : IRk → IR is said to be a Schur Concave function if
for x, y ∈ IRk the relation x � y implies f(x) ≤ f(y). Thus the value of f(x) becomes
greater when the components of x become less diverse.
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Next we examine Schur Concavity of DS(ε) criterion. For that we quote below Proposition
7.4.2 of Tong 1990, p.163.

Proposition 1 For given a = (a1, . . . , ak)′, ai > 0 consider an ellipsoid defined by

A2(a) = {x : x ∈ IRk, ,
∑

(
xi

ai
)2 ≤ λ}, λ > 0, fixed.

If the density function f(x) is a Schur concave function of x then P [x ∈ A2(a)] is a Schur
Concave function of a2 = (a2

1, . . . , a
2
n).

Theorem 2.5 The DS(ε) criterion is Schur Concave for all ε > 0.

Proof: The components of Z being i.i.d Normal with mean zero and variance σ2, the joint
density function f(z) is Schur Concave (Tong 1990, Theorem 4.4.1). Then by the above
Proposition ψδ(λd) is a Schur Concave function of λd = (λd1 , . . . , λdk

)′ for all δ > 0.

Corollary 2.6 ψδ(λd) ≤ ψδ(λ̄d) holds for all λd ∈ IRk
+ and all δ > 0 where λ̄d =

(λ̄d, . . . , λ̄d) where λ̄d = 1
k

∑k
i=1 λdi.

Corollary 2.7 Let λ1 and λ2 denote the column vectors where components are the eigen
values of I1 and I2 respectively arranged in decreasing order. If I is the information matrix
with a vector of eigenvalues (1 − α)λ1 + αλ2 then, ψα((1 − α)I1 + αI2) ≥ ψε(I) for all
α ∈ [0, 1] and all ε > 0.

Proof: Let λ[(1− α)I1 + αI2] denote the column vector of eigenvalues of (1− α)I1 + αI2
arranged in decreasing order. Since by Theorem G.1 (Marshall & Olkin 1979, p. 241)
(1− α)λ1 + αλ2 � λ((1− α)I1 + αI2), the result follows.

Theorem 2.8 ψδ(λ) is Schur concave function of (log λ1, . . . , log λk)′ for all δ > 0.

Corollary 2.9 ψδ(λd) ≤ ψδ(λ̃d) holds for all λd ∈ IR
k
+ and all δ > 0 where λ̃d = (λ̃, . . . , λ̃)

and λ̃ =
∏k

i=1 λ
1/k
i .

Theorem 2.10 If λd
w � λ̃d then ψδ(λd) ≤ ψδ(λ̃d).

Proof: If λd
w � λ̃d then there exists (cf. Marshall and Olkin p.11) a vector λd0

such
that

λd0
≥ λd and λd0

� λ̃d

Thus

Pr(
∑ Zi

2

λdi
≤ δ2) ≤ Pr(

∑ Zi
2

λd0i
≤ δ2) ≤ Pr(

∑ Zi
2

λ̃di

≤ δ2) ∀ δ > 0.

The first inequality follows from implication of events as discussed earlier in the proof
of Theorem 2.1. The last inequality now follows from Theorem 2.5. Theorem 2.8 is a
version of Okamoto Lemma (1960). There are other generalisations of this useful result.
We reproduce them below from Sinha(1970) and Liski et.al (1998). (We omit the proofs
altoghether). To describe the results along similar fashion, Okamoto’s Lemma is stated in
a conventional form. Below Zi ’s are i.i.d N(0, 1). Note further that in Lemma 2.11 and
generalisations thereafter, 1

λdi
’s are replaced by µdi’s (omitting suffix d) and used in the

numerator instead of the denominator.
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Lemma 2.11 (Okamoto)

Pr(
k∑

i=1

µiZi
2 ≤ ε2) ≤ Pr(µχk

2 ≤ ε2)

where χk
2 refers to a central χ2 variate with k degrees of freedom and µ = (

∏
µi)1/k.

Generalisation 1:

Pr(
k∑

i=1

µiZi
2 ≤ ε2) ≤ Pr(µ′χk′

2 + µ′′χk′′
2 ≤ ε2)

where

k = k′ + k′′, µ′ = (
k′∏

i=1

µi)1/k and µ′′ = (
k∏

i=k′+1

µi)1/k′′

Generalisation 2:

P (µ1Z
2
1 + µ2Z

2
2 ≤ ε2) ≤ P (γ1Z

2
1 + γ2Z

2
2 ≤ ε2)

provided
µ1µ2 ≥ γ1γ2 and max{µ1, µ2} ≥ max{γ1, γ2}.

Generalisation 3:

P (µ∗1χ
2
v1

+ µ∗2χ
2
v2
≤ ε2) ≤ P (µ∗∗1 χ

2
v1

+ µ∗∗2 χ
2
v2
≤ ε2)

provided
(µ∗1)

v1(µ∗2)
v2 > (µ∗∗1 )v1(µ∗∗2 )v2

and
max{µ∗1, µ∗2} > max{µ∗∗1 , µ∗∗2 } > min{µ∗∗1 , µ∗∗2 } > min{µ∗1, µ∗2}.

2.3 Concavity

Concavity is often regarded as a compelling property of an optimality criterion (cf. Pukelsheim
1993, p. 115), but DS(ε) optimality criterion is not, in general, concave.

Theorem 2.12 The function ψδ(λ) is concave on IRk
+ for every fixed δ > 0 if and only if

k ≥ 2.

Remark 1 In the below, while characterising DS optimal Designs under various settings,
we use formulations (1.9) or the one stated in Lemma 2.11 depending on the tool employed
to arrive at the optimal design.

3 Discrete DS optimal Designs

In this section we derive DS optimal designs for the LSE of η for different choices of the
parametric vector of interest.
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3.1 Mean vector and the set of all elementary contrasts in a CRD
Model

Sinha(1970) introduced DS-optimality criterion for optimal allocation of observations with
a given total in a CRD model:

Yij = µ+ τi + εij , i = 1, . . . , v; j = 1, . . . , ni, (3.1)

where τ = (τ1, . . . , τv)′ is the vector of treatment effects. The parametric vector of interest
is the mean vector η = (µ+ τ1, . . . , µ+ τv)′. For a design d ∈ C, let the ith treatment be
allocated ndi times, ndi ≥ 1, 1 ≤ i ≤ v,

∑v
i=1 ndi = n. Referring to (1.9) we note that

λdi = ndi for each i. When n is divisible by v it turns out that a ’symmetrical allocation’
with ndi = n/v ∀i, is uniquely DS- optimal. The general case, when n is not divisible
by v is quite involved and Sinha (1978) established the partial result when v is even and
n = v

2 (modv). Very recently this problem is resolved by Liski et. al.(1998). A most
symmetrical allocation d∗ with |nd∗i − nd∗j | ≤ 1, ∀i 6= j, turns out to be DS- optimal as
is expected. We outline the proof below.

For any design d(6= d∗) ∈ C there exists at least a pair of treatments (i, j) such that
ndi − ndj > 1. It is easy to check that

nd = (nd1, . . . , nd(i−1), ndi, nd(i+1), . . . , nd(j−1), ndj , nd(j+1) . . . , ndv)
� nd0 = (nd1, . . . , nd(i−1), ndi − 1, nd(i+1), . . . , nd(j−1), ndj + 1, nd(j+1) . . . , ndv).

Then using Theorem 2.5

Pr(
∑ Zi

2

ndi
≤ δ2) ≤ Pr(

∑ Zi
2

nd0i
≤ δ2) (3.2)

By repeated application of (3.2) it can be shown that whenever allocation numbers for a
pair of treatments differ by more than 1, successively reducing thier difference by 2, but
keeping the total fixed, a better design can be obtained and finally, a most symmetrical
allocation with |ndi − ndj | ≤ 1, ∀i 6= j, turns out to be DS- optimal .

Recently, SahaRay and Bhandari(2001) examined the nature of DS -optimal designs in
a CRD set up for inference on the set of all elementary contrasts of the form τi− τj , i < j
viz.

η′ = (τ1 − τ2, . . . , τ1 − τv, . . . , τv−1 − τv).

Writing η = Lτ, we note that R(L) = v−1 . Thus it corresponds to a singularly estimable
full rank problem. Here weak majorization plays an important role to establish DS-
optimality of symmetrical or most symmetrical allocations depending on the divisibility
of the total number of observations by the number of treatments or not. We sketch the
proof below.

Let P be a (v − 1)× v submatrix of an orthogonal v × v matrix such that

Pv−1×v P
′
v×v−1 = Iv−1, P

′P = (I − J/v), (3.3)

D = Diag(1/nd1, . . . , 1/ndv),
and D1/2 = Diag(1/

√
nd1, . . . , 1/

√
ndv).

(3.4)

Writing η̂
d

= Lτ̂d, where τ̂d = (ȳ1., . . . , ȳv.), we have from (1.7)

Pε = Pr[(η̂
d
− η)′(η̂

d
− η) ≤ ε2 ]
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= Pr[(τ̂d − τ)′L′L(τ̂d − τ) ≤ ε2]
= Pr[(τ̂d − τ)′(I − J/v)(τ̂d − τ) ≤ ε2/v]
= Pr[(τ̂d − τ)′P ′P (τ̂d − τ) ≤ ε2/v]
= Pr[(ξ

d

′ξ
d
) ≤ ε2/v], (3.5)

where ξ
d

= P (τ̂d − τ) ∼ Nv−1(0, σ2Σd) with Σd = PDP ′ . For this specific problem, σ2

does not play any role in the determination of DS optimal designs. So we assume σ2 = 1
in particular.
It is not hard to verify that for any d ∈ C, Σd = PDP ′ is nonsingular. Let µ

d
=

(µd1, . . . , µd,(v−1))′ denote the vector of ordered eigenvalues of PDP ′ where µd1 ≤ µd2 ≤
· · · ≤ µd,(v−1). Let T̃ Λ̃T̃ ′ = Σd be the spectral decomposition of Σd , the dispersion matrix
of ξ, where T̃ is an orthogonal (v − 1) × (v − 1) matrix and Λ̃ = Diag(µd1, . . . , µd,(v−1))
is the diagonal matrix of the eigenvalues of the dispersion matrix Σd, in other words of
PDP ′. Then using cannonical reduction as discussed in (1.9), we get

Pr [ ‖η̂
d
− η‖ < ε ] = Pr[

∑
µdiZi

2 ≤ δ2 ] (3.6)

for δ2 = ε2/v. (Note that here µdi’s are eigenvalues of the corresponding dispersion matrix
whereas in (1.9) λdi’s are the eigenvalues of the corresponding information matrix.)
Thus ∀ δ2 > 0, the DS(ε) optimality criterion Pr[ ‖η̂

d
− η‖ < ε ] depend on the design

d with allocation numbers ndi, i = 1, . . . , v only through the eigenvalues µd1, . . . , µd,(v−1)

of the matrix (PDP ′). It is worthwhile to note that µdi’s are very nontrivial functions of
ndi’s, unlike the problem of estimation of mean vector. Furthermore, µdi’s do not depend
on the choice of the P matrix where P ′P = I − J/v and P ′P = Iv−1 as is clear , by
defining A = PD1/2 and B = A′ and noting that the positive eigenvalues of AB = PDP ′

and BA = D1/2P ′PD1/2 = D1/2(I − J/v)D1/2 are equal.

Remark 2 Instead of η′ if we had considered the set of all contrasts of the form τi−τj , i 6=
j, the problem would have remained the same except that δ2 in (3.6) would change to a
scalar multiple of it, viz δ2/2.

Whenever n is divisible by v, using Okamoto’s Lemma and well known inequality between
the Arithmetic Mean(A.M) and the Geometric Mean(G.M) of a set of positive quantities,
DS optimality of a symmetric design d∗with nd∗i = n/v can be shown through the following
steps. First we note that, in the present context of estimation of the set of all elementary
contrasts,

| PDP ′ |=
v−1∏
i=1

µdi =
n

v
v∏

i=1

ndi

(3.7)

So

Pr (
v−1∑
i=1

µdiZi
2 ≤ δ2 ) ≤ Pr [(n/(v

v∏
i=1

ndi))1/v−1 χ2
v−1 ≤ δ2]

≤ Pr [(n/(v
v∏

i=1

nd∗i))1/v−1 χ2
v−1 ≤ δ2]

(follows by implication of events)
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= Pr [ (
v−1∏
i=1

µd∗i)
1

(v−1) χ2
v−1 ≤ δ2]

= Pr (
v−1∑
i=1

µd∗iZi
2 ≤ δ2 ) ( as µd∗i ’s are all equal) .

Thus whenever n is divisible by v, the design d∗ with symmetrical allocation turns out to
be DS- optimal.

The case when n is not divisible by v is dealt below. From now onwards we assume
that n = vk + t, t ≥ 1, where k = [n/v] denotes the greatest integer less than or equal to
n/v. Let d∗ ∈ C be a design with nd∗ = (k, . . . , k, k+ 1, . . . , k+ 1)′, k occuring v− t times
and corresponding

D∗ = Diag(1/k, . . . , 1/k,︸ ︷︷ ︸
v−t times

1/(k + 1), . . . , 1/(k + 1)︸ ︷︷ ︸
t times

).

In order to establish d∗ to be DS-optimal, in view of (3.6) and Theorem 2.10, it suffices
to show that

µ
d
−1 w � µ

d∗

−1

where µ
d
−1 and µ

d∗

−1 denote respectively the vectors of eigenvalues of (PDP ′)−1 and
(PD∗P ′)−1, the information matrices.
Step I:
We will establish that

µ(D−1(A+ εI) � µ(D∗−1(A+ εI)), ∀ ε∗ ∈ IR, ε∗ 6= 0 and − 1.

We first note that, for any ε∗ ∈ IR, ε∗ 6= 0 and − 1, A + ε∗I is a nonsingular matrix and
the eigenvalues of D−1/2(A + ε∗I)D−1/2 and D−1(A + ε∗I) are identical. It is clear that
for any design d(6= d∗) ∈ C, there exists at least one pair of treatment symbols i′ and
j′ such that (ndi′ − ndj′) ≥ 2 and

∑
ndi = n. We permute i′and j′ treatment symbols,

keeping others fixed and obtain d̃ ∈ C as

nd̃i = ndi ∀ i 6= i′, j′

nd̃i′ = ndj′

nd̃j′ = ndi′

and hence D−1 = QD−1Q′, where Q represents the corresponding permutation matrix.
In view of the relation Q′Q = QQ′ = I, and Q(A+ ε∗I)Q′ = A+ ε∗I,

D̃−1(A+ εI) = QD−1Q′(A+ εI) = QD−1Q′Q(A+ εI)Q′ = QD−1(A+ εI)Q′. (3.8)

Hence

µ(D̃−1(A+ ε∗I)) = µ(D−1(A+ ε∗I))

Now it is easy to see that for some 0 < α < 1, (ndi′ − 1, ndj′ + 1) can be represented as a
convex combination of (ndi′ , ndj′) and (ndj′ , ndi′). Choosing this α, it follows that

µ(D−1(A+ εI)) = αµ(D−1(A+ εI)) + (1− α)µ(QD−1(A+ εI)Q′)

= αµ(D−1(A+ εI)) + (1− α)µ(D̃−1(A+ εI))
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� µ(αD−1(A+ εI) + (1− α)D̃−1(A+ εI)) (3.9)
(cf. proof of Corollary 2.7)

= µ((αD−1 + (1− α)D̃−1)(A+ εI))

= µ(D0
−1(A+ εI)), (3.10)

where
D0
−1 = αD−1 + (1− α)D̃−1

= Diag(nd1, . . . , nd(i′−1), ndi′ − 1, nd(i′+1), . . . , nd(j′−1), ndj′ + 1, nd(j′+1), . . . , ndv).

Thus when the pair of allocation numbers (ndi′ , ndj′) is transferred to a pair (ndi′−1, ndj′+
1), reducing their mutual difference by two, but keeping the total fixed, we get

µ(D−1(A+ ε∗I)) � µ(D0
−1(A+ ε∗I)), ∀ε∗ ∈ IR, ε∗ 6= 0and 1.

Note that starting from D−1 successive averaging by taking convex combination of any
two co-ordinates of nd = (nd1, . . . ndv)′ in the above sense, while keeping the rest of the
co-ordinates fixed, we will eventually get

D∗
−1 = diag(k, . . . , k, k + 1, . . . , k + 1)

and similar successive steps of majorization will yield

µ(D−1(A+ εI)) � µ(D0
−1(A+ εI)) � · · · � µ(D∗−1(A+ εI)). (3.11)

Step II:
We will now establish that

µ
d
−1 w � µ

d∗

−1

where µ
d
−1 and µ

d∗

−1 denote respectively the vectors of eigenvalues of (PDP ′)−1 and
(PD∗P ′)−1. In Step I, (3.10) can be rewritten alternatively as

µ−1 (D(A+ ε∗I)−1) � µ−1(D∗(A+ ε∗I)−1). (3.12)

As A = I − J/v,

(A+ εI)−1 =
1

1 + ε
(A+

1 + ε

ε
J/v), ε ∈ IR, ε 6= 0 and − 1. (3.13)

Call 1+ε
ε = θ. Thus for any θ > 0, (3.4) can be rewritten as

µ−1(D(A+ θJ/v)) � µ−1(D∗(A+ θJ/v)). (3.14)

Now use the result that

lim
θ→0

µ1(D(A+ θJ/v)) = 0,

and lim
θ→0

µi(D(A+ θJ/v)) = λi(DA), i 6= 1.

and note that µi(DA) = µi−1(PDP ′), ∀ i = 2, . . . , v. Referring to the Def 2.2, it can be
seen that (3.13) will yield v inequalities of which the first (v− 1) after imposing limit will
yield

µ
d
−1 = (1/µd1, . . . , 1/µd(v−1)) w � (1/µd∗1, . . . , 1/µd∗(v−1)) = µ

d∗

−1 (3.15)

and hence the result.
It can be easily seen that d∗ as well as any permutation of d∗ is uniquely DS optimal.
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3.2 A full set of orthonormal contrasts in the block design model

Now we consider a block design model. We explain the connection between DS optimal
designs and universally optimal designs in the sense of Kiefer(1975). For the inferential
problem of a full set of orthonormal treatment contrasts i.e η

d
= Pτd the DS-optimality

criterion boils down to maximize

Pr [ ‖η̂
d
− η‖ < ε ] = Pr[ξ′

d
ξ

d
≤ ε2]

where ξ
d

= P (τ̂d−τ) ∼ Nv−1(0,Σd) with Σd = (PCdP
′)−1 and Cd is the usual C−matrix

under the design d. Now application of Corollary 2.6 and arguments used through im-
plication of events yield that if there exists a design d∗ for which the Cd∗ is completely
symmetric and tr(Cd∗) = maxd∈C tr(Cd) then the design d∗ is DS optimal. This covers
BIBDs, BBDs, Yoden square designs, in particular. (vide Kiefer 1975).

3.3 Control vs. test treatment comparisons in a CRD model

Optimality studies in the context of treatment vs.control comparisons has received consid-
erable attention of the researchers in the recent years. See Majumder (1996)and references
therein. Dealing with a CRD model and block design set up, Mandal, Shah Sinha (2000)
characterizes DS optimal designs for inference on the vector of parametric contrasts in-
volving a set of treatments and one control, i.e

η = (τ0 − τ1, τ0 − τ2, . . . , τ0 − τv)′

= Lτ (3.16)

where L = (1| − I), τ = (τ0, τ1, . . . , τv)′ and τ0 refers to the effect of the control treatment
and τ1, . . . , τv refer to the test treatments.

Let under a CRD d in the competing class C, nd0, , nd1, . . . , ndv denote allocation
numbers subject to a total of n observations. Setting pdi = ndi

n , i = 0, 1, 2, . . . , v so that∑v
i=0 pdi = 1, d ∈ C, the problem is to seek optimal values of pdi ’s so as to maximize

Pε = Pr [ ‖η̂
d
− η‖ < ε ] ∀ε > 0.

It is not hard to verfy that variance- covariance matrix of η̂
d

turns out to be

D(η̂
d
) = σ2[D +

Jv

nd0
]

where D = diag( 1
nd1

, . . . , 1
ndv

) and Jv = ((1))v×v, the matrix of all ones. Let µd1, . . . , µdv

denote the eigenvalues of σ2D(η̂
d
). Then

v∏
i=1

µdi = |D +
Jv

nd0
| =

1∏v
i=1 ndi

(
n

nd0
) ≥ (

v

n− nd0
)v n

nd0
(A.M ≥ G.M) (3.17)

Further

µmax ≥
1′v(D + Jv

nd0
)1v

1′1
=

∑v
i=1

1
ndi

+ v2

nd0

v

≥ v2

n− nd0
+

v2

nd0
(usingA.M ≥ H.M)

=
nv

nd0(n− nd0)
(3.18)
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In (3.16) and (3.17) ”= ” holds whenever nd1 = nd2 = · · · = ndv = (n− nd0)/v for every
nd0. Referring to the probability inequality in Generalisation 3, we set

v1 = 1, v2 = v − 1, µ∗1 = µmax, µ∗2 = (
∏
µdi

µmax
)1/(v−1)

µ∗∗1 =
nv

nd0(n− nd0)
and µ∗∗2 =

v

(n− nd0)

Note that

µ∗1 = max(µ∗1, µ
∗
2) ≥ max(µ∗∗1 , µ

∗∗
2 ) = µ∗∗1 (3.19)

Now we deal with the two cases µ∗2 ≥ µ∗∗2 and µ∗2 < µ∗∗2 separately.
Suppose first that µ∗2 ≥ µ∗∗2 . Then an application of Generalisation 1 gives

Pr(
k∑

i=1

µiZi
2 ≤ ε2) ≤ Pr(µmaxχ1

2 + µ∗2χv−1
2 ≤ ε2)

≤ Pr(µ∗∗1 χ1
2 + µ∗∗2 χv−1

2 ≤ ε2) (3.20)

The last equation follows by implication of events.
If on the other hand, µ∗2 < µ∗∗2 conditions reqiured in Generalisation 3 are satisfied and
hence the above result follows from application of Generalisation 1 followed by that of
Generalisation 3.

Thus, for every fixed nd0 = n0 say, the allocation (n0,
n−n0

v , . . . , n−n0
v ) is uniformly

beter than the allocation (n0, nd1, . . . , ndv) for all choices of ndi’s subject to
∑
ndi = n−n0.

Thus for this problem,

Pr(
k∑

i=1

µiZi
2 ≤ ε2) ≤ Pr(

nv

n0(n− n0)
χ2

1 +
v

n− n0
χ2

v−1 ≤ ε2)

= Pr(χ1
2 + p0χv−1

2 ≤ p0(1− p0)ε2)
= Pε(say)

According to the approximate design theory, p0 is chosen optimally to maximize Pε for
every ε > 0. For several choices of ε and v using 10,000 simulation Mandal and Shah and
Sinha (2000) observe that no single p0 is optimal for all values of ε. Further the DS optimal
design d∗ are almost the same as A- optimal allocations . Since the optimal designs are
very much ε dependent it would be reasonable to choose a value of p0 which maximizes
Pε averaged with respect to an appropriate weight function for ε. Assuming the p.d.f of
ε2 as that of χ2

2 Mandal et al. (2000) set a value for the weighted coverage probability P̄
and search for avalue of p0 which will maximise v/n and thereby minimize the value of n
required to attain P̄ . Results are tabulated in the paper for choices of P̄ = .9 and .95.

3.4 Control-treatment comparisons in treatment- connected de-
signs

Referring to (3.15) for a treatment connected design d with the usual C- matrix denoted
by Cd

D(η̂
d
) = (LC+

d L
′)σ2 = σ2Σd
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where C+
d denotes the Moore-Penrose inverse of Cd.

We note that

µmax(Σd) ≥
x′(LC+

d L
′)x

x′x
for any x 6= 0

In particular, taking x = 1 we get

µmax(Σd) ≥ C+
d00

(v + 1)2

v

It is not difficult to verify that

C+
d00Cd00 ≥ (

v

v + 1
)
2

so that

µmax(Σd) ≥
(v + 1)2

v
(

v

v + 1
)
2 1
cd00

=
v

Cd00
(3.21)

Let d∗ be a design for which Cd∗ has the structure

Cd∗ =


a -a/v ... ... -a/v

-a/v b/v -c/v ... -c/v
...

...
...

...
...

-a/v -c/v -c/v ... b/v

 (3.22)

where a = Cd00 and b = tr(Cd)− Cd00.
It is easy to verify that the eigenvalues of Σd∗ are v

a with multiplicity 1 and v(v−1)
vb−a with

multiplicity (v − 1). Whenever b ≥ a, µmax(Σd∗) = v
a , and in view of (3.20) µmax(Σd) ≥

µmax(Σd∗). Mandal et.al.(2002) arguing exactly as in the case of CRD indicated in previous
subsection claim that d∗ improves over d uniformly in ε > 0 in terms of increasing the
coverage probability whenever the condition

tr(Cd) ≥ 2Cd00 (3.23)

is satisfied.
Thus, if we restrict our attention to the class of designs of the type d∗, the problem reduces
to that of choosing Cd00 so as to maximize

Pr(
v

a
χ1

2 +
v(v − 1)
vb− a

χv−1
2 ≤ ε2)

where a = Cd00 and tr(Cd) = a+ b, in situations where b ≥ a.
The solution is very much ε2 dependent and hence appropriate weighted average proba-
bility by using a suitable weight distribution for ε2 can be taken up.
Let CR0,b,v,k denote the class of binary connected block designs under consideration for
given values of b, v and k(< v) where R0 is the replication number for the control treat-
ment. As in the case of CRD assuming χ2

2 distribution for ε2 Mandal et.al (2000) present
optimal values of n and R0 for fixed values of wighted coverage probability P̄ = .9 and
.95 and conclude that a Balanced treatment Incomplete Block (BTIB) design defined by
Bechhofer and Tamhane(1981) with above values of n and R0 is optimal for the given
coverage probability.
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4 DS-optimal Regression Designs

In this section we derive DS optimal designs for the LSE of β for a m-factor first de-
gree model on asymmetric experimental domain and briefly summarize certain results on
symmetric polynomial designs.

4.1 First degree polynomial fit model

We consider a m- factor first degree polynomial fit model:

Yij = β0 + β1xi1 + · · ·+ βmxim + εij (4.1)

with m regression variables and experimental conditions xi = (xi1, . . . , xim)′ i = 1, . . . , n.
The n point design dn = {x1, . . . , xn : p1, . . . , pn} has ni replications of the level xi with
relative weight pi = ni

n , i = 1, . . . , n We assume tha the experimental domain is an m−
dimensional Euclidean ball of radius

√
m that is

T√m = {x ∈ IRm : ‖x‖ ≤
√
m}.

If the vectors xi ∈ T√m fulfill the conditions

1 + x′ixi = m+ 1, 1 + x′ixj = 0 (4.2)

for all 1 ≤ i 6= j ≤ m + 1, then the vectors span a convex body in IRm called a regular
simplex (cf. Pukelsheim 1993, p. 391). The vertices xi belong to the boundary sphere
of the ball T√m. A design which places weights pi, i = 1, . . . ,m + 1 on the vertices
of a regular simplex in IRm is called a simplex design. A design with equal weights
p1 = p2 = · · · = 1

m+1 is called a uniform simplex design. For m = 1, the support points
are x1 = 1 and x2 = −1 so that (1, 1)′ and (1,−1)′ satisfy the conditions (4.2). For m = 2,
the support points x1, x2, x3 satisfying the conditions (4.2) belong to the boundary of T√2

and span an equilateral triangle on the sphere T√2. For example, the support points
(1, 1)′,− 1

2 (1 +
√

3, 1 −
√

3)′,− 1
2 (1 −

√
3, 1 +

√
3)′ and every rotation of them span an

equilateral triangle. For all m ≥ 1 it is always possible to choose vectors x1, x2, . . . , xm+1

such that they fulfill the condition (4.2). A regular simplex design always exists. Note
that any rotation of a regular simplex design is also a regular simplex design. The smallest
possible support size of a feasible desgn for the LSE of β in a m factor first degree model
is n = m + 1 because β has m + 1 components. Since the DS optimality criterion is
isotonic with respect to the Lowener ordering and it depends on the information matrix
only through the eigen values, there exists an (m + 1) point simplex design on the ball
T√m+1 that dominates any other design with respect to DS optimality criterion. Therefore
the search of DS optimal design for the LSE of β = (β0, β1, . . . , βm)′ can be restricted to
the calss of (m+ 1)point simplex designs.

Theorem 4.1 Let d be an (m + 1)point design for the LSE of β in (4.1) over the ball
T√m+1. Then d is DS optimal if and only if it is an (m+ 1) uniform simplex design.

Proof: Note that the rows of the design matrix X under the (m+ 1) point design d are
the support vetors (1, x′1), (1, x

′
2), . . . , (1, x

′
m+1) with information matrix

I(d) = X ′DX =
∑

pi(1, x′i)
′(1, x′i)
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where D = diag(p1, . . . , pm+1). As already noted above, a DS optimal design can always
be found in the set of (m+ 1) point simplex designs. If d is a simplex design, the design
matrix X is square and the non-zero eigenvalues of X ′DX and DXX ′ are the same. Hence

|I(d)| = |X ′DX| = |DXX ′| = (m+ 1)
m+1∏
i=1

pi

Now the arithmetic mean -geometric mean unequality yields

m+1∏
i=1

pi ≤ (
1

m+ 1
)m+1 (4.3)

Equality holds in (4.3) if and only if p1 = p2 = · · · = pm+1 = 1
m+1 i.e. d is a uniform

simplex design. By Corollary 2.9

ψε[I(d)] ≤ P [χ2
m+1 ≤ δ2(m+ 1)

1
m+1 (

m+1∏
i=1

pi)
1

m+1 ]

where the R.H.S is an increasing function of
∏m+1

i=1 pi. Thus by 4.3 d is a DS optimal
design if and only if it is a uniform simplex design. .
If m = 1 then we have the line fit model

yij = β0 + β1xi + εij (4.4)

wih experimental domail T = [−1, 1] it follows from Theorem 4.1 that the design d∗ =
{−1, 1; 1/2} which assigns weight 1/2 to the points -1 and 1 is the unique DS optimal
design for the LSE of β = (β0, β1)′ in 4.4.

Corollary 4.2 Let Dn be the set of designs with support size n ≥ m + 1 in th m- way
first degree model (4.1) on the experimental domain T√m+1. Then a design d ∈ D is DS
optimal if I(d) = Im+1.

We omit the proof as it is a simple modification of the proof of the theorem 6.1.
By Theorem 6.1 I(d) = Im+1 holds for a uniform simplex design d. Hence a design d
satisfying the condition I(d) = Im+1 exists for the minimal feasible support size n = m+1.
Existence of a DS optimal design in general for any given pair of positive integers m and
n ≥ m + 1 seems to be an unsolved problem. Nevertheless, A DS optimal design can be
found for certain values of m and n ≥ m+ 1. For example, the complete factorial design
2m is a DS optimal design with n = 2m. The information matrix of the complete factorial
design 2m is Im+1 and consequently it is a DS optimal design for te LSE of β.

4.2 Symmetric Polynomial Designs

We postulate now a polynomial fit model of degree k ≥ 1.

Yij = β0 + β1xi + · · ·+ βkx
k
i + εij (4.5)

where E(εij) = 0 and V (εij) = σ2 i = 1, ..n and j = 1, .., ni

The responses Yij ’s are uncorrelated and the experimental conitions x1, . . . , xn are assumed
to lie in [−1, 1]. Let d ∈ D be a design for the LSE of β = (β0, . . . , βk)′ on T = [−1, 1].
We now consider the reflection operation. The reflected design dR is given by dR =



48 Rita SahaRay [November

{−x1, . . . ,−xn : p1, . . . , pn}. The design d and dR have the same even moments, while the
odd moments of dR have a reversed sign. If I(dR) denotes the (k+1)× (k+1) information
matrix of dR, then

I(dR) = QI(d)Q

where Q = diag(1,−1, 1,−1, . . . ,±1).
The symmetrized design

d̄ =
1
2
(d+ dR) = {+xi;

pi

2
,
pi

2
|i ≤ n}

assigns the weights pi

2 to xi and −xi for each i.
The information matrix of d̄ is

I(d̄) =
1
2
[I(d) +QI(d)Q]

It is easy to see that I(dR) and I(d) have the same eigenvalues. The DS optimality
criterion for ψε is invariant with respect to the reflection operation and it follows from
the Corollary 2.7 that the symmetrized design d̄ is at least as good as d with respect to
the DS optimality criterion. Therefore, in symmetric experimental domain it is sufficient
to consider symmertrized designs only. However, it turns out that in the polynomial
regression model of degree k > 1 there exists no DS optimal design for the LSE of β. The
illustration using a quadratic regression model is to be found in Liski et.al. (1999).

5 D-, E- and DS(ε) optimality

Liski et.al (1999) studied the behaviour of the DS(ε) criterion when ε approaches 0 and
∞ respectively. These limiting cases have an interesting relationship wih the traditional
D- and E- optimality criteria.
We now refer to a theorem from Liski et.al.(1999) without proof.

Theorem 5.1 Let λ and γ ∈ IRk denote vectors whose components are eigenvalues of the
information matrices I(d1) and I(d2) respectively, arranged in decreasing order. Then the
following statements hold:

a) If ψδ(λ) ≥ ψδ(γ) for all sufficiently small δ > 0, then |I(d1)| ≥ |I(d2)| if |I(d1)| ≥
|I(d2)|, then ψδ(λ) > ψδ(γ) for all sufficiently small δ > 0.

b) If ψδ(λ) ≥ ψδ(γ) for all sufficiently large δ, then λk ≥ γk; if λk > γk then
ψδ(λ) > ψδ(γ) for all sufficiently large δ.

This theorem shows that DS(ε) criterion is equivalent to the D- criterion as ε → 0 and
to the E- criterion as ε → ∞. These conclusions are due to the fact that both D -and E
optimal designs are unique. (cf. Hoel 1958, Pukelsheim and Studden(1993)).
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