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CHAPTER 1

Mathematical Preliminaries

This chapter reviews some of the concepts and results from calculus that are frequently
used in this course. We recall important definitions and theorems whose proof is outlined
briefly. The readers are assumed to be familiar with a first course in calculus.

In Section 1.1, we introduce sequences of real numbers and discuss the concept of limit
and continuity in Section 1.2 with the intermediate value theorem. This theorem plays a
basic role in finding initial guesses in iterative methods for solving nonlinear equations. In
Section 1.3 we define derivative of a function, and prove Rolle’s theorem and mean-value
theorem for derivatives. The mean-value theorem for integration is discussed in Section 1.4.
These two theorems are crucially used in devising methods for numerical integration and
differentiation. Finally, Taylor’s theorem is discussed in Section 1.5, which is essential for
derivation and error analysis of almost all numerical methods discussed in this course. In
Section 1.6 we introduce tools useful in discussing speed of convergence of sequences and
rate at which a function f(x) approaches a point f(x0) as x→ x0.

Let a, b ∈ R be such that a < b. We use the notation [a, b] for the closed interval

[a, b] = {x ∈ R : a ≤ x ≤ b }.
and (a, b) for the open interval

(a, b) = {x ∈ R : a < x < b }.

1.1 Sequences of Real Numbers

Definition 1.1 (Sequence).

A sequence of real numbers is an ordered list of real numbers

a1, a2, · · · , an, an+1, · · ·
In other words, a sequence is a function that associates the real number an for each natu-
ral number n. The notation {an} is often used to denote the sequence a1, a2, · · · , an, an+1, · · ·

The concept of convergence of a sequence plays an important role in numerical analysis,
for instance when approximating a solution x of a certain problem via an iterative proce-
dure that produces a sequence of approximation. Here, we are interested in knowing the
convergence of the sequence of approximate solutions to the exact solution x.
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Definition 1.2 (Convergence of a Sequence).

Let {an} be a sequence of real numbers and let L be a real number. The sequence {an}
is said to converge to L, and we write

lim
n→∞

an = L(or an → L as n→ ∞),

if for every ϵ > 0 there exists a natural number N such that

|an − L| < ϵ whenever n ≥ N.

The real number L is called the limit of the sequence {an}.

Theorem 1.3 (Sandwich Theorem).

Let {an}, {bn}, {cn} be sequences of real numbers such that

(1) there exists an n0 ∈ N such that for every n ≥ n0, the sequences satisfy the inequalities
an ≤ bn ≤ cn and

(2) lim
n→∞

an = lim
n→∞

cn = L.

Then the sequence {bn} also converges and lim
n→∞

bn = L. ⊓⊔

Definition 1.4 (Bounded Sequence).

A sequence {an} is said to be a bounded sequence if there exists a real number M
such that

|an| ≤M for every n ∈ N.

Theorem 1.5 (Bolzano-Weierstrass theorem). Every bounded sequence {an} has a
convergent subsequence {ank

}.

The following result is very useful in computing the limit of a sequence sandwiched between
two sequences having a common limit.

Definition 1.6 (Monotonic Sequences).

A sequence {an} of real numbers is said to be

(1) an increasing sequence if an ≤ an+1, for every n ∈ N.

(2) a strictly increasing sequence if an < an+1, for every n ∈ N.

(3) a decreasing sequence if an ≥ an+1, for every n ∈ N.

(4) a strictly decreasing sequence if an > an+1, for every n ∈ N.

A sequence {an} is said to be a (strictly) monotonic sequence if it is either (strictly)
increasing or (strictly) decreasing.
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Theorem 1.7. Bounded monotonic sequences always converge. ⊓⊔

Note that any bounded sequence need not converge. The monotonicity in the above theo-
rem is very important. The following result is known as “algebra of limits of sequences”.

Theorem 1.8. Let {an} and {bn} be two sequences. Assume that lim
n→∞

an and lim
n→∞

bn exist.

Then

(1) lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn.

(2) lim
n→∞

c an = c lim
n→∞

an, for any number c.

(3) lim
n→∞

anbn = lim
n→∞

an lim
n→∞

bn .

(4) lim
n→∞

1

an
=

1

lim
n→∞

an
, provided lim

n→∞
an ̸= 0.

1.2 Limits and Continuity

In the previous section, we introduced the concept of limit for a sequences of real numbers.
We now define the “limit” in the context of functions.

Definition 1.9 (Limit of a Function).

(1) Let f be a function defined on the left side (or both sides) of a, except possibly at a
itself. Then, we say “the left-hand limit of f(x) as x approaches a, equals l” and
denote

lim
x→a−

f(x) = l,

if we can make the values of f(x) arbitrarily close to l (as close to l as we like) by
taking x to be sufficiently close to a and x less than a.

(2) Let f be a function defined on the right side (or both sides) of a, except possibly at a
itself. Then, we say “the right-hand limit of f(x) as x approaches a, equals r” and
denote

lim
x→a+

f(x) = r,

if we can make the values of f(x) arbitrarily close to r (as close to r as we like) by
taking x to be sufficiently close to a and x greater than a.

(3) Let f be a function defined on both sides of a, except possibly at a itself. Then, we
say“the limit of f(x) as x approaches a, equals L” and denote

lim
x→a

f(x) = L,

if we can make the values of f(x) arbitrarily close to L (as close to L as we like) by
taking x to be sufficiently close to a (on either side of a) but not equal to a.
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Remark 1.10. Note that in each of the above definitions the value of the function f at
the point a does not play any role. In fact, the function f need not be defined at the point
a. ⊓⊔

In the previous section, we have seen some limit laws in the context of sequences.
Similar limit laws also hold for limits of functions. We have the following result, often
referred to as “the limit laws” or as “algebra of limits”.

Theorem 1.11. Let f, g be two functions defined on both sides of a, except possibly at a
itself. Assume that lim

x→a
f(x) and lim

x→a
g(x) exist. Then

(1) lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x).

(2) lim
x→a

c f(x) = c lim
x→a

f(x), for any number c.

(3) lim
x→a

f(x)g(x) = lim
x→a

f(x) lim
x→a

g(x).

(4) lim
x→a

1

g(x)
=

1

lim
x→a

g(x)
, provided lim

x→a
g(x) ̸= 0.

Remark 1.12. Polynomials, rational functions, all trigonometric functions wherever they
are defined, have property called direct substitution property:

lim
x→a

f(x) = f(a). ⊓⊔

The following theorem is often useful to compute limits of functions.

Theorem 1.13. If f(x) ≤ g(x) when x is in an interval containing a (except possibly at
a) and the limits of f and g both exist as x approaches a, then

lim
x→a

f(x) ≤ lim
x→a

g(x).

Theorem 1.14 (Sandwich Theorem). Let f , g, and h be given functions such that

(1) f(x) ≤ g(x) ≤ h(x) when x is in an interval containing a (except possibly at a) and

(2) lim
x→a

f(x) = lim
x→a

h(x) = L,

then
lim
x→a

g(x) = L.

We will now give a rigorous definition of the limit of a function. Similar definitions can
be written down for left-hand and right-hand limits of functions.
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Definition 1.15. Let f be a function defined on some open interval that contains a, except
possibly at a itself. Then we say that the limit of f(x) as x approaches a is L and we
write

lim
x→a

f(x) = L.

if for every ϵ > 0 there is a number δ > 0 such that

|f(x)− L| < ϵ whenever 0 < |x− a| < δ.

Definition 1.16 (Continuity).

A function f is

(1) continuous from the right at a if

lim
x→a+

f(x) = f(a).

(2) continuous from the left at a if

lim
x→a−

f(x) = f(a).

(3) continuous at a if
lim
x→a

f(x) = f(a).

A function f is said to be continuous on an open interval if f is continuous at every
number in the interval. If f is defined on a closed interval [a, b], then f is said to be
continuous at a if f is continuous from the right at a and similarly, f is said to be
continuous at b if f is continuous from left at b.

Remark 1.17. Note that the definition for continuity of a function f at a, means the
following three conditions are satisfied:

(1) The function f must be defined at a. i.e., a is in the domain of f ,

(2) lim
x→a

f(x) exists, and

(3) lim
x→a

f(x) = f(a).

Equivalently, for any given ϵ > 0, there exists a δ > 0 such that

|f(x)− f(a)| < ϵ whenever |x− a| < δ. ⊓⊔

Theorem 1.18. If f and g are continuous at a, then the functions f +g, f −g, cg (c is a
constant), fg, f/g (provided g(a) ̸= 0), f◦g (composition of f and g, whenever it makes
sense) are all continuous.

Baskar and Sivaji 11 Spring 2013/MA 214



CHAPTER 1. MATHEMATICAL PRELIMINARIES

Thus polynomials, rational functions, trigonometric functions are all continuous on their
respective domains.

Theorem 1.19 (Intermediate Value Theorem). Suppose that f is continuous on the
closed interval [a, b] and let N be any number between f(a) and f(b), where f(a) ̸= f(b).
Then there exists a point c ∈ (a, b) such that

f(c) = N.

1.3 Differentiation

Definition 1.20 (Derivative).

The derivative of a function f at a, denoted by f ′(a), is

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
, (1.1)

if this limit exists. We say f is differentiable at a. A function f is said to be differen-
tiable on (c, d) if f is differentiable at every point in (c, d).

Remark 1.21. The derivative of a function f at a point x = a can also be given by

f ′(a) = lim
h→0

f(a)− f(a− h)

h
, (1.2)

and

f ′(a) = lim
h→0

f(a+ h)− f(a− h)

2h
, (1.3)

provided the limits exist. ⊓⊔

If we write x = a+h, then h = x− a and h→ 0 if and only if x→ a. Thus, formula (1.1)
can equivalently be written as

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

Interpretation: Take the graph of f , draw the line joining the points (a, f(a)), (x, f(x)).
Take its slope and take the limit of these slopes as x → a. Then the point (x, f(x))
tends to (a, f(a)). The limit is nothing but the slope of the tangent line at (a, f(a)) to
the curve y = f(x). This geometric interpretation will be very useful in describing the
Newton-Raphson method in the context of solving nonlinear equations. ⊓⊔

Theorem 1.22. If f is differentiable at a, then f is continuous at a.
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Proof:

f(x)− f(a) =
f(x)− f(a)

x− a
(x− a)

f(x) =
f(x)− f(a)

x− a
(x− a) + f(a)

Taking limit as x→ a in the last equation yields the desired result. ⊓⊔
The converse of Theorem 1.22 is not true. For, the function f(x) = |x| is continuous

at x = 0 but is not differentiable there.

Theorem 1.23. Suppose f is differentiable at a. Then there exists a function ϕ such that

f(x) = f(a) + (x− a)f ′(a) + (x− a)ϕ(x),

and
lim
x→a

ϕ(x) = 0.

Proof: Define ϕ by

ϕ(x) =
f(x)− f(a)

x− a
− f ′(a).

Since f is differentiable at a, the result follows on taking limits on both sides of the last
equation as x→ a. ⊓⊔

Theorem 1.24 (Rolle’s Theorem). Let f be a function that satisfies the following three
hypotheses:

(1) f is continuous on the closed interval [a, b].

(2) f is differentiable on the open interval (a, b).

(3) f(a) = f(b).

Then there is a number c in the open interval (a, b) such that f ′(c) = 0.

Proof:

If f is a constant function i.e., f(x) = f(a) for every x ∈ [a, b], clearly such a c exists.
If f is not a constant, then at least one of the following holds.

Case 1: The graph of f goes above the line y = f(a) i.e., f(x) > f(a) for some x ∈ (a, b).
Case 2: The graph of f goes below the line y = f(a) i.e., f(x) < f(a) for some x ∈ (a, b).

In case (1), i.e., if the graph of f goes above the line y = f(a), then the global max-
imum cannot be at a or b. Therefore, it must lie in the open interval (a, b). Denote that
point by c. That is, global maximum on [a, b] is actually a local maximum, and hence
f ′(c) = 0.
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In case (2), i.e., if the graph of f goes below the line y = f(a), then the global mini-
mum cannot be at a or b. Therefore it must lie in the open interval (a, b). Let us call it d.
That is, global minimum on [a, b] is actually a local minimum, and hence f ′(d) = 0. This
completes the proof of Rolle’s theorem. ⊓⊔

The following theorem is due to J.-L. Lagrange.

Theorem 1.25 (Mean Value Theorem). Let f be a function that satisfies the following
hypotheses:

(1) f is continuous on the closed interval [a, b].

(2) f is differentiable on the open interval (a, b).

Then there is a number c in the open interval (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

or, equivalently,
f(b)− f(a) = f ′(c)(b− a).

Proof: The strategy is to define a new function ϕ(x) satisfying the hypothesis of Rolle’s
theorem. The conclusion of Rolle’s theorem for ϕ should yield the conclusion of Mean
Value Theorem for f .

Define ϕ on [a, b] by

ϕ(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a).

We can apply Rolle’s theorem to ϕ on [a, b], as ϕ satisfies the hypothesis of Rolle’s theorem.
Rolle’s theorem asserts the existence of c ∈ (a, b) such that ϕ′(c) = 0. This concludes the
proof of Mean Value Theorem. ⊓⊔

1.4 Integration

In Theorem 1.25, we have discussed the mean value property for the derivative of a
function. We now discuss the mean value theorems for integration.

Theorem 1.26 (Mean Value Theorem for Integrals). If f is continuous on [a, b],
then there exists a number c in [a, b] such that

b∫
a

f(x) dx = f(c)(b− a).
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Proof: Let m and M be minimum and maximum values of f in the interval [a, b], respec-
tively. Then,

m(b− a) ≤
b∫

a

f(x) dx ≤M(b− a).

Since f is continuous, the result follows from the intermediate value theorem. ⊓⊔
Recall the average value of a function f on the interval [a, b] is defined by

1

b− a

b∫
a

f(x) dx.

Observe that the first mean value theorem for integrals asserts that the average of an
integrable function f on an interval [a, b] belongs to the range of the function f .

Interpretation: Let f be a function on [a, b] with f > 0. Draw the graph of f and find
the area under the graph lying between the ordinates x = a and x = b. Also, look at
a rectangle with base as the interval [a, b] with height f(c) and compute its area. Both
values are the same. ⊓⊔

The Theorem 1.26 is often referred to as the first mean value theorem for integrals.
We now state the second mean value theorem for integrals, which is a general form of
Theorem 1.26

Theorem 1.27 (Second Mean Value Theorem for Integrals). Let f and g be con-
tinuous on [a, b], and let g(x) ≥ 0 for all x ∈ R. Then there exists a number c ∈ [a, b] such
that

b∫
a

f(x)g(x) dx = f(c)

b∫
a

g(x) dx.

Proof: Left as an exercise. ⊓⊔

1.5 Taylor’s Theorem

Let f be a real-valued function defined on an interval I. We say f ∈ Cn(I) if f is n-times
continuously differentiable at every point in I. Also, we say f ∈ C∞(I) if f is continuously
differentiable of any order at every point in I.

The most important result used very frequently in numerical analysis, especially in
error analysis of numerical methods, is the Taylor’s expansion of a C∞ function in a
neighborhood of a point a ∈ R. In this section, we define the Taylor’s polynomial and
prove an important theorem called the Taylor’s theorem. The idea of the proof of this
theorem is similar to the one used in proving the mean value theorem, where we construct
a function and apply Rolle’s theorem several times to it.

Baskar and Sivaji 15 Spring 2013/MA 214



CHAPTER 1. MATHEMATICAL PRELIMINARIES

Definition 1.28 (Taylor’s Polynomial for a Function at a Point).

Let f be n-times differentiable at a given point a. The Taylor’s polynomial of degree
n for the function f at the point a, denoted by Tn, is defined by

Tn(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k, x ∈ R. (1.4)

Theorem 1.29 (Taylor’s Theorem). Let f be (n+ 1)-times differentiable function on
an open interval containing the points a and x. Then there exists a number ξ between a
and x such that

f(x) = Tn(x) +
f (n+1)(ξ)

(n+ 1)!
(x− a)n+1, (1.5)

where Tn is the Taylor’s polynomial of degree n for f at the point a given by (1.4) and the
second term on the right hand side is called the remainder term.

Proof: Let us assume x > a and prove the theorem. The proof is similar if x < a.

Define g(t) by
g(t) = f(t)− Tn(t)− A(t− a)n+1

and choose A so that g(x) = 0, which gives

A =
f(x)− Tn(x)

(x− a)n+1
.

Note that
g(k)(a) = 0 for k = 0, 1, . . . n.

Also, observe that the function g is continuous on [a, x] and differentiable in (a, x).

Apply Rolle’s theorem to g on [a, x] (after verifying all the hypotheses of Rolle’s theo-
rem) to get

a < c1 < x satisfying g′(c1) = 0.

Again apply Rolle’s theorem to g′ on [a, c1] to get

a < c2 < c1 satisfying g′′(c2) = 0.

In turn apply Rolle’s theorem to g(2), g(3), . . . , g(n) on intervals [a, c2], [a, c3], . . . , [a, cn],
respectively.

At the last step, we get

a < cn+1 < cn satisfying g(n+1)(cn+1) = 0.

But
g(n+1)(cn+1) = f (n+1)(cn+1)− A(n+ 1)!,
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which gives

A =
f (n+1)(cn+1)

(n+ 1)!
.

Equating both values of A, we get

f(x) = Tn(x) +
f (n+1)(cn+1)

(n+ 1)!
(x− a)n+1.

This completes the proof. ⊓⊔

Observe that the mean value theorem 1.25 is a particular case of the Taylor’s theorem.

Remark 1.30. The representation (1.5) is called the Taylor’s formula for the function
f about the point a.

The Taylor’s theorem helps us to obtain an approximate value of a sufficiently smooth
function in a small neighborhood of a given point a when the value of f and all its
derivatives up to a sufficient order is known at the point a. For instance, if we know f(a),
f ′(a), · · · , f (n)(a), and we seek an approximate value of f(a + h) for some real number
h, then the Taylor’s theorem can be used to get

f(a+ h) ≈ f(a) + f ′(a)h+
f ′′(a)

2!
h+ · · ·+ f (n)(a)

n!
hn.

Note here that we have not added the remainder term and therefore used the approxima-
tion symbol ≈. Observe that the remainder term

f (n+1)(ξ)

(n+ 1)!
hn+1

is not known since it involves the evaluation of f (n+1) at some unknown value ξ lying
between a and a + h. Also, observe that as h → 0, the remainder term approaches to
zero, provided f (n+1) is bounded. This means that for smaller values of h, the Taylor’s
polynomial gives a good approximation of f(a+ h). ⊓⊔

Remark 1.31 (Estimate for Remainder Term in Taylor’s Formula).

Let f be an (n + 1)-times continuously differentiable function with the property that
there exists an Mn+1 such that

|f (n+1)(ξ)| ≤Mn+1, for all ξ ∈ I.

Then for fixed points a, x ∈ I, the remainder term in (1.5) satisfies the estimate∣∣∣∣f (n+1)(ξ)

(n+ 1)!
(x− a)n+1

∣∣∣∣ ≤ Mn+1

(n+ 1)!
(x− a)n+1.

We can further get an estimate of the reminder term that is independent of x as
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(n+ 1)!
(x− a)n+1

∣∣∣∣ ≤ Mn+1

(n+ 1)!
(b− a)n+1,

which holds for all x ∈ I. Observe that the right hand side of the above estimate is a fixed
number. We refer to such estimates as remainder estimates.

In most applications of Taylor’s theorem, one never knows ξ precisely. However in
view of remainder estimate given above, it does not matter as long as we know that the
remainder can be bounded by obtaining a bound Mn+1 which is valid for all ξ between a
and x. ⊓⊔

Definition 1.32 (Truncation Error).

The remainder term involved in approximating f(x) by the Taylor’s polynomial Tn(x)
is also called the Truncation error.

Example 1.33. A second degree polynomial approximation to

f(x) =
√
x+ 1, x ∈ [−1,∞)

using the Taylor’s formula about a = 0 is given by

f(x) ≈ 1 +
x

2
− x2

8
,

where the remainder term is neglected and hence what we obtained here is only an ap-
proximate representation of f .

The truncation error is obtained using the remainder term in the formula (1.5) with
n = 2 and is given by

x3

16(
√
1 + ξ )5

,

for some point ξ between 0 and x.

Note that we cannot obtain a remainder estimate in the present example as f ′′′ is not
bounded in [−1,∞). However, for any 0 < δ < 1, if we restrict the domain of f to [−δ,∞),
then we can obtain the remainder estimate for a fixed x ∈ [−δ,∞) as

x3

16(
√
1− δ )5

.

Further, if we restrict the domain of f to [−δ, b] for some real number b > 0, then we get
the remainder estimate independent of x as

b3

16(
√
1− δ )5

. ⊓⊔

Definition 1.34 (Taylor’s Series). Let f be C∞ in a neighborhood of a point a. The
power series

∞∑
k=0

f (k)(a)

k!
(x− a)k

is called the Taylor’s series of f about the point a.
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Fig. 1.1. Comparison between the graph of f(x) = cos(x) and the Taylor polynomial of degree 2 and 10 about
the point a = 0.

The question now is when this series converges and what is the limit of this series. These
questions are answered in the following theorem.

Theorem 1.35. Let f be C∞(I) and let a ∈ I. Assume that there exists an open interval
Ia ⊂ I of the point a such that there exists a constant M (may depend on a)∣∣f (k)(x)

∣∣ ≤Mk,

for all x ∈ Na and k = 0, 1, 2, · · · . Then for each x ∈ Ia, we have

f(x) =
∞∑
k=0

f (k)(a)

k!
(x− a)k.

Example 1.36. As another example, let us approximate the function f(x) = cos(x) by a
polynomial using Taylor’s theorem about the point a = 0. First, let us take the Taylor’s
series expansion

f(x) = cos(0)− sin(0)x− cos(0)

2!
x2 +

sin(0)

3!
x3 + · · ·

=
∞∑
k=0

(−1)k

(2k)!
x2k.

Now, we truncate this infinite series to get an approximate representation of f(x) in a
sufficiently small neighborhood of a = 0 as

f(x) ≈
n∑

k=0

(−1)k

(2k)!
x2k,

which is the Taylor polynomial of degree n for the function f(x) = cos(x) about the point
a = 0. The remainder term is given by

(−1)n+1 cos(ξ)

(2(n+ 1))!
x2(n+1),
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where ξ lies between 0 and x. It is important to observe here that for a given n, we
get the Taylor polynomial of degree 2n. Figure 1.1 shows the comparison between the
Taylor polynomial (red dot and dash line) of degree 2 (n = 1) and degree 10 (n = 5) for
f(x) = cos(x) about a = 0 and the graph of cos(x) (blue solid line). We observe that for
n = 1, Taylor polynomial gives a good approximation in a small neighborhood of a = 0.
But sufficiently away from 0, this polynomial deviates significantly from the actual graph
of f(x) = cos(x). Whereas, for n = 5, we get a good approximation in a sufficiently large
neighborhood of a = 0. ⊓⊔

1.6 Orders of Convergence

In Section 1.1, we defined convergent sequences and discussed some conditions under which
a given sequence of real numbers converges. The definition and the discussed conditions
never tell us how fast the sequence converges to the limit. Even if we know that a sequence
of approximations converge to the exact one (limit), it is very important in numerical
analysis to know how fast the sequence of approximate values converge to the exact value.
In this section, we introduce two very important notations called big Oh and little oh,
which are basic tools for the study of speed of convergence. We end this section by defining
the rate of convergence, which is also called order of convergence.

1.6.1 Big Oh and Little oh Notations

The notions of big Oh and little oh are well understood through the following example.

Example 1.37. Consider the two sequences {n} and {n2} both of which are unbounded
and tend to infinity as n → ∞. However we feel that the sequence {n} grows ‘slowly’
compared to the sequence {n2}. Consider also the sequences {1/n} and {1/n2} both of
which decrease to zero as n → ∞. However we feel that the sequence {1/n2} decreases
more rapidly compared to the sequence {1/n}. ⊓⊔

The above examples motivate us to develop tools that compare two sequences {an}
and {bn}. Landau has introduced the concepts of Big Oh and Little oh for comparing two
sequences that we will define below.

Definition 1.38 (Big Oh and Little oh).

Let {an} and {bn} be sequences of real numbers. Then

(1) the sequence {an} is said to be Big Oh of {bn}, and write an = O(bn), if there exists
a real number C and a natural number N such that

|an| ≤ C |bn| for all n ≥ N.

(2) the sequence {an} is said to be Little oh (sometimes said to be small oh) of {bn},
and write an = o(bn), if for every ϵ > 0 there exists a natural number N such that

|an| ≤ ϵ |bn| for all n ≥ N.
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Remark 1.39.

(1) If bn ̸= 0 for every n, then we have an = O(bn) if and only if the sequence

{
an
bn

}
is

bounded. That is, there exists a constant C such that∣∣∣∣anbn
∣∣∣∣ ≤ C

(2) If bn ̸= 0 for every n, then we have an = o(bn) if and only if the sequence

{
an
bn

}
converges to 0. That is,

lim
n→∞

an
bn

= 0.

(3) For any pair of sequences {an} and {bn} such that an = o(bn), it follows that an =
O(bn). The converse is not true. Consider the sequences an = n and bn = 2n + 3, for
which an = O(bn) holds but an = o(bn) does not hold.

(4) Let {an} and {bn} be two sequences that converge to 0. Then an = O(bn) means the
sequence {an} tends to 0 as fast as the sequence {bn}; and an = o(bn) means the
sequence {an} tends to 0 faster than the sequence {bn}. ⊓⊔

The Big Oh and Little oh notations can be adapted for functions as follows.

Definition 1.40 (Big Oh and Little oh for Functions).

Let x0 ∈ R. Let f and g be functions defined in an interval containing x0. Then

(1) the function f is said to be Big Oh of g as x → x0, and write f(x) = O
(
g(x)

)
, if

there exists a real number C and a real number δ such that

|f(x)| ≤ C |g(x)| whenever |x− x0| ≤ δ.

(2) the function f is said to be Little Oh (also, Small oh) of g as x → x0, and write
f(x) = o

(
g(x)

)
, if for every ϵ > 0 there exists a real number C and a real number δ

such that
|f(x)| ≤ ϵ |g(x)| whenever |x− x0| ≤ δ.

In case of functions also, a remark similar to the Remark 1.39 holds.

Example 1.41. The Taylor’s formula for f(x) = cos(x) about the point a = 0 is

cos(x) =
n∑

k=0

(−1)k

(2k)!
x2k + (−1)n+1 cos(ξ)

(2(n+ 1))!
x2(n+1)

where ξ lies between x and 0.

Let us denote the remainder term (truncation error) as (for a fixed n)
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g(x) = (−1)n+1 cos(ξ)

(2(n+ 1))!
x2(n+1).

Clearly, g(x) → 0 as x→ 0. The question now is

‘How fast does g(x) → 0 as x→ 0?’

The answer is

‘As fast as x2(n+1) → 0 as x→ 0.’

That is,
g(x) = O

(
x2(n+1)

)
as x→ 0. ⊓⊔

1.6.2 Rates of Convergence

Let {an} be a sequence such that lim
n→∞

an = a. We would like to measure the speed at

which the convergence takes place. For example, consider

lim
n→∞

1

2n+ 3
= 0 and lim

n→∞

1

n2
= 0.

We feel that the first sequence goes to zero linearly and the second goes with a much
superior speed because of the presence of n2 in its denominator. We will define the notion
of order of convergence precisely.

Definition 1.42 (Rate of Convergence or Order of Convergence).

Let {an} be a sequence such that lim
n→∞

an = a.

(1) We say that the rate of convergence is atleast linear if there exists a constant c < 1
and a natural number N such that

|an+1 − a| ≤ c |an − a| for all n ≥ N.

(2) We say that the rate of convergence is atleast superlinear if there exists a sequence
{ϵn} that converges to 0, and a natural number N such that

|an+1 − a| ≤ ϵn |an − a| for all n ≥ N.

(3) We say that the rate of convergence is at least quadratic if there exists a constant
C (not necessarily less than 1), and a natural number N such that

|an+1 − a| ≤ C |an − a|2 for all n ≥ N.

(4) Let α ∈ R+. We say that the rate of convergence is atleast α if there exists a constant
C (not necessarily less than 1), and a natural number N such that

|an+1 − a| ≤ C |an − a|α for all n ≥ N.

Baskar and Sivaji 22 Spring 2013/MA 214



1.7. EXERCISES

1.7 Exercises

Sequences of Real Numbers

(1) Consider the sequences {an} and {bn}, where

an =
1

n
, bn =

1

n2
, n = 1, 2, · · · .

Clearly, both the sequences converge to zero. For the given ϵ = 10−2, obtain the
smallest positive integers Na and Nb such that

|an| < ϵ whenever n ≥ Na, and |bn| < ϵ whenever n ≥ Nb.

For any ϵ > 0, show that Na > Nb.

(2) Show that the sequence

{
(−1)n +

1

n

}
is bounded but not convergent. Observe that

the sequence

{
1 +

1

2n

}
is a subsequence of the given sequence. Show that this subse-

quence converges and obtain the limit of this subsequence. Obtain another convergent
subsequence.

(3) Let {xn} and {yn} be two sequences such that xn, yn ∈ [a, b] and xn < yn for each
n = 1, 2, · · · . If xn → b as n → ∞, then show that the sequence {yn} converges. Find
the limit of the sequence {yn}.

(4) Let In =

[
n− 2

2n
,
n+ 2

2n

]
, n = 1, 2, · · · and {an} be a sequence with an is chosen

arbitrarily in In for each n = 1, 2, · · · . Show that an → 1

2
as n→ ∞.

Limits and Continuity

(5) Let

f(x) =

{
sin(x)− 1 if x < 0
sin(x) + 1 if x > 0

.

Obtain the left hand and right hand limits of f at x = 0. Does the limit of f exists at
x = 0? Justify your answer.

(6) Let f be a real-valued function such that f(x) ≥ sin(x) for all x ∈ R. If lim
x→0

f(x) = L

exists, then show that L ≥ 0.

(7) Let f , g and h be real-valued functions such that f(x) ≤ g(x) ≤ h(x) for all x ∈ R. If
x∗ ∈ R is a common root of the equations f(x) = 0 and h(x) = 0, then show that x∗

is a root of the equation g(x) = 0.
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(8) Let P and Q be polynomials. Find

lim
x→∞

P (x)

Q(x)
and lim

x→0

P (x)

Q(x)

in each of the following cases.

(i) The degree of P is less than the degree of Q.

(ii) The degree of P is greater than the degree of Q.

(iii) The agree of P is equal to the degree of Q.

(9) Study the continuity of f in each of the following cases:

(i) f(x) =

{
x2 if x < 1√
x if x ≥ 1

(ii) f(x) =

{
−x if x < 1
x if x ≥ 1

(iii) f(x) =

{
0 if x is rational
1 if x is irrational

(10) Let f be defined on an interval (a, b) and suppose that f is continuous at c ∈ (a, b)
and f(c) ̸= 0. Then, show that there exists a δ > 0 such that f has the same sign as
f(c) in the interval (c− δ, c+ δ).

(11) Show that the equation sinx+ x2 = 1 has at least one solution in the interval [0, 1].

(12) Show that (a + b)/2 belongs to the range of the function f(x) = (x− a)2(x− b)2 + x
defined on the interval [a, b].

(13) Let f(x) be continuous on [a, b], let x1, · · · , xn be points in [a, b], and let g1, · · · , gn
be real numbers having same sign. Show that

n∑
i=1

f(xi)gi = f(ξ)
n∑

i=1

gi, for some ξ ∈ [a, b].

(14) Let f : [0, 1] → [0, 1] be a continuous function. Prove that the equation f(x) = x has
at least one solution lying in the interval [0, 1] (Note: A solution of this equation is
called a fixed point of the function f).

(15) Show that the equation f(x) = x, where

f(x) = sin

(
πx+ 1

2

)
, x ∈ [−1, 1]

has at least one solution in [−1, 1].
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Differentiation

(16) Let c ∈ (a, b) and f : (a, b) → R be differentiable at c. If c is a local extremum (maxi-
mum or minimum) of f , then show that f ′(c) = 0.

(17) Let f(x) = 1− x2/3. Show that f(1) = f(−1) = 0, but that f ′(x) is never zero in the
interval [−1, 1]. Explain how this is possible, in view of Rolle’s theorem.

(18) Let g be a continuous differentiable function (C1 function) such that the equation
g(x) = 0 has at least n roots. Show that the equation g′(x) = 0 has at least n − 1
roots.

(19) Suppose f is differentiable in an open interval (a, b). Prove the following statements
(a) If f ′(x) ≥ 0 for all x ∈ (a, b), then f is non-decreasing.
(b) If f ′(x) = 0 for all x ∈ (a, b), then f is constant.
(c) If f ′(x) ≤ 0 for all x ∈ (a, b), then f is non-increasing.

(20) Let f : [a, b] → R be given by f(x) = x2. Find a point c specified by the mean-value
theorem for derivatives. Verify that this point lies in the interval (a, b).

Integration

(21) Prove the second mean value theorem for integrals. Does the theorem hold if the hy-
pothesis g(x) ≥ 0 for all x ∈ R is replaced by g(x) ≤ 0 for all x ∈ R.

(22) In the second mean-value theorem for integrals, let f(x) = ex, g(x) = x, x ∈ [0, 1]. Find
the point c specified by the theorem and verify that this point lies in the interval (0, 1).

(23) Let g : [0, 1] → R be a continuous function. Show that there exists a c ∈ (0, 1) such
that

1∫
0

x2(1− x)2g(x)dx =
1

30
g(ξ).

(24) If n is a positive integer, show that

√
(n+1)π∫

√
nπ

sin(t2) dt =
(−1)n

c
,

where
√
nπ ≤ c ≤

√
(n+ 1)π.
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Taylor’s Theorem

(25) Find the Taylor’s polynomial of degree 2 for the function

f(x) =
√
x+ 1

about the point a = 1. Also find the remainder.

(26) Use Taylor’s formula about a = 0 to evaluate approximately the value of the function
f(x) = ex at x = 0.5 using three terms (i.e., n = 2) in the formula. Obtain the remain-
der R2(0.5) in terms of the unknown c. Compute approximately the possible values of
c and show that these values lie in the interval (0, 0.5).

(27) Obtain Taylor expansion for the function f(x) = sin(x) about the point a = 0 when
n = 1 and n = 5. Give the reminder term in both the cases.

Big Oh, Little oh, and Orders of convergence

(28) Prove or disprove:

(i) 2n2 + 3n+ 4 = o(n) as n→ ∞.

(ii) n+1
n2 = o( 1

n
) as n→ ∞.

(iii) n+1
n2 = O( 1

n
) as n→ ∞.

(iv) n+1√
n
= o(1) as n→ ∞.

(v) 1
lnn

= o( 1
n
) as n→ ∞.

(vi) 1
n lnn

= o( 1
n
) as n→ ∞.

(vii) en

n5 = O( 1
n
) as n→ ∞.

(29) Prove or disprove:

(i) ex − 1 = O(x2) as x→ 0.

(ii) x−2 = O(cotx) as x→ 0.

(iii) cotx = o(x−1) as x→ 0.

(iv) For r > 0, xr = O(ex) as x→ ∞.

(v) For r > 0, ln x = O(xr) as x→ ∞.

(30) Assume that f(h) = p(h)+O(hn) and g(h) = q(h)+O(hm), for some positive integers
n and m. Find the order of approximation of their sum, ie., find the largest integer r
such that

f(h) + g(h) = p(h) + q(h) +O(hr).
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CHAPTER 2

Error Analysis

Numerical analysis deals with developing methods, called numerical methods, to approx-
imate a solution of a given Mathematical problem (whenever a solution exists). The ap-
proximate solution obtained by this method will involve an error which is precisely the
difference between the exact solution and the approximate solution. Thus, we have

Exact Solution = Approximate Solution + Error.

We call this error the mathematical error.

The study of numerical methods is incomplete if we don’t develop algorithms and
implement the algorithms as computer codes. The outcome of the computer code is a set
of numerical values to the approximate solution obtained using a numerical method. Such
a set of numerical values is called the numerical solution to the given Mathematical
problem. During the process of computation, the computer introduces a new error, called
the arithmetic error and we have

Approximate Solution = Numerical Solution + Arithmetic Error.

The error involved in the numerical solution when compared to the exact solution can be
worser than the mathematical error and is now given by

Exact Solution = Numerical Solution +Mathematical Error + Arithmetic Error.

The Total Error is defined as

Total Error = Mathematical Error + Arithmetic Error.

A digital calculating device can hold only a finite number of digits because of memory
restrictions. Therefore, a number cannot be stored exactly. Certain approximation needs
to be done, and only an approximate value of the given number will finally be stored in
the device. For further calculations, this approximate value is used instead of the exact
value of the number. This is the source of arithmetic error.

In this chapter, we introduce the floating-point representation of a real number and
illustrate a few ways to obtain floating-point approximation of a given real number. We
further introduce different types of errors that we come across in numerical analysis and
their effects in the computation. At the end of this chapter, we will be familiar with the
arithmetic errors, their effect on computed results and some ways to minimize this error
in the computation.
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2.1 Floating-Point Representation

Let β ∈ N and β ≥ 2. Any real number can be represented exactly in base β as

(−1)s × (.d1d2 · · · dndn+1 · · · )β × βe, (2.1)

where di ∈ { 0, 1, · · · , β − 1 } with d1 ̸= 0 or d1 = d2 = d3 = · · · = 0, s = 0 or 1, and an
appropriate integer e called the exponent. Here

(.d1d2 · · · dndn+1 · · · )β =
d1
β

+
d2
β2

+ · · ·+ dn
βn

+
dn+1

βn+1
+ · · · (2.2)

is a β-fraction called the mantissa, s is called the sign and the number β is called the
radix. The representation (2.1) of a real number is called the floating-point represen-
tation.

Remark 2.1. When β = 2, the floating-point representation (2.1) is called the binary
floating-point representation and when β = 10, it is called the decimal floating-
point representation. Throughout this course, we always take β = 10. ⊓⊔

Due to memory restrictions, a computing device can store only a finite number of digits
in the mantissa. In this section, we introduce the floating-point approximation and discuss
how a given real number can be approximated.

2.1.1 Floating-Point Approximation

A computing device stores a real number with only a finite number of digits in the man-
tissa. Although different computing devices have different ways of representing the num-
bers, here we introduce a mathematical form of this representation, which we will use
throughout this course.

Definition 2.2 (n-Digit Floating-point Number).

Let β ∈ N and β ≥ 2. An n-digit floating-point number in base β is of the form

(−1)s × (.d1d2 · · · dn)β × βe (2.3)

where

(.d1d2 · · · dn)β =
d1
β

+
d2
β2

+ · · ·+ dn
βn

(2.4)

where di ∈ { 0, 1, · · · , β − 1 } with d1 ̸= 0 or d1 = d2 = d3 = · · · = 0, s = 0 or 1, and an
appropriate exponent e.

Remark 2.3. When β = 2, the n-digit floating-point representation (2.3) is called the n-
digit binary floating-point representation and when β = 10, it is called the n-digit
decimal floating-point representation. ⊓⊔
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Example 2.4. The following are examples of real numbers in the decimal floating point
representation.

(1) The real number x = 6.238 is represented in the decimal floating-point representation
as

6.238 = (−1)0 × 0.6238× 101,

in which case, we have s = 0, β = 10, e = 1, d1 = 6, d2 = 2, d3 = 3 and d4 = 8.

(2) The real number x = −0.0014 is represented in the decimal floating-point representa-
tion as

x = (−1)1 × 0.14× 10−2.

Here s = 1, β = 10, e = −2, d1 = 1 and d2 = 4. ⊓⊔

Remark 2.5. The floating-point representation of the number 1/3 is

1

3
= 0.33333 · · · = (−1)0 × (0.33333 · · · )10 × 100.

An n-digit decimal floating-point representation of this number has to contain only n digits
in its mantissa. Therefore, the representation (2.3) is (in general) only an approximation
to a real number. ⊓⊔

Any computing device has its own memory limitations in storing a real number. In
terms of the floating-point representation, these limitations lead to the restrictions in the
number of digits in the mantissa (n) and the range of the exponent (e). In section 2.1.2, we
introduce the concept of under and over flow of memory, which is a result of the restriction
in the exponent. The restriction on the length of the mantissa is discussed in section 2.1.3.

2.1.2 Underflow and Overflow of Memory

When the value of the exponent e in a floating-point number exceeds the maximum limit
of the memory, we encounter the overflow of memory, whereas when this value goes below
the minimum of the range, then we encounter underflow. Thus, for a given computing
device, there are real numbers m and M such that the exponent e is limited to a range

m < e < M. (2.5)

During the calculation, if some computed number has an exponent e > M then we say,
the memory overflow occurs and if e < m, we say the memory underflow occurs.

Remark 2.6. In the case of overflow of memory in a floating-point number, a computer
will usually produce meaningless results or simply prints the symbol inf or NaN. When
your computation involves an undetermined quantity (like 0 × ∞, ∞ − ∞, 0/0), then
the output of the computed value on a computer will be the symbol NaN (means ‘not a
number’). For instance, if X is a sufficiently large number that results in an overflow of
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memory when stored on a computing device, and x is another number that results in an
underflow, then their product will be returned as NaN.

On the other hand, we feel that the underflow is more serious than overflow in a com-
putation. Because, when underflow occurs, a computer will simply consider the number
as zero without any warning. However, by writing a separate subroutine, one can monitor
and get a warning whenever an underflow occurs. ⊓⊔

Example 2.7 (Overflow). Run the following MATLAB code on a computer with 32-bit
intel processor:

i=308.25471;

fprintf(’%f %f\n’,i,10^i);

i=308.25472;

fprintf(’%f %f\n’,i,10^i);

We see that the first print command shows a meaningful (but very large) number, whereas
the second print command simply prints inf. This is due to the overflow of memory while
representing a very large real number.

Also try running the following code on the MATLAB:

i=308.25471;

fprintf(’%f %f\n’,i,10^i/10^i);

i=308.25472;

fprintf(’%f %f\n’,i,10^i/10^i);

The output will be

308.254710 1.000000

308.254720 NaN

If your computer is not showing inf for i = 308.25472, try increasing the value of i till
you get inf. ⊓⊔

Example 2.8 (Underflow). Run the following MATLAB code on a computer with 32-
bit intel processor:

j=-323.6;

if(10^j>0)

fprintf(’The given number is greater than zero\n’);

elseif (10^j==0)

fprintf(’The given number is equal to zero\n’);

else

fprintf(’The given number is less than zero\n’);

end
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The output will be

The given number is greater than zero

When the value of j is further reduced slightly as shown in the following program

j=-323.64;

if(10^j>0)

fprintf(’The given number is greater than zero\n’);

elseif (10^j==0)

fprintf(’The given number is equal to zero\n’);

else

fprintf(’The given number is less than zero\n’);

end

the output shows

The given number is equal to zero

If your computer is not showing the above output, try decreasing the value of j till you
get the above output.

In this example, we see that the number 10−323.64 is recognized as zero by the computer.
This is due to the underflow of memory. Note that multiplying any large number by this
number will give zero as answer. If a computation involves such an underflow of memory,
then there is a danger of having a large difference between the actual value and the
computed value. ⊓⊔

2.1.3 Chopping and Rounding a Number

The number of digits in the mantissa, as given in Definition 2.2, is called the precision or
length of the floating-point number. In general, a real number can have infinitely many
digits, which a computing device cannot hold in its memory. Rather, each computing
device will have its own limitation on the length of the mantissa. If a given real number
has infinitely many digits in the mantissa of the floating-point form as in (2.1), then the
computing device converts this number into an n-digit floating-point form as in (2.3).
Such an approximation is called the floating-point approximation of a real number.

There are many ways to get floating-point approximation of a given real number. Here
we introduce two types of floating-point approximation.

Definition 2.9 (Chopped and Rounded Numbers).

Let x be a real number given in the floating-point representation (2.1) as

x = (−1)s × (.d1d2 · · · dndn+1 · · · )β × βe.

The floating-point approximation of x using n-digit chopping is given by
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fl(x) = (−1)s × (.d1d2 · · · dn)β × βe. (2.6)

The floating-point approximation of x using n-digit rounding is given by

fl(x) =

{
(−1)s × (.d1d2 · · · dn)β × βe , 0 ≤ dn+1 <

β
2

(−1)s × (.d1d2 · · · (dn + 1))β × βe , β
2
≤ dn+1 < β

, (2.7)

where

(−1)s × (.d1d2 · · · (dn + 1))β × βe := (−1)s ×

(.d1d2 · · · dn)β + (. 0 0 · · · 0︸ ︷︷ ︸
(n−1)−times

1)β

× βe.

As already mentioned, throughout this course, we always take β = 10. Also, we do not
assume any restriction on the exponent e ∈ Z.

Example 2.10. The floating-point representation of π is given by

π = (−1)0 × (.31415926 · · · )× 101.

The floating-point approximation of π using five-digit chopping is

fl(π) = (−1)0 × (.31415)× 101,

which is equal to 3.1415. Since the sixth digit of the mantissa in the floating-point repre-
sentation of π is a 9, the floating-point approximation of π using five-digit rounding is
given by

fl(π) = (−1)0 × (.31416)× 101,

which is equal to 3.1416. ⊓⊔

Remark 2.11.Most of the modern processors, including Intel, uses IEEE 754 standard
format. This format uses 52 bits in mantissa, (64-bit binary representation), 11 bits in
exponent and 1 bit for sign. This representation is called the double precision number.

When we perform a computation without any floating-point approximation, we say
that the computation is done using infinite precision (also called exact arithmetic).⊓⊔

2.1.4 Arithmetic Using n-Digit Rounding and Chopping

In this subsection, we describe the procedure of performing arithmetic operations using n-
digit rounding. The procedure of performing arithmetic operation using n-digit chopping
is done in a similar way.

Let ⊙ denote any one of the basic arithmetic operations ‘+’, ‘−’, ‘×’ and ‘÷’. Let x
and y be real numbers. The process of computing x ⊙ y using n-digit rounding is as
follows.

Step 1: Get the n-digit rounding approximation fl(x) and fl(y) of the numbers x and y,
respectively.
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Step 2: Perform the calculation fl(x)⊙ fl(y) using exact arithmetic.

Step 3: Get the n-digit rounding approximation fl(fl(x)⊙ fl(y)) of fl(x)⊙ fl(y).

The result from step 3 is the value of x⊙ y using n-digit rounding.

Example 2.12. Consider the function

f(x) = x
(√

x+ 1−
√
x
)
.

Let us evaluate f(100000) using a six-digit rounding. We have

f(100000) = 100000
(√

100001−
√
100000

)
.

The evaluation of
√
100001 using six-digit rounding is as follows.

√
100001 ≈ 316.229347

= 0.316229347× 103.

The six-digit rounded approximation of 0.316229347 × 103 is given by 0.316229 × 103.
Therefore,

fl(
√
100001) = 0.316229× 103.

Similarly,
fl(
√
100000) = 0.316228× 103.

The six-digit rounded approximation of the difference between these two numbers is

fl
(
fl(
√
100001)− fl(

√
100000)

)
= 0.1× 10−2.

Finally, we have

fl(f(100000)) = fl(100000)× (0.1× 10−2)

= (0.1× 106)× (0.1× 10−2)

= 100.

Using six-digit chopping, the value of fl(f(100000)) is 200. ⊓⊔

Definition 2.13 (Machine Epsilon).

The machine epsilon of a computer is the smallest positive floating-point number δ such
that

fl(1 + δ) > 1.

For any floating-point number δ̂ < δ, we have fl(1 + δ̂) = 1, and 1 + δ̂ and 1 are identical
within the computer’s arithmetic.

Remark 2.14. From Example 2.8, it is clear that the machine epsilon for a 32-bit intel
processor lies between the numbers 10−323.64 and 10−323.6. It is possible to get the exact
value of this number, but it is no way useful in our present course, and so we will not
attempt to do this here. ⊓⊔
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2.2 Types of Errors

The approximate representation of a real number obviously differs from the actual number,
whose difference is called an error.

Definition 2.15 (Errors).

(1) The error in a computed quantity is defined as

Error = True Value - Approximate Value.

(2) Absolute value of an error is called the absolute error.

(3) The relative error is a measure of the error in relation to the size of the true value
as given by

Relative Error =
Error

True Value
.

Here, we assume that the true value is non-zero.

(4) The percentage error is defined as

Percentage Error = 100× |Relative Error|.

Remark 2.16. Let xA denote the approximation to the real number x. We use the fol-
lowing notations:

E(xA) := Error(xA) = x− xA. (2.8)

Ea(xA) := Absolute Error(xA) = |E(xA)| (2.9)

Er(xA) := Relative Error(xA) =
E(xA)

x
, x ̸= 0. (2.10)

⊓⊔

The absolute error has to be understood more carefully because a relatively small
difference between two large numbers can appear to be large, and a relatively large differ-
ence between two small numbers can appear to be small. On the other hand, the relative
error gives a percentage of the difference between two numbers, which is usually more
meaningful as illustrated below.

Example 2.17. Let x = 100000, xA = 99999, y = 1 and yA = 1/2. We have

Ea(xA) = 1, Ea(yA) =
1

2
.

Although Ea(xA) > Ea(yA), we have

Er(xA) = 10−5, Er(yA) =
1

2
.

Hence, in terms of percentage error, xA has only 10−3% error when compared to x whereas
yA has 50% error when compared to y. ⊓⊔
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The errors defined above are between a given number and its approximate value. Quite
often we also approximate a given function by another function that can be handled
more easily. For instance, a sufficiently differentiable function can be approximated using
Taylor’s theorem 1.29. The error between the function value and the value obtained from
the corresponding Taylor’s polynomial is defined as Truncation error as defined in
Definition 1.32.

2.3 Loss of Significance

In place of relative error, we often use the concept of significant digits that is closely
related to relative error.

Definition 2.18 (Significant β-Digits).

Let β be a radix and x ̸= 0. If xA is an approximation to x, then we say that xA approxi-
mates x to r significant β-digits if r is the largest non-negative integer such that

|x− xA|
|x|

≤ 1

2
β−r+1. (2.11)

We also say xA has r significant β-digits in x. ⊓⊔

Remark 2.19.When β = 10, we refer significant 10-digits by significant digits. ⊓⊔

Example 2.20.

(1) For x = 1/3, the approximate number xA = 0.333 has three significant digits, since

|x− xA|
|x|

= 0.001 < 0.005 = 0.5× 10−2.

Thus, r = 3.

(2) For x = 0.02138, the approximate number xA = 0.02144 has three significant digits,
since

|x− xA|
|x|

≈ 0.0028 < 0.005 = 0.5× 10−2.

Thus, r = 3.

(3) For x = 0.02132, the approximate number xA = 0.02144 has two significant digits,
since

|x− xA|
|x|

≈ 0.0056 < 0.05 = 0.5× 10−1.

Thus, r = 2.

(4) For x = 0.02138, the approximate number xA = 0.02149 has two significant digits,
since

|x− xA|
|x|

≈ 0.0051 < 0.05 = 0.5× 10−1.

Thus, r = 2.
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(5) For x = 0.02108, the approximate number xA = 0.0211 has three significant digits,
since

|x− xA|
|x|

≈ 0.0009 < 0.005 = 0.5× 10−2.

Thus, r = 3.

(6) For x = 0.02108, the approximate number xA = 0.02104 has three significant digits,
since

|x− xA|
|x|

≈ 0.0019 < 0.005 = 0.5× 10−2.

Thus, r = 3. ⊓⊔

Remark 2.21. Number of significant digits roughly measures the number of leading non-
zero digits of xA that are correct relative to the corresponding digits in the true value x.
However, this is not a precise way to get the number of significant digits as it is evident
from the above examples. ⊓⊔

The role of significant digits in numerical calculations is very important in the sense
that the loss of significant digits may result in drastic amplification of the relative error
as illustrated in the following example.

Example 2.22. Let us consider two real numbers

x = 7.6545428 = 0.76545428× 101 and y = 7.6544201 = 0.76544201× 101.

The numbers

xA = 7.6545421 = 0.76545421× 101 and yA = 7.6544200 = 0.76544200× 101

are approximations to x and y, correct to seven and eight significant digits, respectively.
The exact difference between xA and yA is

zA = xA − yA = 0.12210000× 10−3

and the exact difference between x and y is

z = x− y = 0.12270000× 10−3.

Therefore,
|z − zA|

|z|
≈ 0.0049 < 0.5× 10−2

and hence zA has only three significant digits with respect to z. Thus, we started with two
approximate numbers xA and yA which are correct to seven and eight significant digits
with respect to x and y respectively, but their difference zA has only three significant digits
with respect to z. Hence, there is a loss of significant digits in the process of subtraction.
A simple calculation shows that
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Er(zA) ≈ 53581× Er(xA).

Similarly, we have
Er(zA) ≈ 375067× Er(yA).

Loss of significant digits is therefore dangerous. The loss of significant digits in the process
of calculation is referred to as Loss of Significance. ⊓⊔

Example 2.23. Consider the function

f(x) = x(
√
x+ 1−

√
x).

From Example 2.12, the value of f(100000) using six-digit rounding is 100, whereas the
true value is 158.113. There is a drastic error in the value of the function, which is due
to the loss of significant digits. It is evident that as x increases, the terms

√
x+ 1 and√

x comes closer to each other and therefore loss of significance in their computed value
increases.

Such a loss of significance can be avoided by rewriting the given expression of f in such
a way that subtraction of near-by non-negative numbers is avoided. For instance, we can
re-write the expression of the function f as

f(x) =
x√

x+ 1 +
√
x
.

With this new form of f , we obtain f(100000) = 158.114000 using six-digit rounding. ⊓⊔

Example 2.24. Consider evaluating the function

f(x) = 1− cosx

near x = 0. Since cos x ≈ 1 for x near zero, there will be loss of significance in the process
of evaluating f(x) for x near zero. So, we have to use an alternative formula for f(x) such
as

f(x) = 1− cos x

=
1− cos2 x

1 + cosx

=
sin2 x

1 + cos x

which can be evaluated quite accurately for small x. ⊓⊔

Remark 2.25. Unlike the above examples, we may not be able to write an equivalent
formula for the given function to avoid loss of significance in the evaluation. In such cases,
we have to go for a suitable approximation of the given function by other functions, for
instance Taylor’s polynomial of desired degree, that do not involve loss of significance. ⊓⊔
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2.4 Propagation of Relative Error in Arithmetic Operations

Once an error is committed, it affects subsequent results as this error propagates through
subsequent calculations. We first study how the results are affected by using approximate
numbers instead of actual numbers and then will take up the effect of errors on function
evaluation in the next section.

Let xA and yA denote the approximate numbers used in the calculation, and let xT
and yT be the corresponding true values. We will now see how relative error propagates
with the four basic arithmetic operations.

2.4.1 Addition and Subtraction

Let xT = xA+ ϵ and yT = yA+ η be positive real numbers. The relative error Er(xA± yA)
is given by

Er(xA ± yA) =
(xT ± yT )− (xA ± yA)

xT ± yT

=
(xT ± yT )− (xT − ϵ± (yT − η))

xT ± yT

Upon simplification, we get

Er(xA ± yA) =
ϵ± η

xT ± yT
. (2.12)

The above expression shows that there can be a drastic increase in the relative error
during subtraction of two approximate numbers whenever xT ≈ yT as we have witnessed
in Examples 2.22 and 2.23. On the other hand, it is easy to see from (2.12) that

|Er(xA + yA)| ≤ |Er(xA)|+ |Er(yA)|,

which shows that the relative error propagates slowly in addition. Note that such an
inequality in the case of subtraction is not possible.

2.4.2 Multiplication

The relative error Er(xA × yA) is given by

Er(xA × yA) =
(xT × yT )− (xA × yA)

xT × yT

=
(xT × yT )− ((xT − ϵ)× (yT − η))

xT × yT

=
ηxT + ϵyT − ϵη

xT × yT

=
ϵ

xT
+

η

yT
−
(
ϵ

xT

)(
η

yT

)
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Thus, we have

Er(xA × yA) = Er(xA) + Er(yA)− Er(xA)Er(yA). (2.13)

Taking modulus on both sides, we get

|Er(xA × yA)| ≤ |Er(xA)|+ |Er(yA)|+ |Er(xA)| |Er(yA)|

Note that when |Er(xA)| and |Er(yA)| are very small, then their product is negligible when
compared to |Er(xA)|+ |Er(yA)|. Therefore, the above inequality reduces to

|Er(xA × yA)| ⪅ |Er(xA)|+ |Er(yA)|,

which shows that the relative error propagates slowly in multiplication.

2.4.3 Division

The relative error Er(xA/yA) is given by

Er(xA/yA) =
(xT/yT )− (xA/yA)

xT/yT

=
(xT/yT )− ((xT − ϵ)/(yT − η))

xT/yT

=
xT (yT − η)− yT (xT − ϵ)

xT (yT − η)

=
ϵyT − ηxT
xT (yT − η)

=
yT

yT − η
(Er(xA)− Er(yA))

Thus, we have

Er(xA/yA) =
1

1− Er(yA)
(Er(xA)− Er(yA)). (2.14)

The above expression shows that the relative error increases drastically during division
whenever Er(yA) ≈ 1. This means that yA has 100% error when compared to y, which is
very unlikely because we always expect the relative error to be very small, ie., very close
to zero. In this case the right hand side is approximately equal to Er(xA)−Er(yA). Hence,
we have

|Er(xA/yA)| ⪅ |Er(xA)− Er(yA)| ≤ |Er(xA)|+ |Er(yA)|,

which shows that the relative error propagates slowly in division.
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2.4.4 Total Error

In Subsection 2.1.4, we discussed the procedure of performing arithmetic operations using
n-digit floating-point approximation. The computed value fl(fl(x)⊙fl(y)) involves an error
(when compared to the exact value x⊙ y) which comprises of

(1) Error in fl(x) and fl(y) due to n-digit rounding or chopping of x and y, respectively,
and

(2) Error in fl(fl(x)⊙fl(y)) due to n-digit rounding or chopping of the number fl(x)⊙fl(y).

The total error is defined as

(x⊙ y)− fl(fl(x)⊙ fl(y)) = [(x⊙ y)− (fl(x)⊙ fl(y))] + [(fl(x)⊙ fl(y))− fl(fl(x)⊙ fl(y))],

in which the first term on the right hand side is called the propagated error and the
second term is called the floating-point error. The relative total error is obtained by
dividing both sides of the above expression by x⊙ y.

Example 2.26. Consider evaluating the integral

In =

∫ 1

0

xn

x+ 5
dx, for n = 0, 1, · · · , 30.

The value of In can be obtained in two different iterative processes, namely,

(1) The forward iteration for evaluating In is given by

In =
1

n
− 5In−1, I0 = ln(6/5).

(2) The backward iteration for evaluating In−1 is given by

In−1 =
1

5n
− 1

5
In, I30 = 0.54046330× 10−2.

The following table shows the computed value of In using both iterative formulas along
with the exact value. The numbers are computed using MATLAB using double precision
arithmetic and the final answer is rounded to 6 digits after the decimal point.

n Forward Iteration Backward Iteration Exact Value
1 0.088392 0.088392 0.088392
5 0.028468 0.028468 0.028468
10 0.015368 0.015368 0.015368
15 0.010522 0.010521 0.010521
20 0.004243 0.007998 0.007998
25 11.740469 0.006450 0.006450
30 -36668.803026 Not Computed 0.005405
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Clearly the backward iteration gives exact value up to the number of digits shown,
whereas forward iteration tends to increase error and give entirely wrong values. This
is due to the propagation of error from one iteration to the next iteration. In forward
iteration, the total error from one iteration is magnified by a factor of 5 at the next
iteration. In backward iteration, the total error from one iteration is divided by 5 at the
next iteration. Thus, in this example, with each iteration, the total error tends to increase
rapidly in the forward iteration and tends to increase very slowly in the backward iteration.
⊓⊔

2.5 Propagation of Relative Error in Function Evaluation

For a given function f : R → R, consider evaluating f(x) at an approximate value xA
rather than at x. The question is how well does f(xA) approximate f(x)? To answer
this question, we compare Er(f(xA)) with Er(xA).

Assume that f is a C1 function. Using the mean-value theorem, we get

f(x)− f(xA) = f ′(ξ)(x− xA),

where ξ is an unknown point between x and xA. The relative error in f(xA) when compared
to f(x) is given by

Er(f(xA)) =
f ′(ξ)

f(x)
(x− xA).

Thus, we have

Er(f(xA)) =

(
f ′(ξ)

f(x)
x

)
Er(xA). (2.15)

Since xA and x are assumed to be very close to each other and ξ lies between x and xA,
we may make the approximation

f(x)− f(xA) ≈ f ′(x)(x− xA).

In view of (2.15), we have

Er(f(xA)) ≈
(
f ′(x)

f(x)
x

)
Er(xA). (2.16)

The expression inside the bracket on the right hand side of (2.16) is the amplification factor
for the relative error in f(xA) in terms of the relative error in xA. Thus, this expression
plays an important role in understanding the propagation relative error in evaluating the
function value f(x) and hence motivates the following definition.

Definition 2.27 (Condition Number of a Function).

The condition number of a continuously differentiable function f at a point x = c is
given by ∣∣∣∣f ′(c)

f(c)
c

∣∣∣∣ . (2.17)

Baskar and Sivaji 41 Spring 2013/MA 214



CHAPTER 2. ERROR ANALYSIS

The condition number of a function at a point x = c can be used to decide whether
the evaluation of the function at x = c is well-conditioned or ill-conditioned depending
on whether this condition number is smaller or larger as we approach this point. It is
not possible to decide a priori how large the condition number should be to say that the
function evaluation is ill-conditioned and it depends on the circumstances in which we are
working.

Definition 2.28 (Well-Conditioned and Ill-Conditioned).

The process of evaluating a continuously differentiable function f at a point x = c is said
to be well-conditioned if for any given interval I with c ∈ I, there exists a constant
C > 0 (may depend on I) such that ∣∣∣∣f ′(x)

f(x)
x

∣∣∣∣ ≤ C,

for all x ∈ I. The process of evaluating a function at x = c is said to be ill-conditioned
if it is not well-conditioned.

Example 2.29. Consider the function f(x) =
√
x, for all x ∈ [0,∞). Then

f ′(x) =
1

2
√
x
, for all x ∈ [0,∞).

The condition number of f is∣∣∣∣f ′(x)

f(x)
x

∣∣∣∣ = 1

2
, for all x ∈ [0,∞)

which shows that taking square roots is a well-conditioned process. From (2.16), we have

|Er(f(xA))| ≈
1

2
|Er(xA)|.

Thus, Er(f(xA)) is more closer to zero than Er(xA). ⊓⊔

Example 2.30. Consider the function

f(x) =
10

1− x2
, for all x ∈ R.

Then f ′(x) = 20x/(1− x2)2, so that∣∣∣∣f ′(x)

f(x)
x

∣∣∣∣ = ∣∣∣∣(20x/(1− x2)2)x

10/(1− x2)

∣∣∣∣
=

2x2

|1− x2|

and this number can be quite large for |x| near 1. Thus, for x near 1 or -1, the process of
evaluating this function is ill-conditioned. ⊓⊔
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The above two examples gives us a feeling that if the process of evaluating a function
is well-conditioned, then we tend to get less propagating relative error. But, this is not
true in general as shown in the following example.

Example 2.31. Consider the function

f(x) =
√
x+ 1−

√
x, for all x ∈ (0,∞).

For all x ∈ (0,∞), the condition number of this function is

∣∣∣∣f ′(x)

f(x)
x

∣∣∣∣ = 1

2

∣∣∣∣∣∣∣∣
(

1√
x+ 1

− 1√
x

)
√
x+ 1−

√
x

x

∣∣∣∣∣∣∣∣
=

1

2

x√
x+ 1

√
x

≤ 1

2
, (2.18)

which shows that the process of evaluating f is well-conditioned for all x ∈ (0,∞). But,
if we calculate f(12345) using six-digit rounding, we find

f(12345) =
√
12346−

√
12345 = 111.113− 111.108 = 0.005,

while, actually, f(12345) = 0.00450003262627751 · · · . The calculated answer has 10%
error. ⊓⊔

The above example shows that a well-conditioned process of evaluating a function at a
point is not enough to ensure the accuracy in the corresponding computed value. We need
to check for the stability of the computation, which we discuss in the following subsection.

2.5.1 Stable and Unstable Computations

Suppose there are n steps to evaluate a function f(x) at a point x = c. Then the total
process of evaluating this function is said to have instability if atleast one of the n steps is
ill-conditioned. If all the steps are well-conditioned, then the process is said to be stable.

Example 2.32. We continue the discussion in example 2.31 and check the stability in
evaluating the function f . Let us analyze the computational process. The function f
consists of the following four computational steps in evaluating the value of f at x = x0:

x1 := x0 + 1, x2 :=
√
x1, x3 :=

√
x0, x4 := x2 − x3.

Now consider the last two steps where we already computed x2 and now going to compute
x3 and finally evaluate the function

f4(t) := x2 − t.
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At this step, the condition number for f4 is given by∣∣∣∣f ′
4(t)

f4(t)
t

∣∣∣∣ = ∣∣∣∣ t

x2 − t

∣∣∣∣ .
Thus, f4 is ill-conditioned when t approaches x2. Therefore, the above process of evaluating
the function f(x) is unstable.

Let us rewrite the same function f(x) as

f̃(x) =
1√

x+ 1 +
√
x
.

The computational process of evaluating f̃ at x = x0 is

x1 := x0 + 1, x2 :=
√
x1, x3 :=

√
x0, x4 := x2 + x3, x5 := 1/x4.

It is easy to verify that the condition number of each of the above steps is well-conditioned.
For instance, the last step defines

f̃5(t) =
1

x2 + t
,

and the condition number of this function is approximately,∣∣∣∣∣ f̃ ′
5(x)

f̃5(x)
x

∣∣∣∣∣ =
∣∣∣∣ t

x2 + t

∣∣∣∣ ≈ 1

2

for t sufficiently close to x2. Therefore, this process of evaluating f̃(x) is stable. Recall
from example 2.23 that the above expression gives a more accurate value for sufficiently
large x. ⊓⊔

Remark 2.33. As discussed in Remark 2.25, we may not be lucky all the time to come out
with an alternate expression that lead to stable evaluation for any given function when the
original expression leads to unstable evaluation. In such situations, we have to compromise
and go for a suitable approximation with other functions with stable evaluation process.
For instance, we may try approximating the given function with its Taylor’s polynomial,
if possible. ⊓⊔

2.6 Exercises

Floating-Point Approximation

(1) Let X be a sufficiently large number which result in an overflow of memory on a
computing device. Let x be a sufficiently small number which result in underflow
of memory on the same computing device. Then give the output of the following
operations:
(i) x×X (ii) 3×X (iii) 3× x (iv) x/X (v) X/x.
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(2) In the following problems, show all the steps involved in the computation.

(i) Using 5-digit rounding, compute 37654 + 25.874− 37679.

(ii) Let a = 0.00456, b = 0.123, c = −0.128. Using 3-digit rounding, compute (a+b)+c,
and a+ (b+ c). What is your conclusion?

(iii) Let a = 2, b = −0.6, c = 0.602. Using 3-digit rounding, compute a × (b + c), and
(a× b) + (a× c). What is your conclusion?

(3) To find the mid-point of an interval [a, b], the formula a+b
2

is often used. Compute
the mid-point of the interval [0.982, 0.987] using 3-digit chopping. On the number line
represent all the three points. What do you observe? Now use the more geometric
formula a + b−a

2
to compute the mid-point, once again using 3-digit chopping. What

do you observe this time? Why is the second formula more geometric?

(4) In a computing device that uses n-digit rounding binary floating-point arithmetic, show
that δ = 2−n is the machine epsilon. What is the machine epsilon in a computing device
that uses n-digit rounding decimal floating-point arithmetic? Justify your answer.

Types of Errors

(5) If fl(x) is the approximation of a real number x in a computing device, and ϵ is the
corresponding relative error, then show that fl(x) = (1− ϵ)x.

(6) Let x, y and z be real numbers whose floating point approximations in a computing
device coincide with x, y and z respectively. Show that the relative error in computing
x(y + z) equals ϵ1 + ϵ2 − ϵ1ϵ2, where ϵ1 = Er(fl(y + z)) and ϵ2 = Er(fl(x× fl(y + z))).

(7) Let ϵ = Er(fl(x)). Show that

(i) |ϵ| ≤ 10−n+1 if the computing device uses n-digit (decimal) chopping.

(ii) |ϵ| ≤ 1
2
10−n+1 if the computing device uses n-digit (decimal) rounding.

(iii) Can the equality hold in the above inequalities?

(8) For small values of x, the approximation sinx ≈ x is often used. Estimate the error in
using this formula with the aid of Taylor’s theorem. For what range of values of x will
this approximation give an absolute error of at most 1

2
10−6? (Quiz 1, Spring 2011)

(9) Let xA = 3.14 and yA = 2.651 be obtained from xT and yT using 4-digit rounding.
Find the smallest interval that contains
(i) xT (ii) yT (iii) xT + yT (iv) xT − yT (v) xT × yT (vi) xT/yT .

(10) The ideal gas law is given by PV = nRT where R is the gas constant. We are interested
in knowing the value of T for which P = V = n = 1. If R is known only approximately
as RA = 8.3143 with an absolute error at most 0.12× 10−2. What is the relative error
in the computation of T that results in using RA instead of R?

Baskar and Sivaji 45 Spring 2013/MA 214



CHAPTER 2. ERROR ANALYSIS

Loss of Significance and Propagation of Error

(11) Obtain the number of significant digits in xA when compared to x for the following
cases:
(i) x = 451.01 and xA = 451.023 (ii) x = −0.04518 and xA = −0.045113
(iii) x = 23.4604 and x = 23.4213.

(12) Instead of using the true values xT = 0.71456371 and yT = 0.71456238 in calculating
zT = xT − yT (= 0.133 × 10−5), if we use the approximate values xA = 0.71456414
and yA = 0.71456103, and calculate zA = xA − yA(= 0.311× 10−5), then find the loss
of significant digits in the process of calculating zA when compared to the significant
digits in xA. (Quiz1, Autumn 2010)

(13) Let x < 0 < y be such that the approximate numbers xA and yA has seven and nine
significant digits with x and y respectively. Show that zA := xA − yA has at least six
significant digits when compared to z := x− y. (Mid-Sem, Spring 2011)

Propagation of Relative Error

(14) Let x = 0.65385 and y = 0.93263. Obtain the total error in obtaining the product of
these two numbers using 3-digit rounding calculation.

(15) Let f : R → R and g : R → R be continuously differentiable functions such that

• there exists constant M > 0 such that |f ′(x)| ≥M and |g′(x)| ≤M for all x ∈ R,
• the process of evaluating f is well-conditioned, and

• the process of evaluating g is ill-conditioned.

Show that |g(x)| < |f(x)| for all x ∈ R. (Mid-Sem, Spring 2011)

(16) Find the condition number at a point x = c for the following functions
(i) f(x) = x2, (ii) g(x) = πx, (iii) h(x) = bx.

(17) Let xT be a real number. Let xA = 2.5 be an approximate value of xT with an absolute
error at most 0.01. The function f(x) = x3 is evaluated at x = xA instead of x = xT .
Estimate the resulting absolute error.

(18) Is the process of computing the function f(x) = (ex − 1)/x stable or unstable for
x ≈ 0? Justify your answer. (Quiz1, Autumn 2010)

(19) Show that the process of evaluating the function

f(x) =
1− cos x

x2

for x ≈ 0 is unstable. Suggest an alternate formula for evaluating f for x ≈ 0, and
check if the computation process is stable using this new formula.
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(20) Check for stability of computing the function

f(x) =

(
x+

1

3

)
−
(
x− 1

3

)
for large values of x.

(21) Check for stability of computing the function

g(x) =

(
3 +

x2

3

)
−
(
3− x2

3

)
x2

for values of x very close to 0.

(22) Check for stability of computing the function

h(x) =
sin2 x

1− cos2 x

for values of x very close to 0.

(23) Compute the values of the function

sinx√
1− sin2 x

using your calculator (without simplifying the given formula) at x = 89.9, 89.95, 89.99
degrees. Also compute the values of the function tan x at these values of x and compare
the number of significant digits.
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CHAPTER 3

Numerical Linear Algebra

In this chapter, we study the methods for solving system of linear equations, and com-
puting an eigenvalue and the corresponding eigen vector for a matrix. The methods for
solving linear systems is categorized into two types, namely, direct methods and iter-
ative methods. Theoretically, direct methods give exact solution of a linear system and
therefore these methods do not involve mathematical error. However, when we implement
the direct methods on a computer, because of the presence of arithmetic error, the com-
puted value from a computer will still be an approximate solution. On the other hand, an
iterative method generates a sequence of approximate solutions to a given linear system
which is expected to converge to the exact solution.

An important direct method is the well-knownGaussian elimination method. After
a short introduction to linear systems in Section 3.1, we discuss the direct methods in
Section 3.2. We recall the Gaussian elimination method in Subsection 3.2.1 and study
the effect of arithmetic error in the computed solution. We further count the number of
arithmetic operations involved in computing the solution. This operation count revels that
this method is more expensive in terms of computational time. In particular, when the
given system is of tri-diagonal structure, the Gaussian elimination method can be suitably
modified so that the resulting method, called the Thomas algorithm, is more efficient
in terms of computational time. After introducing the Thomal algorithm in Subsection
3.2.4, we discuss the LU factorization methods for a given matrix and solving a system
of linear equation using LU factorization in Subsection 3.2.5.

Some matrices are sensitive to even a small error in the right hand side vector of a
linear system. Such a matrix can be identified with the help of the condition number
of the matrix. The condition number of a matrix is defined in terms of the matrix norm.
In Section 3.3, we introduce the notion of matrix norms, define condition number of a
matrix and discuss few important theorems that are used in the error analysis of iterative
methods. We continue the chapter with the discussion of iterative methods to linear system
in Section 3.4, where we introduce two basic iterative methods and discuss the sufficient
condition under which the methods converge. We end this section with the definition of
the residual error and another iterative method called the residual corrector method.

Finally in section 3.5 we discuss the power method, which is used to capture the
dominant eigenvalue and a corresponding eigen vectors of a given matrix. We end the
chapter with the Gerschgorin’s Theorem and its application to power method.
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3.1 System of Linear Equations

General form of a system of n linear equations in n variables is

a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2,

· · ·
· · ·
· · ·

an1x1 + an2x2 + · · ·+ annxn = bn.

(3.1)

Throughout this chapter, we assume that the coefficients aij and the right hand side
numbers bi, i, j = 1, 2, · · · , n are real.

The above system of linear equations can be written in the matrix notation as
a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · · ...
an1 an2 · · · ann



x1
x2
...
xn

 =


b1
b2
...
bn

 (3.2)

The last equation is usually written in the short form

Ax = b, (3.3)

where A stands for the n× n matrix with entries aij, x = (x1, x2, · · · , xn)T and the right
hand side vector b = (b1, b2, · · · , bn)T .

Let us now state a result concerning the solvability of the system (3.2).

Theorem 3.1. Let A be an n × n matrix and b ∈ Rn. Then the following statements
concerning the system of linear equations Ax = b are equivalent.

(1) det(A) ̸= 0

(2) For each right hand side vector b, the system Ax = b has a unique solution x.

(3) For b = 0, the only solution of the system Ax = b is x = 0.

We always assume that the coefficient matrix A is invertible. Any discussion of what
happens when A is not invertible is outside the scope of this course.

3.2 Direct Methods for Linear Systems

In this section, we discuss two direct methods namely, the Gaussian elimination method
and the LU factorization method. We also introduce the Thomas algorithm, which is a
particular case of the Gaussian elimination method for tri-diagonal systems.
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3.2.1 Naive Gaussian Elimination Method

Let us describe the Gaussian elimination method to solve a system of linear equations in
three variables. The method for a general system is similar.

Consider the following system of three linear equations in three variables x1, x2, x3:

a11x1 + a12x2 + a13x3 = b1,

a21x1 + a22x2 + a23x3 = b2,

a31x1 + a32x2 + a33x3 = b3.

(3.4)

For convenience, we call the first, second, and third equations by names E1, E2, and E3

respectively.

Step 1: If a11 ̸= 0, then define

m21 =
a21
a11

, m31 =
a31
a11

. (3.5)

We will now obtain a new system that is equivalent to the system (3.4) as follows:

• Retain the first equation E1 as it is.

• Replace the second equation E2 by the equation E2 −m21E1.

• Replace the third equation E3 by the equation E3 −m31E1.

The new system equivalent to (3.4) is given by

a11x1 + a12x2 + a13x3 = b1

0 + a
(2)
22 x2 + a

(2)
23 x3 = b

(2)
2

0 + a
(2)
32 x2 + a

(2)
33 x3 = b

(2)
3 ,

(3.6)

where the coefficients a
(2)
ij , and b

(2)
k are given by

a
(2)
ij = aij −mi1a1j, i, j = 2, 3

b
(2)
k = bk −mk1b1, k = 2, 3.

}
(3.7)

Note that the variable x1 has been eliminated from the last two equations.

Step 2: If a
(2)
22 ̸= 0, then define

m32 =
a
(2)
32

a
(2)
22

. (3.8)

We still use the same names E1, E2, E3 for the first, second, and third equations of the
modified system (3.6), respectively. We will now obtain a new system that is equivalent
to the system (3.6) as follows:
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• Retain the first two equations in (3.6) as they are.

• Replace the third equation by the equation E3 −m32E2.

The new system is given by

a11x1 + a12x2 + a13x3 = b1

0 + a
(2)
22 x2 + a

(2)
23 x3 = b

(2)
2

0 + 0 + a
(3)
33 x3 = b

(3)
3 ,

(3.9)

where the coefficient a
(3)
33 , and b

(3)
3 are given by

a
(3)
33 = a

(2)
33 −m32a

(2)
23 ,

b
(3)
3 = b

(2)
3 −m32b

(2)
2 .

Note that the variable x2 has been eliminated from the last equation. This phase of the
(Naive) Gaussian elimination method is called Forward elimination phase.

Observe that the system (3.9) is readily solvable for x3 if the coefficient a
(3)
33 ̸= 0. Sub-

stituting the value of x3 in the second equation of (3.9), we can solve for x2. Substituting
the values of x1 and x2 in the first equation, we can solve for x1. This solution phase of
the (Naive) Gaussian elimination method is called Backward substitution phase.

The coefficient matrix of the system (3.9) is an upper triangular matrix given by

U =

a11 a12 a130 a
(2)
22 a

(2)
23

0 0 a
(3)
33

 . (3.10)

Define a lower triangular matrix L by

L =

 1 0 0
m21 1 0
m31 m32 1

 . (3.11)

It is easy to verify that LU = A.

Remark 3.2 (Why Naive?). We explain why the word “Naive” is used for the method
described above.

(1) First of all, we do not know if the method described here can be successfully applied
for all systems of linear equations which are uniquely solvable (that is, the coefficient
matrix is invertible).

(2) Secondly, even when we apply the method successfully, it is not clear if the computed
solution is the exact solution. In fact, it is not even clear that the computed solution
is close to the exact solution.

We illustrate these points in Example 3.3 and Example 3.4. ⊓⊔
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Example 3.3. Consider the system of equations(
0 1
1 1

)(
x1
x2

)
=

(
1
2

)
. (3.12)

The Step 1 cannot be started as a11 = 0. Thus the naive Gaussian elimination method
fails. ⊓⊔

Example 3.4. Let 0 < ϵ≪ 1. Consider the system of equations(
ϵ 1
1 1

)(
x1
x2

)
=

(
1
2

)
. (3.13)

Since ϵ ̸= 0, after Step 1 of the Naive Gaussian elimination method, we get the system(
ϵ 1
0 1− ϵ−1

)(
x1
x2

)
=

(
1

2− ϵ−1

)
. (3.14)

Thus the solution is given by

x2 =
2− ϵ−1

1− ϵ−1
, x1 = (1− x2)ϵ

−1. (3.15)

Note that for a sufficiently small ϵ, the computer evaluates 2−ϵ−1 as −ϵ−1, and 1−ϵ−1 also
as −ϵ−1. Thus, x2 ≈ 1 and as a consequence x1 ≈ 0. However the exact/correct solution
is given by

x1 =
1

1− ϵ
≈ 1, x2 =

1− 2ϵ

1− ϵ
≈ 1. (3.16)

Thus, in this particular example, the solution obtained by the naive Gaussian elimination
method is completely wrong.

To understand this example better, we instruct the reader to solve the system (3.13)
for the cases (1) ϵ = 10−3, and (2) ϵ = 10−5 using 3-digit rounding. ⊓⊔

Let us see a numerical example.

Example 3.5. Consider the linear system

6x1 + 2x2 + 2x3 = −2

2x1 +
2

3
x2 +

1

3
x3 = 1

x1 + 2x2 − x3 = 0.

(3.17)

Let us solve this system using (naive) Gaussian elimination method using 4-digit rounding.

In 4-digit rounding approximation, the above system takes the form

6.000x1 + 2.000x2 + 2.000x3 = −2.000

2.000x1 + 0.6667x2 + 0.3333x3 = 1.000

1.000x1 + 2.000x2 − 1.000x3 = 0.000
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After eliminating x1 from the second and third equations, we get (with m21 = 0.3333,
m31 = 0.1667)

6.000x1 + 2.000x2 + 2.000x3 = −2.000

0.000x1 + 0.0001x2 − 0.3333x3 = 1.667

0.000x1 + 1.667x2 − 1.333x3 = 0.3334

(3.18)

After eliminating x2 from the third equation, we get (with m32 = 16670)

6.000x1 + 2.000x2 + 2.000x3 = −2.000

0.000x1 + 0.0001x2 − 0.3333x3 = 1.667

0.000x1 + 0.0000x2 + 5555x3 = −27790

Using back substitution, we get x1 = 1.335, x2 = 0 and x3 = −5.003, whereas the actual
solution is x1 = 2.6, x2 = −3.8 and x3 = −5. The difficulty with this elimination process
is that the second equation in (3.18), where the coefficient of x2 should have been zero,
but rounding error prevented it and makes the relative error very large. ⊓⊔

The above examples highlight the inadequacy of the Naive Gaussian elimination method.
These inadequcies can be overcome by modifying the procedure of Naive Gaussian elim-
ination method. There are many kinds of modification. We will discuss one of the most
popular modified methods which is called Modified Gaussian elimination method
with partial pivoting.

3.2.2 Modified Gaussian Elimination Method with Partial Pivoting

Consider the following system of three linear equations in three variables x1, x2, x3:

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3.

(3.19)

For convenience, we call the first, second, and third equations by names E1, E2, and E3

respectively.

Step 1: Define s1 = max { |a11|, |a21|, |a31| }. Note that s1 ̸= 0 (why?). Let k be the least
number such that s1 = |ak1|. Interchange the first equation and the kth equation. Let us
re-write the system after this modification.

a
(1)
11 x1 + a

(1)
12 x2 + a

(1)
13 x3 = b

(1)
1

a
(1)
21 x1 + a

(1)
22 x2 + a

(1)
23 x3 = b

(1)
2

a
(1)
31 x1 + a

(1)
32 x2 + a

(1)
33 x3 = b

(1)
3 .

(3.20)

where

a
(1)
11 = ak1, a

(1)
12 = ak2, a

(1)
13 = ak3, a

(1)
k1 = a11, a

(1)
k2 = a12, a

(1)
k3 = a13; b

(1)
1 = bk, b

(1)
k = b1,

(3.21)
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and rest of the coefficients a
(1)
ij are same as aij as all equations other than the first and

kth remain untouched by the interchange of first and kth equation. Now eliminate the x1
variable from the second and third equations of the system (3.20). Define

m21 =
a
(1)
21

a
(1)
11

, m31 =
a
(1)
31

a
(1)
11

. (3.22)

We will now obtain a new system that is equivalent to the system (3.20) as follows:

• The first equation will be retained as it is.

• Replace the second equation by the equation E2 −m21E1.

• Replace the third equation by the equation E3 −m31E1.

The new system is given by

a
(1)
11 x1 + a

(1)
12 x2 + a

(1)
13 x3 = b

(1)
1

0 + a
(2)
22 x2 + a

(2)
23 x3 = b

(2)
2

0 + a
(2)
32 x2 + a

(2)
33 x3 = b

(2)
3 ,

(3.23)

where the coefficients a
(2)
ij , and b

(2)
k are given by

a
(2)
ij = a

(1)
ij −mi1a

(1)
1j , i, j = 2, 3

b
(2)
i = b

(1)
i −mi1b

(1)
1 , i = 2, 3.

Note that the variable x1 has been eliminated from the last two equations.

Step 2: Define s2 = max
{
|a(2)22 |, |a

(2)
32 |
}
. Note that s2 ̸= 0 (why?). Let l be the least

number such that sl = |a(2)l2 |. Interchange the second row and the lth rows. Let us re-write
the system after this modification.

a
(1)
11 x1 + a

(1)
12 x2 + a

(1)
13 x3 = b

(1)
1

0 + a
(3)
22 x2 + a

(3)
23 x3 = b

(3)
2

0 + a
(3)
32 x2 + a

(3)
33 x3 = b

(3)
3 ,

(3.24)

where the coefficients a
(3)
ij , and b

(3)
i are given by

a
(3)
22 = a

(2)
l2 , a

(3)
23 = a

(2)
l3 , a

(3)
l2 = a

(2)
22 , a

(3)
l3 = a

(2)
23 ,

b
(3)
2 = b

(2)
l , b

(3)
l = b

(2)
2

We still use the same names E1, E2, E3 for the first, second, and third equations of the
modified system (3.24), respectively.

In case l = 2, both second and third equations stay as they are. Let us now eliminate
x2 from the last equation. Define
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m32 =
a
(3)
32

a
(3)
22

(3.25)

We will now obtain a new system that is equivalent to the system (3.24) as follows:

• The first two equations in (3.24) will be retained as they are.

• Replace the third equation by the equation E3 −m32E2.

The new system is given by

a
(1)
11 x1 + a

(1)
12 x2 + a

(1)
13 x3 = b

(1)
1

0 + a
(3)
22 x2 + a

(3)
23 x3 = b

(3)
2

0 + 0 + a
(4)
33 x3 = b

(4)
3 ,

(3.26)

where the coefficient a
(4)
33 , and b

(4)
3 are given by

a
(4)
33 = a

(3)
33 −m32a

(3)
23 ,

b
(4)
3 = b

(3)
3 −m32b

(3)
2 .

Note that the variable x2 has been eliminated from the last equation. This phase of
the modified Gaussian elimination method is called Forward elimination phase with
partial pivoting.

Now the system (3.26) is readily solvable for x3 if the coefficient a
(4)
33 ̸= 0. In fact, it

is non-zero (why?). Substituting the value of x3 in the second equation of (3.26), we can
solve for x2. Substituting the values of x1 and x2 in the first equation, we can solve for x1.
This solution phase of the modified Gaussian elimination method with partial pivoting is
called Backward substitution phase.

3.2.3 Operations Count in Naive Gaussian Elimination Method

It is important to know the length of a computation and for that reason, we count the
number of arithmetic operations involved in Gaussian elimination. Let us divide the count
into three parts.

(1) The elimination step: We now count the additions/subtractions, multiplications
and divisions in going from the given system to the triangular system.

Step Additions/Subtractions Multiplications Divisions
1 (n− 1)2 (n− 1)2 n− 1
2 (n− 2)2 (n− 2)2 n− 2
. . . .
. . . .
. . . .

n− 1 1 1 1

Total n(n−1)(2n−1)
6

n(n−1)(2n−1)
6

n(n−1)
2
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Here we use the formula

p∑
j=1

j =
p(p+ 1)

2
,

p∑
j=1

j2 =
p(p+ 1)(2p+ 1)

6
, p ≥ 1.

Let us explain the first row of the above table. In the first step, computation of m21,
m31, · · · , mn1 involve (n− 1) divisions. For each i, j = 2, 3, · · · , n, the computation of

a
(2)
ij involves a multiplication and a subtraction. In total, there are (n − 1)2 multipli-

cations and (n− 1)2 subtractions. Note that we do not count the operations involved

in computing the coefficients of x1 in the 2nd to nth equations (namely, a
(2)
i1 ), as we do

not compute them and simply take them as zero. Similarly, other entries in the above
table can be accounted for.

(2) Modification of the right side: Proceeding as before, we get

Addition/Subtraction = (n− 1) + (n− 2) + · · ·+ 1 =
n(n− 1)

2

Multiplication/Division = (n− 1) + (n− 2) + · · ·+ 1 =
n(n− 1)

2

(3) The back substitution:

Addition/Subtraction = (n− 1) + (n− 2) + · · ·+ 1 =
n(n− 1)

2

Multiplication/Division = n+ (n− 1) + · · ·+ 1 =
n(n+ 1)

2

Total number of operations: The total number of operations in obtaining x is

Addition/Subtraction =
n(n− 1)(2n− 1)

6
+
n(n− 1)

2
+
n(n− 1)

2
=
n(n− 1)(2n+ 5)

6

Multiplication/Division =
n(n2 + 3n− 1)

3
Even if we take only multiplication and division into consideration, we see that for

large value of n, the operation count required for Gaussian elimination is about 1
3
n3. This

means that as n doubled, the cost of solving the linear system goes up by a factor of
8. In addition, most of the cost of Gaussian elimination is in the elimination step. For
elimination, we have

Multiplication/Division =
n(n− 1)(2n− 1)

6
+
n(n− 1)

2
=
n3

3

(
1− 1

n2

)
≈ 1

3
n3.

The operation count in
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Elimination step = O(n3),

RHS modification = O(n2),

Backward substitution = O(n2),

as n → ∞. Hence, once the elimination part is completed, it is much less expensive to
solve the linear system.

3.2.4 Thomas Method for Tri-diagonal System

The Gaussian elimination method can be simplified in the case of a tri-diagonal system
so as to increase the efficiency. The resulting simplified method is called the Thomas
method.

A tri-diagonal system of linear equations is of the form

β1x1 +γ1x2 +0x3 +0x4 +0x5 +0x6 + · · · +0xn−2 +0xn−1 +0xn = b1
α2x1 +β2x2 +γ2x3 +0x4 +0x5 +0x6 + · · · +0xn−2 +0xn−1 +0xn = b2
0x1 +α3x2 +β3x3 +γ3x4 +0x5 +0x6 + · · · +0xn−2 +0xn−1 +0xn = b3
0x1 +0x2 +α4x3 +β4x4 +γ4x5 +0x6 + · · · +0xn−2 +0xn−1 +0xn = b4

· · ·
· · ·
· · ·

0x1 +0x2 +0x3 +0x4 +0x5 +0x6 + · · · +αn−1xn−2 +βn−1xn−1 +γn−1xn = bn−1

0x1 +0x2 +0x3 +0x4 +0x5 +0x6 + · · · +0xn−2 +αnxn−1 +βnxn = bn

(3.27)

Here, we assume that all αi, i = 2, 3, · · · , n, βi, i = 1, 2, · · · , n, and γi, i = 1, 2, · · · , n− 1
are non-zero.

The first equation of the system reads

β1x1 + γ1x2 = b1.

This equation can be rewritten as

x1 + e1x2 = f1, e1 =
γ1
β1
, f1 =

b1
β1
.

Eliminating x1 from the second equation of the system (3.27) by multiplying the above
equation by α2 and subtracting the resulting equation with the second equation of (3.27),
we get

x2 + e2x3 = f2, e2 =
γ2

β2 − α2e1
, f2 =

b2 − α2f1
β2 − α2e1

.

We now generalize the above procedure by assuming that the jth equation is reduced to
the form

xj + ejxj+1 = fj,
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where ej and fj are known quantity, reduce the (j + 1)th equation in the form

xj+1 + ej+1xj+2 = fj+1, ej+1 =
γj+1

βj+1 − αj+1ej
, fj+1 =

bj+1 − αj+1fj
βj+1 − αj+1ej

,

for j = 1, 2, · · · , n− 2. Note that for j = n− 2, we obtain the j + 1 = (n− 1)th equation
as

xn−1 + en−1xn = fn−1, en−1 =
γn−1

βn−1 − αn−1en−2

, fn−1 =
bn−1 − αn−1fn−2

βn−1 − αn−1en−2

.

To obtain the reduced form of the nth equation of the system (3.27), eliminate xn−1 from
the nth equation by multiplying the above equation by αn and subtracting the resulting
equation with the nth equation of (3.27), which gives

(αnen−1 − βn)xn = αnfn−1 − bn.

Thus, the given tri-diagonal system (3.27) is now reduced to the system

x1 +e1x2 +0x3 +0x4 +0x5 +0x6 + · · · +0xn−2 +0xn−1 +0xn = f1
0x1 +x2 +e2x3 +0x4 +0x5 +0x6 + · · · +0xn−2 +0xn−1 +0xn = f2

· · ·
· · ·
· · ·

0x1 +0x2 +0x3 +0x4 +0x5 +0x6 + · · · +0xn−2 +xn−1 +en−1xn = fn−1

0x1 +0x2 +0x3 +0x4 +0x5 +0x6 + · · · +0xn−2 +0xn−1 +(αnen−1 − βn)xn = αnfn−1 − bn

which is an upper triangular matrix and hence, by back substitution we can get the
solution.

Remark 3.6. If the denominator of any of the ej’s or fj’s is zero, then the Thomas
method fails. This is the situation when βj − αjej−1 = 0 which is the coefficient of xj
in the reduced equation. A suitable partial pivoting as done in the modified Gaussian
elimination method may sometime help us to overcome this problem. ⊓⊔

3.2.5 LU Factorization

In Theorem 3.1, we have stated that when a matrix is invertible, then the corresponding
linear system can be solvable. Let us now ask the next question that

‘Can we give examples of a class(es) of invertible matrices for which the system of linear
equations (3.2) given by 

a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · · ...
an1 an2 · · · ann



x1
x2
...
xn

 =


b1
b2
...
bn


is “easily” solvable?’

There are three types of matrices whose simple structure makes them to be solvable
“easily”. These matrices are as follows:
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(1) Invertible Diagonal matrices: These matrices look like
d1 0 0 · · · 0
0 d2 0 · · · 0
...

... · · · · · · ...
0 0 0 · · · dn


and di ̸= 0 for each i = 1, 2, · · · , n. In this case, the solution x = (x1, x2, · · · , xn)T is

given by x =

(
b1
d1
,
b2
d2
, · · · , bn

dn

)T

.

(2) Invertible Lower triangular matrices: These matrices look like
l11 0 0 · · · 0
l21 l22 0 · · · 0
...

... · · · · · · ...
ln1 ln2 ln3 · · · lnn


and lii ̸= 0 for each i = 1, 2, · · · , n. The linear system takes the form

l11 0 0 · · · 0
l21 l22 0 · · · 0
...

... · · · · · · ...
ln1 ln2 ln3 · · · lnn



x1
x2
...
xn

 =


b1
b2
...
bn

 (3.28)

From the first equation, we solve for x1 given by

x1 =
b1
l11
.

Substituting this value of x1 in the second equation, we get the value of x2 as

x2 =
b2 − l21

b1
l11

l22
.

Proceeding in this manner, we solve for the vector x. This procedure of obtaining
solution may be called the forward substitution.

(3) Invertible Upper triangular matrices: These matrices look like
u11 u12 u13 · · · u1n
0 u22 u23 · · · u2n
...

... · · · · · · ...
0 0 0 · · · unn


and uii ̸= 0 for each i = 1, 2, · · · , n. The linear system takes the form
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u11 u12 u13 · · · u1n
0 u22 u23 · · · u2n
...

... · · · · · · ...
0 0 0 · · · unn



x1
x2
...
xn

 =


b1
b2
...
bn

 (3.29)

From the last equation, we solve for xn given by

xn =
bn
unn

.

Substituting this value of xn in the penultimate equation, we get the value of xn−1 as

xn−1 =
bn−1 − un−1,n

bn
unn

un−1,n−1

.

Proceeding in this manner, we solve for the vector x. This procedure of obtaining
solution may be called the backward substitution.

In general, an invertible matrix A need not be in one among the simple structures listed
above. However, in certain situations we can always find an invertible lower triangular
matrix L and an invertible upper triangular matrix U in such a way that

A = LU.

In this case, the system Ax = b becomes

L
(
Ux
)
= b.

To solve for x, we first solve the lower triangular system

Lz = b

for the vector z, which can be obtained easily using forward substitution. After obtaining
z, we solve the upper triangular system

Ux = z

for the vector x, which is again obtained easily using backward substitution.

Remark 3.7. In Gaussian elimination method discussed in Section 3.2.1, we have seen
that a given matrix A can be reduced to an upper triangular matrix U by an elimination
procedure and thereby can be solved using backward substitution. In the elimination
procedure, we also obtained a lower triangular matrix L in such a way that

A = LU

as remarked in this section. ⊓⊔
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The above discussion motivates the questions of LU factorizations of matrices and we
turn our attention to these questions.

Definition 3.8 (LU factorization). A matrix A is said to have LU factorization
(or decomposition) if there exists a lower triangular matrix L and an upper triangular
matrix U such that

A = LU.

Clearly if a matrix has an LU decomposition, the matrices L and U are not unique as

A = LU = (LD)(D−1U) = L̃Ũ

for any invertible diagonal matrix D. Note that A = L̃Ũ is also an LU decomposition of
A as L̃ is a lower triangular matrix and Ũ is an upper triangular matrix.

There are three special LU decompositions that we will discuss now.

Doolittle’s factorization

Definition 3.9 (Doolittle’s factorization). A matrix A is said to have a Doolittle’s
factorization if there exists a lower triangular matrix L with all diagonal elements as 1,
and an upper triangular matrix U such that

A = LU.

We now state the sufficient condition under with the Doolittle’s factorization of a given
matrix exists. For this, we need the notion of leading principal minors of a given matrix,
which we define first and then state the required theorem.

Definition 3.10 (Principal Minors of a Matrix).

(1) Let A be an n× n matrix. A sub-matrix of order k (< n) of the matrix A is a k× k
matrix obtained by removing the n− k rows and n− k columns from A.

The determinant of such a sub-matrix of order k of A is called minor of order k of
the matrix A.

(2) The principal sub-matrix of order k of the matrix A is obtained by removing the
last n− k rows and the last n− k columns from A.

The determinant of the leading principal sub-matrix of order k of A is called a prin-
cipal minor of order k of the matrix A.

(3) A principal sub-matrix and the corresponding principal minor are called leading prin-
cipal sub-matrix and leading principal minor respectively, if k < n.

Example 3.11. Consider the 3× 3 matrix

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

There are two leading principal minors corresponding to the matrix A.
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• The leading principal minor of order 1 of A is

|a11| = a11.

• The leading principal minor of order 2 of A is∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21.

Theorem 3.12. Let n ≥ 2, and A be an n × n matrix such that all of its first n − 1
leading principal minors are non-zero. Then A has an LU-decomposition where L is a unit
lower triangular matrix and U is an upper triangular matrix. That is, A has a Doolittle’s
factorization.

Proof: Let P (n) denote the following statement.

“P (n): Every n× n matrix all of whose first n− 1 leading principal minors are non-zero
has a Doolittle’s factorization.”

We want to prove that the statement P (n) is true for all natural numbers that are greater
than or equal to 2, using mathematical induction.

Step 1: (P (2) is true) Let A =

(
a11 a12
a21 a22

)
be a 2×2 matrix such that its leading principal

minor is non-zero. We want to prove that A has a Doolittle’s factorization A = LU where

L =

(
1 0
l21 1

)
, U =

(
u11 u12
0 u22

)
The equality A = LU now becomes(

a11 a12
a21 a22

)
=

(
u11 u12
l21u11 l21u12 + u22

)
(3.30)

Equating the elements of the first rows of the two matrices in the equation (3.30), we get

a11 = u11, a12 = u12.

That is, the first row of U has been found. Now equating the elements of the second rows
of the two matrices in the equation (3.30), we get

a21 = l21u11, a22 = l21u12 + u22.

From the last equation, in view of a11 ̸= 0 (as it is the leading principal minor of A), we
get

l21 =
a21
u11

=
a21
a11

, u22 = a22 = l21u12 = a22 =
a21
a11

a12.

Thus the statement P (2) is true.
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Step 2: Assume that P (k) is true. We will prove that P (k+1) is true. Let us assume that
A is an (k+1)× (k+1) matrix such that its first k leading principal minors are non-zero.
Let Ak denote the leading sub-matrix consisting of the first k rows and k columns. That
is (Ak)ij = aij for all 1 ≤ i ≤ k and 1 ≤ j ≤ k. Note that all the leading principal minors
of the matrix Ak are non-zero as they are also the leading principal minors of the matrix
A.

By induction hypothesis there exist a unit lower triangular k × k matrix Lk, and an
upper triangular k × k matrix Uk such that Ak = LkUk. We will now prove that there
exists a matrix L and U of the form

L =



Lk

0

...

0

lk+11 lk+12 · · · lk+1 k 1


, U =



Uk

u1 k+1

u2 k+1
...

uk k+1

0 0 · · · 0 uk+1 k+1


.

such that
A = LU.

We claim that there exist real numbers lk+11, lk+12, · · · lk+1 k, and u1 k+1, u2 k+1, · · · , uk+1 k+1

such that

LU =



Lk

0

...

0

lk+11 lk+12 · · · lk+1 k 1





Uk

u1 k+1

u2 k+1
...

uk k+1

0 0 · · · 0 uk+1 k+1


=



Ak

a1 k+1

a2 k+1
...

ak k+1

ak+11 ak+12 · · · ak+1 k ak+1 k+1


.

Note that the pqth entry of the matrix LU is given by

(LU)pq =
k+1∑
j=1

lpjujq =

min{p,q}∑
j=1

lpjujq, (3.31)

where the last equality follows from the fact that L and U are lower and upper triangular
matrices respectively. Thus, for p, q such that 1 ≤ p ≤ k and 1 ≤ q ≤ k we get
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(LU)pq =

min{p,q}∑
j=1

lpjujq = (LkUk)pq = (Ak)pq ,

as Ak = LkUk holds.

For each s = 1, 2, · · · , k + 1, on equating the elements in the (k + 1)th column of LU
to those of the matrix A, in view of (3.31), we get the equations

as k+1 =

min{s,k+1}∑
j=1

lsjuj k+1 =
s∑

j=1

lsjuj k+1 = us k+1 +
s−1∑
j=1

lsjuj k+1. (3.32)

Note that for s = 1, the equation (3.32) reduces to a1 k+1 = u1 k+1, and for 2 ≤ s ≤ k + 1,
the equation (3.32) gives a recursive formula for computing us k+1. Thus the last column
of the matrix U is determined.

For each s = 1, 2, · · · , k + 1, on equating the elements in the (k + 1)th row of LU to
those of the matrix A, in view of (3.31), we get the equations

ak+1 s =

min{s,k+1}∑
j=1

lk+1 j ujs =
s∑

j=1

lk+1 j ujs = lk+1 s uss +
s−1∑
j=1

lk+1 j ujs (3.33)

Note that for s = 1, the equation (3.33) reduces to ak+11 = lk+11 u11. Since Ak = LkUk, and
Ak is invertible, it follows that uii ̸= 0 for each i = 1, 2, · · · , k. Thus we get lk+11 =

ak+1 1

u11
.

For 2 ≤ s ≤ k, the equation (3.33) gives a recursive formula for computing lk+1 s. Thus
the last row of the matrix L is determined.

This shows that the statement P (k + 1) is true. By the principle of mathematical
induction, it follows that P (n) is true for all n ≥ 2. ⊓⊔

Remark 3.13. The above theorem is silent if a matrix A is not invertible. It neither
asserts nor rules out existence of an LU-decomposition in this case. ⊓⊔

Example 3.14 (Computing the Doolittle’s factorization for a 3× 3 matrix).

Let us illustrate the direct computation of the factors L and U of a 3 × 3 matrix A,
whenever its leading principal minors of order 1, 2, and 3 are non-zero. Write A = LU asa11 a12 a13

a21 a22 a23
a31 a32 a33

 =

 1 0 0
l21 1 0
l31 l32 1

u11 u12 u13
0 u22 u23
0 0 u33

 (3.34)

The right hand matrix multiplication yields

a11 = u11, a12 = u12, a13 = u13,

a21 = l21u11, a31 = l31u11.
(3.35)

These gives first column of L and the first row of U . Next multiply row 2 of L times
columns 2 and 3 of U , to obtain
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a22 = l21u12 + u22, a23 = l21u13 + u23. (3.36)

These can be solved for u22 and u23. Next multiply row 3 of L to obtain

l31u12 + l32u22 = a32, l31u13 + l32u23 + u33 = a33. (3.37)

These equations yield values for l32 and u33, completing the construction of L and U . In
this process, we must have u11 ̸= 0, u22 ̸= 0 in order to solve for L, which is true because
of the assumptions that all the leading principal minors of A are non-zero.

The decomposition we have found is the Doolittle’s factorization of A. ⊓⊔

Example 3.15. Consider the matrix

A =

 1 1 −1
1 2 −2

−2 1 1

 .

Using (3.35), we get

u11 = 1, u12 = 1, u13 = −1, l21 =
a21
u11

= 1, l31 =
a31
u11

= −2

Using (3.36) and (3.37),

u22 = a22 − l21u12 = 2− 1× 1 = 1

u23 = a23 − l21u13 = −2− 1× (−1) = −1

l32 = (a32 − l31u12)/u22 = (1− (−2)× 1)/1 = 3

u33 = a33 − l31u13 − l32u23 = 1− (−2)× (−1)− 3× (−1) = 2

Thus we obtain the Doolittle’s factorization of A as

A =

 1 0 0
1 1 0

−2 3 1

1 1 −1
0 1 −1
0 0 2


Further, taking b = (1, 1, 1)T , we now solve the system Ax = b using LU factorization,
with the matrix A given above. As discussed earlier, first we have to solve the lower
triangular system  1 0 0

1 1 0
−2 3 1

z1z2
z3

 =

1
1
1

 .

Forward substitution yields z1 = 1, z2 = 0, z3 = 3. Keeping the vector z = (1, 0, 3)T as
the right hand side, we now solve the upper triangular system1 1 −1

0 1 −1
0 0 2

x1x2
x3

 =

1
0
3

 .

Backward substitution yields x1 = 1, x2 = 3/2, x3 = 3/2. ⊓⊔
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Crout’s factorization

In Doolittle’s factorization, the lower triangular matrix has special property. If we ask the
upper triangular matrix to have special property in the LU decomposition, it is known as
Crout’s factorization. We give the definition below.

Definition 3.16 (Crout’s factorization). A matrix A is said to have a Crout’s fac-
torization if there exists a lower triangular matrix L, and an upper triangular matrix U
with all diagonal elements as 1 such that

A = LU.

The computation of the Crout’s factorization for a 3× 3 matrix can be done in a similar
way as done for Doolittle’s factorization in Example 3.14. For invertible matrices, one can
easily obtain Doolittle’s factorization from Crout’s factorization and vice versa. See the
Example 3.23 below.

Cholesky’s factorization

Before we introduce Cholesky’s factorization, we recall the concept of a positive definite
matrix.

Definition 3.17 (Positive Definite Matrix).

A symmetric matrix A is said to be positive definite if

xTAx > 0,

for every non-zero vector x.

We state below some useful results concerning positive definite matrices.

Lemma 3.18. The following statements concerning a symmetric n×n matrix A are equiv-
alent.

(1) The matrix A is positive definite.

(2) All the principal minors of the matrix A are positive.

(3) All the eigenvalues of the matrix A are positive.

Proof: The statements (1) and (2) are equivalent by definition. The proof of equivalnence
of (3) with other two statements is out of the scope of this course. ⊓⊔

Lemma 3.19. Let A be a symmetric matrix, and B be any matrix. The following state-
ments are equivalent.

(1) A is positive definite and B is invertible.

(2) BABT is positive definite.
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Proof: Left as an exercise. ⊓⊔
We now define Cholesky’s factorization.

Definition 3.20 (Cholesky’s factorization). A matrix A is said to have a Cholesky’s
factorization if there exists a lower triangular matrix L such that

A = LLT .

Remark 3.21. It is clear from the definition that non-symmetric matrices do not admit
Cholesky factorization.

Theorem 3.22. If A is an n × n symmetric and positive definite matrix, then A has a
unique factorization

A = LLT

where L is a lower triangular matrix with a positive diagonal.

Proof: Since a symmetric matrix A is positive definite if and only if all the leading minors
of A are non-zero, and the matrix A itself is invertible, by Theorem 3.12, the matrix A
has an LU decomposition. Since the matrix A is symmetric, we have

LU = A = AT = UTLT .

Since A is invertible, both L and U are invertible. From the above equalities, we get

L−1UT = U
(
LT
)−1

.

Note that the matrix on the left hand side of the above equality is a lower triangular
matrix, while the right hand side is an upper triangular matrix. If an upper triangular
matrix equals a lower triangular matrix, then both the matrices must be equal to a
diagonal matrix D. Thus we have L−1UT = D. Hence we get UT = LD. Since A = UTLT ,
we get A = LDLT . Now we can write

A = LDLT = L
√
D
√
DLT =

(
L
√
D
)(

L
√
D
)T

(3.38)

provided
√
D makes sense, where

√
D is defined to be a diagonal matrix whose diagonal

entries are given by
√
dii where dii are the diagonal entries of the diagonal matrix D.

The proof of Cholesky decomposition is complete provided we prove that all the diagonal
entries of the matrix D are non-negative and this follows from Lemma 3.19. ⊓⊔

Example 3.23. Find the Doolittle, Crout, and Cholesky factorizations of the matrix

A =

60 30 20
30 20 15
20 15 12

 .
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(1) The Doolittle factorization is given by

A =

1 0 0
1
2
1 0

1
3
1 1

60 30 20
0 5 5
0 0 1

3

 ≡ LU.

(2) Let us now find Crout factorization from Doolittle factorization as follows:

A =

1 0 0
1
2
1 0

1
3
1 1

60 0 0
0 5 0
0 0 1

3

1 1
2

1
3

0 1 1
0 0 1

 ≡ LDÛ.

Setting L̂ = LD, we get the Crout factorization

A =

60 0 0
30 5 0
20 5 1

3

1 1
2

1
3

0 1 1
0 0 1

 ≡ L̂Û .

(3) The Cholesky factorization is obtained by splitting D as D = D
1
2D

1
2 in the LDÛ

factorization above:

A =

1 0 0
1
2
1 0

1
3
1 1

60 0 0
0 5 0
0 0 1

3

1 1
2

1
3

0 1 1
0 0 1

 =

1 0 0
1
2
1 0

1
3
1 1


√
60 0 0

0
√
5 0

0 0 1√
3


√
60 0 0

0
√
5 0

0 0 1√
3

1 1
2

1
3

0 1 1
0 0 1


Combining the first two matrices into one and the last two matrices into another, we
obtain the Cholesky factorization of A:

A =



√
60 0 0

√
60
2

√
5 0

√
60
3

√
5 1√

3



√
60

√
60
2

√
60
3

0
√
5
√
5

0 0 1√
3

 ≡ L̃L̃T

⊓⊔

It can be observed that the idea of LU factorization method for solving a system of
linear equations is parallel to the idea of Gaussian elimination method. However, LU
factorization method has an advantage that once the factorization A = LU is done, the
solution of the linear system Ax = b is reduced to solving two triangular systems. Thus,
if we want to solve a large set of linear systems where the coefficient matrix A is fixed but
the right hand side vector b varies, we can do the factorization once for A and then use this
factorization with different b vectors. This is obviously going to reduce the computation
cost drastically as we have seen in the operation counting of Gaussian elimination method
that the elimination part is the most expensive part of the computation.
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3.3 Matrix Norms and Condition Number of a Matrix

Given any two real numbers α and β, the distance between them may be taken to be
|α− β|. We can also compare their magnitudes |α| and |β|. Vector Norm may be thought
of as a generalization of the Modulus | · | concept to deal with vectors and in general
matrices.

Definition 3.24 (Vector Norm).

A vector norm on Rn is a function ∥ · ∥ : Rn → [0,∞) having the following properties:

(1) ∥x∥ ≥ 0 for all x ∈ Rn.

(2) ∥x∥ = 0 if and only if x = 0.

(3) ∥αx∥ = |α|∥x∥ for all x ∈ Rn and for all α ∈ R.
(4) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x,y ∈ Rn.

The condition 4 in the above definition is called the triangle inequality.

We use the following notation for a vector x ∈ Rn in terms of its components:

x = (x1, x2, · · · , xn)T .

Example 3.25. There can be many vector norms on Rn. We will describe three important
vector norms defined on Rn now.

(1) Euclidean Norm on Rn is denoted by ∥ · ∥2, and is defined by

∥x∥2 =

√√√√ n∑
i=1

|xi|2. (3.39)

(2) l∞ norm, which is also called maximum norm, on Rn is denoted by ∥ · ∥∞, and is
defined by

∥x∥∞ = max { |x1|, |x2|, · · · , |xn| } . (3.40)

(3) l1 norm on Rn is denoted by ∥ · ∥1, and is defined by

∥x∥1 = |x1|+ |x2|+ · · ·+ |xn|. (3.41)

All the three norms defined above are indeed norms; it is easy to verify that they satisfy
the defining conditions of a norm given in Definition 3.24. ⊓⊔

Example 3.26. Let us compute norms of some vectors now. Let x = (4, 4,−4, 4)T , y =
(0, 5, 5, 5)T , z = (6, 0, 0, 0)T . Verify that ∥x∥1 = 16, ∥y∥1 = 15, ∥z∥1 = 6; ∥x∥2 = 8,
∥y∥2 = 8.66, ∥z∥2 = 6; ∥x∥∞ = 4, ∥y∥∞ = 5, ∥z∥∞ = 6.

From this example we see that asking which vector is big does not make sense. But
once the norm is fixed, this question makes sense as the answer depends on the norm
used. In this example each vector is big compared to other two but in different norms. ⊓⊔
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Remark 3.27. In our computations, we employ any one of the norms depending on con-
venience. It is a fact that “all vector norms on Rn are equivalent”; we will not elaborate
further on this. ⊓⊔

We can also define matrix norms on n× n matrices, which helps us in finding distance
between two matrices.

Definition 3.28 (Matrix Norm).

A matrix norm on the vector space of all n × n real matrices Mn(R) is a function
∥ · ∥ : Mn(R) → [0,∞) having the following properties:

(1) ∥A∥ ≥ 0 for all A ∈Mn(R).
(2) ∥A∥ = 0 if and only if A = 0.

(3) ∥αA∥ = |α|∥A∥ for all A ∈Mn(R) and for all α ∈ R.
(4) ∥A+B∥ ≤ ∥A∥+ ∥B∥ for all A,B ∈Mn(R).

As in the case of vector norms, the condition 4 in the above definition is called the triangle
inequality. For a matrix A ∈Mn(R), we use the notation

A = (aij)1≤i≤n, 1≤j≤n

where aij denotes the element in the ith row and jth column of A.

There can be many matrix norms on Mn(R). We will describe some of them now.

Example 3.29. The following define norms on Mn(R).

(1) ∥A∥ =

√√√√ n∑
i=1

n∑
j=1

|aij|2 .

(2) ∥A∥ = max { |aij| : 1 ≤ i ≤ n, 1 ≤ j ≤ n } .
(3) ∥A∥ =

∑n
i=1

∑n
j=1 |aij|.

All the three norms defined above are indeed norms; it is easy to verify that they satisfy
the defining conditions of a matrix norm of Definition 3.28. ⊓⊔

Among matrix norms, there are special ones that satisfy very useful and important prop-
erties. They are called Matrix norms subordinate to a vector norm. As the name
suggests, to define them we need to fix a vector norm. We will give a precise definition
now.

Definition 3.30 (Matrix Norm subordinate to a vector norm).

Let ∥ · ∥ be a vector norm on Rn and let A ∈ Mn(R). The matrix norm of A subor-
dinate to the vector norm ∥ · ∥ is defined by

∥A∥ := sup {∥Ax∥ : x ∈ Rn, ∥x∥ = 1} . (3.42)
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The formula (3.42) indeed defines a matrix norm on Mn(R). The proof of this fact is
beyond the scope of our course. In this course, by matrix norm, we always mean a norm
subordinate to some vector norm. An equivalent and more useful formula for the matrix
norm subordinate to a vector norm is given in the following lemma.

Lemma 3.31. For any A ∈Mn(R) and a given vector norm ∥ · ∥, we have

∥A∥ = max
z ̸=0

∥Az∥
∥z∥

. (3.43)

Proof: For any z ̸= 0, we have x = z/||z|| as a unit vector. Hence

max
||x||=1

||Ax|| = max
||z||≠0

∥∥∥∥A( z

||z||

)∥∥∥∥ = max
||z||̸=0

||Az||
||z||

.

⊓⊔
The matrix norm subordinate to a vector norm has additional properties as stated in the
following theorem whose proof is left as an exercise.

Theorem 3.32. Let ∥ · ∥ be a matrix norm subordinate to a vector norm. Then

(1) ∥Ax∥ ≤ ∥A∥∥x∥ for all x ∈ Rn.

(2) ∥I∥ = 1 where I is the identity matrix.

(3) ∥AB∥ ≤ ∥A∥ ∥B∥ for all A,B ∈Mn(R). ⊓⊔

We will now state a few results concerning matrix norms subordinate to some of the
vector norms described in Example 3.25. We will not discuss their proofs.

Theorem 3.33 (Matrix norm subordinate to the maximum norm).

The matrix norm subordinate to the l∞ norm (also called maximum norm given in
(3.40)) on Rn is denoted by ∥A∥∞ and is given by

∥A∥∞ = max
1≤i≤n

n∑
j=1

|aij|. (3.44)

The norm ∥A∥∞ given by the formula (3.44) is called the maximum-of-row-sums norm
of A. ⊓⊔

Theorem 3.34 (Matrix Norm Subordinate to the l1-norm).

The matrix norm subordinate to the l1 norm (given in (3.41)) on Rn is denoted by
∥A∥1 and is given by

∥A∥1 = max
1≤j≤n

n∑
i=1

|aij|. (3.45)

The norm ∥A∥1 given by the formula (3.45) is called the maximum-of-column-sums
norm of A. ⊓⊔
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Description and computation of the matrix norm subordinate to the Euclidean vector
norm on Rn is more subtle.

Theorem 3.35 (Matrix norm subordinate to the Euclidean norm).

The matrix norm subordinate to the l2 norm (also called Euclidean norm given in
(3.39)) on Rn is denoted by ∥A∥2 and is given by

∥A∥2 =
√

max
1≤i≤n

|λi|, (3.46)

where λ1, λ2, · · · , λn are eigenvalues of the matrix ATA. The norm ∥A∥2 given by the
formula (3.46) is called the spectral norm of A. ⊓⊔

Example 3.36. Let us now compute ∥A∥∞ and ∥A∥2 for the matrix 1 1 −1
1 2 −2
−2 1 1

 .

(1) ∥A∥∞ = 5 since

3∑
j=1

|a1j| = |1|+ |1|+ | − 1| = 3,

3∑
j=1

|a2j| = |1|+ |2|+ | − 2| = 5,

3∑
j=1

|a3j| = | − 2|+ |1|+ |1| = 4.

(2) ∥A∥2 ≈ 3.5934 as the eigenvalues of ATA are λ1 ≈ 0.0616, λ2 ≈ 5.0256 and λ3 ≈
12.9128. Hence ∥A∥2 ≈

√
12.9128 ≈ 3.5934. ⊓⊔

The following theorem motivates the condition number for an invertible matrix which is
similar to the condition number defined for a function in Section 2.5.1.

Theorem 3.37. Let A be an invertible n× n matrix. Let x and x̃ be the solutions of the
systems

Ax = b and Ax̃ = b̃,

respectively, where b and b̃ are given vectors. Then

∥x− x̃∥
∥x∥

≤ ∥A∥ ∥A−1∥ ∥b− b̃∥
∥b∥

(3.47)

for any fixed vector norm and the matrix norm subordinate to this vector norm.
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Proof: Since A is invertible, we have x− x̃ = A−1
(
b− b̃

)
. Taking norms on both sides

and using the fact that ∥Ax∥ ≤ ∥A∥∥x∥ (see Theorem 3.32) holds for every x ∈ Rn, we
get

∥x− x̃∥ ≤ ∥A−1∥∥b− b̃∥ (3.48)

The last inequality (3.48) estimates the error in the solution caused by error on the right
hand side vector of the linear system Ax = b. The inequality (3.47) is concerned with
estimating the relative error in the solution in terms of the relative error in the right hand
side vector b.

Since Ax = b, we get ∥b∥ = ∥Ax∥ ≤ ∥A∥∥x∥. Therefore ∥x∥ ≥ ∥b∥
∥A∥ . Using this inequality

in (3.48), we get (3.47). ⊓⊔

Remark 3.38.

(1) In the above theorem, it is important to note that a vector norm is fixed and the
matrix norm used is subordinate to this fixed vector norm.

(2) The theorem holds no matter which vector norm is fixed as long as the matrix norm
subordinate to it is used.

(3) In fact, whenever we do analysis on linear systems, we always fix a vector norm and
then use matrix norm subordinate to it. ⊓⊔

Notice that the constant appearing on the right hand side of the inequality (3.47) (which
is ∥A∥ ∥A−1∥) depends only on the matrix A (for a given vector norm). This number
is called the condition number of the matrix A. Notice that this condition number
depends very much on the vector norm being used on Rn and the matrix norm that is
subordinate to the vector norm.

Definition 3.39 (Condition Number of a Matrix). Let A be an n×n invertible ma-
trix. Let a matrix norm be given that is subordinate to a vector norm. Then the condition
number of the matrix A (denoted by κ(A)) is defined as

κ(A) := ∥A∥ ∥A−1∥. (3.49)

Remark 3.40. From Theorem 3.37, it is clear that if the condition number is small, then
the relative error in the solution will also be small whenever the relative error in the right
hand side vector is small. On the other hand, if the condition number is large, then the
relative error could be very large even though the relative error in the right hand side
vector is small. We illustrate this in the following example. ⊓⊔

Example 3.41. The linear system

5x1 + 7x2 = 0.7

7x1 + 10x2 = 1

has the solution x1 = 0, x2 = 0.1. Let us denote this by x = (0, 0.1)T , and the right hand
side vector by b = (0.7, 1)T . The perturbed system
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5x1 + 7x2 = 0.69

7x1 + 10x2 = 1.01

has the solution x1 = −0.17, x2 = 0.22, which we denote by x̃ = (−0.17, 0.22)T , and the
right hand side vector by b̃ = (0.69, 1.01)T . The relative error between the solutions of
the above systems in the l∞ vector norm is given by

∥x− x̃∥∞
∥x∥∞

= 1.7,

which is too high compared to the relative error in the right hand side vector which is
given by

∥b− b̃∥∞
∥b∥∞

= 0.01.

The condition number of the coefficient matrix of the system is 289. Therefore the mag-
nification of the relative error is expected (see the inequality (3.47)). ⊓⊔

Definition 3.42. A matrix with a large condition number is said to be ill conditioned.
A matrix with a small condition number is said to be well conditioned.

Remark 3.43. An immediate question is that how large should the condition number be
to declare that a matrix is ill-conditioned. This quantification is very difficult in practical
situations as it depends on how large the relative error in the right hand side vector
and also the tolerance level of the user. That is, how much error a user can tolerate
in the application for which the linear system is solved. For instance, in finance related
applications, even 20% of error may be tolerable, whereas in computing the path of a
missile even a 0.2% error may lead to fatal disasters. ⊓⊔

Discussion of condition numbers of matrices is incomplete without the mention of the
famous Hilbert matrix.

Example 3.44. The Hilbert matrix of order n is given by

Hn =



1 1
2

1
3

· · · 1
n

1
2

1
3

1
4

· · · 1
n+1

· · · ·
· · · ·
· · · ·
1
n

1
n+1

1
n+1

· · · 1
2n−1

 (3.50)

For n = 4, we have

κ(H4) = ∥H4∥∞∥H−1
4 ∥∞ =

25

12
13620 ≈ 28000

which may be taken as an ill-conditioned matrix. In fact, as the value of n increases, the
corresponding condition number of the Hilbert matrix also increases. ⊓⊔
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An interesting and important question is that what kind of matrices could have large
condition numbers. A partial answer is stated in the following theorem.

Theorem 3.45. Let A ∈Mn(R) be non-singular. Then, for any singular n×n matrix B,
we have

1

κ(A)
≤ ∥A−B∥

∥A∥
. (3.51)

Proof. We have

1

κ(A)
=

1

∥A∥∥A−1∥
=

1

∥A∥

 1

max
x ̸=0

∥A−1x∥
∥x∥

 ≤ 1

∥A∥

 1

∥A−1y∥
∥y∥


where y is arbitrary. Take y = Az, for some arbitrary vector z. Then we get

1

κ(A)
≤ 1

∥A∥

(
∥Az∥
∥z∥

)
.

Let z ̸= 0 be such that Bz = 0 (this is possible since B is singular), we get

1

κ(A)
≤ ∥(A−B)z∥

∥A∥∥z∥

≤ ∥(A−B)∥∥z|
∥A∥∥z∥

=
∥A−B∥

∥A∥
,

and we are done. ⊓⊔

From the above theorem it is apparent that if A is close to a singular matrix, then the
reciprocal of the condition number will be near to zero, ie., κ(A) itself will be large. Let
us illustrate this in the following example.

Example 3.46. Clearly the matrix

B =

(
1 1
1 1

)
is not invertible. For any ϵ > 0, let

A =

(
1 1 + ϵ

1− ϵ 1

)
.

As ϵ > 0, A is invertible and we have

A−1 = ϵ−2

(
1 −1− ϵ

−1 + ϵ 1

)
.
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Let us use the l∞ norm on Rn. Then ∥A∥∞ = 2 + ϵ and ∥A−1∥∞ = ϵ−2(2 + ϵ). Hence

κ(A) = ∥A∥∞∥A−1∥∞

=

(
2 + ϵ

ϵ

)2

>
4

ϵ2
.

Thus, if ϵ ≤ 0.01, then κ(A) ≥ 40, 000. As ϵ → 0, the matrix A tends to approach the
matrix B and consequently, the above inequality says that the condition number κ(A)
tends to ∞.

Also, we can see that when we attempt to solve the system Ax = b, then the above
inequality implies that a small relative perturbation in the right hand side vector b could
be magnified by a factor of at least 40, 000 for the relative error in the solution. ⊓⊔

3.4 Iterative Methods for Linear Systems

In Sections 3.2.1 and 3.2.5 we have discussed methods that obtain exact solution of a
linear system Ax = b in the absence of floating point errors (i.e., exact arithmetic is used).
Such methods are called the direct methods. The solution of a linear system can also be
obtained using iterative procedures. Such methods are called iterative methods. There
are many iterative procedures out of which Jacobi and Gauss-Seidel methods are the
simplest ones. In this section we introduce these methods and discuss their convergence.

3.4.1 Jacobi Method

In section 3.2.5, we have seen that when a linear system Ax = b is such that the coefficient
matrix A is a diagonal matrix, then this system can be solved very easily. We explore this
idea to build a new method based on iterative procedure. For this, we first rewrite the
matrix A as

A = D − C,

where D,C ∈Mn(R) are such that

D =


a11 0 · · · 0
0 a22 · · · 0
...

... · · · ...
0 0 · · · ann

 ,

where aii, i = 1, 2, · · · , n are the diagonal elements of the matrix A. Then the given system
of linear equations can be re-written as

Dx = Cx+ b. (3.52)
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If we assume that the right hand side vector is fully known to us, then the above system
can be solved very easily as D is a diagonal matrix. But obviously, the right hand side
vector cannot be a known quantity because it involves the unknown vector x. Rather, if
we choose (arbitrarily) some specific value for x, say x = x(0), then the resulting system

Dx = Cx(0) + b

can be readily solved. Let us call the solution of this system as x(1). That is,

Dx(1) = Cx(0) + b.

Now taking x = x(1) on the right hand side of (3.52) we can obtain the solution of
this system, which we denote as x(2) and repeat this procedure to get a general iterative
procedure as

Dx(k+1) = Cx(k) + b, k = 0, 1, 2, · · · .

If D is invertible, then the above iterative procedure can be written as

x(k+1) = Bx(k) + c, k = 0, 1, 2, · · · , (3.53)

where B = D−1C and c = D−1b. The iterative procedure (3.53) is called the Jacobi
method.

Example 3.47. Let us illustrate the Jacobi method in the case of 3× 3 system

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3,

where a11 ̸= 0, a22 ̸= 0, and a33 ̸= 0. We can rewrite the above system of linear equations
as

x1 =
1

a11
(b1 − a12x2 − a13x3)

x2 =
1

a22
(b2 − a21x1 − a23x3)

x3 =
1

a33
(b3 − a31x1 − a32x2)

Let x(0) = (x
(0)
1 , x

(0)
2 , x

(0)
3 )T be an initial guess to the true solution x, which is chosen

arbitrarily. Define a sequence of iterates (for k = 0, 1, 2, · · · ) by

x
(k+1)
1 =

1

a11
(b1 − a12x

(k)
2 − a13x

(k)
3 )

x
(k+1)
2 =

1

a22
(b2 − a21x

(k)
1 − a23x

(k)
3 )

x
(k+1)
3 =

1

a33
(b3 − a31x

(k)
1 − a32x

(k)
2 ).


(JS)

which is the Jacobi iterative sequence given by (3.53) in the case of 3× 3 system. ⊓⊔
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Now, the question is that will the sequence of vectors {x(k+1)} generated by the iterative
procedure (3.53) always converge to the exact solution x of the given linear system?

The following example gives a system for which the Jacobi iterative sequence converges
to the exact solution.

Example 3.48. The Jacobi iterative sequence for the system

6x1 + x2 + 2x3 = −2,

x1 + 4x2 + 0.5x3 = 1,

−x1 + 0.5x2 − 4x3 = 0.

is given by

x
(k+1)
1 =

1

6
(−2− x

(k)
2 − 2x

(k)
3 ),

x
(k+1)
2 =

1

4
(1− x

(k)
1 − 0.5x

(k)
3 ),

x
(k+1)
3 =

−1

4
(0 + x

(k)
1 − 0.5x

(k)
2 ).

The exact solution (upto 6-digit rounding) of this system is

x ≈ (−0.441176, 0.341176, 0.152941). (3.54)

Choosing the initial guess x(0) = (0, 0, 0), we get

x(1) ≈ (−0.333333, 0.250000, 0.000000),

x(2) ≈ (−0.375000, 0.333333, 0.114583),

x(3) ≈ (−0.427083, 0.329427, 0.135417),

x(4) ≈ (−0.433377, 0.339844, 0.147949),

x(5) ≈ (−0.439290, 0.339851, 0.150825),

and so on. We observe from the above computed results that the sequence {x(k)} seems
to be approaching the exact solution. ⊓⊔

In the following example we discuss a system for which the Jacobi iterative sequence does
not converge to the exact solution.

Example 3.49. Consider the system

x1 + 4x2 + 0.5x3 = 1,

6x1 + x2 + 2x3 = −2,

−x1 + 0.5x2 − 4x3 = 0.

which is exactly the same as the system discussed in Example 3.48 but the only difference
is the interchange of first and second equation. Hence, the exact solution is same as given
in (3.54). The Jacobi iterative sequence for this system is given by
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x
(k+1)
1 = (1− 4x

(k)
2 − 0.5x

(k)
3 ),

x
(k+1)
2 = (−2− 6x

(k)
1 − 2x

(k)
3 ),

x
(k+1)
3 =

−1

4
(0 + x

(k)
1 − 0.5x

(k)
2 ).

Choosing the initial guess x(0) = (0, 0, 0), we get

x(1) ≈ (1,−2, 0),

x(2) ≈ (9,−8,−0.5),

x(3) ≈ (33.25,−55,−3.25),

x(4) ≈ (222.625,−195,−15.1875),

x(5) ≈ (788.59375,−1307.375,−80.03125),

and so on. Here, we observe a diverging trend in the sequence {x(k)}. ⊓⊔

Thus, we need to look for a condition on the system for which the Jacobi iterative
sequence converges to the exact solution. Define the error in the kth iterate x(k) compared
to the exact solution by

e(k) = x− x(k).

It follows easily that e(k) satisfies the system

e(k+1) = Be(k),

where B is as defined in (3.53). Using any vector norm and the matrix norm subordinate
to it in the above equation, we get

∥e(k+1)∥ = ∥Be(k)∥ ≤ ∥B∥∥e(k)∥ ≤ · · · ≤ ∥B∥k+1∥e(0)∥.

Thus, when ∥B∥ < 1, the iteration method (3.53) always converges for any initial guess
x(0).

Again the question is

‘’what are all the matrices A for which the corresponding matrices B in (3.53) have the
property ∥B∥ < 1, for some matrix norm subordinate to some vector norm?”

One such class of matrices are the diagonally dominant matrices, which we define now.

Definition 3.50 (Diagonally Dominant Matrices). A matrix A is said to be diago-
nally dominant if it satisfies the inequality

n∑
j=1,j ̸=i

|aij| < |aii|, i = 1, 2, · · · , n.

We now prove the sufficient condition for the convergence of the Jacobi method. This
theorem asserts that if A is a diagonally dominant matrix, then B in (3.53) of the Jacobi
method is such that ∥B∥∞ < 1.
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Theorem 3.51. If the coefficient matrix A is diagonally dominant, then the Jacobi method
(3.53) converges to the exact solution of Ax = b.

Proof: Since A is diagonally dominant, the diagonal entries are all non-zero and hence
the Jacobi iterating sequence x(k) given by

x
(k+1)
i =

1

aii

(
bi −

n∑
j=1,j ̸=i

aijx
(k)
j

)
, i = 1, 2, · · · , n. (3.55)

is well-defined. Each component of the error satisfies

e
(k+1)
i = −

n∑
j=1
j ̸=i

aij
aii
e
(k)
j , i = 1, 2, · · · , n. (3.56)

which gives

|e(k+1)
i | ≤

n∑
j=1
j ̸=i

∣∣∣∣aijaii
∣∣∣∣ ∥e(k)∥∞. (3.57)

Define

µ = max
1≤i≤n

n∑
j=1
j ̸=i

∣∣∣∣aijaii
∣∣∣∣ . (3.58)

Then
|e(k+1)

i | ≤ µ∥e(k)∥∞, (3.59)

which is true for all i = 1, 2, · · · , n. Therefore, we have

∥e(k+1)∥∞ ≤ µ∥e(k)∥∞. (3.60)

The matrix A is diagonally dominant if and only if µ < 1. Then iterating the last inequality
we get

∥e(k+1)∥∞ ≤ µk+1∥e(0)∥∞. (3.61)

Therefore, if A is diagonally dominant, the Jacobi method converges. ⊓⊔

Remark 3.52. Observe that the system given in Example 3.48 is diagonally dominant,
whereas the system in Example 3.49 is not so. ⊓⊔

3.4.2 Gauss-Seidel Method

Gauss-Seidel method is a modified version of the Jacobi method discussed in Section 3.4.1.
We demonstrate the method in the case of a 3 × 3 system and the method for a general
n× n system can be obtained in a similar way.
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Example 3.53. Consider the 3× 3 system

a11x1 + a12x2 + a13x3 = b1,

a21x1 + a22x2 + a23x3 = b2,

a31x1 + a32x2 + a33x3 = b3.

When the diagonal elements of this system are non-zero, we can rewrite the above system
as

x1 =
1

a11
(b1 − a12x2 − a13x3),

x2 =
1

a22
(b2 − a21x1 − a23x3),

x3 =
1

a33
(b3 − a31x1 − a32x2).

Let
x(0) = (x

(0)
1 , x

(0)
2 , x

(0)
3 )T

be an initial guess to the true solution x. Define a sequence of iterates (for k = 0, 1, 2, · · · )
by

x
(k+1)
1 =

1

a11
(b1 − a12x

(k)
2 − a13x

(k)
3 ),

x
(k+1)
2 =

1

a22
(b2 − a21x

(k+1)
1 − a23x

(k)
3 ),

x
(k+1)
3 =

1

a33
(b3 − a31x

(k+1)
1 − a32x

(k+1)
2 ).


(GSS)

This sequence of iterates is called the Gauss-Seidel iterative sequence and the method
is called Gauss-Seidel Iteration method.

Remark 3.54. Compare (JS) and (GSS). ⊓⊔

Theorem 3.55. If the coefficient matrix is diagonally dominant, then the Gauss-Seidel
method converges to the exact solution of the system Ax = b.

Proof:

Since A is diagonally dominant, all the diagonal elements of A are non-zero, and hence
the Gauss-Seidel iterative sequence given by

x
(k+1)
i =

1

aii

{
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

}
, i = 1, 2, · · · , n. (3.62)

is well-defined. The error in each component is given by

e
(k+1)
i = −

i−1∑
j=1

aij
aii
e
(k+1)
j −

n∑
j=i+1

aij
aii
e
(k)
j , i = 1, 2, · · · , n. (3.63)
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For i = 1, 2, · · · , n,, define

αi =
i−1∑
j=1

∣∣∣∣aijaii
∣∣∣∣ ,

βi =
n∑

j=i+1

∣∣∣∣aijaii
∣∣∣∣ ,

with the convention that α1 = βn = 0. Note that µ given in (3.58) can be written as

µ = max
1≤i≤n

(αi + βi)

Since A is a diagonally dominant matrix, we have µ < 1. Now

|e(k+1)
i | ≤ αi∥e(k+1)∥∞ + βi∥e(k)∥∞, i = 1, 2, · · · , n. (3.64)

Let l be such that
∥e(k+1)∥∞ = |e(k+1)

l |.

Then with i = l in (3.64),

∥e(k+1)∥∞ ≤ αl∥e(k+1)∥∞ + βl∥e(k)∥∞. (3.65)

Since µ < 1, we have αl < 1 and therefore the above inequality gives

∥e(k+1)∥∞ ≤ βl
1− αl

∥e(k)∥∞. (3.66)

Define

η = max
1≤i≤n

βi
1− αi

. (3.67)

Then the above inequality yields

∥e(k+1)∥∞ ≤ η∥e(k)∥∞. (3.68)

Since for each i,

(αi + βi)−
βi

1− αi

=
αi[1− (αi + βi)]

1− αi

≥ αi

1− αi

[1− µ] ≥ 0, (3.69)

we have
η ≤ µ < 1. (3.70)

Thus, when the coefficient matrix A is diagonally dominant, Gauss-Seidel method con-
verges. ⊓⊔

Remark 3.56. A careful observation of the proof of the above theorem reveals that the
Gauss-Seidel method converges faster than the Jacobi method by comparing (3.70) and
(3.61). ⊓⊔
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3.4.3 Mathematical Error

Let x∗ denote the computed solution using some method. The mathematical error in the
approximate solution when compared to the exact solution of a linear system Ax = b is
given by

e = x− x∗. (3.71)

Recall from Chapter 2 that the mathematical error is due to the approximation made in
the numerical method where the computation is done without any floating-point approxi-
mation ( ie., without rounding or chopping). Observe that to get the mathematical error,
we need to know the exact solution. But an astonishing feature of linear systems (which
is not there in nonlinear equations) is that this error can be obtained exactly without the
knowledge of the exact solution. To do this, we first define the residual vector

r = b− Ax∗ (3.72)

in the approximation of b by Ax∗. This vector is also referred to as residual error. Since
b = Ax, we have

r = b− Ax∗ = Ax− Ax∗ = A(x− x∗).

The above identity can be written as

Ae = r. (3.73)

This shows that the error e satisfies a linear system with the same coefficient matrix A as
in the original system Ax = b, but a different right hand side vector. Thus, by having the
approximate solution x∗ in hand, we can obtain the error e without knowing the exact
solution x of the system.

3.4.4 Residual Corrector Method

When we use a computing device for solving a linear system, irrespective to whether we use
direct methods or iterative methods, we always get an approximate solution. An attractive
feature (as discussed in the above section) of linear systems is that the error involved in the
approximate solution when compared to the exact solution can theoretically be obtained
exactly. In this section, we discuss how to use this error to develop an iterative procedure
to increase the accuracy of the obtained approximate solution using any other numerical
method.

There is an obvious difficulty in the process of obtaining e as the solution of the
system (3.73), especially on a computer. Since b and Ax∗ are very close to each other,
the computation of r involves loss of significant digits which leads to zero residual error,
which is of no use. To avoid this situation, the calculation of (3.72) should be carried out
at a higher-precision. For instance, if x∗ is computed using single-precision, then r can
be computed using double-precision and then rounded back to single precision. Let us
illustrate the computational procedure of the residual error in the following example.
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Example 3.57 (Computation of residual at higher precision).

Consider the system

0.729x1 + 0.81x2 + 0.9x3 = 0.6867

x1 + x2 + x3 = 0.8338

1.331x1 + 1.210x2 + 1.100x3 = 1.000

The exact solution of this system with 4-digit rounding is

x1 ≈ 0.2245, x2 ≈ 0.2814, x3 ≈ 0.3279.

The solution of the system by Gaussian elimination without pivoting using 4-digit round-
ing leads to

x∗1 ≈ 0.2251, x∗2 ≈ 0.2790, x∗3 ≈ 0.3295.

As we have used 4-digit rounding arithmetic in obtaining the approximate solution vector
x∗, we use 8-digit rounding arithmetic in computing the residual, which is obtained as

r = (0.00006210, 0.0002000, 0.0003519)T .

Solving the linear system Ae = r using 8-digit rounding arithmetic, we obtain the ap-
proximation as

e∗ = [−0.00044710, 0.00215000,−0.00150400]T .

Compare this to the true error

e = x− x∗ = [−0.0007, 0.0024,−0.0016]T

Thus e∗ gives a good idea of the size of the error e in the computed solution x∗. ⊓⊔

Let us now propose an iterative procedure by first predicting the error by solving the
system (3.73) and then correcting the approximate solution x∗ by adding the predicted
error to the vector x∗.

If we take x∗ = x(0), and define r(0) = b−Ax(0), then the error e(0) = x−x(0) can be
obtained by solving the linear system

Ae(0) = r(0).

Now, define
x(1) = x(0) + e(0).

We expect the vector x(1) is more closer to the exact solution than x(0). Again compute
the residual error vector r(1) using the formula

r(1) = b− Ax(1),

and solve the corresponding linear system

Ae(1) = r(1)
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and define
x(2) = x(1) + e(1).

Continuing in this way, we can generate a sequence {x(k)} using the formula

x(k+1) = x(k) + e(k). (3.74)

where
Ae(k) = r(k)

with
r(k) = b− Ax(k),

for k = 0, 1, · · · . The above iterative procedure is called th residual corrector method
(also called the iterative refinement method). Note that in computing r(k) and e(k),
we use a higher precision than the precision used in computing x(k).

Example 3.58. Using Gaussian elimination with pivoting and four digit rounding in solv-
ing the linear system

x1 + 0.5x2 + 0.3333x3 = 1

0.5x1 + 0.3333x2 + 0.25x3 = 0

0.3333x1 + 0.25x2 + 0.2x3 = 0

we obtain the solution as x = (9.062, − 36.32, 30.30)T . Let us start with an initial guess
of

x(0) = (8.968, − 35.77, 29.77)T .

Using 8-digit rounding arithmetic, we obtain

r(0) = (−0.00534100, − 0.00435900, − 0.00053440)T .

After solving the system Ae(0) = r(0) using Gaussian elimination with pivoting using
8-digit rounding and the final answer is rounded to four digits, we get

e(0) = (0.0922, − 0.5442, 0.5239)T .

Hence, the corrected solution after the first iteration is

x(1) = (9.060, − 36.31, 30.29)T .

Similarly, we can predict the error in x(1) when compared to the exact solution and correct
the solution to obtain the second iterated vector as

r(1) = (−0.00065700, − 0.00037700, − 0.00019800)T ,

e(2) = (0.0017, − 0.0130, 0.0124)T ,

x(2) = (9.062, − 36.32, 30.30)T ,

and so on. ⊓⊔

The convergence of the iterative procedure to the exact solution is omitted for this course.
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3.4.5 Stopping Criteria

In the iterative methods discussed above, we have a sequence {x(k)} that is expected to
converge to the exact solution of the given linear system. In practical situation, we cannot
go on computing the x(k) indefinitely and we need to terminate our computation once the
value of x(k) reaches a desired accuracy for a sufficiently large k. That is, when the error

∥e(k)∥ = ∥x− x(k)∥

in the kth iteration in some norm is sufficiently small. Since, we do not know the exact
solution x, the error given above cannot be computed easily and needs another linear
system (3.73) to be solved. Therefore, the question is how to decide where we have to
stop our computation (without solving this linear system)? In other words, how do we
know whether the computed vector x(k) at the kth iteration is sufficiently close to the
exact solution or not. This can be decided by looking at the residual error vector of the
kth iteration defined as

r(k) = b− Ax(k). (3.75)

Thus, for a given sufficiently small positive number ϵ, we stop the iteration if

∥r(k)∥ < ϵ,

for some vector norm ∥ · ∥.

3.5 Eigenvalue Problems

Let A be an n × n matrix with real entries. Eigenvalues of A are defined as the roots of
the equation

det(λI − A) = 0. (3.76)

Note that det(λI−A) is a polynomial in λ of degree n, which is known as characteristic
polynomial of the matrix A. We know that even if A has real entries, the eigenvalues
need not be real numbers. It is also a known fact that for every matrix, there are n
eigenvalues λ1, λ2, · · · , λn (in this list, each eigenvalue is repeated as many times as its
algebraic multiplicity, i.e., multiplicity of the eigenvalue as a root of the characteristic
polynomial).

When n = 2 the characteristic polynomial is a quadratic polynomial for which there is
a nice formula for computing roots. When n = 3, there is a formula that many of us do not
remember. When n = 4, none has a formula. But computing eigenvalues is important for
applications. Therefore, numerically approximating the eigenvalues is the only way out.

One obvious way of approximating an eigenvalue of a matrix is to first obtain the
characteristic polynomial (3.76) explicitly in λ and then use one of the numerical methods
discussed in Chapter 4 to compute a root of this polynomial. But this is not an efficient way
of computing eigenvalues because of two reasons. One reason is that obtaining explicit form
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of (3.76) is itself a difficult task when the dimension of the matrix is very large. Secondly,
if we make any small error (like floating-point error) in obtaining the explicit form of the
polynomial (3.76), the resulting polynomial may have a root which is entirely different
from any of the eigenvalues that we are looking for. This is illustrated in the following
example by Wilkinson where we see that “the roots of polynomials are extremely sensitive
to perturbations in the coefficients”.

Example 3.59 (Wilkinson’s example). Let f(x) and g(x) be two polynomials given
by

f(x) = (x− 1)(x− 2) · · · (x− 10), g(x) = x10.

The roots of the polynomial f(x) are 1, 2, · · · , 10, and all these roots are simple roots. If
we perturb this polynomial as F (x) = f(x)+0.01g(x), then all the roots lie in the interval
[1, 3.5] (verified graphically). In fact, the largest root of the polynomial f(x) is 10 and
the largest root of the polynomial F (x) is approximately equal to 3.398067. Thus, if the
coefficient of x10 is perturbed by a small amount of 0.01, the root 10 of f(x) could move
as much a distance as approximately 6.6. ⊓⊔

Due to the two reasons discussed above, we look for an alternate method to compute
the eigenvalues of a given matrix. One such method is the power method that can
be used to obtain the eigenvalue which is the largest in magnitude among all the other
eigenvalues and the corresponding eigen vector. In Subsection 3.5.1, we present the power
method and discuss the condition under which this method can be applied. In Subsection
3.5.2 we prove the Gerschgorin theorem which may be used as a tool to find a class of
matrices for which power method can be applied successfully.

3.5.1 Power Method

There are many variations of Power method in the literature. We will present the most
elementary form of Power method. We always deal with matrices with real entries, all of
whose eigenvalues are real numbers.

Power method is used to obtain a specific eigenvalue called dominant eigenvalue
and corresponding eigenvector for a given n × n matrix A. The concept of a dominant
eigenvalue plays a very important role in many applications. The Power method provides
an approximation to it under some conditions on the matrix. We now define the concept
of a dominant eigenvalue.

Definition 3.60 (Dominant Eigenvalue of a Matrix).

An eigenvalue λ of an n× n matrix A is said to be a dominant eigenvalue of A if

|λ| = max{ |z| : z is an eigenvalue of A }.

Remark 3.61.

(1) If a dominant eigenvalue of a matrix is equal to zero, then all its eigenvalues are zero
and an eigenvector can be found by solving the linear system Ax = 0.
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(2) If λ is a dominant eigenvalue of a matrix A, then there is no other eigenvalue of A
whose distance from zero is more than that of λ from zero.

(3) Let µ1, µ2, · · · , µn be the eigenvalues of A (repeated according to their algebraic mul-
tiplicities) of an n × n matrix A. These eigenvalues can be re-named (re-labelled,
re-indexed) as λ1, λ2, · · · , λn such that they satisfy the condition:

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|.

Note that λ1 is a dominant eigenvalue of A. ⊓⊔

Example 3.62. A matrix may have a unique dominant eigenvalue or more than one
dominant eigenvalues. Further, even if dominant eigenvalue is unique the corresponding
algebraic and geometric multiplicities could be more than one, and also both algebraic
and geometric multiplicities may not be the same. All these possibilities are illustrated in
this example.

(1) The matrix

A =

1 0 0
0 − 2 1
0 0 − 1


has eigenvalues 1, −1, and −2. The matrix A has a unique dominant eigenvalue, which
is −2 as this is the largest in absolute value, of all eigenvalues. Note that the dominant
eigenvalue of A is a simple eigenvalue.

(2) The matrix

B =

1 3 4
0 2 1
0 0 − 2


has eigenvalues 1, −2, and 2. According to our definition, the matrix B has two dom-
inant eigenvalues. They are −2 and 2. Note that both the dominant eigenvalues of B
are simple eigenvalues.

(3) Consider the matrices

C1 =

1 3 4
0 2 5
0 0 2

 , C2 =

(
2 0
0 2

)
, C3 =

(
2 1
0 2

)
.

The matrix C1 has a unique dominant eigenvalue 2, which has algebraic multiplicity 2
and geometric multiplicity 1. The matrix C2 has a unique dominant eigenvalue 2, whose
algebraic and geometric multiplicities equal 2. The matrix C3 has a unique dominant
eigenvalue 2, which has algebraic multiplicity 2 and geometric multiplicity 1. ⊓⊔

As mentioned above the power method is used to compute the dominant eigenvalue and
the corresponding eigen vector of a given n×n matrix provided this eigenvalue is unique.
Thus, in the above examples, power method can be used for the matrices A but not for
B even though B has distinct eigenvalues. Let us now detail the power method.
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Assumptions on the matrix for which the power method can work

Assume that an n × n matrix A has real eigenvalues λ1, λ2, · · · , and λn (repeated
according to their algebraic multiplicities) with the following properties:

(1) The eigenvalues are such that

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn| (3.77)

That is, A has a unique dominant eigenvalue λ1 which is a simple eigenvalue.

(2) There exists a basis of Rn consisting of eigenvectors of A. That is, there exists
v1,v2, · · · ,vn satisfying Avk = λkvk for k = 1, 2, · · · , n; and such that for each v ∈ Rn

there exists unique real numbers c1, c2, · · · , cn such that

v = c1v1 + c2v2 + · · ·+ cnvn.

Equivalently, the matrix A is diagonalizable.

Let us now discuss the key idea behind power method.

• Choose a non-zero vector x(0) ∈ Rn arbitrarily so that we can find scalars c1, c2, · · · ,
cn ∈ R such that

x(0) = c1v1 + c2v2 + · · ·+ cnvn, c1 ̸= 0.

• Pre-multiplying by A and substituting Avi = λivi, i = 1, · · · , n, we get

Ax(0) = c1λ1v1 + · · ·+ cnλnvn = λ1

(
c1v1 + c2

(
λ2
λ1

)
v2 + · · ·+ cn

(
λn
λ1

)
vn

)
.

Note here that we have assumed λ1 ̸= 0, which follows from the Assumption (1) above.

• Pre-multiplying by A again and simplying, we get

A2x(0) = λ21

(
c1v1 + c2

(
λ2
λ1

)2

v2 + · · ·+ cn

(
λn
λ1

)2

vn

)

• For each k ∈ N, applying A k-times on x(0) yields

Akx(0) = λk1

(
c1v1 + c2

(
λ2
λ1

)k

v2 + · · ·+ cn

(
λn
λ1

)k

vn

)
(3.78)

• Using the assumption (3.77), we get |λk/λ1| < 1, for k = 2, · · · , n. Therefore, we have

lim
k→∞

Akx(0)

λk1
= c1v1. (3.79)

For c1 ̸= 0, the right hand side of the above equation is a scalar multiple of the
eigenvector.
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• From the above expression for Akx(0), we also see that

lim
k→∞

(Ak+1x(0))i
(Akx(0))i

= λ1, (3.80)

where i is any index such that the fractions on the left hand side are meaningful (which
is the case when x(0) /∈ ∪∞

k=1KerA
k).

The power method generates two sequences {µk} and {x(k)}, using the results (3.79)
and (3.80), that converge to the dominant eigenvalue λ1 and the corresponding eigen
vectors v1, respectively. We will now give the method of generating these two sequences.

Step 1: Choose a vector x(0) arbitrarily and set y(1) := Ax(0).
Step 2: Define µ1 := y

(1)
i , where i ∈ {1, · · · , n} is the least index such that ∥y(1)∥∞ = |y(1)i |

and set x(1) := y(1)/µ1.

From x(1), we can obtain µ2 and x(2) in a similar way.

Power method iterative sequence:

In general, for k = 0, 1, · · · , we choose the initial vector x(0) arbitrarily and generate
the sequences {µ(k)} and {x(k)} using the formulas

µk+1 = y
(k+1)
i , x(k+1) =

y(k+1)

µk+1

, (3.81)

where

y(k+1) = Ax(k), ∥y(k+1)∥∞ = |y(k+1)
i |. (3.82)

This iterative procedure is called the power method.

Remark 3.63. The scaling factor µk introduced in (3.81) makes sure that x(k) has its
maximum norm equal to 1, i.e., ∥x(k)∥∞ = 1. This rules out the possibilities of limk→∞ x(k)

being 0 or the vector x(k) escaping to infinity. ⊓⊔

We now discuss the sufficient conditions under which the power method converges.

Theorem 3.64 (Convergence Theorem for Power method).

Hypothesis: Let A be an non-singular n × n matrix with real eigenvalues having the
following properties:

(H1) A has a unique dominant eigenvalue λ1 which is a simple eigenvalue. That is,

|λ1| > |λ2| ≥ · · · ≥ |λn|,

where λ1, λ2, · · · , λn are the eigenvalues of A (repeated according to their algebraic
multiplicities).

(H2) A has n linearly independent real eigenvectors, vi, i = 1, · · · , n.
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(H3) An initial guess x(0) ∈ Rn be chosen such that

x(0) =
n∑

j=1

cjvj, (3.83)

for some scalars c1, c2, · · · , cn ∈ R with c1 ̸= 0 and x(0) /∈
∞∪
k=1

KerAk.

Conclusion: Then, in the power method (3.81)-(3.82),

(1) the sequence {µk} converges to the dominant eigenvalue λ1 and

(2) the sequence {xk} converges either to +v1/∥v1∥∞ or to −v1/∥v1∥∞ or oscillates be-
tween these two vectors. Here, v1 denotes the eigenvector corresponding to the eigen-
value λ1.

Remark 3.65. Note that in Conclusion (2) of the above theorem, we see that what-
ever may be the case (among the three cases stated), the sequence {xk} approaches the
eigenspace associated with the eigenvalue λ1, as k → ∞. ⊓⊔

Proof. From the definition of x(k+1), we have

x(k+1) =
Ax(k)

µk+1

=
Ay(k)

µk+1µk

=
AAx(k−1)

µk+1µk

=
A2x(k−1)

µk+1µk

= · · · = Ak+1x(0)

µk+1µk · · ·µ1

.

Therefore, we have
x(k+1) = mk+1A

k+1x(0),

where mk+1 = 1/(µ1µ2 · · ·µk+1). But, x
(0) =

n∑
j=1

cjvj, c1 ̸= 0. Therefore

x(k+1) = mk+1λ
k+1
1

(
c1v1 +

n∑
j=2

cj

(
λj
λ1

)k+1

vj

)
.

Taking maximum norm on both sides and noting that ∥x(k)∥∞ = 1, we get

1 =
∣∣mk+1λ

k+1
1

∣∣ ∥∥∥∥∥c1v1 +
n∑

j=2

cj

(
λj
λ1

)k+1

vj

∥∥∥∥∥
∞

.

Since |λj/λ1|k → 0 as k → ∞, we get

lim
k→∞

∣∣mk+1λ
k+1
1

∣∣ = 1

|c1|∥v1∥∞
<∞.

Using this, we get
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lim
k→∞

x(k+1) = lim
k→∞

mk+1λ
k+1
1 c1v1 =



either +
v1

∥v1∥∞

or − v1

∥v1∥∞

or oscillates between
the above two vectors

. (3.84)

This completes the proof of Conclusion (2).

Let us now prove that µk → λ1. For this, we first note that

y(k+1) = Ax(k).

Therefore, from (3.84), we see that (up to a subsequence)

lim
k→∞

y(k+1) = lim
k→∞

Ax(k) = Kλ1v1,

whereK = ±1/∥v1∥∞. Since v1 is an eigen vector, there is at least one non-zero component
of v1. We choose one such component of v1 and denote it by (v1)j. Since (v1)j ̸= 0 and

y
(k+1)
j → Kλ1(v1)j, there exists an integer N > 0 such that

y
(k+1)
j ̸= 0, for all k ≥ N.

Similarly, we see that
x
(k+1)
j ̸= 0, for all k ≥ N.

Also, we know that
µk+1x

(k+1) = y(k+1).

Therefore, we can write

µk+1 =
y
(k+1)
j

x
(k+1)
j

=
(Ax(k))j
(x(k+1))j

,

where j denotes the component as given above. Taking limit, we have

lim
k→∞

µk+1 =
K(Av1)j
K(v1)j

=
λ1(v1)j
(v1)j

= λ1.

which gives the desired result. ⊓⊔

Note that the above theorem does not guarantee the convergence of the sequence {xn}
to an eigenvector of the dominant eigenvalue. However, if the dominant eigenvalue has an
eigenvector with a unique dominant component, then this sequence converges as discussed
in the following theorem.
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Theorem 3.66 (Second Convergence Theorem for Power Method).

Let A be an n×n matrix satisfying the hypotheses (H1), (H2), and (H3) of Theorem
3.64. In addition to these hypotheses,

(H4) let v1 = (v11, v12, · · · , v1n)T be such that there exists a unique index j ∈ {1, 2, · · · , n}
with the property

|v1j| = ∥v1∥∞ (3.85)

This hypothesis is referred to as v1 has a single maximal component.

Conclusion: Then, in the power method (3.81)-(3.82),

(1) the sequence {µk} converges to the dominant eigenvalue λ1 and

(2) The sequence of vectors x(k) converges to an eigenvector corresponding to the dominant
eigenvalue λ1.

Proof. Let us first set up some notation. Let the eigenvectors v1,v2, · · · ,vn be given by

vj = (vj1, vj2, · · · , vjn)T , for j = 1, 2, · · · , n. (3.86)

Since x(0) = c1v1 + c2v2 + · · ·+ cnvn, we have

Ax(0) = c1λ1v1 + c2λ2v2 + · · ·+ cnλnvn.

In coordinate form, we have

Ax(0) = (λ1c1v11+λ2c2v21+ · · ·+λncnvn1, · · · , λ1c1v1n+λ2c2v2n+ · · ·+λncnvnn)T (3.87)

In fact, for each k ∈ N, we have

Akx(0) = (λk1c1v11+λ
k
2c2v21+· · ·+λkncnvn1, · · · , λk1c1v1n+λk2c2v2n+· · ·+λkncnvnn)T (3.88)

Maximum norm of the vector Akx(0) is going to be the modulus of one of its components.
From (H4), we have

|v1i|
|v1j|

≤ 1 for i = 1, 2, · · · , n. (3.89)

Observe that

(Akx(0))i
(Akx(0))j

=
λk1c1v1i + λk2c2v2i + · · ·+ λkncnvni
λk1c1v1j + λk2c2v2j + · · ·+ λkncnvnj

.

The last equation can be written in the form

(Akx(0))i
(Akx(0))j

=

v1i +
λk2c2
λk1c1

v2i + · · ·+ λkncn
λk1c1

vni

v1j +
λk2c2
λk1c1

v2j + · · ·+ λkncn
λk1c1

vnj

(3.90)
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Note that the RHS in the equation (3.90) converges to
v1i
v1j

as k → ∞. Since,

∣∣∣∣v1iv1j
∣∣∣∣ < 1, for i ̸= j, (3.91)

we can conclude that there exists a K ∈ N such that for k ≥ K,∣∣∣∣ (Akx(0))i
(Akx(0))j

∣∣∣∣ < 1. (3.92)

As a consequence, the maximum norm of Akx(0) is equal to |(Akx(0))j| where j is as given
in (H4).

For k ≥ K, the sequence µk is given by

µk =
(Akx(0))j
(Ak−1x(0))j

= λ1

v1j +
λk2c2
λk1c1

v2j + · · ·+ λkncn
λk1c1

vnj

v1j +
λk−1
2 c2

λk−1
1 c1

v2j + · · ·+ λk−1
n cn

λk−1
1 c1

vnj

. (3.93)

Thus,
lim
k→∞

µk = λ1. (3.94)

For k ≥ K, the sequence x(k) is given by

x(k) =
Akx(0)

(Akx(0))j

=

(
(Akx(0))1
(Akx(0))j

, · · · , (A
kx(0))j−1

(Akx(0))j
, 1,

(Akx(0))j+1

(Akx(0))j
, · · · , (A

kx(0))n
(Akx(0))j

)T

.

In view of (3.90), we now conclude that the sequence x(k) converges to 1
v1j

v1 which is an

eigenvector corresponding to the dominant eigenvalue λ1. ⊓⊔

We now give a numerical example illustrating power method procedure.

Example 3.67. Consider the matrix

A =

 3 0 0
−4 6 2
16 −15 −5

 .

The eigenvalues of this matrix are λ1 = 3, λ2 = 1 and λ3 = 0. The corresponding
eigen vectors are v1 = (1, 0, 2)T , v2 = (0, 2,−5)T and v3 = (0, 1,−3)T . Thus, the
hypothesis (H1) and (H2) of the Theorem 3.64 are satisfied. Choose the initial guess
x0 = (1, 0.5, 0.25)T , which also satisfies the hypothesis (H3).
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The first ten terms of the iterative sequence in power method given by (3.81)-(3.82)
for the given matrix A are as follows:

Iteration No: 1

y1 = Ax0 = (3.000000,−0.500000, 7.250000)T

µ1 = 7.250000

x1 =
y1

µ1

= (0.413793,−0.068966, 1.000000)T

Iteration No: 2

y2 = Ax1 = (1.241379,−0.068966, 2.655172)T

µ2 = 2.655172

x2 =
y2

µ2

= (0.467532,−0.025974, 1.000000)T

Iteration No: 3

y3 = Ax2 = (1.402597,−0.025974, 2.870130)T

µ3 = 2.870130

x3 =
y3

µ3

= (0.488688,−0.009050, 1.000000)T

Iteration No: 4

y4 = Ax3 = (1.466063,−0.009050, 2.954751)T

µ4 = 2.954751

x4 =
y4

µ4

= (0.496172,−0.003063, 1.000000)T

Iteration No: 5

y5 = Ax4 = (1.488515,−0.003063, 2.984686)T

µ5 = 2.984686

x5 =
y5

µ5

= (0.498717,−0.001026, 1.000000)T

Iteration No: 6

y6 = Ax5 = (1.496152,−0.001026, 2.994869)T

µ6 = 2.994869

x6 =
y6

µ6

= (0.499572,−0.000343, 1.000000)T

Iteration No: 7

y7 = Ax6 = (1.498715,−0.000343, 2.998287)T

µ7 = 2.998287

x7 =
y7

µ7

= (0.499857,−0.000114, 1.000000)T
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Iteration No: 8

y8 = Ax7 = (1.499571,−0.000114, 2.999429)T

µ8 = 2.999429

x8 =
y8

µ8

= (0.499952,−0.000038, 1.000000)T

Iteration No: 9

y9 = Ax8 = (1.499857,−0.000038, 2.999809)T

µ9 = 2.999809

x9 =
y9

µ9

= (0.499984,−0.000013, 1.000000)T

Iteration No: 10

y10 = Ax9 = (1.499952,−0.000013, 2.999936)T

µ10 = 2.999936

x10 =
y10

µ10

= (0.499995,−0.000004, 1.000000)T

These ten iterates suggest that the sequence {µk} converges to the eigenvalue λ1 = 3 and

the sequence {x(k)} converges to (0.5, 0, 1) =
1

2
v1. ⊓⊔

Remark 3.68 (Disadvantages of power method).

(1) The Power method requires at the beginning that the matrix has only one dominant
eigenvalue, and this information is generally unavailable.

(2) Even when there is only one dominant eigenvalue, it is not clear how to choose the
initial guess x(0) such that it has a non-zero component (c1 in the notation of the
theorem) along the eigenvector v1. ⊓⊔

Note that in the above example, all the hypothesis of Theorem 3.64 are satisfied. Now
let us ask the question

“What happens when any of the hypotheses of Theorem is violated?”

We discuss these situations through examples.

Example 3.69 (Dominant eigenvalue is not unique (Failure of H1)).

Consider the matrix

B =

1 3 4
0 2 1
0 0 − 2

 ,
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which has eigenvalues 1, −2, and 2. Clearly, the matrix B has two dominant eigenvalues,
namely, −2 and 2. We start with an initial guess x(0) = (1, 1, 1) and the first five iterations
generated using power method are given below:

Iteration No: 1

y1 = Ax0 = (8.000000, 3.000000,−2.000000)T

µ1 = 8.000000

x1 =
y1

µ1

= (1.000000, 0.375000,−0.250000)T

Iteration No: 2

y2 = Ax1 = (1.125000, 0.500000, 0.500000)T

µ2 = 1.125000

x2 =
y2

µ2

= (1.000000, 0.444444, 0.444444)T

Iteration No: 3

y3 = Ax2 = (4.111111, 1.333333,−0.888889)T

µ3 = 4.111111

x3 =
y3

µ3

= (1.000000, 0.324324,−0.216216)T

Iteration No: 4

y4 = Ax3 = (1.108108, 0.432432, 0.432432)T

µ4 = 1.108108

x4 =
y4

µ4

= (1.000000, 0.390244, 0.390244)T

Iteration No: 5

y5 = Ax4 = (3.731707, 1.170732,−0.780488)T

µ5 = 3.731707

x5 =
y5

µ5

= (1.000000, 0.313725,−0.209150)T

It is observed that the sequence oscillates even till 1000 iterations as shown below:

Iteration No: 998

y998 = Ax997 = (1.103448, 0.413793, 0.413793)T

µ998 = 1.103448

x998 =
y998

µ998

= (1.000000, 0.375000, 0.375000)T
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Iteration No: 999

y999 = Ax998 = (3.625000, 1.125000,−0.750000)T

µ999 = 3.625000

x999 =
y999

µ999

= (1.000000, 0.310345,−0.206897)T

Iteration No: 1000

y1000 = Ax999 = (1.103448, 0.413793, 0.413793)T

µ1000 = 1.103448

x1000 =
y1000

µ1000

= (1.000000, 0.375000, 0.375000)T

and so on. This is a clear indication that the power method is not converging in this case.
⊓⊔

Thus we conclude that the power method when applied to a matrix which has more than
one domainant eigenvalue may not converge.

Remark 3.70 (Dominant eigenvalue is not simple).

It is not necessary to have the dominant eigenvalue of algebraic multiplicity 1 in order
that the iterative sequences of power method converge. The important thing is to have
a unique dominant eigenvalue and it is allowed to have an algebraic multiplicity r with
r > 1. However it is necessary that the corresponding geometric multiplicity should also
be r to satifsy the hypothesis (H2) (also see later on, where we discuss the situation
where algebraic and geometric multiplicities do not match). In such a case, Power method
computes only one eigenvector, as is usual. ⊓⊔

Remark 3.71 (Failure of hypothesis (H2): Matrix is defective).

A matrix is said to be defective if for any of its eigenvalues, the algebraic and geometric
multiplicities are not the same. Such matrices are not diagonalizable, and hence cannot
satisfy the hypothesis (H2) Even the assumption that there is a basis of eigenvectors is
not necessary. Interested curious reader is encouraged to think on the following lines. “If
I dont have a basis of eigenvectors, the next best thing I know is that there is always a
basis consisting of eigenvectors and generalized eigenvectors. If I simply go through the
proof of Theorem 3.64 with this kind of basis, will I face obstacles? · · · ” ⊓⊔

Let us now illustrate the situation when the hypothesis (H3) of Theorem 3.64 is vio-
lated.

Example 3.72 (Failure of hypothesis (H3): Initial guess x(0) is such that c1 = 0).
Consider the matrix (same as in Example 3.67)

A =

 3 0 0
−4 6 2
16 −15 −5

 ,
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The eigenvalues of this matrix are λ1 = 3, λ2 = 1 and λ3 = 0. The corresponding eigen
vectors are v1 = (1, 0, 2)T , v2 = (0, 2,−5)T and v3 = (0, 1,−3)T . Thus, the hypothesis
(H1) and (H2) of the Theorem 3.64 are satisfied.

Here, we choose a different initial guess x0 = (0, 0.5, 0.25)T . Note that the hypothesis
(H3) of the Theorem 3.64 that c1 ̸= 0 is violated here. However, we can see that c2 ̸= 0.
The first four iterations of the power method are as follows:

Iteration No: 1

y1 = Ax0 = (0.000000, 3.500000,−8.750000)T

µ1 = −8.750000

x1 =
y1

µ1

= (−0.000000,−0.400000, 1.000000)T

Iteration No: 2

y2 = Ax1 = (0.000000,−0.400000, 1.000000)T

µ2 = 1.000000

x2 =
y2

µ2

= (0.000000,−0.400000, 1.000000)T

Iteration No: 3

y3 = Ax2 = (0.000000,−0.400000, 1.000000)T

µ3 = 1.000000

x3 =
y3

µ3

= (0.000000,−0.400000, 1.000000)T

Iteration No: 4

y4 = Ax3 = (0.000000,−0.400000, 1.000000)T

µ4 = 1.000000

x4 =
y4

µ4

= (0.000000,−0.400000, 1.000000)T

Thus, the power method converges to λ2, which is the second dominant eigenvalue of the
given matrix.

Note that in the chosen initial guess, the first coordinate is zero and therefore, c1 in
(3.83) has to be zero. Thus, (3.78) reduces to

Akv = λk2

(
c2v2 + c3

(
λ3
λ2

)k

v3 + · · ·+ cn

(
λn
λ2

)k

vn

)
.

This makes the iteration to converge to λ2, which is the next dominant eigenvalue. ⊓⊔
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Remark 3.73. It is important that we understand the hypothesis (H3) on the initial
guess x(0) correctly. Note that (H3) says that the coefficient of v1 (which was denoted by
c1) should be non-zero when x(0) is expressed as

x(0) = c1v1 + c2v2 + · · ·+ cnvn.

Note that the coefficients c1, c2, · · · , cn are unique as v1,v2, · · · ,vn is a basis for Rn.

For such a choice of x(0), it may happen that the first coordinate may be zero. That
is, if x(0) is written in coordinate form as x(0) = (x

(0)
1 , x

(0)
2 , · · · , x(0)n )T , it is possible that

x
(0)
1 = 0 and c1 ̸= 0.

Thus, it is not necessary that the power method will converge to the second dominant
eigenvalue if the first coordinate of the initial guess is zero. However, we may expect this
to happen if c1 = 0. The following example illustrates this fact. ⊓⊔

Example 3.74. Consider the matrix

A =

 91.4 −22.0 −44.8000
175.2 −41.0 −86.4
105.2 −26.0 −51.4000

 .
The eigenvalues of this matrix are λ1 = −5, λ2 = 3 and λ3 = 1. The corresponding
eigenvectors are v1 = (3, 5, 4)T , v2 = (2, 6, 1)T and v3 = (1,−2, 3)T .

Note that the matrix A satisfies the hypothesis (H1) since -5 is the unique dominant
eigenvalue and it is also a simple eigenvalue. The matrix A satisfies the hypothesis (H2)
as all eigenvalues are distinct and hence eigevectors form a basis for R3. Thus the fate
of the power method iterates depends solely on the choice of the initial guess x(0) and
whether it satisfies the hypothesis (H3)

• Let us take the initial guess x(0) = (1, 0.5, 0.25)T . Note that c1 ̸= 0 for this initial
guess. Thus the initial guess satisfies the hypothesis (H3). Therefore by the theorem
on Power method (Theorem 3.64), the iterative sequences generated by power method
converges to the dominant eigenvalue λ1 = −5 and the corresponding eigenvector (with
a scalar multiple) 1

5
v1.

• Let us take the initial guess x(0) = (0, 0.5, 0.25)T . Note that c1 ̸= 0 for this initial guess.
Thus the initial guess satisfies the hypothesis (H3). Therefore by the theorem on Power
method (Theorem 3.64), the iterative sequences generated by power method converges
to the dominant eigenvalue λ1 = −5 and the corresponding eigenvector (with a scalar
multiple) 1

5
v1. Compare this with Example 3.72. In the present case the first coordinate

of the initial guess vector is zero, just as in Example 3.72. In Example 3.72 the power
method iterate converged to the second dominant eigenvalue and the corresponding
eigenvector, which does not happen in the present case. The reason is that in the
Example 3.72, c1 = 0 for the initial guess chosen, but in the current example c1 ̸= 0. ⊓⊔
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3.5.2 Gerschgorin’s Theorem

An important tool in eigenvalue approximation is the ability to localize the eigenvalues,
and the most important tool in eigenvalue localization is Gerschgorin’s theorem. Ger-
schgorin’s Circle theorem helps us in localization of eigenvalues of a matrix. This theorem
explicitly constructs n disks in the complex plane with centers at the diagonal elements
of the matrix; and all the eigenvalues of the matrix lie in the union of these disks.

Theorem 3.75 (Gerschgorin’s Circle Theorem). Let A be an n×n matrix. For each
k = 1, 2, · · · , n, define ρk by

ρk =
n∑

j=1
j ̸=k

|akj|,

and Dk denotes the closed disk in the complex plane with centre akk and radius ρk, i.e.,

Dk =
{
z ∈ C : |z − akk| ≤ ρk

}
.

(1) Each eigenvalue of A lies in one of the disks Dk. That is, no eigenvalue of A lies in
C \ ∪n

k=1Dk.

(2) Suppose that among the disks D1, D2, · · · , Dn, there is a collection of m disks whose
union (denoted by R1) is disjoint from the union of the rest of the n−m disks (denoted
by R2). Then exactly m eigenvalues lie in R1 and n −m eigenvalues lie in R2 (here
each eigenvalue is counted as many times as its algebraic multiplicity).

Proof. We will prove only (i) as it is easy, and the proving (ii) is beyond the scope of
this course.

Let λ be an eigenvalue of A. Then there exists a v = (v1, v2, · · · , vn) ∈ Rn and v ̸= 0 such
that

Av = λv (3.95)

Let 1 ≤ r ≤ n be such that |vr| = max{|v1|, |v2|, · · · , |vn|}. The rth equation of the system
of equations (3.95) is given by (actually, of Av − λv = 0)

ar1v1 + · · ·+ ar,r−1vr−1 + (arr − λ)vr + ar,r+1vr+1 + · · ·+ arnvn = 0

From the last equation, we get

λ− arr =
v1
vr
ar1 + · · ·+ vr−1

vr
ar,r−1 +

vr+1

vr
ar,r+1 + · · ·+ vn

vr
arn (3.96)

Taking modulus on both sides of the equation (3.96), and using the triangle inequality
|a+ b| ≤ |a|+ |b| repeatedly we get

|λ− arr| ≤
|v1|
|vr|

|ar1|+ · · ·+ |vr−1|
|vr|

|ar,r−1|+
|vr+1|
|vr|

|ar,r+1|+ · · ·+ |vn|
|vr|

|arn| (3.97)
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In view of the choice of r, the components of the vector v satisfy |vs|
|vr| ≤ 1. The last equation

(3.97) becomes

|λ− arr| ≤ |ar1|+ · · ·+ |ar,r−1|+ |ar,r+1|+ · · ·+ |arn| (3.98)

Observe that the right hand side of the inequality (3.98) is ρr. This proves that λ ∈ Dr.⊓⊔

Example 3.76. For the matrix  4 1 1
0 2 1

−2 0 9

 ,

the Gerschgorin’s disks are given by

D1 =
{
z ∈ C : |z−4| ≤ 2

}
, D2 =

{
z ∈ C : |z−2| ≤ 1

}
, D3 =

{
z ∈ C : |z−9| ≤ 2

}
.

Draw a picture of these disks and observe that D3 neither intersects D1 nor D2. By
(ii) of Theorem 3.75, D3 has one eigenvalue and D1 ∪ D2 has two eigenvalues counting
multiplicities. Note that the eigenvalues are approximately 4.6318, 1.8828 ∈ D1 ∪D2 and
8.4853 ∈ D3. ⊓⊔

Remark 3.77. Gerschgorin’s circle theorem is helpful in finding bound for eigenvalues.
For the matrix in Example 3.76, any number z in D1 satisfies |z| ≤ 6. Similarly any
number z in D2 satisfies |z| ≤ 3, and any number z in D3 satisfies |z| ≤ 11. Since any
eigenvalue λ lies in one of three disks, we can conclude that |λ| ≤ 11. ⊓⊔

Remark 3.78. The main disadvantage of the power method discussed in Section 3.5.1 is
that if a given matrix has more than one dominant eigenvalues, then the method may not
converge. So, for a given matrix, we do not know whether the power method will converge
or not. Also, as the power method is reasonably slow (see Example 3.74 for an illustration)
we may have to perform reasonably large number of iterations to come to know that the
method is not actually converging.

Thus, a tool to find out whether the given matrix has a unique dominant eigenvalue
or not is highly desirable. The Gerschgorin theorem 3.75 can sometime be used to see if
power method can be used for a given matrix. For instance, in Example 3.76, we see that
the power method can be used to obtain an approximation to the dominant eigenvalue.⊓⊔

Since the matrices A and its transpose (denoted by AT ) have same eigenvalues, we can
apply Gerschgorin Circle Theorem to AT and conclude the following corollary.

Corollary 3.79. Let A be an n× n matrix. For each k = 1, 2, · · · , n, define τk by

τk =
n∑

j=1
j ̸=k

|ajk|,

and Bk denotes the closed disk in the complex plane with centre akk and radius τk. That
is,

Bk =
{
z ∈ C : |z − akk| ≤ τk

}
.
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(1) Each eigenvalue of A lies in one of the disks Bk. That is, no eigenvalue of A lies in
C \ ∪n

k=1Bk.

(2) Suppose that among the disks B1, B2, · · · , Bn, there is a collection of m disks whose
union (denoted by C1) is disjoint from the union of the rest of the n−m disks (denoted
by C2). Then exactly m eigenvalues lie in C1 and n − m eigenvalues lie in C2 (here
each eigenvalue is counted as many times as its algebraic multiplicity). ⊓⊔

Remark 3.80. Advantage of the above corollary is the following: Let A be an n×nmatrix.
Let R denote the region defined by R = ∪n

k=1Dk where Dk are as given by Theorem 3.75.
Similarly, let C denote the region defined by C = ∪n

k=1Bk where Bk are as given by
Corollary 3.79. It may happen that C ⊂ R, in which case we will get better estimate for
eigenvalues of A. It may not happen for every matrix A. However whenever such a thing
happens, we get better bounds for eigenvalues of A. Such bounds which we obtain using
both informations R and C may be called optimum bounds. Let us illustrate this with
two examples. ⊓⊔

Example 3.81. For the matrix 3 0 1
0 −2 2
0 2 −3


the ρk, τk (in the notations of Theorem 3.75 and Corollary 3.79) are given by

ρ1 = 1, ρ2 = 2, ρ3 = 3, and τ1 = 0, τ2 = 2, τ3 = 3

Now compute

R = ∪n
k=1Dk = {z : |z − 3| ≤ 1} ∪ {z : |z + 2| ≤ 2} ∪ {z : |z + 3| ≤ 3}

C = ∪n
k=1Bk = {z : |z − 3| ≤ 0} ∪ {z : |z + 2| ≤ 2} ∪ {z : |z + 3| ≤ 3}

and clearly C ⊂ R. Hence bounds obtained using C are optimum bounds. Draw both
regions C and R. ⊓⊔

3.6 Exercises

Gaussian Elimination Methods

(1) Solve the following systems of linear equations using Naive Gaussian elimination
method, and modified Gaussian elimination method with partial pivoting.

(i)

6x1 + 2x2 + 2x3 = −2,

2x1 + 0.6667x2 + 0.3333x3 = 1,

x1 + 2x2 − x3 = 0.

Baskar and Sivaji 104 Spring 2013/MA 214



3.6. EXERCISES

(ii)

0.729x1 + 0.81x2 + 0.9x3 = 0.6867,

x1 + x2 + x3 = 0.8338,

1.331x1 + 1.21x2 + 1.1x3 = 1

(iii)

x1 − x2 + 3x3 = 2,

3x1 − 3x2 + x3 = −1,

x1 + x2 = 3.

(2) Solve the system
0.001x1 + x2 = 1, x1 + x2 = 2

(i) using Gaussian elimination with partial pivoting with infinite precision arithmetic,

(ii) using naive Gaussian elimination with 2-digit rounding, and

(iii) using modified Gaussian elimination method with partial pivoting, using 2-digit
rounding.

(3) Let ϵ be such that 0 < ϵ≪ 1. Solve the linear system

x1 + x2 + x3 = 6,

3x1 + (3 + ϵ)x2 + 4x3 = 20,

2x1 + x2 + 3x3 = 13

using naive Gaussian elimination method, and using modified Gaussian elimination
method with partial pivoting. Obtain the residual error in each case on a computer for
which the ϵ is less than its machine epsilon. The residual error vector corresponding to
an approximate solution x∗ is defined as r = b−Ax∗, where A and b are the coefficient
matrix and the right side vector, respectively, of the given linear system.

(4) A matrix A = (aij) is said to be row-equilibrated if the following condition is satisfied

max
1≤j≤n

|aij| = 1 ∀i = 1, 2, · · · , n.

Consider the following system of linear equations

30.00x1 + 591400x2 = 591700

5.291x1 − 6.130x2 = 46.78

(i) Find the exact solution of the given system using Gaussian elimination method
with partial pivoting (i.e., with infinite precision arithmetic).

(ii) Solve the given system using naive Gaussian elimination method using 4-digit
rounding.
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(iii) Obtain a system of linear equations Ãx = b̃ that is equivalent to the given system,

where the matrix Ã is row-equilibrated. Solve the system Ãx = b̃ using naive
Gaussian elimination method using 4-digit rounding.

(iv) Compute the relative errors involved in the two approximations obtained above.

(5) Consider the system of linear equations given by

a11x1+ · · · +a1nxn = b1,

· · ·
· · ·

an1x1+ · · · +annxn = bn,

where aij = 0 whenever i − j ≥ 2. Write the general form of this system. Use naive
Gaussian elimination method to solve it, taking advantage of the elements that are
known to be zero. Count the number of operations involved in this computation.

(6) Use Thomas method to solve the tri-diagonal system of equations

2x1 + 3x2 = 1,

x1 + 2x2 + 3x3 = 4,

x2 + 2x3 + 3x4 = 5,

x3 + 2x4 = 2.

LU Decomposition

(7) Prove or disprove the following statements:

(i) An invertible matrix has at most one Doolittle factorization.

(ii) If a singular matrix has a Doolittle factorization, then the matrix has at least two
Doolittle factorizations.

(8) Prove that if an invertible matrix A has an LU -factorization, then all principal minors
of A are non-zero.

(9) Give an example of a non-invertible 3 × 3 matrix A such that the leading principal
minors of order 1 and 2 are non-zero, and A has Doolittle factorization.

(10) Use the Doolittle’s factorization to solve the system

4x1 + x2 + x3 = 4,

x1 + 4x2 − 2x3 = 4,

3x1 + 2x2 − 4x3 = 6.
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(11) Show that the matrix 2 2 1
1 1 1
3 2 1


is invertible but has no LU factorization. Do a suitable interchange of rows to get an
invertible matrix, which has an LU factorization.

(12) Consider

A =

 2 6 −4
6 17 −17

−4 −17 −20

 .

Determine directly the factorization A = LDLT , where D is diagonal and L is a lower
triangular matrix with 1’s on its diagonal.

(13) Let A be an n× n matrix which is positive definite. Let S be a non-empty susbset of
{1, 2, · · · , n}. Show that the submatrix AS = (aij)i,j∈S is positive definite.

(14) Factor the matrix

A =

4 6 2
6 10 3
2 3 5


so that A = LLT , where L is lower triangular.

(15) Prove the uniqueness of the factorization A = LLT , where L is a lower triangular
matrix all of whose diagonal entries are positive. (Hint: Assume that there are lower
triangular matrices L1 and L2 with positive diagonals. Prove that L1L

−1
2 = I.)

(16) Use Cholesky factorization to solve the system of equations

x1 − 2x2 + 2x3 = 4,

−2x1 + 5x2 − 3x3 = −7,

2x1 − 3x2 + 6x3 = 10.

Matrix Norms

(17) The following inequalities show that the notion of convergent sequences of vectors in
Rn is independent of the vector norm. Show that the following inequalities hold for
each x ∈ Rn

(i) ∥x∥∞ ≤ ∥x∥2 ≤
√
n∥x∥∞,

(ii) ∥x∥∞ ≤ ∥x∥1 ≤ n∥x∥∞,

(iii) ∥x∥2 ≤ ∥x∥1 ≤
√
n∥x∥2.
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(18) Show that the norm defined on the set of all n× n matrices by

∥A∥ := max
1≤i≤n
1≤j≤n

|aij|

is not subordinate to any vector norm on Rn.

(19) Let A be an invertible matrix. Show that its condition number κ(A) satisfies κ(A) ≥ 1.

(20) Let A and B be invertible matrices with condition numbers κ(A) and κ(B) respec-
tively. Show that κ(AB) ≤ κ(A)κ(B).

(21) Let A be an n×n matrix with real entries. Let κ2(A) and κ∞(A) denote the condition
numbers of a matrix A that are computed using the matrix norms ∥A∥2 and ∥A∥∞,
respectively. Answer the following questions.

(i) Determine all the diagonal matrices such that κ∞(A) = 1.

(ii) Let Q be a matrix such that QTQ = I (such matrices are called orthogonal matri-
ces). Show that κ2(Q) = 1.

(iii) If κ2(A) = 1, show that all the eigenvalues of ATA are equal. Further, deduce that
A is a scalar multiple of an orthogonal matrix.

(22) Let A(α) be a matrix depending on a parameter α ∈ R given by

A(α) =

(
0.1α 0.1α
1.0 2.5

)
For each α ∈ R, compute the condition number of A(α). Determine an α0 such that
the condition number of A(α0) is the minimum of the set {κ (A(α)) : α ∈ R}. In the
computation of condition numbers, use the matrix norm that is subordinate to the
maximum vector norm on R2.

(23) In solving the system of equations Ax = b with matrix

A =

(
1 2
1 2.01

)
,

predict how slight changes in b will affect the solution x. Test your prediction in the
concrete case when b = (4, 4)T and b̃ = (3, 5)T . Use the maximum norm for vectors in
R2.

(24) Consider the following two systems of linear equations

x1 + x2 = 1, x1 + 2x2 = 2.

and
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10−4 x1 + 10−4 x2 = 10−4, x1 + 2x2 = 2.

Let us denote the first and second systems by A1x = b1 and A2x = b2 respectively.
Use maximum-norm for vectors and the matrix norm subordinate to maximum-norm
for matrices in your computations.

(i) Solve each of the above systems using Naive Gaussian elimination method.

(ii) Compute the condition numbers of A1 and A2.

(iii) For each of the systems, find an upper bound for the relative error in the solution

if the right hand sides are approximated by b̃1 and b̃2 respectively.

(iv) Solve the systems

A1x = b̃1 and A2x = b̃2

where b̃1 = (1.02, 1.98)T and b̃2 = (1.02× 10−4, 1.98)T using naive Gaussian elim-
ination method. Compute the relative error in each case. Compare the computed
relative errors with the bounds obtained above.

(25) In the following problems, the matrix norm ∥ · ∥ denotes a matrix norm subordinate
to a fixed vector norm.

(i) Let A be an invertible matrix and B be any singular matrix. Prove the following
inequality.

1

∥A−B∥
≤ ∥A−1∥.

(ii) Let A be an invertible matrix, and B be a matrix such that

1

∥A−B∥
> ∥A−1∥.

Show that B is invertible.

(iii) Let C be a matrix such that ∥I − C∥ < 1. Show that C is invertible.

(iv) Let D be a matrix such that ∥D∥ < 1. Show that the matrix I −D is invertible.

Diagonally Dominant Matrix

(26) Let A be a diagonally dominant matrix. Then show that Naive Gaussian elimination
method to solve the system of linear equations Ax = b never fails to give an approxi-
mate solution of the given linear system.

(27) Let A be a diagonally dominant matrix such that aij = 0 for every i, j ∈ {1, 2, · · · , n}
such that i > j + 1. Does naive Gaussian elimination method preserve the diagonal
dominance? Justify your answer.

Iterative Methods
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(28) Let A be a diagonally dominant matrix. Show that all the diagonal elements of A are
non-zero (i.e., aii ̸= 0 for i = 1, 2, · · · , n.). As a consequence, the iterating sequences
of Jacobi and Gauss-Seidel methods are well-defined if the coefficient matrix A in the
linear system Ax = b is a diagonally dominant matrix.

(29) Find the n × n matrix B and the n-dimensional vector c such that the Gauss-Seidal
method can be written in the form

x(k+1) = Bx(k) + c, k = 0, 1, 2, · · ·

(30) For each of the following systems, write down the formula for iterating sequences of
Jacobi and Gauss-Seidel methods. Compute three iterates by taking x0 = (0, 0, 0)T .
Discuss if you can guarantee that these sequences converge to the exact solution. In case
you are not sure about convergence, suggest another iterating sequence that converges
to the exact solution if possible; and justify that the new sequence converges to the
exact solution.

(i)

5x1 + 2x2 + x3 = 0.12,

1.75x1 + 7x2 + 0.5x3 = 0.1,

x1 + 0.2x2 + 4.5x3 = 0.5.

(ii)

x1 − 2x2 + 2x3 = 1,

x1 + x2 − x3 = 1,

2x1 − 2x2 + x3 = 1.

(iii)

x1 + x2 + 10x3 = −1,

2x1 + 3x2 + 5x3 = −6,

3x1 + 2x2 − 3x3 = 4.

(31) Consider the following system of linear equations

0.8647x1 + 0.5766x2 = 0.2885,

0.4322x1 + 0.2882x2 = 0.1442.

(i) Find the exact solution of the linear system.

(ii) Using 4-digit chopping, do one iteration of residual corrector method to obtain x(1).
Use the initial guess to be (0, 0)T .

(iii) Compute the residual vector for the solution obtained in (ii) above.
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Eigenvalue Problems

(32) The matrix

A =

2 0 0
2 1 0
3 0 1


has eigenvalues λ1 = 2, λ = 1 and λ3 = 1 and the corresponding eigenvectors may
be taken as v1 = (1, 2, 3)T , v2 = (0, 1, 2)T and v3 = (0, 2, 1)T . Perform 3 iterations
to find the eigenvalue and the corresponding eigen vector to which the power method
converges when we start the iteration with the initial guess x(0) = (0, 0.5, 0.75)T . With-
out performing the iteration, find the eigenvalue and the corresponding eigenvector to
which the power method converges when we start the iteration with the initial guess
x(0) = (0.001, 0.5, 0.75)T . Justify your answer.

(33) The matrix

A =

 5.4 0 0
−113.0233 −0.5388 −0.6461
−46.0567 −6.4358 −0.9612


has eigenvalues λ1 = 5.4, λ2 = 1.3 and λ3 = −2.8 with corresponding eigenvectors
v1 = (0.2,−4.1, 2.7)T , v2 = (0, 1.3,−3.7)T and v3 = (0, 2.6, 9.1)T . To which eigenvalue
and the corresponding eigenvector does the power method converge if we start with
the initial guess x(0) = (0, 1, 1)? Justify your answer.

(34) Use Gerschgorin’s circle theorem to determine the intervals in which the eigenvalues
of the matrix

A =

 0.5 0 0.2
0 3.15 −1

0.57 0 −7.43

 .

lie, given that all eigenvalues of A are real. Show that power method can be applied for
this matrix to find the dominant eigenvalue without computing eigenvalues explicitly.
Compute the first three iterates of Power method sequences.

(35) For this question, we take the matrix

A =

−2.7083 −2.6824 0.4543
0.1913 0.7629 0.1007

−0.3235 −0.4052 5.0453

 .

Let v1,v2,v3 denote eigenvectors corresponding to the eigenvalues λ1, λ2, λ3 respec-
tively of the matrix A which are given by λ1 ≈ 5.0187, λ2 ≈ −2.5313, λ3 ≈ 0.6125 and
v1 ≈ (0.25, 0.13, 5.02)T ,v2 ≈ (2.53,−0.15, 0.1)T ,v3 ≈ (−0.49, 0.61, 0.02)T . Answer the
following questions:

(i) Obtain the Gerschgorin disks associated to the matrix A and pictorially represent
them in the complex plane.
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(ii) Can Gerschgorin theorem be used to show that the matrix A has a unique dominant
eigenvalue? Justify your answer.

(iii) Define the iterative sequences {µk} and x(k) using power method that converge to
λ1 and αv1 for some constant α when the initial guess is x(0) = (1, 1, 1)T . Perform
one iteration.

(iv) If we take the initial guess x(0) = (0, 1, 1)T , then show that the iterative sequence
obtained by power method converges to λj and Kvj for some j ∈ {1, 2, 3} and for
some constant K. What is the value of j and possible values of K?
(Hint: x(0) ≈ 0.3060v1 + 0.1864v2 + 1.6748v3. )

(v) Give all possible initial guesses for which the sequence {µk} obtained using power
method converges to λ2. Justify your answer.

(vi) Give all possible initial guesses for which the sequence {µk} obtained using power
method converges to λ3. Justify your answer. (End-Sem, Spring 2012)

(36) Use the Gerschgorin Circle theorem to determine bounds for the eigenvalues for the fol-
lowing matrices. Also find optimum bounds wherever possible. Also draw the pictures
of all the regions given by Greschgorin circles. 1 0 0

−1 0 1
−1 −1 2

 ,

 4 −1 0
−1 4 −1
−1 −1 4

 ,

 4.75 2.25 −0.25
2.25 4.75 1.25

−0.25 1.25 4.75

 ,


1 0 −1 1
2 2 −1 1
0 1 3 −2
1 0 1 4

 .

(37) Prove that the following two statements concerning n× n matrices are equivalent.

(i) Every diagonally dominant matrix is invertible.

(ii) Each of the eigenvalues of a matrix A, belongs to at least one Gerschgorin disk
corresponding to A.

(38) Prove that the eigenvalues of the matrix6 2 1
1 −5 0
2 1 4


satisfy the inequality 1 ≤ |λ| ≤ 9.

(39) Show that the imaginary parts of the eigenvalues of 3 1/3 2/3
1 −4 0

1/2 1/2 −1


all lie in the interval [−1, 1].

Baskar and Sivaji 112 Spring 2013/MA 214



CHAPTER 4

Nonlinear Equations

One of the most frequently occurring problems in practical applications is to find the roots
of equations of the form

f(x) = 0, (4.1)

where f : [a, b] → R is a given nonlinear function. It is well-known that not all nonlinear
equations can be solved explicitly to obtain the exact value of the roots and hence, we
need to look for methods to compute approximate value of the roots. By approximate
root to (4.1), we mean a point x∗ ∈ R for which the value f(x) is very near to zero, ie.,
f(x∗) ≈ 0.

In this chapter, we introduce various iterative methods to obtain an approximation to
a real root of equations of the form (4.1) with f being a continuous nonlinear function.
The key idea in approximating the real roots of (4.1) consists of two steps:

(1) Starting Step: Take one or more points (arbitrarily or following a procedure) xi ∈
[a, b] (i = 0, 1, · · · ,m, m ∈ N) around a root of the equation (4.1). Consider xm as an
approximation to the root of (4.1).

(2) Improving Step: If xm is not ‘close’ to the required root, then devise a procedure to
obtain another point xm+1 that is ‘more close’ to the root than xm.

Repeat this step until we obtain a point xn (n ≥ m) which is ‘sufficiently close’ to the
required root.

This process of improving the approximation to the root is called the iterative process
(or iterative procedure), and such methods are called iterative methods. In an it-
erative method, we obtain a sequence of numbers {xn} which is expected to converge to
the root of (4.1) as n→ ∞. We investigate conditions on the function f , its domain, and
co-domain under which the sequence of iterates converge to a solution of the equation
(4.1).

We classify the iterative methods discussed in this chapter into two types, namely,

(1) Closed Domain Methods: As the starting step, these methods need the knowledge
of an interval in which at least one root of the given nonlinear equation exists. Further
iterations include the restriction of this interval to smaller intervals in which root lies.
These methods are also called bracketing methods.
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(2) Open Domain Methods: The xi’s mentioned in the starting step above are chosen
arbitrarily and the consecutive iterations are based on a formula.

In the case of closed domain methods, the difficult part is to locate an interval containing
a root. But, once this is done, the iterative sequence will surely converge as we will see in
Section 4.1. In this section, we discuss two closed domain methods, namely, the bisection
method and the regula-falsi method. In the case of open domain methods, it is easy at
the starting step as we can choose the xi’s arbitrarily. But, it is not necessary that the
sequence converges. We discuss secant method, Newton-Raphson method and fixed point
method in Section 4.3, which are some of the open domain methods.

4.1 Closed Domain Methods

The idea behind the closed domain methods is to start with an interval (denoted by
[a0, b0]) in which there exists at least one root of the given nonlinear equations and then
reduce the length of this interval iteratively with the condition that there is at least one
root of the equation at each iteration.

Note that the initial interval [a0, b0] can be obtained using the intermediate value
theorem (as we always assume that the nonlinear function f is continuous) by checking
the condition that

f(a0)f(b0) < 0.

That is, f(a0) and f(b0) are of opposite sign. The closed domain methods differ from each
other only by the way they go on reducing the length of this interval at each iteration.

In the following subsections we discuss two closed domain methods, namely, (i) the
bisection method and (ii) the regula-falsi method.

4.1.1 Bisection Method

The most simple way of reducing the length of the interval is to sub-divide the interval
into two equal parts and then take the sub-interval that contains a root of the equation
and discard the other part of the interval. This method is called the bisection method.
Let us explain the procedure of generating the first iteration of this method.

Step 1: Define x1 to be the mid-point of the interval [a0, b0]. That is,

x1 =
a0 + b0

2
.

Step 2: Now, exactly one of the following two statements hold.

(1) x1 solves the nonlinear equation. That is, f(x1) = 0.

(2) Either f(a0)f(x1) < 0 or f(b0)f(x1) < 0.
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If case (1) above holds, then x1 is a required root of the given equation f(x) = 0 and
therefore we stop the iterative procedure. If f(x1) ̸= 0, then case (2) holds as f(a0) and
f(b0) are already of opposite signs. In this case, we define a subinterval [a1, b1] of [a0, b0]
as follows.

[a1, b1] =

{
[a0, x1], if f(a0)f(x1) < 0,

[x1, b0], if f(b0)f(x1) < 0.

The outcome of the first iteration of the bisection method is the interval [a1, b1] and the
first member of the corresponding iterative sequence is the real number x1. Observe that

• the length of the interval [a1, b1] is exactly half of the length of [a0, b0] and

• [a1, b1] has at least one root of the nonlinear equation f(x) = 0.

Similarly, we can obtain x2 and [a2, b2] as the result of the second iteration and so on.

We now present the algorithm for the bisection method.

Hypothesis: There exists an interval [a0, b0] such that the function f : [a0, b0] → R is
continuous, and the numbers f(a0) and f(b0) have opposite signs.

Algorithm:

Step 1: For n = 0, 1, 2, · · · , define the iterative sequence of the bisection method as

xn+1 =
an + bn

2
,

which is the midpoint of the interval [an, bn].

Step 2: One of the following two cases hold.

(1) xn+1 solves the nonlinear equation. That is, f(xn+1) = 0.

(2) Either f(an)f(xn+1) < 0 or f(bn)f(xn+1) < 0.

Define the subinterval [an+1, bn+1] of [an, bn] as follows.

[an+1, bn+1] =

{
[an, xn+1], if f(an)f(xn+1) < 0,

[xn+1, bn], if f(bn)f(xn+1) < 0.

Step 3: Stop the iteration if one of the following happens:

• the case (1) in step 2 holds. Then declare the value of xn+1 as the required root.

• (bn+1 − an+1) is sufficiently small (less than a pre-assigned positive quantity). Then
declare the value of xn+2 as the required root up to the desired accuracy.

If any of the above stopping criteria does not hold, then go to step 1. Continue this process
till one of the above two stopping criteria is fulfilled. ⊓⊔

Remark 4.1. In practice, one may also use any of the stopping criteria listed in section
4.2, either single or multiple criteria. ⊓⊔
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Assuming that, for each n = 1, 2, · · · , the number xn is not a solution of the nonlinear
equation f(x) = 0, we get a sequence of real numbers {xn}. The question is whether
this sequence converges to a solution of the nonlinear equation f(x) = 0. We now discuss
the error estimate and convergence of the iterative sequence generated by the bisection
method.

Theorem 4.2 (Convergence and Error Estimate of Bisection Method).

Hypothesis: Let f : [a0, b0] → R be a continuous function such that the numbers f(a0)
and f(b0) have opposite signs.

Conclusion:

• There exists an r ∈ (a0, b0) such that f(r) = 0 and the iterative sequence {xn} of the
bisection method converges to r.

• For each n = 0, 1, 2, · · · , we have the following error estimate

|xn+1 − r| ≤
(
1

2

)n+1

(b− a). (4.2)

Proof: It directly follows from the construction of the intervals [an, bn] that

bn − an =
1

2
(bn−1 − an−1) = · · · =

(
1

2

)n

(b0 − a0).

As a consequence, we get
lim
n→∞

(bn − an) = 0.

By algebra of limits of sequences, we get

lim
n→∞

an = lim
n→∞

bn.

Since for each n = 0, 1, 2, · · · , the number xn+1 is the mid-point of the interval [an, bn], we
also have

an < xn+1 < bn.

Now by sandwich theorem for sequences, we conclude that the sequence {xn} of mid-points
also converges to the same limit as the sequences of end-points. Thus we have

lim
n→∞

an = lim
n→∞

bn = lim
n→∞

xn = r (say). (4.3)

Since for each n = 0, 1, 2, · · · , we have f(an)f(bn) < 0, applying limits on both sides of
the inequality and using the continuity of f , we get

f(r)f(r) ≤ 0, (4.4)

from which we conclude that f(r) = 0. That is, the sequence of mid-points {xn} defined
by the bisection method converges to a root of the nonlinear equation f(x) = 0.
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Since the sequences {an} and {bn} are non-decreasing and non-increasing, respectively,
for each n = 0, 1, 2, · · · , we have r ∈ [an, bn]. Also, xn+1 is the mid-point of the interval
[an, bn]. Therefore, we have

|xn+1 − r| ≤ 1

2
(bn − an) = · · · =

(
1

2

)n+1

(b0 − a0),

which is the required estimate. ⊓⊔

Corollary 4.3. Let ϵ > 0 be given. Let f satisfy the hypothesis of bisection method with
the interval [a0, b0]. Let xn be as in the bisection method, and r be the root of the nonlinear
equation f(x) = 0 to which bisection method converges. Then |xn − r| ≤ ϵ whenever n
satisfies

n ≥ log(b0 − a0)− log ϵ

log 2
(4.5)

Proof : By the error estimate of bisection method given by (4.2), we are sure that

|xn − r| ≤ ϵ,

whenever n is such that (
1

2

)n

(b− a) ≤ ϵ.

By taking logarithm on both sides of the last inequality, we get the desired estimate on
n. ⊓⊔

Remark 4.4. The Corollary 4.3 tells us that if we want an approximation xn to the root
r of the given equation such that the absolute error is less than a pre-assigned positive
quantity, then we have to perform n iterations, where n is the least integer that satisfies
the inequality (4.5). It is interesting to observe that to obtain this n, we don’t need to
know the root r. ⊓⊔

Example 4.5. Let us find an approximate solution to the nonlinear equation

sinx+ x2 − 1 = 0

using bisection method so that the resultant absolute error is at most ϵ = 0.125.

To apply Bisection method, we must choose an interval [a0, b0] such that the function

f(x) = sin x+ x2 − 1

satisfies the hypothesis of bisection method. Note that f satisfies hypothesis of bisection
on the interval [0, 1]. In order to achieve the required accuracy, we should first decide how
many iterations are needed. The inequality (4.5), says that required accuracy is achieved
provided n satisfies

n ≥ log(1)− log(0.125)

log 2
= 3
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Thus we have to compute x3. We will do it now.

Iteration 1: We have a0 = 0, b0 = 1. Thus x1 = 0.5. Since,

f(x1) = −0.27 < 0, f(0) < 0, and f(1) > 0,

we take [a1, b1] = [x1, b0] = [0.5, 1].

Iteration 2: The mid-point of [0.5, 1] is x2 = 0.75. Since

f(x2) = 0.24 > 0, f(0.5) < 0, and f(1) > 0,

we take [a2, b2] = [a1, x2] = [0.5, 0.75].

Iteration 3: The mid-point of [0.5, 0.75] is x3 = 0.625. Since

f(x3) = −0.024 < 0, f(0.5) < 0 and f(0.75) > 0,

we take [a3, b3] = [x3, b2] = [0.625, 0.75].

As suggested by the formula (4.5), we stop the iteration here and take the approximate
root of the given equation as the mid-point of the interval [a3, b3], which is x4 ≈ 0.6875.
Note that the true value is r ≈ 0.636733. The absolute error is 0.05 which is much less
than the required accuracy of 0.125. ⊓⊔

Remark 4.6 (Comments on Bisection method).

(1) Note that the mid-point of an interval [a, b] is precisely the x− coordinate of the point
of intersection of the line joining the points (a, sgn(f(a))) and (b, sgn(f(b))) with the
x-axis.

(2) Let f , and the interval [a0, b0] satisfy the hypothesis of bisection method. Even if the
nonlinear equation f(x) = 0 has more than one solution in the interval [a, b], the
bisection method chooses the root that it tries to approximate. In other words, once
we fix the initial interval [a0, b0], the bisection method takes over and we cannot control
it to find some specific root than what it chooses to find.

(3) Given a function f , choosing an interval [a, b] such that f(a)f(b) < 0 is crucial to
bisection method. There is no general procedure to find such an interval. This is one
of the main drawbacks of bisection method.

(4) Bisection method cannot be used to find zero of functions for which graph touches
x-axis but does not cross x-axis.

(5) There is a misconception about bisection method’s order of convergence (see Definition
1.42), which is claimed to be 1. However there is no proof of |xn+1 − r| ≤ c|xn − r|. If
the sequence {xn} converges linearly to r, then we get

|xn+1 − r| ≤ cn+1|x0 − r|.

In the case of bisection method, we have this inequality with c = 1/2, which is only a
necessary condition for the convergence to be linear but not a sufficient condition. ⊓⊔
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4.1.2 Regula-falsi Method

The regula-falsi method is similar to the bisection method. Although the bisection method
(discussed in the previous subsection) always converges to the solution, the convergence
is very slow, especially when the length of the initial interval [a0, b0] is very large and
the equation has the root very close to the one of the end points. This is because, at
every iteration, we are subdividing the interval [an, bn] into two equal parts and taking
the mid-point as xn+1 (the (n+1)th member of the iterative sequence). Therefore, it takes
several iterations to reduce the length of the interval to a very small number, and as a
consequence the distance between the root and xn+1.

The regula-falsi method differs from the bisection method only in the choice of xn+1

in the interval [an, bn] for each n = 0, 1, 2, · · · . Instead of taking the midpoint of the
interval, we now take the x-coordinate of the point of intersection of the line joining the
points (an, f(an)) and (bn, f(bn)) with the x-axis. Let us now explain the procedure of
generating the first iteration of this method.

Step 1: Assume the hypothesis of the bisection method and let [a0, b0] be the initial
interval. The line joining the points (a0, f(a0)) and (b0, f(b0)) is given by

y = f(a0) +
f(b0)− f(a0)

b0 − a0
(x− a0),

The first member x1 of the regula-falsi iterative sequence is the x-coordinate of the point
of intersection of the above line with the x-axis. Therefore, x1 satisfies the equation

f(a0) +
f(b0)− f(a0)

b0 − a0
(x1 − a0) = 0

and is given by

x1 = a0 − f(a0)
b0 − a0

f(b0)− f(a0)
,

which can also be written as

x1 =
a0f(b0)− b0f(a0)

f(b0)− f(a0)
.

Step 2: Now, exactly one of the following two statements hold.

(1) x1 solves the nonlinear equation. That is, f(x1) = 0.

(2) Either f(a0)f(x1) < 0 or f(b0)f(x1) < 0.

If case (1) above holds, then x1 is a required root of the given equation f(x) = 0 and
therefore we stop the iterative procedure. If f(x1) ̸= 0, then case (2) holds as f(a0) and
f(b0) are already of opposite signs. We now define a subinterval [a1, b1] of [a0, b0] as follows.

[a1, b1] =

{
[a0, x1], if f(a0)f(x1) < 0,

[x1, b0], if f(b0)f(x1) < 0.

The outcome of the first iteration of the regula-falsi method is the interval [a1, b1] and the
first member of the corresponding iterative sequence is the real number x1. Observe that
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• the length of the interval [a1, b1] may be (although not always) much less than half of
the length of [a0, b0] and

• [a1, b1] has at least one root of the nonlinear equation f(x) = 0.

We now summarize the regula-falsi method.

Hypothesis: Same as bisection method.

Algorithm:

Step 1: For n = 0, 1, 2, · · · , define the iterative sequence of the regula-falsi method as

xn+1 = an − f(an)
bn − an

f(bn)− f(an)
=
anf(bn)− bnf(an)

f(bn)− f(an)
, (4.6)

which is the x-coordinate of the point of intersection of the line joining the points
(an, f(an)) and (bn, f(bn)) (obtained at the nth iteration) with the x-axis.

Step 2: One of the following two cases hold.

(1) xn+1 solves the nonlinear equation. That is, f(xn+1) = 0.

(2) Either f(an)f(xn+1) < 0 or f(bn)f(xn+1) < 0.

Define the subinterval [an+1, bn+1] of [an, bn] as follows.

[an+1, bn+1] =

{
[an, xn+1], if f(an)f(xn+1) < 0,

[xn+1, bn], if f(bn)f(xn+1) < 0.

Step 3: Stop the iteration if the case (1) in step 2 holds and declare the value of xn+1 as
the required root. Otherwise go to step 1.

Continue this process till a desired accuracy is achieved. ⊓⊔

Remark 4.7 (Stopping criteria).

Unlike in the case of bisection method, there is no clear way of stopping the iteration of
regula-falsi method as the length of the interval [an, bn] obtained at the (n+1)th iteration
may not converge to zero as n → ∞. This situation occurs especially when the function
f is concave or convex in the interval [a0, b0] as illustrated in Example 4.8. ⊓⊔

Assuming that, for each n = 1, 2, · · · , the number xn is not a solution of the nonlinear
equation f(x) = 0, we get a sequence of real numbers {xn}. The question is whether this
sequence converges to a root of the nonlinear equation f(x) = 0. Before addressing this
question, let us consolidate the information that we have so far.

(1) The sequence of left end points of the intervals [an, bn] is a non-decreasing sequence
that is bounded above by b. That is,

a0 ≤ a1 ≤ · · · ≤ an · · · ≤ b.

Hence the sequence {an} has a limit, i.e., limn→∞ an exists.
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(2) The sequence of right end points of the intervals [an, bn] is a non-increasing sequence
that is bounded below by a. That is,

b0 ≥ b1 ≥ · · · ≥ bn · · · ≥ a.

Hence the sequence {bn} has a limit, i.e., limn→∞ bn exists.

(3) Since an < bn for all n = 0, 1, 2, · · · , we conclude that

lim
n→∞

an ≤ lim
n→∞

bn.

If the lengths of the intervals obtained in regula-falsi method tend to zero, then we
have

lim
n→∞

an = lim
n→∞

bn,

in which case, we also have by sandwich theorem

lim
n→∞

an = lim
n→∞

xn+1 = lim
n→∞

bn,

as an < xn+1 < bn for all n = 0, 1, 2, · · · . In this case, the common limit will be a root
of the nonlinear equation, as is the case with bisection method. ⊓⊔

Unfortunately, it may happen that the lengths of the subintervals chosen by regula-falsi
method do not go to zero. In other words, if an → α and bn → β, then it may happen
that α < β. Let us illustrate this case by the following example.

Example 4.8. Consider the nonlinear equation

ex − 2 = 0.

Note that the function f : R → R defined by f(x) = ex − 2 satisfies the hypothesis of the
regula-falsi method on the interval [0, 1]. Let us start the iteration with the initial interval
[a0, b0] = [0, 1].

Iteration 1: Using the formula (4.6), we get

x1 =
1

e− 1
.

Since f(x1) ≈ −0.21043, the subinterval chosen by regula-falsi method is the interval
[a1, b1] = [x1, 1].

Iteration 2: We have x2 ≈ 0.67669. Since f(x2) ≈ −0.032645, the subinterval chosen by
regula falsi method is the interval [a2, b2] = [x2, 1].

By continuing these computations, we see that the subinterval at every iteration chosen
by regula-falsi method is the right half of the interval defined in the previous iteration. In
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other words, for n = 1, 2, · · · , we have [an, bn] = [xn, 1]. This is clearly seen geometrically
as the function f is convex. A similar situation occurs when the given function f is concave
(at least in the initial interval [a0, b0]). We checked this to be true for n = 1, 2 and a proof
for a general n is left as an exercise.

Note in this example that β = 1 and α ≤ r ̸= 1, where r is the root of the given
equation f(x) = 0 to which the regula-falsi method is expected to converge. ⊓⊔

The last example ruled out any hopes of proving that α = β. However, it is true that
the sequence {xn} converges to a root of the nonlinear equation f(x) = 0, and as can be
expected, the proof is by contradiction argument. Let us now state the theorem on regula
falsi method and prove it.

Theorem 4.9 (Convergence of Regula-falsi method).

Hypothesis: Let f : [a0, b0] → R be a continuous function such that the numbers f(a0)
and f(b0) have opposite signs.

Conclusion: If {xn} is the iterative sequence defined by regula-falsi method. Then the
sequence {xn} converges to an r ∈ (a0, b0) such that f(r) = 0.

Proof: Let us start by analyzing conditions under which “the sequence {xn} does not
converge to a root of the nonlinear equation f(x) = 0”. This exactly happens when one
of the following two situations occur.

(1) The sequence {xn} is not a convergent sequence.

(2) The sequence {xn} converges but its limit is not a root of the nonlinear equation
f(x) = 0.

We are going to show that none of the above situations can occur, which will then prove
the required convergence result.

Step 1: Since the sequence {xn} is a sequence from the interval [a0, b0], it is bounded.
By Bolzano-Weierstrass theorem, there exists a subsequence {xnk

} of {xn} and a number
p ∈ [a, b] such that

lim
k→∞

xnk
= p.

We will show that f(p) = 0.

Step 2: Suppose that f(p) ̸= 0. Without loss of generality, assume that f(p) < 0. Since
f is a continuous function, there exists a δ > 0 such that

f(x) < 0 for all x ∈ [p− δ, p+ δ].

Since the subsequence {xnk
} converges to p, there exists a K such that for every k ≥ K,

we have
p− δ ≤ xnk

≤ p+ δ.

Baskar and Sivaji 122 Spring 2013/MA 214



4.1. CLOSED DOMAIN METHODS

Note that for each k ∈ N, xnk
∈ {ank

, bnk
}. Consider the sets Sa and Sb defined by

Sa = {k ∈ N : k ≥ K, xnk
= ank

},
Sb = {k ∈ N : , k ≥ K, xnk

= bnk
}. (4.7)

If both the sets Sa and Sb are non-empty, then we get a contradiction (to what?) immedi-
ately (why?). Thus, we may assume that one of the two sets Sa and Sb is empty. Without
loss of generality assume that Sa = ∅ and Sb ̸= ∅. Consequently, Sb = {k ∈ N : k ≥ K}.

Claim:

(1) The subsequence {bnk
}k≥K lies to the right of the point p. That is,

p < bnk
for all k ≥ K.

(2) The tail of the sequence {bn}n≥nK
lies in the interval [p, p+ δ].

p+ δ ≥ bnK
> bnK+1 > bnK+2 > · · · > p (4.8)

As a consequence, an = anK
for all n ≥ nK .

(3) We have
xn = bn for alln ≥ nK

Proof of Claim: (1). If there exists a K ′ > K such that bnK′ < p, then p cannot be
limit of xnk

as these points have to be one of the end points of subintervals selected by
regula falsi method. Thus (1) is proved.

Proof of Claim: (2). Since {bn} is a non-increasing sequence, and the subsequence
{bnk

}k≥K lies to the right of the point p, it follows that the sequence {bn} lies to the right
of p and consequently, we get (4.8). Since Sa = ∅, we have xnk

= bnk
for every k ≥ K.

Furthermore, xn = bn for every n ≥ nK . Thus we also have an = anK
for all n ≥ nK .

Incorporating all the information from the last claim into the formula for regula falsi
iterative sequence (4.6), we get the following formula for xn+1 for every n ≥ nK

xn+1 =
anK

f(xn)− xnf(anK
)

f(xn)− f(anK
)

. (4.9)

Passing to the limit in the last equation as n→ ∞ yields

p =
anK

f(p)− pf(anK
)

f(p)− f(anK
)

.

Simplifying the last equation, we get

pf(p) = anK
f(p)

Since p ̸= anK
, we must have f(p) = 0 which is a contradiction to our assumption that

f(p) ̸= 0. Thus we conclude that f(p) = 0.

Thanks to (3) of the previoius claim, we actually proved that the sequence {xn} con-
verges to p, and f(p) = 0. This finishes the proof of the theorem. ⊓⊔
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Example 4.10. Let us find an approximate solution to the nonlinear equation

sinx+ x2 − 1 = 0

using regula-falsi method. Exact solution is approximately 0.637.

We choose the initial interval as [a0, b0] = [0, 1] as done in Example 4.5.

Iteration 1: We have a0 = 0, b0 = 1. Thus x1 = 0.54304. Since f(x1) = −0.18837 < 0,
f(0) < 0, and f(1) > 0, we take [a1, b1] = [x1, b0] = [0.54304, 1].

Iteration 2: Using the regula-falsi formula (4.6), we get x2 = 0.62662. Since f(x2) =
−0.020937 < 0, f(0.54304) < 0, and f(1) > 0, we take [a2, b2] = [x2, 1] = [0.62662, 1].

Iteration 3: Using the regula-falsi formula (4.6), we get x3 = 0.63568. Since f(x3) =
−0.0021861 < 0, f(0.62662) < 0, and f(1) > 0, we take [a3, b3] = [x3, 1] = [0.63658, 1].

Iteration 4: Using the regula-falsi formula (4.6), we get x4 = 0.63662.
and so on.

In this example also, we observe that the lengths of the intervals [an, bn] do not seem
to be tending to zero as n → ∞. However, we see that the sequence {xn} is approaching
the root of the given equation. ⊓⊔

4.2 Stopping Criteria

The outcome of any iterative method for a given nonlinear equation is a sequence of real
numbers that is expected to converges to a root of the equation. When we implement
such a methods on a computer, we cannot go on computing the iterations indefinitely
and needs to stop the computation at some point. It is desirable to stop computing the
iterations when the xn’s are reasonably close to an exact root r for a sufficiently large n.
In other words, we want to stop the computation at the nth iteration when the computed
value is such that

|xn − r| < ϵ

for some pre-assigned positive number ϵ.

In general, we don’t know the root r of the given nonlinear equation to which the
iterative sequence is converging. Therefore, we have no idea of when to stop the iteration
as we have seen in the case of regula-falsi method. In fact, this situation will be there for
any open domain methods discussed in the next section. An alternate way is to look for
some criteria that does not use the knowledge of the root r, but gives a rough idea of how
close we are to this root. Such a criteria is called the stopping criteria. We now list some
of the commonly used stopping criteria for iterative methods for nonlinear equations.

Stopping Criterion 1: Fix a K ∈ N, and ask the iteration to stop after finding xK .
This criterion is borne out of fatigue, as it clearly has no mathematical reason why the K
fixed at the beginning of the iteration is more important than any other natural number!
If we stop the computation using this criterion, we will declare xK to be the approximate
solution to the nonlinear equation f(x) = 0.
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Stopping Criterion 2: Fix a real number ϵ > 0 and a natural number N . Ask the
iteration to stop after finding xk such that

|xk − xk−N | < ϵ.

One may interpret this stopping criterion by saying that there is ‘not much’ improvement
improvement in the value of xk compared to a previous value xk−N . If we stop the com-
putation using this criterion, we will declare xk to be the approximate solution to the
nonlinear equation f(x) = 0.

It is more convenient to take N = 1 in which case, we get the stopping criteria

|xk − xk−1| < ϵ.

Stopping Criterion 3: Fix a real number ϵ > 0 and a natural number N . Ask the
iteration to stop after finding xk such that∣∣∣∣xk − xk−N

xk

∣∣∣∣ < ϵ.

If we stop the computation using this criterion, we will declare xk to be the approximate
solution to the nonlinear equation f(x) = 0.

As in the above case, it is convenient to take N = 1.

Stopping Criterion 4: Fix a real number ϵ > 0 and ask the iteration to stop after
finding xk such that

|f(xk)| < ϵ.

If we stop the computation using this criterion, we will declare xk to be the approximate
solution to the nonlinear equation f(x) = 0. Sometimes the number |f(xk)| is called the
residual error corresponding to the approximate solution xk of the nonlinear equation
f(x) = 0. ⊓⊔

In practice, one may use any of the stopping criteria listed above, either single or
multiple criteria.

Remark 4.11.We can also use any of the above stopping criteria in bisection method.

4.3 Open Domain Methods

In the closed domain methods described in the previous section, we have seen that the
iterative sequences always converge to a root of the nonlinear equation. However, initially
to start the iteration, we need to give an interval where at least one root of the equation is
known to exist. In many practical situations it may be very difficult to obtain this interval
manually. Also, it will be very expensive to find this interval using a computer program
as we have to adopt a trial and error algorithm for this. Therefore, it is highly desirable
to device an iterative method that does not need this information and gives freedom to
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choose any arbitrary starting point as done in the iterative method for linear systems in
Section 3.4. This is the objective of an open domain method.

The open domain methods do not pre-suppose that a root is enclosed in an interval
of type [a, b]. These methods always start with a set of initial guesses x0, x1, · · · , xm
distributed anywhere on the real line (but sufficiently close to a root of the equation)
and tell us how to compute the values xm+1, xm+2, · · · . in such a way that the resulting
iterative sequence {xn} converges to a root of the equation.

In this section we study three open domain iterative methods for approximating a root
of a given nonlinear equation.

4.3.1 Secant Method

The straightforward modification of the regula-falsi method is the well-known secant
method. The only difference in the secant method (when compared to the regula-falsi
method) is that here we do not demand the initial guesses a0 and b0 to be on the either
side of a root. Let us now present the algorithm of the secant method.

Hypothesis: Given any initial values x0 and x1 (not necessarily on the either side of a
root) such that f(x0) ̸= f(x1).

Algorithm:

Step 1: For n = 1, 2, · · · , the iterative sequence for secant method is given by

xn+1 =
f(xn)xn−1 − f(xn−1)xn

f(xn)− f(xn−1)
. (4.10)

This expression can also be written as

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)
(4.11)

Step 2: Choose any one of the stopping criteria (or a combination of them) discussed in
Section 4.2. If this criterion is satisfied, stop the iteration. Otherwise, repeat the step 1
until the criterion is satisfied. ⊓⊔

Recall that xn+1 for each n = 1, 2, · · · given by (4.10) is the x-coordinate of the point
of intersection of the secant line joining the points (xn−1, f(xn−1)) and (xn, f(xn)) with
the x-axis and hence the name secant method.

Remark 4.12. It is evident that the secant method fails to determine xn+1 if we have
f(xn−1) = f(xn). Observe that such a situation never occurs in regula-falsi method. ⊓⊔

Example 4.13. Consider the equation

sin x+ x2 − 1 = 0.

Let x0 = 0, x1 = 1. Then the iterations from the secant method are given by
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Fig. 4.1. Iterative points of secant method.

n xn ϵ
2 0.543044 0.093689
3 0.626623 0.010110
4 0.637072 0.000339
5 0.636732 0.000001

Figure 4.1 shows the iterative points x2 and x3 in black bullet. Recall that the exact
value of the root (to which the iteration seems to converge) unto 6 significant digits is
r ≈ 0.636733. Obviously, the secant method is much faster than bisection method in this
example. ⊓⊔

We now state the convergence theorem on secant method.

Theorem 4.14 (Convergence of Secant Method).

Hypothesis:

(1) Let f : R → R be a C2(R) function.
(2) Let r be a simple root of the nonlinear equation f(x) = 0, that is f ′(r) ̸= 0.

Conclusion: Then there exists a δ > 0 such that for every x0, x1 ∈ [r − δ, r + δ],

(1) the secant method iterative sequence {xn} is well-defined.

(2) the sequence {xn} belongs to the interval [r − δ, r + δ].

(3) lim
n→∞

xn = r.

(4) Further, we have

lim
n→∞

|xn+1 − r|
|xn − r|α

=

∣∣∣∣ f ′′(r)

2f ′(r)

∣∣∣∣α/(α+1)

. (4.12)

where α = (
√
5 + 1)/2 ≈ 1.62.
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The proof for this is omitted for this course.

Remark 4.15. The expression (4.12) implies that the order of convergence (see Definition
1.42) of the iterative sequence of secant method is 1.62. ⊓⊔

4.3.2 Newton-Raphson Method

In Theorem 4.14, we have seen that the secant method has more than linear order of
convergence. This method can further be modified to achieve quadratic convergence. To
do this, we first observe that when the iterative sequence of the secant method converges,
then as n increases, we see that xn−1 approaches xn. Thus, for a sufficiently large value of
n, we have

f ′(xn) ≈
f(xn)− f(xn−1)

xn − xn−1

,

provided f is a C1 function. Thus, if f(x) is differentiable, then on replacing in (4.11),
the slope of the secant by the slope of the tangent at xn, we get the iteration formula

xn+1 = xn −
f(xn)

f ′(xn)
(4.13)

and is called the Newton-Raphson’s Method.

Remark 4.16 (Geometrical Motivation). If a function f is differentiable at a point
x0, then the tangent (y = g(x)) to the graph of f at the point (x0, f(x0)) is given by

g(x) = f ′(x0)(x− x0) + f(x0).

We may assume that for x ≈ x0, f(x) ≈ g(x). This can also be interpreted as

“If a function f is differentiable at a point, then the graph of f looks like a straight line,
for x ≈ x0 on zooming”.

Now, if we choose the initial guess x0 very close to the root r of f(x) = 0. That is., if
r ≈ x0, we have g(r) ≈ f(r) = 0. This gives (approximately)

0 ≈ f ′(x0)(r − x0) + f(x0).

Up on replacing r by x1 and using ‘=’ symbol instead of ‘≈’ symbol, we get the first
iteration of the Newton-Raphson’s iterative formula (4.13). ⊓⊔

Recall in secant method, we need two initial guesses x0 and x1 to start the iteration.
In Newton-Raphson method, we need one initial guess x0 to start the iteration. The
consecutive iteration x1 is the x-coordinate of the point of intersection of the x-axis and the
tangent line at x0, and similarly for the other iterations. This geometrical interpretation
of the Newton-Raphson method is clearly observed in Figure 4.2.

We now derive the Newton-Raphson method under the assumption that f is a C2

function.
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Let x0 be given. The Taylor’s polynomial of degree n = 1 with remainder is given by

f(x) = f(x0) + f ′(x0)(x− x0) +
(x− x0)

2

2!
f ′′(ξ),

where ξ lies between x0 and x. When x0 is very close to x, the last term in the above
equation is smaller when compared to the other two terms on the right hand side. By
neglecting this term we have

f(x) ≈ f(x0) + f ′(x0)(x− x0). (4.14)

Notice that the graph of the function g(x) = f(x0)+f
′(x0)(x−x0) is precisely the tangent

line to the graph of f at the point (x0, f(x0)). We now define x1 to be the x-coordinate
of the point of intersection of this tangent line with the x-coordinate. That is, the point
x1 is such that g(x1) = 0, which gives

x1 = x0 −
f(x0)

f ′(x0)
. (4.15)

This gives the first member of the iterative sequence of the Newton-Raphson’s method.

We now summarize the Newton-Raphson’s method.

Hypothesis:

(1) Let the function f be C1 and r be the root of the equation f(x) = 0 with f ′(r) ̸= 0.

(2) The initial guess x0 is chosen sufficiently close to the root r.

Algorithm:
Step 1: For n = 0, 1, 2, · · · , the iterative sequence of the Newton-Raphson’s method is
given by (4.13)

xn+1 = xn −
f(xn)

f ′(xn)
.

Step 2: Choose any one of the stopping criteria (or a combination of them) discussed in
Section 4.2. If this criterion is satisfied, stop the iteration. Otherwise, repeat the step 1
until the criterion is satisfied. ⊓⊔

Remark 4.17. It is evident that if the initial guess x0 is such that f ′(xn) = 0, for some
n ∈ N, then the Newton-Raphson method fails. Geometrically, this means that the tangent
line to the graph of f at the point (xn, f(xn)) is parallel to the x-axis. Therefore, this
line never intersects x-axis and hence xn+1 never exists. See Remark 4.12 for the failure
of secant method and compare it with the present case. ⊓⊔

Example 4.18. Consider the equation

sin x+ x2 − 1 = 0.

Let x0 = 1. Then the iterations from the Newton-Raphson method gives
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Fig. 4.2. Iteration Procedure of Newton-Raphson’s method for f(x) = sin(x) + x2 − 1.

n xn ϵ
1 0.668752 0.032019
2 0.637068 0.000335
3 0.636733 0.000000

Figure 4.2 shows the iterative points x2 and x3 in black bullet. Recall that the exact
solution is x∗ ≈ 0.636733. Obviously, the Newton-Raphson method is much faster than
both bisection and secant methods in this example. ⊓⊔

Let us now discuss the convergence of the Newton-Raphson method.

Theorem 4.19 (Error Estimates and Convergence of Newton-Raphson method).

Hypothesis:

(1) Let f : R → R be a C2(R) function.
(2) Let r be a simple root of the nonlinear equation f(x) = 0, that is f ′(r) ̸= 0.

Conclusion: Then there exists a δ > 0 such that for every x0 ∈ [r − δ, r + δ],

(1) each term of the Newton-Raphson iterative sequence {xn} is well-defined.

(2) the sequence {xn} belongs to the interval [r − δ, r + δ].

(3) limn→∞ xn = r.

Proof: The Newton-Raphson sequence is defined by

xn+1 = xn −
f(xn)

f ′(xn)
.

The error en+1 := r − xn+1 can be written as
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en+1 =
(r − xn)f

′(xn) + f(xn)

f ′(xn)

Using Taylor’s theorem, we have

0 = f(r) = f(xn) + (r − xn)f
′(xn) +

f ′′(ξn)

2
(r − xn)

2, (4.16)

where ξn lies between r and xn. Using the information from the last equation, we get the
following expression for en+1:

en+1 = − f ′′(ξn)

2f ′(xn)
(r − xn)

2 = − f ′′(ξn)

2f ′(xn)
e2n. (4.17)

Since f ′(r) ̸= 0, there exists a δ1 > 0 such that f ′(x) ̸= 0 for every x ∈ [r − δ1, r + δ1]. In
particular, there exists Mδ1 > 0 such that

min
x∈[r−δ1,r+δ1]

|f ′(x)| ≥Mδ1 .

Also, since f ′′ is a continuous function, there exists a Lδ1 > 0 such that

max
x∈[r−δ1,r+δ1]

|f ′′(x)| ≤ Lδ1 .

Thus we get

|en+1| ≤
Lδ1

2Mδ1

|en|2. (4.18)

Note that C(δ1) :=
Lδ1

2Mδ1
is a non-increasing function of δ1, which implies that C(δ1)

remains bounded as we decrease the value of δ1. Thus, there exists a δ < 1 such that
δ < δ1, and δ Cδ < 1. We will now show that this δ has the required property. The
inequality (4.18), for this δ reads

|en+1| ≤ Cδ|en|2. (4.19)

Proof of (1) and (2): Let x0 ∈ [r − δ, r + δ]. In other words, |r − x0| ≤ δ. Then x1 is
well-defined as f ′(x0) ̸= 0, since x0 belongs to the interval [r − δ, r + δ] on which f ′ is
never equal to zero. We will prove that |r − x1| ≤ δ.

|r − x1| = |e1| ≤ Cδ|e0|2 ≤ Cδδ|e0| ≤ |e0| ≤ δ.

By induction, it follows that xn is well-defined, and |r − xn| ≤ δ for every n ∈ N.

Proof of (3): From the inequalities,

|en+1| ≤ Cδ|en|2 ≤ δCδ|en| ≤ (δCδ)
2|en−1| ≤ · · · ≤ (δCδ)

n+1|e0|,

the convergence of the sequence follows as δ Cδ < 1. ⊓⊔

Theorem on Newton-Raphson method says that if we start near-by a root of the non-
linear equation, then Newton-Raphson iterative sequence is well-defined and converges.
For increasing convex functions, we need not be very careful in choosing the initial guess.
For such functions, the Newton-Raphson iterative sequence always converges, whatever
may be the initial guess. This is the content of the next theorem.
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Theorem 4.20 (Convergence Result for Convex Functions).

Hypothesis: Let f : R → R be a twice continuously differentiable function such that

(1) f is convex, i.e., f ′′(x) > 0 for all x ∈ R.
(2) f is strictly increasing, i.e., f ′(x) > 0 for all x ∈ R.
(3) there exists an r ∈ R such that f(r) = 0.

Conclusion: Then

(1) r is the unique solution of f(x) = 0.

(2) For every choice of x0, the Newton-Raphson iterative sequence converges to r.

Proof:
Proof of (1): Since f is strictly increasing, the function cannot take the same value more
than once. Thus f(x) = 0 has exactly one solution.

Proof of (2): From (4.17), it follows that en+1 ≤ 0. This implies that r ≤ xn+1. Since f is
a strictly increasing function, we get f(r) ≤ f(xn+1). Thus f(xn+1) ≥ 0 for every n ∈ N.
From (4.13), we get xn+1 ≤ xn. That is, the sequence {xn} is a non-increasing sequence,
and is bounded below by r, and hence converges. Let us denote the limit by x∗.

On the other hand, the sequence {en} is a non-decreasing sequence, bounded above by
0. Let e∗ denote the limit of the sequence {en}.

Passing to the limit as n→ ∞ in the equation

en+1 = en +
f(xn)

f ′(xn)
,

we get

e∗ = e∗ +
f(x∗)

f ′(x∗)
.

From the last equality, we get f(x∗) = 0. ⊓⊔

Remark 4.21. It follows from (4.19) that the order of convergence of the Newton-
Raphson method is 2 (see Definition 1.42(3)), that is the Newton-Raphson iterative se-
quence converges quadratically. ⊓⊔

To following example illustrates the quadratic convergence of the Newton-Raphson
method.

Example 4.22. Start with x0 = −2.4 and use Newton-Raphson iteration to find the root
r = −2.0 of the polynomial

f(x) = x3 − 3x+ 2.

The iteration formula is

xn+1 =
2x3n − 2

3x2n − 3
.

It is easy to verify that |r−xn+1|/|r−xn|2 ≈ 2/3, which shows the quadratic convergence
of Newton-Raphson’s method as proved in the above theorem. ⊓⊔
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4.3.3 Fixed-Point Iteration Method

In fixed point iteration method, search for a solution of nonlinear equation f(x) = 0 is
replaced by search for a fixed point of a function g, and with the property that if α ∈ R
is a fixed point of g (i.e., g(α) = α), then f(α) = 0.

In general, there may be more than one choice of g with this property as illustrated by
the following example.

Example 4.23. Note that α ∈ R is a solution of the equation x2 − x− 2 = 0 if and only
if α is a solution of each of the following equations.

(1) x = x2 − 2

(2) x =
√
x+ 2

(3) x = 1 +
2

x
.

The fixed-point iteration method for finding a solution of g(x) = x consists of a
sequence of iterates {xn}, starting from an initial guess x0, defined by

xn = g(xn−1) (4.20)

As we saw in Example 4.23, for a given nonlinear equation, the iteration function is not
unique. The crucial point in this method is to choose a good iteration function g(x). A
good iteration function should satisfy the following properties:

(1) For the given starting point x0, the successive approximations xn given by (4.20) can
be calculated.

(2) The sequence x1, x2, · · · converges to some point ξ.

(3) The limit ξ is a fixed point of g(x), ie., ξ = g(ξ).

Not every iteration function has all these properties. The following example shows that
for certain iteration functions, even the sequence of iterates need not be defined.

Example 4.24. Consider the equation

x2 − x = 0.

This equation can be re-written as x = ±
√
x. Let us take the iterative function

g(x) = −
√
x.

Since g(x) is defined only for x > 0, we have to choose x0 > 0. For this value of x0, we
have g(x0) < 0 and therefore, x1 cannot be calculated. ⊓⊔

Therefore, the choice of g(x) has to be made carefully so that the sequence of iterates can
be calculated.
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Fig. 4.3. Fixed-point Iteration Procedure.

How to choose such an iteration function g(x)?

Note that x1 = g(x0), and x2 = g(x1). Thus x1 is defined whenever x0 belongs to the
domain of g. Thus we must take the initial guess x0 from the domain of g. For defining
x2, we need that x1 is in the domain of g once again. In fact the sequence is given by

x0, g(x0), g ◦ g(x0), g ◦ g ◦ g(x0), · · ·

Thus to have a well-defined iterative sequence, we require that

Range of the function g is contained in the domain of g.

A function with this property is called a self map. We make our first assumption on the
iterative function as

Assumption 1: a ≤ g(x) ≤ b for all a ≤ x ≤ b.

It follows that if a ≤ x0 ≤ b, then for all n, xn ∈ [a, b] and therefore xn+1 = g(xn) is
defined and belongs to [a, b].
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Let us now discuss about the point 3. This is a natural expectation since the expression
x = g(x), which is the solution of the required equation is precisely the definition of a
fixed point. To achieve this, we need g(x) to be a continuous function. For if xn → x∗

then
x∗ = lim

n→∞
xn = lim

n→∞
g(xn−1) = g( lim

n→∞
xn−1) = g(x∗)

Therefore, we need

Assumption 2: The iterative function g is continuous.

It is easy to prove that a continuous self map on a bounded interval always has a fixed
point. However, the question is whether the sequence (4.20) generated by the iterative
function g converges, which is the requirement stated in point 2. This point is well un-
derstood geometrically. The Figures 4.3(a) and 4.3(c) illustrate the convergence of the
fixed-point iterations whereas the Figures 4.3(b) and 4.3(d) illustrate the diverging itera-
tions. In this geometrical observation, we see that when g′(x) < 1, we have convergence
and otherwise, we have divergence. Therefore, we make the assumption

Assumption 3: The iteration function g(x) is differentiable on I = [a, b]. Further, there
exists a constant 0 < K < 1 such that

|g′(x)| ≤ K, x ∈ I. (4.21)

Such a function is called the contraction map.

Let us now present the algorithm of the fixed point iteration method.

Hypothesis: Assumptions 1, 2, and 3 stated above.

Algorithm: Choose an appropriate iteration function g : [a, b] → [a, b], where the interval
[a, b] is chosen in such a way that g is a self map.

Step 1: Choose an initial guess x0 ∈ [a, b].

Step 2: Define the iteration methods as

xn+1 = g(xn), n = 0, 1, · · ·

Step 3: For a pre-assigned positive quantity ϵ, check for one of the (fixed) stopping criteria
discussed in Section 4.2. If the criterion is satisfied, stop the iteration. Otherwise, repeat
the step 1 until the criterion is satisfied. ⊓⊔

Theorem 4.25 (Convergence Result for Fixed-Point Iteration Method).

Hypothesis: Let the iterative function g be chosen so that

(1) g is defined on the interval [a, b] and a ≤ g(x) ≤ b. That is, g is a self map on [a, b]

(2) g is continuously differentiable on [a, b]

(3) g is a contraction map. That is,

λ = max
a≤x≤b

|g′(x)| < 1. (4.22)
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Conclusion: Then

(1) x = g(x) has a unique solution r in [a, b].

(2) For any choice of x0 ∈ [a, b], with xn+1 = g(xn), n = 0, 1, · · · ,

lim
n→∞

xn = r.

(3) We further have

|xn − r| ≤ λn|x0 − r| ≤ λn

1− λ
|x1 − x0| (4.23)

and

lim
n→∞

r − xn+1

r − xn
= g′(r). (4.24)

Proof. Proof for (1) is easy.

From mean-value theorem and (4.21), we have

|r − xn+1| = |g(r)− g(xn)| ≤ λ|r − xn|. (4.25)

By induction, we have

|r − xn+1| ≤ λn|x0 − r|, n = 0, 1, · · · .

Since, as n→ ∞, λn → 0, we have xn → r. Further, we have

|x0 − r| = |x0 − x1 + x1 − r|
≤ |x0 − x1|+ |x1 − r|
≤ λ|x0 − r|+ |x0 − x1|.

Then solving for |x0 − r|, we get (4.23).

Now we will prove the rate of convergence (4.24). From Mean-value theorem

r − xn+1 = g(r)− g(xn) = g′(ξn)(r − xn), n = 0, 1, · · · .

with ξn an unknown point between r and xn. Since xn → r, we must have ξn → r and
therefore,

lim
n→∞

r − xn+1

r − xn
= lim

n→∞
g′(ξn) = g′(r).

This completes the proof. ⊓⊔

Remark 4.26. From the inequality (4.25), we see that the fixed point iteration method
has linear convergence. In other words, the order of convergence of this method is 1. ⊓⊔
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Example 4.27. The nonlinear equation

x3 + 4x2 − 10 = 0

has a unique solution in [1, 2]. Note that solution to each of the following fixed-point
problems is a solution to the given nonlinear equation.

(1) x = g1(x) = x− x3 − 4x2 + 10

(2) x = g2(x) =

√
10

x
− 4x

(3) x = g3(x) =
1

2

√
10− x3

(4) x = g4(x) =

√
10

4 + x

(5) x = g5(x) = x− x3 + 4x2 − 10

3x2 + 8x
.

We are going to show that among the five equivalent fixed-point formulations of the
given nonlinear equation, only some of them turn out to be good iterative functions. Let
us implement fixed-point iteration method with each of the five iterating functions, and
compare the results which are tabulated below.

n x = g1(x) x = g2(x) x = g3(x) x = g4(x) x = g5(x)
0 1.5 1.5 1.5 1.5 1.5
1 -0.875 0.8165 1.286953768 1.348399725 1.373333333
2 6.732 2.9969 1.402540804 1.367376372 1.365262015
3 -469.7

√
−8.65 1.345458374 1.364957015 1.365230014

4 1.03× 108 1.375170253 1.365264748 1.365230013
5 1.360094193 1.3652
6 1.367846968 1.365230576
7 1.363887004 1.365229942
8 1.365916734 1.365230022
9 1.364878217 1.365230012
10 1.365410062 1.365230014
15 1.365223680 1.365230013
20 1.365230236
25 1.365230006
30 1.365230013

From the above table, we conclude that the iterative functions g1 and g2 are very bad,
while that given by g5 is the best. However iterative functions g3 and g4 are also good but
requires more number of iterations compared to g5.

(1) Note that the iterative function g1 is given by

g1(x) = x− x3 − 4x2 + 10.
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Note that g1(1) = 6 and g1(2) = −12. Thus range of g1 is not contained in [1, 2]. That
is g1 is not a self map on the interval [1, 2]. In fact,

g′1(x) = 1− 3x2 − 8x.

Let us compute the minimum and maximum values of g′1 on the interval [1, 2]. Note
that g′′1(x) = −6x−8. Thus derivative of g′1 vanishes at only one point, namely x = −4

3

which is not in the interval [1, 2]. Thus g′1 has no maxima/minima in the interval (1, 2).
Hence maximum and minimum of g′1 are at the points 1, 2. Note that g′1(1) = −10,
g′1(2) = −27. Thus |g′(x)| ≥ 10 on the interval [1, 2]. Thus the map g1 is not only
not contractive on [1, 2] but is an expansive map on [1, 2]. This is the reason why the
successive iterates using g1 have increasing moduli.

(2) Note that the iterative function g2 is given by

g2(x) =

√
10

x
− 4x.

It is easy to check that g2 is not a self map of [1, 2] to itself. In our computation above,
we see that the entire iterative sequence is not defined as one of the iterates becomes
negative, when the initial guess is taken as 1.5 The exact solution is approximately
equal to x∗ = 1.365 There is no interval containing x∗ on which |g′2(x)| < 1. In fact,
g′2(x

∗) ≈ 3.4 and as a consequence |g′2(x)| > 3 on an interval containing x∗. Thus we
dont expect a convergent iterative sequence even if the sequence is well-defined!

(3) Note that the iterative function g3 is given by

g3(x) =
1

2

√
10− x3.

Note that g3 is a decreasing function on [1, 2] as

g′3(x) = − 3x2

4
√
10− x3

< 0

on [1, 2]. Thus maximum of g3 is attained at x = 1, which is 1.5; and the minimum
is attained at x = 2 which is approximately equal to 0.707. Thus g3 is a self map of
[1, 2]. But |g′3(2)| ≈ 2.12. Thus the condition

|g′3(x)| ≤ λ < 1

is violated on the interval [1, 2]. However by restricting to a smaller interval [1, 1.5],
we get that g3 is a self map of [1, 1.5] as g3 is still decreasing function on [1, 1.5] and
g3(1) = 1.5, g3(1.5) ≈ 1.28, and also

|g′3(x)| ≤ |g′3(1.5)| ≈ 0.66.

Thus g3 satisfies the hypothesis of theorem on fixed-point iteration, and as expected
the sequence of iterates converge.
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(4) Note that the iterative function g4 is given by

g4(x) =

√
10

4 + x
.

We have

|g′4(x)| =
∣∣∣∣ −5√

10(4 + x)3/2

∣∣∣∣ ≤ 5√
10(5)3/2

< 0.15 for allx ∈ [1, 2].

The bound obtained on the derivative of g4 is considerably smaller when compared to
that of g3, which explains why the convergence is faster for the iterates obtained using
g4, when compared with those obtained by using g3.

(5) Note that the iterative function g5 is given by

g5(x) = x− x3 + 4x2 − 10

3x2 + 8x
.

This converges much more faster compared to g3 and g4. Note that the fixed-point
iterative sequence generated by g5 is nothing but the iterative sequence of Newton-
Raphson method for the solution of the nonlinear equation f(x) = 0.

Example 4.28. Consider the equation

sin x+ x2 − 1 = 0.

Take the initial interval as [0, 1]. There are three possible choices for the iteration function,
namely,

(1) g1(x) = sin−1(1− x2),

(2) g2(x) = −
√
1− sin x,

(3) g3(x) =
√
1− sin x.

Here we have

g′1(x) =
−2√
2− x2

.

We can see that |g′1(x)| > 1. Taking x0 = 0.8 and denoting the absolute error as ϵ, we
have

n g1(x) ϵ
0 0.368268 0.268465
1 1.043914 0.407181
2 -0.089877 0.726610
3 1.443606 0.806873
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The sequence of iterations is diverging as expected.

If we take g2(x), clearly the assumption 1 is violated and therefore is not suitable for
the iteration process.

Let us take g3(x). Here, we have

g′3(x) =
− cosx√
1− sinx

.

Therefore,

|g′3(x)| =
√
1− sin2 x

2
√
1− sinx

=

√
1 + sin x

2

≤ 1√
2
< 1.

Taking x0 = 0.8 and denoting the absolute error as ϵ, we have

n g3(x) ϵ
0 0.531643 0.105090
1 0.702175 0.065442
2 0.595080 0.041653
3 0.662891 0.026158

The sequence is converging. ⊓⊔

4.4 Comparison and Pitfalls of Iterative Methods

Closed domain methods: Bisection and Regula falsi methods

(1) In both these methods, where we are trying to find a solution of the nonlinear equa-
tion f(x) = 0, we are required to find an interval [a, b] such that f(a) and f(b) have
opposite signs. This calls for a complete study of the function f . In case the function
has no solutions on the real line, this search for an interval will be futile. There is no
way to realize this immediately, thus necessitating a full fledged understanding of the
funtion f .

(2) Once it is known that we can start these methods, then surely the iterative sequences
converge to a solution of the nonlinear equation.

(3) In bisection method, we can keep track of the error by means of an upper bound. But
such a thing is not available for regula falsi method. In general convergence of bisection
method iterates is slower compared to that of regula falsi method iterates.
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(4) If the initial interval [a, b] is such that the equation f(x) = 0 has a unique solution in
it, then both the methods converge to the solution. If there are more than one solutions
in [a, b], then usually both methods find different solutions. The only way of finding
the desired root is to find an interval in which there is exactly one solution to the
nonlinear equation.

Open domain methods: Secant, Newton-Raphson, and Fixed point methods

(1) The main advantage of the open domain methods when compared to closed domain
methods is that we don’t need to locate a root in an interval. Rather, we can start the
iteration with an arbitrarily chosen initial guess(es).

(2) The disadvantage of the open domain methods is that the iterative sequence may not
be well-defined for all initial guesses. Even if the sequence is well-defined, it may not
converge. Even if it converges, it may not converge to a specific root of interest.

(3) In situations where both open and closed domain methods converge, open domain
methods are generally faster compared to closed domain methods. Especially, Newton-
Raphson’s method is faster than other methods as the order of convergence of this
method is 2. In fact, this is the fastest method known today.

(4) In these methods, it may happen that we are trying to find a particular solution of the
nonlinear equation, but the iterative sequence may converge to a different solution.
Thus we have to be careful in choosing the initial guess. If the initial guess is far away
from the expected root, then there is a danger that the iteration converges to another
root of the equation.

In the case of Newton-Raphson’s method, this usually happens when the slope f ′(x0)
is small and the tangent line to the curve y = f(x) is nearly parallel to the x-axis.
Similarly, in the case of secant method, this usually happens when the slope of the
secant joining (x0, f(x0)) and (x1, f(x1)) is nearly parallel to the x-axis.

For example, if
f(x) = cos x

and we seek the root x∗ = π/2 and start with x0 = 3, calculation reveals that

x1 = −4.01525, x2 = −4.85266, · · · ,

and the iteration converges to x = −4.71238898 ≈ −3π/2. The iterative sequence for
n = 1, 2 is depicted in Figure 4.4.

(5) Suppose that f(x) is positive and monotone decreasing on an unbounded interval
[a,∞) and x0 > a. Then the sequence might diverge. For example, if f(x) = xe−x and
x0 = 2, then

x1 = 4.0, x2 = 5.333333..., · · · , p15 = 19.72354..., · · · .
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Fig. 4.4. Iteration Procedure of Newton-Raphson’s method for f(x) = cos(x).

and the sequence diverges to +∞. This particular function has another supris-
ing problem. The value of f(x) goes to zero rapidly as x gets large, for example
f(x15) = 0.0000000536, and it is possible that p15 could be mistaken for a root as per
the residual error. Thus, using residual error for iterative methods nonlinear equations
is often not preferred.

(6) The method can stuck in a cycle. For instance, let us compute the iterative sequence
generated by the Newton-Raphson’s method for the function f(x) = x3 − x − 3 with
the initial guess x0 = 0. The iterative sequence is

x1 = −3.00, x2 = −1.961538, x3 = −1.147176, x4 = −0.006579,

x5 = −3.000389, x6 = −1.961818, x7 = −1.147430, · · ·

and we are stuck in a cycle where xn+4 ≈ xk for k = 0, 1, · · · . But if we start with a
value x0 sufficiently close with the root r ≈ 1.6717, then the convergence is obtained.
The proof of this is left as an exercise.

(7) If f(x) has no real root, then there is no indication by these methods and the iterative
sequence may simply oscillate. For example compute the Newton-Raphson iteration
for

f(x) = x2 − 4x+ 5.
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4.5 Exercises

Bisection Method and Regula-falsi Method

In the following problems on bisection method, the notation xn is used to denote the
mid-point of the interval [an−1, bn−1], and is termed as the bisection method’s nth iterate
(or simply, the nth iterate, as the context of bisection method is clear)

(1) Let bisection method be used to solve the nonlinear equation

2x6 − 5x4 + 2 = 0

starting with the initial interval [0, 1]. In order to approximate a solution of the non-
linear equation with an absolute error less than or equal to 10−3, what is the minimum
number of iterations required? Also find the corresponding approximate solution.

(2) Let bisection method be used to solve the nonlinear equation (x is in radians)

x sinx− 1 = 0

starting with the initial interval [0, 2]. In order to approximate a solution of the non-
linear equation with an absolute error less than or equal to 10−3, what is the minimum
number of iterations required? Also find the corresponding approximate solution.

(3) Let bisection method be used to solve a nonlinear equation f(x) = 0 starting with the
initial interval [a0, b0] where a0 > 0. Let xn be as in the bisection method, and r be
the solution of the nonlinear equation f(x) = 0 to which bisection method converges.
Let ϵ > 0. Show that the relative error of xn w.r.t. r is at most ϵ whenever n satisfies

n ≥ log(b0 − a0)− log ϵ− log a0
log 2

.

What happens if a0 < 0 < b0?

(4) Consider the nonlinear equation

10x + x− 4 = 0

(i) Find an interval [a0, b0] such that the function f(x) = 10x + x − 4 satisfies the
hypothesis of bisection method.

(ii) Let r be the solution of the nonlinear equation to which bisection method iterative
sequence converges. Find an n such that xn (notation as in the bisection method)
approximates r to two significant digits. Also find xn.

(5) If bisection method is used with the initial interval [a0, b0] = [2, 3], how many iterations
are required to assure that an approximate solution of the nonlinear equation f(x) = 0
is obtained with an absolute error that is at most 10−5?
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(6) Assume that in solving a nonlinear equation f(x) = 0 with the initial interval [a0, b0],
the iterative sequence {xn} given by bisection method is never an exact solution of
f(x) = 0. Let us define a sequence of numbers {dn} by

dn =

{
0 if [an, bn] is the left half of the interval [an−1, bn−1],

1 if [an, bn] is the right half of the interval [an−1, bn−1].

Using the sequence {dn} defined above, express the solution of f(x) = 0 to which
the bisection method converges. (Hint: Try the case [a0, b0] = [0, 1] first and think of
binary representation of a number. Then try for the case [a0, b0] = [0, 2], then for the
case [a0, b0] = [1, 3], and then the general case!)

(7) In the notation of bisection method, determine (with justification) if the following are
possible.

(i) a0 < a1 < a2 < · · · < an < · · ·
(ii) b0 > b1 > b2 > · · · > bn > · · ·
(iii) a0 = a1 < a2 = a3 < · · · < a2m = a2m+1 < · · · (Hint: First guess what should be

the solution found by bisection method in such a case, and then find the simplest
function having it as a root! Do not forget the connection between bisection method
and binary representation of a number, described in the last problem)

(8) Draw the graph of a function that satisfies the hypothesis of bisection method on the
interval [0, 1] such that the errors e1, e2, e3 satisfy e1 > e2, and e2 < e3. Give formula
for one such function.

(9) Draw the graph of a function for which bisection method iterates satisfy x1 = 2,
x2 = 0, and x3 = 1 (in the usual notation of bisection method). Indicate in the graph
why x1 = 2, x2 = 0, and x3 = 1 hold. Also mention precisely the corresponding inter-
vals [a0, b0],[a1, b1], [a2, b2].

(10) Draw the graph of a function (there is no need to give a formula for the function) for
which a0, a1, a2, a3 (in the usual notation of bisection method) satisfy a0 < a1 = a2 <
a3. (Mark these points clearly on the graph.)

Secant Method and Newton-Raphson Method

(11) Discuss some instances where the secant method fails. Note that failure of secant
method results from one of the following two situations: (i) the iterative sequence is
not well-defined, and (ii) the iterative sequence does not converge at all.

(12) Let α be a positive real number. Find formula for an iterative sequence based on
Newton-Raphson method for finding

√
α and α1/3. Apply the methods to α = 18 to

obtain the results whcih are correct to two significant digits when compared to their
exact values.
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(13) Consider the nonlinear equation

1

3
x3 − x2 + x+ 1 = 0.

Show that there exists an initial guess x0 ∈ (0, 4) for which x2 of the Newton-Raphson
method iterative sequence is not defined.

(14) Let a be a real number such that 0 < a ≤ 1. Let {xn}∞n=1 be the iterative sequence of
the Newton-Raphson method to solve the nonlinear equation e−ax = x. If x∗ denotes
the exact root of this equation and x0 > 0, then show that

|x∗ − xn+1| ≤
1

2
(x∗ − xn)

2.

(15) Newton-Raphson method is to be applied for approximating a root of the nonlinear
equation x4 − x− 10 = 0.

(i) How many solutions of the nonlinear equation are there in [1,∞)? Are they simple?

(ii) Find an interval [1, b] that contains the smallest positive solution of the nonlinear
equation.

(iii) Compute five iterates of Newton-Raphson method, for each of the initial guesses
x0 = 1, x0 = 2, x0 = 100. What are your observations?

(iv) A solution of the nonlinear equation is approximately equal to 1.85558 Find a δ as
in the proof of theorem on Newton-Raphson method, so that iterative sequence of
Newton-Raphson method always converges for every initial guess x0 ∈ [1.85558 −
δ, 1.85558 + δ].

(v) Can we appeal to the theorem for convex functions in the context of Newton-
Raphson method? Justify.

(16) Newton-Raphson method is to be applied for approximating a root of the equation
sinx = 0.

(i) Find formula for the Newton-Raphson iterative sequence.

(ii) Let α ∈ (−π/2, π/2) and α ̸= 0 be such that if x0 = α, then the iteration becomes
a cycle i.e.,

α = x0 = x2 = · · · = x2k = x2k+2 = · · · , x1 = x2 = · · · = x2k+1 = x2k+3 = · · ·

Find a non-linear equation g(y) = 0 whose solution is α.

(iii) Starting with the initial guess x0 = α, compute x1, x2, x3, x4, x5 using Newton-
Raphson method for the equation sinx = 0.

(iv) Starting with the initial guess y0 = 1, compute y1, y2, y3, y4, y5 using Newton-
Raphson method for the equation g(y) = 0 to find an approximate value of α.

(v) Starting with initial guess x0 = y5, where y5 is obtained in (iv) above, compute
x1, x2, x3, x4, x5 using Newton-Raphson method for the equation sinx = 0.
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Fig. 4.5. Graph of x sinx− 1

(17) Consider the nonlinear equation x sinx− 1 = 0.

(i) Find an initial guess x0 such that x0 > 1, with the help of the graph depicted
in Figure 4.5, such that the Newton-Raphson method is likely to converge to the
solution x∗ of the given nonlinear equation lying in the interval (−10,−9). Compute
x1, x2, x3, x4 of the corresponding Newton-Raphson iterative sequence. Explain why
the Newton-Raphson iterative sequence so obtained would converge to the desired
x∗. This example shows that even though the initial guess is close to a solution,
the corresponding Newton-Raphson iterative sequence might converge to a solution
that is far off!

(ii) Find another initial guess x0 such that x0 > 1, with the help of the graph, such that
the Newton-Raphson method is likely to converge to the smallest positive solution of
the given nonlinear equation. Compute x1, x2, x3, x4 of the corresponding Newton-
Raphson iterative sequence. Explain why the Newton-Raphson iterative sequence
so obtained would converge to the desired solution.

(18) Draw the graph of a function for which the Newton-Raphson iterates satisfy x0 = x2 =
x4 = · · · = 0, and x1 = x3 = x5 = · · · = 2. Indicate in the graph why this happens.

(19) Draw the graph of a function for which regula-falsi method iterates satisfy x0 = 0,
x1 = 3, and x2 = 1, x3 = 2 (in the usual notation of regula-falsi method). Indicate in
the graph why x2 = 1, x3 = 2 hold.
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Fixed-Point Iteration Method

(20) The nonlinear equation f(x) = x2 − 2x− 8 = 0 has two solutions x = −2 and x = 4.
Consider the three fixed-point formulations

(i) x =
8

x− 2
,

(ii) x =
√
2x+ 8,

(iii) x =
x2 − 8

2
.

Carry out fixed-point iteration method with two initial guesses x0 = −1, x0 = 3, and
for all the three iteration functions. Discuss the convergence or divergence of all the
iterative sequences. Can you justify theoretically?

(21) To solve the nonlinear equation x − tan x = 0 by fixed-point iteration method, the
following fixed-point formulations may be considered.

(i) x = tanx

(ii) x = tan−1 x

Discuss about convergence of the fixed-point iterative sequences generated by the two
formulations.

(22) To solve the nonlinear equation e−x − cos x = 0 by fixed-point iteration method, the
following fixed-point formulations may be considered.

(i) x = − ln(cos x)

(ii) x = cos−1(e−x)

Discuss about convergence of the fixed-point iterative sequences generated by the two
formulations.

(23) Show that g(x) = π + 1
2
sin(x/2) has a unique fixed point in [0, 2π]. Use fixed-point

iteration method with g as the iteration function and x0 = 0 to find an approximate
solution for the equaton 1

2
sin(x/2) − x + π = 0 with the stopping criterion that the

residual error is less than 10−4.

(24) Let α ∈ R and β ∈ R be the roots of x2 + ax + b = 0, and such that |α| > |β|.
Let g and h be two iterating functions satisfying the hypothesis of the theorem on
fixed-point method. Consider the iterative sequences {xn} and {yn} corresponding to
two the iterating functions g and h given by

xn+1 = −axn + b

xn
, and yn+1 = − b

yn + a

respectively. Show that the iterative sequences {xn} and {yn} converge to α and β
respectively.
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(25) Let {xn} ⊂ [a, b] be a sequence generated by a fixed point iteration method with a
continuously differentiable iteration function g(x). If this sequence converges to x∗,
then show that

|xn+1 − x∗| ≤ λ

1− λ
|xn+1 − xn|,

where λ := max
x∈[a,b]

|g′(x)|. (This estimate helps us to decide when to stop iterating if we

are using a stopping criterion based on the distance between successive iterates.)

(26) Explain why the sequence of iterates xn+1 = 1 − 0.9x2n, with initial guess x0 = 0,
does not converge to any solution of the quadratic equation 0.9x2 + x− 1 = 0? [Hint:
Observe what happens after 25 iterations]

(27) Let x∗ be the smallest positive root of the equation 20x3 − 20x2 − 25x + 4 = 0. The
following question is concerning the fixed-point formulation of the nonlinear equation
given by x = g(x), where g(x) = x3 − x2 − x

4
+ 1

5
.

(i) Show that x∗ ∈ [0, 1].

(ii) Does the function g satisfy the hypothesis of theorem on fixed-point method? If
yes, we know that x∗ is the only fixed point of g lying in the interval [0, 1]. In the
notation of fixed-point iteration method, find an n such that |x∗−xn| < 10−3, when
the initial guess x0 is equal to 0.

(28) Let f : [a, b] → R be a function such that f ′ is continuous, f(a)f(b) < 0, and there
exists an α > 0 such that f ′(x) ≥ α > 0.

(i) Show that f(x) = 0 has exactly one solution in the interval [a, b].

(ii) Show that with a suitable choice of the parameter λ, the solution of the nonlinear
equation f(x) = 0 can be obtained by applying the fixed-point iteration method
applied to the function F (x) = x+ λf(x).

(29) Let p > 1 be a real number. Show that the following expression has a meaning and
find its value.

x =

√
p+

√
p+

√
p+ · · ·

Note that the last equation is interpreted as x = limn→∞ xn, where x1 =
√
p,

x2 =
√
p+

√
p, · · · . (Hint: Note that xn+1 =

√
p+ xn, and show that the sequence

{xn} converges using the theorem on fixed-point method.)

(30) Draw the graph of a function having the following properties: (i) The function has
exactly TWO fixed points. (ii) Give two choices of the initial guess x0 and y0 such that
the corresponding sequences {xn} and {yn} have the properties that {xn} converges
to one of the fixed points and the sequence {yn} goes away and diverges. Point out
the first three terms of both the sequences on the graph.
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Interpolation

Let a physical experiment be conducted and the outcome is recorded only at some finite
number of times. If we want to know the outcome at some intermediate time where the
data is not available, then we may have to repeat the whole experiment once again to get
this data. In the mathematical language, suppose that the finite set of values

{f(xi) : i = 0, 1, · · · , n}

of a function f at a given set of points

{xi : i = 0, 1, · · · , n}

is known and we want to find the value of f(x), where x ∈ (xj, xk), for some j = 1, 2, · · · , n
and k = 1, 2, · · · , n. One way of obtaining the value of f(x) is to compute this value
directly from the expression of the function f . Often, we may not know the expression of
the function explicitly and only the data

{(xi, yi) : i = 0, 1, · · · , n}

is known, where yi = f(xi). In terms of the physical experiments, repeating an experiment
will quite often be very expensive. Therefore, one would like to get at least an approximate
value of f(x) (in terms of experiment, an approximate value of the outcome at the desired
time). This is achieved by first constructing a function whose value at xi coincides exactly
with the value f(xi) for i = 0, 1, · · · , n and then finding the value of this constructed
function at the desired points. Such a process is called interpolation and the constructed
function is called the interpolating function for the given data.

In certain circumstances, the function f may be known explicitly, but still too difficult
to perform certain operations like differentiation and integration. Thus, it is useful to
restrict the class of interpolating functions to polynomials, where the differentiation and
integration can be done more easily.

In Sectoin 5.1, we introduce the basic problem of polynomial interpolation and prove
the existence and uniqueness of polynomial interpolating the given data. There are at
least two ways to obtain the unique polynomial interpolating a given data, one is the
Lagrange and another one is the Newton. In Section 5.1.2, we introduce Lagrange form
of interpolating polynomial. Section 5.1.3 introduces the notion of divided differences and
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Newton form of interpolating polynomial. The error analysis of the polynomial interpo-
lation is studied in Section 5.3. In certain cases, the interpolating polynomial can differ
significantly from the exact function. This is illustrated by Carl Runge and is called the
Runge Phenomenon. In Section 5.3.4 we present the example due to Runge and state
a few results on convergence of the interpolating polynomials. The concept of piecewise
polynomial interpolation and Spline interpolation are discussed in Section 5.5.

5.1 Polynomial Interpolation

Polynomial interpolation is a concept of fitting a polynomial to a given data. Thus, to
construct an interpolating polynomial, we first need a set of points at which the data
values are known.

Definition 5.1. Any collection of distinct real numbers x0, x1, · · · , xn (not necessarily in
increasing order) is called nodes.

Definition 5.2 (Interpolating Polynomial). Let x0, x1, · · · , xn be the given nodes and
y0, y1, · · · , yn be real numbers. A polynomial pn(x) of degree less than or equal to n is said
to be a polynomial interpolating the given data or an interpolating polynomial
for the given data if

pn(xi) = yi, i = 0, 1, · · ·n. (5.1)

The condition (5.1) is called the interpolation condition. ⊓⊔

Remark 5.3. Let x0, x1, · · · , xn be given nodes, and y0, y1, · · · , yn be real numbers. Let
pn(x) be a polynomial interpolating the given data. Then the graph of pn(x) passes through
the set of (n+ 1) distinct points in the xy-plane given by the table

x x0 x1 x2 x3 · · · xn
y y0 y1 y2 y3 · · · yn

.

We call the set {(xi, yi), i = 0, 1, · · · , n} as data and quite often we represent this set in
the above form of a table. ⊓⊔

5.1.1 Existence and Uniqueness of Interpolating Polynomial

The following result asserts that an interpolating polynomial exists and is unique.

Theorem 5.4 (Existence and Uniqueness of Interpolating polynomial).

Let x0, x1, · · · , xn be given nodes, and y0, y1, · · · , yn be real numbers.

(1) Then there exists a polynomial pn(x) of degree less than or equal to n such that

pn(xi) = yi, i = 0, 1, · · · , n.

That is, pn(x) is an interpolating polynomial for the data {(xi, yi), i = 0, 1, · · · , n}.
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(2) Such a polynomial as above is unique.

Proof:
Proof of uniqueness: Assume that pn(x) and qn(x) are interpolating polynomials of
degree less than or equal to n that satisfies the interpolation condition (5.1). Let

rn(x) = pn(x)− qn(x).

Then, rn(x) is also a polynomial of degree less than or equal to n, and by the interpolation
condition, we have

rn(xi) = 0,

for every i = 0, 1, · · · , n. Thus, rn(x) is a polynomial of degree less than or equal to n
with n+1 distinct roots. By the fundamental theorem of algebra, we conclude that rn(x)
is the zero polynomial. That is, the interpolating polynomial is unique.

Proof of existence: Existence of interpolating polynomial is proved using mathematical
induction. If n = 0, then the constant polynomial

p0(x) = y0

is the required polynomial and its degree is less than or equal to 0. Assume that the result
is true for n = k. We will now prove that the result is true for n = k + 1.

Let the data be given by

x x0 x1 x2 x3 · · · xk xk+1

y y0 y1 y2 y3 · · · yk yk+1

By the assumption, there exists a polynomial pk(x) of degree less than or equal to k such
that the first k interpolating conditions

pk(xi) = yi, i = 0, 1, · · · , k

hold. Define a polynomial pk+1(x) of degree less than or equal to k + 1 by

pk+1(x) = pk(x) + c(x− x0)(x− x1) · · · (x− xk), (5.2)

where the constant c is such that the (k + 1)th interpolation condition pk+1(xk+1) = yk+1

holds. This is achieved by choosing

c =
yk+1 − pk(xk+1)

(xk+1 − x0)(xk+1 − x1) · · · (xk+1 − xk)
.

Note that pk+1(xi) = yi for i = 0, 1, · · · , k and therefore pk+1(x) is an interpolating
polynomial for the given data. This proves the result for n = k + 1. By the principle of
mathematical induction, the result is true for any natural number n. ⊓⊔
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Remark 5.5. A special case is when the data values yi, i = 0, 1, · · · , n are the values of
a function f at given nodes xi, i = 0, 1, · · · , n. In such a case, a polynomial interpolating
the given data

x x0 x1 x2 x3 · · · xn
y f(x0) f(x1) f(x2) f(x3) · · · f(xn)

is said to be the polynomial interpolating the given function or the interpolat-
ing polynomial for the given function and has a special significance in applications
of Numerical analysis for computing approximate solutions of differential equations and
numerically computing complicated integrals. ⊓⊔

Example 5.6. Let the following data represent the values of f :

x 0 0.5 1
f(x) 1.0000 0.5242 −0.9037

The questions are the following:

(1) What is the exact expression for the function f?

(2) What is the value of f(0.75)?

We cannot get the exact expression for the function f just from the given data, because
there are infinitely many functions having same value at the given set of points. Due to
this, we cannot expect an exact value for f(0.75), in fact, it can be any real number. On
the other hand, if we look for f in the class of polynomials of degree less than or equal to
2, then Theorem 5.4 tells us that there is exactly one such polynomial and hence we can
obtain a unique value for f(0.75).

The interpolating polynomial happens to be

p2(x) = −1.9042x2 + 0.0005x+ 1

and we have
p2(0.75) = −0.0707380.

The function used to generate the above table of data is

f(x) = sin
(π
2
ex
)
.

With this expression of f , we have (using 7-digit rounding)

f(0.75) ≈ −0.1827495.

The relative error is given by

Er(p2(0.75)) =
f(0.75)− p2(0.75)

f(0.75)
≈ 0.6129237.
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Fig. 5.1. The function f(x) = sin
(π
2
ex
)

(blue solid line) and p2(x) (green dash line). Blue dots represent the

given data, magenta ‘+’ symbol indicates the value of p2(0.75) and the red ‘O’ symbol represents the value of
f(0.75).

That is, at the point x = 0.75 the polynomial approximation to the given function f has
more than 61% error. The graph of the function f (blue solid line) and p2 (green dash
line) are depicted in Figure 5.1. The blue dots denote the given data, magenta ‘+’ symbol
indicates the value of p2(0.75) and the red ‘O’ symbol represents the value of f(0.75). It is
also observed from the graph that if we approximate the function f for x ∈ [0, 0.5], then
we obtain a better accuracy than approximating f in the interval (0.5, 1). ⊓⊔

5.1.2 Lagrange’s Form of Interpolating Polynomial

Definition 5.7 (Lagrange’s Polynomial).

Let x0, x1, · · · , xn be given nodes. For each k = 0, 1, · · · , n, the polynomial lk(x) defined
by

lk(x) =
n∏

i=0
i ̸=k

(x− xi)

(xk − xi)
(5.3)

is called the kth Lagrange Polynomial or the kth Lagrange Cardinal Function.
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Remark 5.8. Note that the kth Lagrange polynomial depends on all the n + 1 nodes
x0, x1, · · · , xn. ⊓⊔

Theorem 5.9 (Lagrange’s form of Interpolating Polynomial).

Hypothesis:

(1) Let x0, x1, · · · , xn be given nodes.

(2) Let the values of a function f be given at these nodes.

(3) For each k = 0, 1, · · · , n, let lk(x) be the kth Lagrange polynomial.

(4) Let pn(x) (of degree ≤ n) be the polynomial interpolating the function f at the nodes
x0, x1, · · · , xn.

Conclusion: Then, pn(x) can be written as

pn(x) =
n∑

i=0

f(xi)li(x). (5.4)

This form of the interpolating polynomial is called the Lagrange’s form of Interpolat-
ing Polynomial.

Proof: Firstly, we will prove that q(x) :=
∑n

i=0 f(xi)li(x) is an interpolating polynomial
for the function f at the nodes x0, x1, · · · , xn. Since

li(xj) =

{
1 if i = j

0 if i ̸= j
,

we get q(xj) = f(xj) for each j = 0, 1, · · · , n. Thus, q(x) is an interpolating polynomial.
Since interpolating polynomial is unique by Theorem 5.4, the polynomial q(x) must be
the same as pn(x). This completes the proof of the theorem. ⊓⊔

Example 5.10. Consider the case n = 1 in which we have two distinct points x0 and x1.
Then

l0(x) =
x− x1
x0 − x1

, l1(x) =
x− x0
x1 − x0

and

p1(x) = f(x0)l0(x) + f(x1)l1(x)

= f(x0)
x− x1
x0 − x1

+ f(x1)
x− x0
x1 − x0

=
f(x0)(x− x1)− f(x1)(x− x0)

x0 − x1

= f(x0) +
f(x1)− f(x0)

x1 − x0
(x− x0). (5.5)

This is the linear interpolating polynomial of the function f . Similarly, if we are given
three nodes with corresponding values, then we can generate the quadratic interpolat-
ing polynomial and so on.. ⊓⊔

Baskar and Sivaji 154 Spring 2013/MA 214



5.1. POLYNOMIAL INTERPOLATION

Example 5.11. Let the values of the function f(x) = ex be given at x0 = 0.82 and
x1 = 0.83 by

e0.82 ≈ 2.270500, e0.83 ≈ 2.293319.

In this example, we would like to obtain an approximate value of e0.826 using the polyno-
mial p1(x) that interpolates f at the nodes x0, x1. The polynomial p1(x) is given by

p1(x) = 2.270500 +
2.293319− 2.270500

0.83− 0.82
(x− 0.82) = 2.2819x+ 0.399342.

The approximate value of e0.826 is taken to be p1(0.826), which is given by

p1(0.826) ≈ 2.2841914.

The true value of e0.826 is
e0.826 ≈ 2.2841638.

Note that the approximation to e0.826 obtained using the interpolating polynomial p1(x),
namely 2.2841914, approximates the exact value to at least five significant digits.

If we are given an additional node x2 = 0.84 and the value of f at x2 as f(x2) ≈
2.316367, then we would like to use the quadratic interpolation polynomial p2 to obtain
an approximate value of e0.826. In fact,

p2(0.826) ≈ 2.2841639.

Note that the approximation to e0.826 obtained using the interpolating polynomial p2(x),
namely 2.2841639, approximates the exact value to at least eight significant digits. ⊓⊔

Remark 5.12. The above example gives us a feeling that if we increase the number of
nodes, and thereby increasing the degree of the interpolating polynomial, the polynomial
approximates the orginal function more accurately. But this is not true in general, and
we will discuss this further in Section 5.3.4. ⊓⊔

Remark 5.13. Let x0, x1, · · · , xn be nodes, and f be a function. Recall that comput-
ing an interpolating polynomial in Lagrange’s form requires us to compute for each
k = 0, 1, · · · , n, the kth Lagrange’s polynomial lk(x) which depends on the given nodes
x0, x1, · · · , xn. Suppose that we have found the corresponding interpolating polynomial
pn(x) of f in the Lagrange’s form for the given data. Now if we add one more node xn+1,
the computation of the interpolating polynomial pn+1(x) in the Lagrange’s form requires
us to compute a new set of Lagrange’s polynomials corresponding to the set of (n + 1)
nodes, and no advantage can be taken of the fact that pn is already available. This will
obviously increasing the computational costs.

An alternative form of the interpolating polynomial, namely Newton’s form of in-
terpolating polynomial, avoids this problem, and will be discussed in the next section.
⊓⊔
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5.1.3 Newton’s Form of Interpolating Polynomial

We saw in the last section that it is easy to write the Lagrange form of the interpolating
polynomial once the Lagrange polynomials associated to a given set of nodes have been
written. However we observed in Remark 5.13 that the knowledge of pn (in Lagrange form)
cannot be utilized to construct pn+1 in the Lagrange form. In this section we describe
Newton’s form of interpolating polynomial, which uses the knowledge of pn in
constructing pn+1.

Theorem 5.14 (Newton’s form of Interpolating Polynomial).

Hypothesis:

(1) Let x0, x1, · · · , xn be given nodes.

(2) Let the values of a function f be given at these nodes.

(3) Let pn(x) (of degree ≤ n) be the polynomial interpolating the function f at the nodes
x0, x1, · · · , xn.

Conclusion: Then, pn(x) can be written as

pn(x) = A0+A1(x−x0)+A2(x−x0)(x−x1)+A3

2∏
i=0

(x−xi)+ · · ·+An

n−1∏
i=0

(x−xi) (5.6)

where A0, A1, · · · , An are constants.

This form of the interpolating polynomial is called the Newton’s form of Interpo-
lating Polynomial.

Proof: Recall that in the proof of Theorem 5.4, we proved the existence of an interpo-
lating polynomial using mathematical induction. In fact, we have given an algorithm for
constructing interpolating polynomial. The interpolating polynomial given by (5.2) was
precisely the Newton’s form of interpolating polynomial. ⊓⊔

Remark 5.15. Let us recall the equation (5.2) from the proof of Theorem 5.4 now.

(1) It says that for each n ∈ N, we have

pn(x) = pn−1(x) + An

n−1∏
i=0

(x− xi) (5.7)

for some constant An. This shows the recursive nature of computing Newton’s form of
interpolating polynomial.

(2) Indeed An is given by

An =
f(xn)− pn−1(xn)

(xn − x0)(xn − x1) · · · (xn − xn−1)
. (5.8)

From the last equality, note that A0 depends only on f(x0). A1 depends on the values
of f at x0 and x1 only. In general, An depends on the values of f at x0, x1, x2, · · · , xn
only.
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(3) To compute Newton’s form of interpolating polynomial pn(x), it is enough to compute
Ak for k = 0, 1, · · · , n. However note that the formula (5.8) is not well-suited to com-
pute Ak because we need to evaluate all the successive interpolating polynomials pk(x)
for k = 0, 1, · · · , n−1 and then evaluate them at the node xk which is computationally
costly. It then appears that we are in a similar situation to that of Lagrange’s form
of interpolating polynomial as far as computational costs are concerned. But this is
not the case, as we shall see shortly that we can compute An directly using the given
data (that is, the given values of the function at the nodes), and this will be done in
Section 5.2. ⊓⊔

5.2 Newton’s Divided Difference Formulas

Definition 5.16 (Divided Differences). Let x0, x1, · · · , xn be distinct nodes. Let pn(x)
be the polynomial interpolating a function f at the nodes x0, x1, · · · , xn. The coefficient of
xn in the polynomial pn(x) is denoted by f [x0, x1, · · · , xn], and is called an nth divided
difference of f .

Remark 5.17.

(1) Since the interpolating polynomial for the function f at the nodes x0, x1, · · · , xn is
unique, there is one and only one coefficient of xn; even though interpolation polynomial
may have many forms like Lagrange’s form and Newton’s form. Thus the quantity
f [x0, x1, · · · , xn] is well-defined.

(2) More generally, the divided difference f [xi, xi+1, · · · , xi+k] is the coefficient of xk in the
polynomial interpolating f at the nodes xi, xi+1, · · · , xi+k.

(3) The Newton’s form of interpolating polynomial may be written, using divided differ-
ences, as

pn(x) = f [x0] +
n∑

k=1

f [x0, x1, · · · , xk]
k−1∏
i=0

(x− xi) (5.9)

⊓⊔

Example 5.18. As a continuation of Example 5.10, let us contruct the linear interpolating
polynomial of a function f in the Newton’s form. In this case, the interpolating polynomial
is given by

p1(x) = f [x0] + f [x0, x1](x− x0),

where

f [x0] = f(x0), f [x0, x1] =
f(x0)− f(x1)

x0 − x1
(5.10)

are zeroth and first order divided differences, respectively. Observe that this polyno-
mial is exactly the same as the interpolating polynomial obtained using Lagrange’s form
in Example 5.10. ⊓⊔
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The following result is concerning the symmetry properties of divided differences.

Theorem 5.19 (Symmetry). The divided difference is a symmetric function of its ar-
guments. That is, if z0, z1, · · · , zn is a permutation of x0, x1, · · · , xn, then

f [x0, x1, · · · , xn] = f [z0, z1, · · · , zn] (5.11)

Proof: Since z0, z1, · · · , zn is a permutation of x0, x1, · · · , xn, which means that the
nodes x0, x1, · · · , xn have only been re-labelled as z0, z1, · · · , zn, and hence the polyno-
mial interpolating the function f at both these sets of nodes is the same. By definition
f [x0, x1, · · · , xn] is the coefficient of xn in the polynomial interpolating the function f
at the nodes x0, x1, · · · , xn, and f [z0, z1, · · · , zn] is the coefficient of xn in the polyno-
mial interpolating the function f at the nodes z0, z1, · · · , zn. Since both the interpolating
polynomials are equal, so are the coefficients of xn in them. Thus, we get

f [x0, x1, · · · , xn] = f [z0, z1, · · · , zn].

This completes the proof. ⊓⊔
The following result helps us in computing recursively the divided differences of higher

order.

Theorem 5.20 (Higher-order divided differences). Divided differences satisfy the
equation

f [x0, x1, · · · , xn] =
f [x1, x2, · · · , xn]− f [x0, x1, · · · , xn−1]

xn − x0
(5.12)

Proof: Let us start the proof by setting up the following notations.

• Let pn(x) be the polynomial interpolating f at the nodes x0, x1, · · · , xn.
• Let pn−1(x) be the polynomial interpolating f at the nodes x0, x1, · · · , xn−1.

• Let q(x) be the polynomial interpolating f at the nodes x1, x2, · · · , xn.

Claim: We will prove the following relation between pn−1, pn, and q:

pn(x) = pn−1(x) +
x− x0
xn − x0

(
q(x)− pn−1(x)

)
(5.13)

Since both sides of the equality in (5.13) are polynomials of degree less than or equal to
n, and pn(x) is the polynomial interpolating f at the nodes x0, x1, · · · , xn, the equality in
(5.13) holds for all x if and only if it holds for x ∈ { x0, x1, · · · , xn } and both sides of the
equality reduce to f(x) for x ∈ {x0, x1, · · · , xn }. Let us now verify the equation (5.13)
for x ∈ { x0, x1, · · · , xn }.

(1) When x = x0,

pn−1(x0) +
x0 − x0
xn − x0

(
q(x0)− pn−1(x0)

)
= pn−1(x0) = f(x0) = pn(x0).
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(2) When x = xk for 1 ≤ k ≤ n− 1, q(xk) = pn−1(xk) and thus we have

pn−1(xk) +
xk − x0
xn − x0

(
q(xk)− pn−1(xk)

)
= pn−1(xk) = f(xk) = pn(xk).

(3) When x = xn, we have

pn−1(xn)+
xn − x0
xn − x0

(
q(xn)−pn−1(xn)

)
= pn−1(xn)+

(
f(xn)−pn−1(xn)

)
= f(xn) = pn(xn).

This finishes the proof of the Claim.

The coefficient of xn in the polynomial pn(x) is f [x0, x1, · · · , xn]. The coefficient of xn

using the right hand side of the equation (5.13) is given by(
coefficient of xn in pn−1(x)

)
+

1

xn − x0

(
coefficient of xn in (x− x0)

(
q(x)− pn−1(x)

))
.

On noting that the coefficient of xn−1 in the polynomial pn−1 is f [x0, x1, · · · , xn−1], the
coefficient of xn−1 in the polynomial q is f [x1, x2, · · · , xn], and the coefficient of xn in the
polynomial pn−1 is zero, we get that the coefficient of xn using the right hand side of the
equation (5.13) becomes

f [x1, x2, · · · , xn]− f [x0, x1, · · · , xn−1]

xn − x0
.

Comparing the coefficients of xn in the left and right hand sides of the equation (5.13)
yields

f [x0, x1, · · · , xn] =
f [x1, x2, · · · , xn]− f [x0, x1, · · · , xn−1]

xn − x0
.

⊓⊔

Remark 5.21. Let i, j ∈ N. Applying Theorem 5.20 to a set of nodes xi, xi+1, · · · , xi+j,
we conclude

f [xi, xi+1, · · · , xi+j] =
f [xi+1, xi+2, · · · , xi+j]− f [xi, xi+1, · · · , xi+j−1]

xi+j − xi
(5.14)

Note that the divided differences f [x0, x1, · · · , xn] are defined only for distinct nodes
x0, x1, · · · , xn. ⊓⊔

5.2.1 Divided Differences Table

Given a collection of (n + 1) nodes x0, x1, · · · , xn and the values of the function f at
these nodes, we can construct the Newton’s form of interpolating polynomial pn(x) using
divided differences. As observed earlier, the Newton’s form of interpolation polynomial
has the formula
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pn(x) = f [x0] +
n∑

k=1

f [x0, x1, · · · , xk]
k−1∏
i=0

(x− xi) (5.15)

One can explicitly write the formula (5.15) for n = 1, 2, 3, 4, 5, · · · . For instance, when
n = 5, the formula (5.15) reads

p5(x) = f [x0]
+ f [x0, x1](x− x0)
+ f [x0, x1, x2](x− x0)(x− x1)
+ f [x0, x1, x2, x3](x− x0)(x− x1)(x− x2)
+ f [x0, x1, x2, x3, x4](x− x0)(x− x1)(x− x2)(x− x3)
+ f [x0, x1, x2, x3, x4, x5](x− x0)(x− x1)(x− x2)(x− x3)(x− x4)


.(5.16)

For easy computation of the divided differences in view of the formula (5.12), it is con-
venient to write the divided differences in a table form. For n = 5, the divided difference
table is given by

x0 f(x0)
f [x0, x1]

x1 f(x1) f [x0, x1, x2]
f [x1, x2] f [x0, x1, x2, x3]

x2 f(x2) f [x1, x2, x3] f [x0, x1, x2, x3, x4]
f [x2, x3] f [x1, x2, x3, x4] f [x0, x1, x2, x3, x4, x5]

x3 f(x3) f [x2, x3, x4] f [x1, x2, x3, x4, x5]
f [x3, x4] f [x2, x3, x4, x5]

x4 f(x4) f [x3, x4, x5]
f [x4, x5]

x5 f(x5)

Comparing the above divided differences table and the interpolating polynomial p5
given by (5.16), we see that the leading members of each column (denoted in bold font)
are the required divided differences used in p5(x).

5.2.2 Divided Difference Formula for Repeated Nodes

It follows from the symmetric property (Theorem 5.19) that the nth order divided differ-
ence formula (5.12) is not well-defined if at least two nodes coincide. But such situations
do occur quite common in numerical analysis, for instance in the error analysis of quadra-
ture formulas. So, we need to interpret the define of the divided difference in such a way
that it is still well defined if two or more nodes coincide. For this, the following theorem
is useful.

Theorem 5.22 (Hermite-Genocchi Formula).

Hypothesis:

(1) Let x0, x1, · · · , xn ∈ [a, b] be distinct nodes.

(2) Let f be n-times continuously differentiable function on the interval [a, b].
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Conclusion: Then

f [x0, x1, · · · , xn] =
∫

· · ·
∫

τn

f (n)(t0x0 + · · ·+ tnxn) dt1 · · · dtn, (5.17)

where

τn =

{
(t1, t2, · · · , tn) / ti ≥ 0, i = 1, 2, · · · , n;

n∑
i=1

ti ≤ 1

}
, t0 = 1−

n∑
i=1

ti. (5.18)

Proof: We prove the theorem by induction.

Step 1 : First, we prove (5.17) for n = 1 . From (5.18), we see that τ1 = [0, 1]. Using the
expression for t0 in (5.18), we have

1∫
0

f ′(t0x0 + t1x1)dt1 =

1∫
0

f ′(x0 + t1(x1 − x0)) dt1 =
1

x1 − x0
f(x0 + t1(x1 − x0))

∣∣∣t1=1

t1=0

=
f(x1)− f(x0)

x1 − x0
= f [x0, x1].

Thus, we have proved the result (5.17) for n = 1.

Step 2 : Now assume that the formula (5.17) holds for n = k ≥ 1 and prove the formula
for n = k + 1. We have∫

· · ·
∫

τk+1

f (k+1)(t0x0 + t1x1 + · · ·+ tk+1xk+1) dt1 · · · dtk+1

=

∫
· · ·
∫

τk

 1−(t1+···+tk)∫
0

f (k+1)(x0 + t1(x1 − x0) + · · ·+ tk+1(xk+1 − x0)) dtk+1

 dt1 · · · dtk

=

∫
· · ·
∫

τk

1

xk+1 − x0

[
f (k)(x0 + t1(x1 − x0) + · · ·+ tk+1(xk+1 − x0))

]tk+1=1−(t1+···+tk)

tk+1=0
dt1 · · · dtk

=
1

xk+1 − x0

∫ · · ·
∫

τk

f (k)(xk+1 + t1(x1 − xk+1) + · · ·+ tk(xk − xk+1)) dt1 · · · dtk

−
∫

· · ·
∫

τk

f (k)(x0 + t1(x1 − x0) + · · ·+ tk(xk − x0)) dt1 · · · dtk


=
f [x1, · · · , xk, xk+1]− f [x0, x1, · · · , xk]

xk+1 − x0
= f [x0, x1, · · · , xk+1].

By the principle of mathematical induction, the result is true for all n ∈ N. ⊓⊔
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Remark 5.23. Since f is n-times continuously differentiable, the right hand side of (5.17)
is meaningful for any set of points x0, x1, · · · , xn, which are not necessarily distinct. This
gives a meaning, which can be used to define the nth order divided difference when x0, x1,
· · · , xn are not distinct (i.e., one or more points are repeated). ⊓⊔

Following results are direct consequences of the above theorem.

Corollary 5.24.

Hypothesis:

(1) Let x0, x1, · · · , xn ∈ [a, b] be a set of points, not necessarily distinct.

(2) Let f be n times continuously differentiable function on the interval [a, b].

Conclusion:

(1) The function (x0, x1, · · · , xn) 7−→ f [x0, x1, · · · , xn] is continuous on Rn+1.

(2) For any x ∈ [a, b], the limit

lim
(x0,x1,··· ,xn)→(x,x,··· ,x)

f [x0, x1, · · · , xn]

exists and this limit is the nth-order divided difference f [x, x, · · · , x] (x repeated (n+1)-
times). Further, we have

f [x, x, · · · , x] = f (n)(x)

n!
. (5.19)

Proof.

(1) The proof is out side the scope of this course and hence omitted.

(2) The proof follows from the fact that∫
· · ·
∫

τn

1 dt1 · · · dtn =
1

n!

and the Hermite-Genocchi formula (5.17). ⊓⊔

The following theorem gives an expression for the divided difference of an (n+2)-times
differentiable function when two nodes are repeated.

Theorem 5.25.

Hypothesis:

(1) Let x0, x1, · · · , xn be given (distinct) nodes in an interval [a, b].

(2) Let x ∈ [a, b], x /∈ {x0, x1, · · · , xn}.
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Conclusion: The (n + 2)nd-order divided difference f [x0, x1, · · · , xn, x, x] of an (n + 2)-
times continuously differentiable function f is given by

f [x0, x1, · · · , xn, x, x] =
d

dx
f [x0, x1, · · · , xn, x]. (5.20)

Proof: It follows from (5.17) that the function F (x) = f [x0, x1, · · · , xn, x] for all x ∈ [a, b]
is well-defined and continuous. Therefore, using the symmetry property of the divided
differences, we get

f [x0, x1, · · · , xn, x, x] = lim
h→0

f [x0, x1, · · · , xn, x, x+ h]

= lim
h→0

f [x, x0, x1, · · · , xn, x+ h].

As all the points used on the right hand side are distinct, we can use the formula (5.12)
to get

f [x0, x1, · · · , xn, x, x] = lim
h→0

f [x0, x1, · · · , xn, x+ h]− f [x, x0, x1, · · · , xn]
h

= lim
h→0

f [x0, x1, · · · , xn, x+ h]− f [x0, x1, · · · , xn, x]
h

=
d

dx
f [x0, x1, · · · , xn, x].

This completes the proof. ⊓⊔

5.3 Error in Polynomial Interpolation

Let f be a function defined on an interval I = [a, b]. Let pn(x) be a polynomial of degree
less than or equal to n that interpolates the function f at n+1 nodes x0, x1, · · · , xn in I.
How well does pn(x) approximate f on the interval I? This question leads to the analysis
of interpolation error.

As we discussed at the beginning of Chapter 2, the error given by

MEn(x) = f(x)− pn(x). (5.21)

is the mathematical error involved in the interpolating polynomial. But, when we per-
form the calculations using finite precision floating-point arithmetic, then the polynomial
obtained, denoted by p̃n(x), need not be the same as the interpolating polynomial pn(x).
The error

AEn(x) = pn(x)− p̃n(x). (5.22)

is the arithmetic error involved in the interpolating polynomial.

The total error, denoted by TEn(x), involved in the polynomial interpolation is there-
fore given by

TEn(x) = f(x)− p̃n(x) = (f(x)− pn(x)) + (pn(x)− p̃n(x)) = MEn(x) + AEn(x).

In Subsection 5.3.1, we derive the mathematical error involved in polynomial interpolation.
We analyze the effect of arithmetic error in Subsection 5.3.2.
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5.3.1 Mathematical Error

The following theorem provides a formula for the interpolation error when we assume that
the necessary data are given exactly without any floating-point approximation.

Theorem 5.26 (Mathematical Error in Interpolation). Let pn(x) be the polynomial
interpolating a function f ∈ Cn+1[a, b] at the nodes x0, x1, · · · , xn lying in I = [a, b]. Then
for each x ∈ I, there exists a ξx ∈ (a, b) such that

MEn(x) =
f (n+1)(ξx)

(n+ 1)!

n∏
i=0

(x− xi) (5.23)

Proof: If x is one of the nodes, then (5.23) holds trivially for any choice of ξx ∈ (a, b).
Therefore, it is enough to prove the theorem when x is not a node. The idea is to obtain
a function having at least n+2 distinct zeros; and then apply Rolle’s theorem n+1 times
to get the desired conclusion.

For a given x ∈ I with x ̸= xi (i = 0, 1, · · · , n), define a new function ψ on the interval
I by

ψ(t) = f(t)− pn(t)− λ
n∏

i=0

(t− xi), t ∈ I, (5.24)

where λ is chosen so that ψ(x) = 0. This gives

λ =
f(x)− pn(x)

n∏
i=0

(x− xi)

.

Note that ψ(xi) = 0 for each i = 0, 1, · · · , n. Thus, ψ has at least n + 2 distinct zeros.
By Rolle’s theorem, the function ψ′ has at least n+ 1 distinct zeros in (a, b). A repeated
application of Rolle’s theorem n+1 times to the function ψ gives that ψ(n+1) has at least
one zero in (a, b); call it ξx. Differentiating (5.24) (n+ 1)-times and noting that

p(n+1)
n (t) = 0,

(
n∏

i=0

(t− xi)

)(n+1)

= (n+ 1)!, ψ(n+1)(ξx) = 0,

we see that ξx satisfies

0 = ψ(n+1)(ξx) = f (n+1)(ξx)−
f(x)− pn(x)

n∏
i=0

(x− xi)

(n+ 1) !.

Thus,
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f (n+1)(ξx)−
MEn(x)
n∏

i=0

(x− xi)

(n+ 1) ! = 0.

The last equation yields (5.23). ⊓⊔
The following theorem plays an important role in the error analysis of numerical inte-

gration. The idea behind the proof of this theorem is similar to the idea used in the above
theorem and is left as an exercise.

Theorem 5.27. If f ∈ Cn+1[a, b] and if x0, x1, · · · , xn are distinct nodes in [a, b], then
there exists a point ξx ∈ (a, b) such that

f [x0, x1, · · · , xn, x] =
f (n+1)(ξx)

(n+ 1) !
. (5.25)

Remark 5.28. It is interesting to note that when all the nodes coincide, then (5.25)
reduces to (14). ⊓⊔

Definition 5.29 (Infinity Norm).

If f is continuous on a closed interval I = [a, b], then the infinity norm of f , denoted
by ∥f∥∞,I , is defined as

∥f∥∞,I = max
x∈I

|f(x)|. (5.26)

Example 5.30. Let us obtain an upper bound of the mathematical error for the linear
interpolating polynomial with respect to the infinity norm. As in Example 5.10, the linear
interpolating polynomial for f at x0 and x1 (x0 < x1) is given by

p1(x) = f(x0) + f [x0, x1](x− x0),

where f [x0, x1] is given by (5.10). For each x ∈ I := [x0, x1], using the formula (5.23), the
error ME1(x) is given by

ME1(x) =
(x− x0)(x− x1)

2
f ′′(ξx),

where ξx ∈ (x0, x1) depends on x. Therefore,

|ME1(x)| ≤ |(x− x0)(x− x1)|
∥f ′′∥∞,I

2
.

Note that the maximum value of |(x − x0)(x − x1)| as x varies in the interval [x0, x1],
occurs at x = (x0 + x1)/2. Therefore, we have

|(x− x0)(x− x1)| ≤
(x1 − x0)

2

4
.

Using this inequality, we get an upper bound
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|ME1(x)| ≤ (x1 − x0)
2 ∥f ′′∥∞,I

8
, for all x ∈ [x0, x1].

Note that the above inequality is true for all x ∈ [x0, x1]. In particular, this inequality is
true for an x at with the function |ME1| attains its maximum. Thus, we have

∥ME1∥∞,I ≤ (x1 − x0)
2 ∥f ′′∥∞,I

8
.

The right hand side quantity, which is a real number, is an upper bound for the mathe-
matical error in linear interpolation with respect to the infinity norm. ⊓⊔

Example 5.31. Let the function
f(x) = sinx

be approximated by an interpolating polynomial p9(x) of degree less than or equal to 9
for f at the nodes x0, x1, · · · , x9 in the interval I := [0, 1]. Let us obtain an upper bound
for ∥ME9∥∞,I , where (from (5.23))

ME9(x) =
f (10)(ξx)

10!

9∏
i=0

(x− xi).

Since |f (10)(ξx)| ≤ 1 and
∏9

i=0 |x− xi| ≤ 1, we have

| sin x− p9(x)| = |ME9(x)| ≤
1

10!
< 2.8× 10−7, for all x ∈ [0, 1].

Since this holds for all x ∈ [0, 1], we have

∥ME9∥∞,I < 2.8× 10−7.

The right hand side number is the upper bound for the mathematical error ME9 with
respect to the infinity norm on the interval I ⊓⊔

5.3.2 Arithmetic Error

Quite often, the polynomial interpolation that we compute is based on the function data
subjected to floating-point approximation. In this subsection, we analyze the arithmetic
error arising due to the floating-point approximation fl(f(xi)) of f(xi) for each node point
xi, i = 0, 1, · · · , n in the interval I = [a, b].

The Lagrange form of interpolating polynomial that uses the values fl(f(xi)) instead
of f(xi), i = 0, 1, · · · , n is given by

p̃n(x) =
n∑

i=0

fl(f(xi)) li(x).

We now analyze the arithmetic error. Denoting
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ϵi := f(xi)− fl(f(xi); ||ϵ||∞ = max{|ϵi| : i = 0, 1, · · · , n},

we have

|AEn(x)| = |pn(x)− p̃n(x)| =

∣∣∣∣∣
n∑

i=0

(
f(xi)− fl(f(xi))

)
li(x)

∣∣∣∣∣ ≤ ||ϵ||∞
n∑

i=0

||li||∞,I ,

for all x ∈ I. Therefore,

∥AEn∥∞,I = ∥pn − p̃n∥∞,I ≤ ||ϵ||∞
n∑

i=0

||li||∞,I . (5.27)

The upper bound in (5.27) might grow quite large as n increases, especially when the
nodes are equally spaced as we will study now.

Assume that the nodes are equally spaced in the interval [a, b], with x0 = a and xn = b,
and xi+1 − xi = h for all i = 0, 1, · · · , n− 1. Note that h = (b− a)/n. We write

xi = a+ ih, i = 0, 1, · · · , n.

Any x ∈ I can be written as
x = a+ ηh,

where 0 ≤ η ≤ n. Here η is not necessarily an integer. Therefore, for any x ∈ I, we have

lk(x) =
n∏

i=0
i ̸=k

(x− xi)

(xk − xi)
=

n∏
i=0
i̸=k

(η − i)

(k − i)
, k = 0, · · · , n.

Clearly, the Lagrange polynomials are not dependent on the choice of a, b, and h. They
depend entirely on n and η (which depends on x). The Figure 5.2 (a), (b) and (c) shows
the function

l(x) =
n∑

i=0

|li(x)| (5.28)

for n = 2, 8 and 18. It is observed that as n increases, the maximum of the function l
increases. In fact, as n → ∞, the maximum of l tends to infinity and it is observed in
Figure 5.2 (d) which depicts n in the x-axis and the function

Mn =
n∑

i=0

||li||∞,I (5.29)

in the y-axis, which shows that the upper bound of the arithmetic error AEn given in
(5.27) tends to infinity as n→ ∞. This gives the possibility that the arithmetic may tend
to increase as n increases. Thus, as we increase the degree of the interpolating polynomial,
the approximation may go worser due to the presence of floating-point approximation. In
fact, this behavior of the arithmetic error in polynomial interpolation can also be analyzed
theoretically, but this is outside the scope of the present course.
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Fig. 5.2. (a) to (c) depicts the graph of function l given by (5.28) for x ∈ [0, 1] when n = 2, 8, and 18. (d) depicts
the function n in the x-axis and Mn given by (5.29) in the y-axis.

5.3.3 Total Error

Let us now estimate the total error, which is given by

TEn(x) = f(x)− p̃n(x) = (f(x)− pn(x)) + (pn(x)− p̃n(x)). (5.30)

Taking infinity norm on both sides of the equation (5.30) and using triangle inequality,
we get

∥TEn(x)∥∞,I = ||f − p̃||∞,I ≤ ||f − pn||∞,I + ||pn − p̃||∞,I ≤ ||f − pn||∞,I + ||ϵ||∞Mn.

It is clear from the Figure 5.2 (d) that Mn increases exponentially with respect to n. This
implies that even if ||ϵ||∞ is very small, a large enough n can bring in a significantly large
error in the interpolating polynomial.

Thus, for a given function and a set of equally spaced nodes, even if the mathematical
error is bounded, the presence of floating-point approximation in the given data can lead
to significantly large arithmetic error for larger values of n.

5.3.4 Runge Phenomenon

In the previous section, we have seen that even a small arithmetic error may lead to a
drastic magnification of total error as we go on increasing the degree of the polynomial.
This gives us a feeling that if the calculation is done with infinite precision (that is, without
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Fig. 5.3. Runge Phenomenon is illustrated. Figure (a) depicts the graph of the function f given by (5.31) (blue
solid line) along with the interpolating polynomial of degree 2 (red dash line) and 8 (magenta dash dot line) with
equally spaced nodes. Figure (b) shows the graph of f (blue solid line) along with the interpolating polynomial
of degree 18 (red dash line) with equally spaced nodes.

any finite digit floating point arithmetic) and the function f is smooth, then we always
have a better approximation for a larger value of n. In other words, we expect

lim
n→∞

∥f − pn∥∞,I = 0.

But this is not true in the case of equally spaced nodes. This was first shown by Carl
Runge, where he discovered that there are certain functions for which, as we go on in-
creasing the degree of interpolating polynomial, the total error increases drastically and
the corresponding interpolating polynomial oscillates near the boundary of the interval in
which the interpolation is done. Such a phenomenon is called the Runge Phenomenon.
This phenomenon is well understood by the following example given by Runge.

Example 5.32 (Runge’s Function). Consider the Runge’s function defined on the
interval [−1, 1] given by

f(x) =
1

1 + 25x2
. (5.31)

The interpolating polynomials with n = 2, n = 8 and n = 18 are depicted in Figure 5.3.
This figure clearly shows that as we increase the degree of the polynomial, the interpolating
polynomial differs significantly from the actual function especially, near the end points of
the interval. ⊓⊔

In the light of the discussion made in Subsection 5.3.2, we may think that the Runge
phenomenon is due to the amplification of the arithmetic error. But, even if the calculation
is done with infinite precision (that is, without any finite digit floating point arithmetic),
we may still have the Runge phenomenon due to the amplification in mathematical error.
This can be observed by taking infinity norm on both sides of the formula (5.23). This
gives the upper bound of the infinity norm of MEn(x) as
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Fig. 5.4. Runge Phenomenon is illustrated with Chebyshev nodes. Figure (a) to (d) shows the graph of the Runge
function (blue solid line) and the interpolating polynomial with Chebyshev nodes (red dash line) for n = 4, 18,
32 and 64 respectively. Note that the two graphs in Figure (c) and (d) are indistinguishable.

∥MEn∥∞,I ≤
(b− a)n+1

(n+ 1)!
∥f (n+1)∥∞,I .

Although the first part, (b−a)n+1/(n+1)! in the upper bound tends to zero as n→ ∞, if
the second part, ∥f (n+1)∥∞,I increases significantly as n increases, then the upper bound
can still increase and makes it possible for the mathematical error to be quite high.

A more deeper analysis is required to understand the Runge phenomenon more rigor-
ously. But this is outside the scope of this course and therefore is omitted.

5.3.5 Convergence of Sequence of Interpolating Polynomials

We end this section by stating without proof a positive and a negative result concerning
the convergence of sequence of interpolating polynomials.

Theorem 5.33 (Faber). For each n ∈ N, let the sequence of nodes
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a ≤ x
(n)
0 < x

(n)
1 < · · · < x(n)n ≤ b

be given. Then there exists a continuous function f defined on the interval [a, b] such that
the polynomials pn(x) that interpolate the function f at these nodes have the property that
∥pn − f∥∞,[a,b] does not tend to zero as n→ ∞.

Example 5.34. In fact, the interpolating polynomial pn(x) for the Runge’s function goes
worser and worser as shown in Figure 5.3 for increasing values of n with equally spaced
nodes. That is, ∥f −pn∥∞,[−1,1] → ∞ as n→ ∞ for any sequence of equally spaced nodes.

Let us now state a positive result concerning the convergence of sequence of interpolating
polynomials to a given continuous function.

Theorem 5.35. Let f be a continuous function on the interval [a, b]. Then for each n ∈ N,
there exists a sequence of nodes

a ≤ x
(n)
0 < x

(n)
1 < · · · < x(n)n ≤ b

such that the polynomials pn(x) that interpolate the function f at these nodes satisfy
∥pn − f∥∞,[a,b] → 0 as n→ ∞.

Example 5.36. The Theorem 5.35 is very interesting because it implies that for the
Runge’s function, we can find a sequence of nodes for which the corresponding interpo-
lating polynomial yields a good approximation even for a large value of n. For instance,
define a sequence of nodes

x
(n)
i = cos

(
(2i+ 1)π

2(n+ 1)

)
, i = 0, 1, · · · , n (5.32)

for each n = 0, 1, 2, · · · . When n = 4, the nodes are x
(4)
0 = cos(π/10), x

(4)
1 = cos(3π/10),

x
(4)
2 = cos(5π/10), x

(4)
3 = cos(7π/10) and x44 = cos(9π/10). The nodes x

(n)
i defined by

(5.32) are called Chebyshev nodes.

Figure 5.4 depicts pn(x) for n = 4, 18, 32, and 64 along with the Runge’s function.
From these figures, we observe that the interpolating polynomial pn(x) agrees well with
the Runge’s function. ⊓⊔

5.4 Piecewise Polynomial Interpolation

Quite often polynomial interpolation will be unsatisfactory as an approximation tool. This
is true if we insist on letting the order of the polynomial get larger and larger. However,
if we keep the order of the polynomial fixed, and use different polynomials over different
intervals, with the length of the intervals getting smaller and smaller, then the resulting
interpolating function approximates the given function more accurately.

Let us start with linear interpolation over an interval I = [a, b] which leads to
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Fig. 5.5. The function f(x) = sin
(π
2
ex
)
(blue line), p2(x) (green bash line) and the piecewise linear interpolation

s(x) (red dash and dot line) are shown. Blue dots represent the given data, blue ‘x’ symbol indicates the value
of f(0.25) and f(0.75), green ‘+’ symbol indicates the value of p2(0.25) and p2(0.75), and the red ‘O’ symbol
represents the value of s(0.25) and s(0.75).

p1(x) = f(a) + f [a, b](x− a) = f(a) +
f(b)− f(a)

b− a
(x− a) =

x− b

a− b
f(a) +

x− a

b− a
f(b),

where the nodes are x0 = a, x2 = b. In addition to these two nodes, we now choose one
more point x1 such that x0 < x1 < x2. With these three nodes, can obtain a quadratic
interpolation polynomial. Instead, we can interpolate the function f(x) in [x0, x1] by a
linear polynomial with nodes x0 and x1, and in [x1, x2] by another linear polynomial with
nodes x1 and x2. Such polynomials are given by

p1,1(x) :=
x− x1
x0 − x1

f(x0) +
x− x0
x1 − x0

f(x1), p1,2(x) :=
x− x2
x1 − x2

f(x1) +
x− x1
x2 − x1

f(x2)

and the interpolating function is given by

s(x) =

{
p1,1(x) , x ∈ [x0, x1]
p1,2(x) , x ∈ [x1, x2]

.

Note that s(x) is a continuous function on [x0, x2], which interpolates f(x) and is linear
in [x0, x1] and [x1, x2]. Such an interpolating function is called piecewise linear inter-
polating function.

In a similar way as done above, we can also obtain piecewise quadratic, cubic interpo-
lating functions and so on.

Example 5.37. Consider the Example 5.1, where we have obtained the quadratic inter-
polating polynomial for the function

f(x) = sin
(π
2
ex
)
.

The piecewise linear polynomial interpolating function for the data
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x 0 0.5 1
f(x) 1.0000 0.5242 −0.9037

is given by

s(x) =

{
1− 0.9516 x , x ∈ [0, 0.5]
1.9521− 2.8558x , x ∈ [0.5, 1].

The following table shows the value of the function f at x = 0.25 and x = 0.75 along with
the values of p2(x) and s(x) with relative errors.

x f(x) p2(x) s(x) Er(p2(x)) Er(s(x))
0.25 0.902117 0.881117 0.762105 0.023278 0.155203
0.75 -0.182750 -0.070720 -0.189732 0.613022 0.038204

Figure 5.5 depicts the graph of f , p2(x) and s(x). In this figure, we observe that the
quadratic polynomial p2(x) agrees well with f(x) than s(x) for x ∈ [0, 0.5], whereas s(x)
agrees well with f(x) than p2(x) for x ∈ [0.5, 1]. ⊓⊔

5.5 Spline Interpolation

Although a piecewise interpolating function introduced in Section 5.4 is continuous, it
may not be differentiable at the nodes. We wish to find an interpolating function that
is sufficiently smooth and does a better approximation to f(x). This can be achieved by
spline interpolation.

Definition 5.38 (Spline Interpolating Function).

A spline interpolating function of degree d with nodes xi, i = 0, 1, · · · , n (x0 < x1 <
· · · < xn) is a function s(x) with the following properties

(1) On each subinterval [xi−1, xi], i = 1, 2, · · · , n, s(x) is a polynomial of degree less than
or equal to d.

(2) s(x) and its first (d− 1) derivatives are continous on [x0, xn].

(3) The interpolation conditions s(xi) = f(xi), i = 0, 1, · · · , n are satisfied.

We shall now study how we can obtain the interpolation of a function f as spline inter-
polating functions instead of polynomials. For the sake of simplicity, we restrict only to
d = 3, called the cubic spline interpolating function.

Remark 5.39. Note that in each subinterval [xi−1, xi], i = 1, 2, · · · , n, we only know
f(xi−1) and f(xi). But we look for a cubic polynomial in this subinterval. Therefore, we
cannot follow the Lagrange’s or Newton’s interpolating formula, as these formulas demand
the function values at four distinct nodes in the subinterval. We need to adopt a different
method for the construction of the polynomial in each subinterval in order to obtain the
spline interpolation. ⊓⊔
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Construction of a Cubic Spline

The construction of a cubic spline interpolating function s(x) of a function f(x) is as
follows:

Step 1: Let us denote by M1, · · · , Mn,

Mi = s′′(xi), i = 0, 1, · · · , n

and first obtain s(x) in terms of Mi’s which are unknowns.

Step 2: Since s(x) is cubic on each [xi−1, xi], the function s′′(x) is linear on the interval
such that

s′′(xi−1) =Mi−1, s′′(xi) =Mi.

Therefore, it is given by

s′′(x) =
(xi − x)Mi−1 + (x− xi−1)Mi

xi − xi−1

, xi−1 ≤ x ≤ xi (5.33)

Integrating (5.33) two times with respect to x, we get

s(x) =
(xi − x)3Mi−1

6(xi − xi−1)
+

(x− xi−1)
3Mi

6(xi − xi−1)
+K1x+K2,

where K1 and K2 are integrating constants to be determined by using the interpolation
conditions s(xi−1) = f(xi−1) and s(xi) = f(xi). We have

K1 =
f(xi)− f(xi−1)

xi − xi−1

− (Mi −Mi−1)(xi − xi−1)

6

K2 =
xif(xi−1)− xi−1f(xi)

xi − xi−1

− (Mi−1xi −Mixi−1)(xi − xi−1)

6

Substituting these values in the above equation, we get

s(x) =
(xi − x)3Mi−1 + (x− xi−1)

3Mi

6(xi − xi−1)
+

(xi − x)f(xi−1) + (x− xi−1)f(xi)

xi − xi−1

− 1

6
(xi − xi−1)[(xi − x)Mi−1 + (x− xi−1)Mi], xi−1 ≤ x ≤ xi (5.34)

Formula (5.34) applies to each of the intervals [x1, x2], · · · , [xn−1, xn]. The formulas for
adjacent intervals [xi−1, xi] and [xi, xi+1] will agree at their common point x = xi because
of the interpolating condition s(xi) = f(xi). This implies that s(x) is continuous over the
entire interval [a, b]. Similarly, formula (5.33) for s′′(x) implies that it is continuous on
[a, b].

Step 3: All that remains is to find the values of Mi for all i = 0, 1, · · · , n. This is
obtained by ensuring the continuity of s′(x) over [a, b], ie., the formula for s′(x) on [xi−1, xi]
and [xi, xi+1] are required to give the same value at their common point x = xi, for
i = 1, 2, · · · , n − 1. After simplification, we get the system of linear equations for i =
1, 2, · · ·n− 1
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xi − xi−1

6
Mi−1 +

xi+1 − xi−1

3
Mi +

xi+1 − xi
6

Mi+1

=
f(xi+1)− f(xi)

xi+1 − xi
− f(xi)− f(xi−1)

xi − xi−1

. (5.35)

These n− 1 equations together with the assumption that

M0 =Mn = 0 (5.36)

leads to the values of M0, M1, · · · , Mn and hence to the interpolation function s(x).

A spline constructed above is called a natural spline.

Example 5.40. Calculate the natural cubic spline interpolating the data{
(1, 1),

(
2,

1

2

)
,

(
3,

1

3

)
,

(
4,

1

4

)}
.

The number of points is n = 4 and all xi − xi−1 = 1.
Step 1: Here, we have

M0 = s′′(1), M1 = s′′(2), M2 = s′′(3), M3 = s′′(4).

Step 2: The function s′′(x) is given by

s′′(x) =


(2− x)M0 + (x− 1)M1 , x ∈ [1, 2]
(3− x)M1 + (x− 2)M2 , x ∈ [2, 3]
(4− x)M2 + (x− 3)M3 , x ∈ [3, 4]

.

Integrating s′′(x) two times with respect to x, we get

s(x) =



(2− x)3M0

6
+

(x− 1)3M1

6
+K1x+K2 , x ∈ [1, 2]

(3− x)3M1

6
+

(x− 2)3M2

6
+K1x+K2 , x ∈ [2, 3]

(4− x)3M2

6
+

(x− 3)3M3

6
+K1x+K2 , x ∈ [3, 4]

.

where K1 and K2 are integrating constants to be determined by using the conditions
s(xi−1) = f(xi−1) and s(xi) = f(xi). We have

K1 =



−1

2
− (M1 −M0)

6
, x ∈ [1, 2]

−1

6
− (M2 −M1)

6
, x ∈ [2, 3]

− 1

12
− (M3 −M2)

6
, x ∈ [3, 4]

.
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Fig. 5.6. The function f(x) = 1/x (blue line) and the corresponding cubic natural spline interpolating function
s(x) (red dash line) are shown. The data are represented by blue dots.

K2 =



3

2
− 2M0 −M1

6
, x ∈ [1, 2]

5

6
− 3M1 − 2M2

6
, x ∈ [2, 3]

7

12
− 4M2 − 3M3

6
, x ∈ [3, 4]

.

Substituting these expressions in the expression of s(x), we get the required cubic spline
as given in (5.34).
Step 3: Since we are constructing the natural spline, we take M0 =M3 = 0. The system
(5.35) gives

2

3
M1 +

1

6
M2 =

1

3
,

1

6
M1 +

2

3
M2 =

1

12
.

Solving this system ,we get M1 = 1
2
, M2 = 0. Substituting these values into (5.34), we

obtain

s(x) =



1

12
x3 − 1

4
x2 − 1

3
x+

3

2
, x ∈ [1, 2]

− 1

12
x3 +

3

4
x2 − 7

3
x+

17

6
, x ∈ [2, 3]

− 1

12
x+

7

12
, x ∈ [3, 4]

which is the required natural cubic spline approximation to the given data. A comparison
result is depicted in Figure 5.6. ⊓⊔
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5.6 Exercises

Polynomial Interpolation

(1) Let x0, x1, · · · , xn be distinct nodes. If p(x) is a polynomial of degree less than or equal
to n, then show that

p(x) =
n∑

i=0

p(xi)li(x),

where li(x) is the i
th Lagrange polynomial.

(2) Show that the polynomial 1 + x+ 2x2 is an interpolating polynomial for the data

x 0 1 2
y 1 4 11

.

Find an interpolating polynomial for the new data

x 0 1 2 3
y 1 4 11 -2

.

Does there exist a quadratic polynomial that satisfies the new data? Justify your
answer.

(3) The quadratic polynomial p2(x) =
3
4
x2 + 1

4
x+ 1

2
interpolates the data

x −1 0 1
y 1 1

2
3
2

.

Find a node x3 (x3 /∈ {−1, 0, 1}), and a real number y3 such that the polynomial p3(x)
interpolating the data

x −1 0 1 x3
y 1 1/2 3/2 y3

is a polynomial of degree less than or equal to 2. (Quiz 1, Spring 2012)

(4) Let p(x), q(x), and r(x) be interpolating polynomials for the three sets of data

x 0 1
y y0 y1

,
x 0 2
y y0 y2

, and
x 1 2 3
y y1 y2 y3

respectively. Let s(x) be the the interpolating polynomial for the data

x 0 1 2 3
y y0 y1 y2 y3

.

If
p(x) = 1 + 2x, q(x) = 1 + x, and r(2.5) = 3,

then find the value of s(2.5). (Quiz 1, Spring 2012)
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(5) Obtain Lagrange form of interpolating polynomial for equally spaced nodes.

(6) Using Lagrange form of interpolating polynomial for the function g(x) = 3x2 + x+ 1,
express the rational function

f(x) =
3x2 + x+ 1

(x− 1)(x− 2)(x− 3)

as a sum of partial fractions.

(7) Find the Largrange form of interpolating polynomial for the data:

x -2 -1 1 3
y -1 3 -1 19

(8) Find the Lagrange form of interpolating polynomial p2(x) that interpolates the function
f(x) = e−x2

at the nodes x0 = −1, x1 = 0 and x2 = 1. Further, find the value of
p2(−0.9) (use 6-digit rounding). Compare the value with the true value f(−0.9) (use
6-digit rounding). Find the percentage error in this calculation.

(9) Find the Newton form of interpolating polynomial for the data

x -3 -1 0 3 5
y -30 -22 -12 330 3458

.

Newton’s Divided Difference Formula

(10) For the particular function f(x) = xm (m ∈ N), show that

f [x0, x1, · · · , xn] =

{
1 if n = m

0 if n > m

(11) Let x0, x1, · · · , xn be nodes, and f be a given function. Define w(x) =
∏n

i=0(x − xi).
Prove that

f [x0, x1, · · · , xn] =
n∑

i=0

f(xi)

w′(xi)
.

(12) Calculate the nth divided difference f [x0, x1, · · · , xn] of f(x) =
1

x
.

(13) The following data correspond to a polynomial P (x) of unknown degree

x 0 1 2
P (x) 2 −1 4

.

Determine the coefficient of x in the polynomial P (x) if all the third order divided
differences are 1.
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(14) Let f be n times continuously differentiable function on the interval [a, b]. For any
x ∈ [a, b], show that the nth order divided difference f [x, x, · · · , x︸ ︷︷ ︸

(n+1)−times

] is given by

f [x, x, · · · , x︸ ︷︷ ︸
(n+1)−times

] =
f (n)(x)

n!
.

(15) For the function f(x) = sin(πx), find the value of f [1/2, 0, 1, 1/2].

Error in Polynomial Interpolation

(16) Prove that if we take any set of 23 nodes in the interval [−1, 1] and interpolate the
function f(x) = cosh x with a polynomial p22 of degree less than or equal to 22, then
at each x ∈ [−1, 1] the relative error satisfies the bound

|f(x)− p22(x)|
|f(x)|

≤ 5× 10−16.

(17) Let pn(x) be a polynomial of degree less than or equal to n that interpolates a function
f at a set of distinct nodes x0, x1, · · · , xn. If x /∈ {x0, x1, · · · , xn }, then show that the
error is given by

f(x)− pn(x) = f [x0, x1, · · · , xn, x]
n∏

i=0

(x− xi).

(18) If f ∈ Cn+1[a, b] and if x0, x1, · · · , xn are distinct nodes in [a, b], then show that there
exists a point ξx ∈ (a, b) such that

f [x0, x1, · · · , xn, x] =
f (n+1)(ξx)

(n+ 1) !

(19) Let N be a natural number. Let p1(x) denote the linear interpolating polynomial on
the interval [N,N +1] interpolating the function f(x) = x2 at the nodes N and N +1.
Find an upper bound for the mathematical error ME1 using the infinity norm on the
interval [N,N + 1] (i.e., ∥ME1∥∞, [N,N+1]).

(20) Let p3(x) denote a polynomial of degree less than or equal to 3 that interpolates the
function f(x) = ln x at the nodes x0 = 1, x1 =

4
3
, x2 =

5
3
, x3 = 2. Find a lower bound

on the absolute value of mathematical error |ME3(x)| at the point x = 3
2
, using the

formula for mathematical error in interpolation.
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(21) Let f : [0, π
6
] → R be a given function. The following is the meaning for the Cubic

interpolation in a table of function values (Final Exam, Spring 2012)

x x0 x1 · · · xN
f(x) f(x0) f(x1) · · · f(xN)

The values of f(x) are tabulated for a set of equally spaced points in [a, b], say xi for
i = 0, 1, · · · , N with x0 = 0, xN = π

6
, and h = xi+1−xi > 0 for every i = 0, 1, · · · , N−1.

For an x̄ ∈ [0, π
6
] at which the function value f(x̄) is not tabulated, the value of f(x̄)

is taken to be the value of p3(x̄), where p3(x) is the polynomial of degree less than or
equal to 3 that interpolates f at the nodes xi, xi+1, xi+2, xi+3 where i is the least index
such that x ∈ [xi, xi+3].

Take f(x) = sinx for x ∈ [0, π
6
]; and answer the following questions.

(i) When x̄ and p3 are as described above, then show that |f(x̄)− p3(x̄)| ≤ h4

48
.

(ii) If h = 0.005, then show that cubic interpolation in the table of function values
yields the value of f(x̄) with at least 10 decimal-place accuracy.

(22) Let x0, x1, · · · , xn be n+1 distinct nodes, and f be a function. For each i = 0, 1, · · · , n,
let fl (f(xi)) denote the floating point approximation of f(xi) obtained by rounding
to 5 decimal places (note this is different from using 5-digit rounding). Assume that
0.1 ≤ f(xi) < 1 for all i = 0, 1, · · · , n. Let pn(x) denote the Lagrange form of in-
terpolating polynomial corresponding to the data {(xi, f(xi)) : i = 0, 1, · · · , n}. Let
p̃n(x) denote the Lagrange form of interpolating polynomial corresponding to the data
{(xi, fl (f(xi))) : i = 0, 1, · · · , n}. Show that the arithmetic error at a point x̃ satisfies
the inequality

|pn(x̃)− p̃n(x̃)| ≤
1

2
10−5

n∑
k=0

|lk(x̃)|.

Spline Interpolation

(23) Find a natural cubic spline interpolating function for the data

x -1 0 1
y 5 7 9

.

(24) Determine whether the natural cubic spline function that interpolates the table

x -1 0 1
y −3 −1 −1

is or is not the function

S(x) =

{
x3 + x− 1 x ∈ [−1, 0],

x3 − x− 1 x ∈ [0, 1].
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(25) Determine whether the coefficients a, b, c, d exist so that the function

S(x) =


1− 2x x ∈ [−4,−3]

a+ bx+ cx2 + dx3 x ∈ [−3, 4]

157− 32x x ∈ [4, 5]

is a natural cubic spline interpolating function on the interval [−4, 5] for the data

x -4 -3 4 5
y 9 7 29 -3

.

(26) Does there exist real numbers a and b so that the function

S(x) =


(x− 2)3 + a(x− 1)2 x ∈ [−1, 2]

(x− 2)3 − (x− 3)2 x ∈ [2, 3]

(x− 3)3 + b(x− 2)2 x ∈ [3, 5]

is a natural cubic spline interpolating function on the interval [−1, 5] for the data

x -1 2 3 5
y -31 -1 1 17

?

(27) Show that the natural cubic spline interpolation function for a given data is unique.
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CHAPTER 6

Numerical Integration and Differentiation

There are two reasons for approximating derivatives and integrals of a function f(x).
One is when the function is very difficult to differentiate or integrate, or only the tabular
values are available for the function. Another reason is to obtain solution of a differential
or integral equation. In this chapter we introduce some basic methods to approximate
integral and derivative of a function either explicitly or by tabulated values.

In Section 6.1, we obtain numerical methods for evaluating the integral of a given
integrable function f defined on the interval [a, b]. Section 6.2 introduces various ways to
obtain numerical formulas for approximating derivatives of a given differentiable function.

6.1 Numerical Integration

In this section we derive and analyze numerical methods for evaluating definite integrals.
The problem is to evaluate the number

I(f) =

b∫
a

f(x)dx. (6.1)

Most such integrals cannot be evaluated explicitly, and with many others, it is faster to
integrate numerically than explicitly. The process of approximating the value of I(f) is
usually referred to as numerical integration or quadrature.

The idea behind numerical integration is to approximate the integrand f by a simpler
function that can be integrated easily. One obvious approximation is the interpolation
by polynomials. Thus, we approximate I(f) by I(pn), where pn(x) is the interpolating
polynomial for the integrand f at some appropriately chosen nodes x0, · · · , xn. The general
form of the approximation is

I(f) ≈ I(pn) = w0f(x0) + w1f(x1) + · · ·+ wnf(xn),

where the weights are given by
wi = I(li),

with li(x) the i
th Lagrange polynomial.
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Without going through interpolation, now propose a general formula

I(f) ≈ w0f(x0) + w1f(x1) + · · ·+ wnf(xn), (6.2)

where x0, · · · , xn are distinct real numbers (called quadrature points) and w0, · · · , wn

are real numbers (called quadrature weights). When the quadrature points are equally
spaced, the quadrature formula of the form (6.2) is called the Newton-Cotes formula.

The Newton-Cotes formula (6.2) gives rise to different quadrature formulas depending
on the degree of the interpolating polynomial n and also on the choice of the nodes. We
now study few simple quadrature formulas.

6.1.1 Rectangle Rule

We now consider the case when n = 0. Then, the corresponding interpolating polynomial
is the constant function p0(x) = f(x0), and therefore

I(p0) = (b− a)f(x0).

From this, we can obtain two quadrature rules depending on the choice of x0.

• If x0 = a, then this approximation becomes

I(f) ≈ IR(f) := (b− a)f(a) (6.3)

and is called the rectangle rule. The geometrical interpretation of the rectangle rule
is illustrated in Figure 6.1.

• If x0 = (a+ b)/2, we get

I(f) ≈ IM(f) := (b− a)f

(
a+ b

2

)
(6.4)

and is called the mid-point rule.

We now obtain the mathematical error in rectangle rule, given by,

MER(f) := I(f)− I(p0).

Theorem 6.1 (Error in Rectangle Rule). Let f ∈ C1[a, b]. The mathematical error
MER(f) of the rectangle rule takes the form

MER(f) =
f ′(η)(b− a)2

2
, (6.5)

for some η ∈ (a, b).
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Fig. 6.1. Geometrical Interpretation of the Rectangle Rule.

Proof: For each x ∈ (a, b], the linear interpolating polynomial for f at the nodes a and x
is given by

f(x) = p0(x) + f [a, x](x− a).

Therefore, the mathematical error in the rectangle rule is given by

MER(f) = I(f)− IR(f) =

b∫
a

f [a, x](x− a) dx.

Using mean-value theorem for integrals, we get

MER(f) = f [a, ξ]

b∫
a

(x− a) dx,

for some ξ ∈ (a, b). By mean value theorem for derivatives, f [a, ξ] = f ′(η) for some
η ∈ (a, ξ). Thus, we get

MER(f) =
f ′(η)(b− a)2

2
,

for some η ∈ (a, b). ⊓⊔

6.1.2 Trapezoidal Rule

We now consider the case when n = 1. Then

p1(x) = f(x0) + f [x0, x1](x− x0),

and therefore

I(f) ≈ IT (f) :=

b∫
a

(f(x0) + f [x0, x1](x− x0)) dx.
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Fig. 6.2. Trapezoidal Rule.

Taking x0 = a and x1 = b, we get

IT (f) = (b− a)

(
f(a) + f(b)

2

)
(6.6)

and is called the Trapezoidal Rule. The Trapezoidal rule is illustrated in Figure 6.2.
We now obtain the mathematical error in Trapezoidal rule, given by

MET(f) := I(f)− I(p1).

Theorem 6.2 (Error in Trapezoidal Rule). Let f ∈ C2[a, b]. The mathematical error
MET(f) of the trapezoidal rule takes the form

MET(f) = −f
′′(η)(b− a)3

12
, (6.7)

for some η ∈ (a, b).

Proof: We have

f(x) = f(a) + f [a, b](x− a) + f [a, b, x](x− a)(x− b).

Integrating over the interval [a, b], we get

I(f) = IT (f) +

b∫
a

f [a, b, x](x− a)(x− b)dx.

Therefore the mathematical error is given by

MET(f) = I(f)− IT (f) =

b∫
a

f [a, b, x](x− a)(x− b)dx. (6.8)

Baskar and Sivaji 186 Spring 2013/MA 214



6.1. NUMERICAL INTEGRATION

From Corollary 5.24 (Conclusion 1), we see that the function x 7−→ f [a, b, x] is continuous.
Therefore, from the mean value theorem for integrals (after noting that (x− a)(x− b) is
non-negative for all x ∈ [a, b]), the expression (6.8) for the mathematical error takes the
form

MET(f) = f [a, b, η]

b∫
a

(x− a)(x− b)dx,

for some η ∈ (a, b). The formula (6.7) now follows from (5.25) and a direct evaluation of
the above integral. ⊓⊔

Example 6.3. For the function f(x) = 1/(x+ 1), we approximate the integral

I =

1∫
0

f(x)dx,

using trapezoidal rule to get

IT (f) =
1

2

(
1 +

1

2

)
=

3

4
= 0.75.

The true value is I(f) = log(2) ≈ 0.693147. Therefore, the error is MET(f) ≈ −0.0569.
Using the formula (6.7), we get the bounds for MET(f) as

−1

6
< MET(f) < − 1

48

which clearly holds in the present case. ⊓⊔

Composite Trapezoidal Rule

We can improve the approximation of trapezoidal rule by breaking the interval [a, b] into
smaller subintervals and apply the trapezoidal rule (6.6) on each subinterval. We will
derive a general formula for this.

Let us subdivide the interval [a, b] into n equal subintervals of length

h =
b− a

n

with endpoints of the subintervals as

xj = a+ jh, j = 0, 1, · · · , n.

Then, we get

I(f) =

b∫
a

f(x)dx =

xn∫
x0

f(x)dx =
n−1∑
j=0

xj+1∫
xj

f(x)dx.
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Using Trapezoidal rule (6.6) on the subinterval [xj, xj+1], we get

xj+1∫
xj

f(x)dx ≈ h

(
f(xj) + f(xj+1)

2

)
, j = 0, 1, · · · , n− 1.

Substituting this in the above equation, we get

I(f) ≈ h

[
f(x0) + f(x1)

2

]
+ h

[
f(x1) + f(x2)

2

]
+ · · ·+ h

[
f(xn−1) + f(xn)

2

]
.

The terms on the right hand side can be combined to give the simpler formula

InT (f) := h

[
1

2
f(x0) + f(x1) + f(x2) + · · ·+ f(xn−1) +

1

2
f(xn)

]
. (6.9)

This rule is called the Composite Trapezoidal rule.

Example 6.4. Using composite trapezoidal rule with n = 2, let us approximate the inte-
gral

I =

1∫
0

f(x)dx,

where

f(x) =
1

1 + x
.

As we have seen in Example 6.3, the true value is I(f) = log(2) ≈ 0.693147. Now, the
composite trapezoidal rule with x0 = 0, x1 = 1/2 and x2 = 1 gives

I2T (f) ≈ 0.70833.

Thus the error is -0.0152. Recall from Example 6.3 that with n = 1, the trapezoidal rule
gave an error of -0.0569. ⊓⊔

6.1.3 Simpson’s Rule

We now calculate I(p2(x)) to obtain the formula for the case when n = 2. Let us choose
x0 = a, x1 = (a+ b)/2 and x2 = b. The Lagrange form of interpolating polynomial is

p2(x) = f(x0)l0(x) + f(x1)l1(x) + f(x2)l2(x).

Then
b∫

a

p2(x)dx = f(x0)

b∫
a

l0(x) dx+ f(x1)

b∫
a

l1(x) dx+ f(x2)

b∫
a

l2(x) dx.

Using the change of variable
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Fig. 6.3. Simpson Rule.

x =
b− a

2
t+

b+ a

2
,

we get

b∫
a

l0(x) dx =

b∫
a

(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
dx

=

1∫
−1

t(t− 1)

2

b− a

2
dt

=
b− a

6
.

Similarly, we can see

b∫
a

l1(x) dx =
4

6
(b− a),

b∫
a

l2(x) dx =
b− a

6
.

We thus arrive at the formula

I(f) ≈ IS(f) :=

b∫
a

p2(x)dx =
b− a

6

{
f(a) + 4f

(
a+ b

2

)
+ f(b)

}
(6.10)

which is the famous Simpson’s Rule. The Simpson’s rule is illustrated in Figure 6.3.

We now obtain the mathematical error in Simpson’s rule, given by,

MES(f) := I(f)− I(p2).
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Theorem 6.5 (Error in Simpson’s Rule). Let f ∈ C4[a, b]. The mathematical error
MES(f) of the Simpson’s rule takes the form

MES(f) = −f
(4)(η)(b− a)5

2880
, (6.11)

for some η ∈ (a, b).

Proof: Consider the collection of nodes a, (a + b)/2, b, x in the interval [a, b]. Let
x0 ∈ [a, b] be a given point different from a, (a + b)/2, b, and x. From the fourth order
divided difference formula, we have

f [a, (a+ b)/2, b, x] = f [x0, a, (a+ b)/2, b] + f [x0, a, (a+ b)/2, b, x](x− x0).

The mathematical error in Simpson’s method can therefore be written as

MES(f) =

b∫
a

f [x0, a, (a+ b)/2, b]ϕ(x)dx+

b∫
a

f [x0, a, (a+ b)/2, b, x](x− x0)ϕ(x),

where
ϕ(x) = (x− a)(x− (a+ b)/2)(x− b).

A direct integration shows

b∫
a

ϕ(x)dx =

b∫
a

(x− a)

(
x− a+ b

2

)
(x− b)dx = 0.

Thus, we have

MES(f) =

b∫
a

f [x0, a, (a+ b)/2, b, x](x− x0)ϕ(x),

Recall in the proof of theorem 6.2, we used mean value theorem 1.27 at this stage to
arrive at the conclusion. But, in the present case, we cannot use this theorem because the
function (x−x0)ϕ(x) need not be of one sign on [a, b]. However, the choice x0 = (a+ b)/2
makes this function one signed (non-negative). Now using Corollary 5.24 (Conclusion 1)
and following the idea of the proof of Theorem 6.2, we arrive at the formula (6.11) (this
is left as an exercise). ⊓⊔

Example 6.6. We now use the Simpson’s rule to approximate the integral

I(f) =

1∫
0

f(x) dx,

where

f(x) =
1

1 + x
.
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The true value is I(f) = log(2) ≈ 0.693147. Using the Simpson’s rule (6.10), we get

IS(f) =
1

6

(
1 +

8

3
+

1

2

)
=

25

36
≈ 0.694444.

Therefore, the error is MES(f) ≈ 0.001297. ⊓⊔

Composite Simpson’s Rule

Let us now derive the composite Simpson’s rule. First let us subdivide the interval
[a, b] into n equal parts as we discussed in composite trapezoidal rule (Subsection 6.1.2).
Taking a = xi−1, b = xi, xi−1/2 = (xi + xi−1)/2 and xi − xi−1 = h in Simpson rule, we get

xi∫
xi−1

f(x)dx ≈ h

6

{
f(xi−1) + 4f(xi−1/2) + f(xi)

}
.

Summing for i = 1, · · · , n, we get

b∫
a

f(x)dx =
n∑

i=1

∫ xi

xi−1

f(x)dx

≈ h

6

n∑
i=1

{
f(xi−1) + 4f(xi−1/2) + f(xi)

}
.

Therefore, the composite Simpson’s rule takes the form

InS (f) =
h

6

[
f(x0) + f(xn) + 2

n−1∑
i=1

f(xi) + 4
n∑

i=1

f(xi−1/2)

]
(6.12)

6.1.4 Method of Undetermined Coefficients

All the rules so far derived are of the form

I(f) =

b∫
a

f(x)dx ≈ w0f(x0) + w1f(x1) + · · ·+ wnf(xn) (6.13)

where wi’s are weights. In deriving those rules, we have fixed the nodes x0, x1, · · · , xn
(n = 0 for rectangle rule, n = 1 for trapezoidal rule and n = 2 for Simpson’s rule), and
used interpolating polynomials to obtain the corresponding weights. Instead, we may use
another approach in which for a fixed set of nodes weights are determined by imposing
the condition that the resulting rule is exact for polynomials of degree less than or equal
to n. Such a method is called the method of undetermined coefficients.
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Example 6.7. Let us find w0, w1, and w2 such that the approximate formula

b∫
a

f(x) dx ≈ w0f(a) + w1f

(
a+ b

2

)
+ w2f(b) (6.14)

is exact for all polynomials of degree less than or equal to 2.

Since integral of sum of functions is the sum of the integrals of the respective functions,
the formula (6.14) is exact for all polynomials of degree less than or equal to 2 if and only
if the formula (6.14) is exact for the polynomials 1, x, and x2.

• The condition that the formula (6.14) is exact for the polynomial p(x) = 1 yields

b− a =

b∫
a

1 dx = w0 + w1 + w2

• The condition that the formula (6.14) is exact for the polynomial p(x) = x yields

b2 − a2

2
=

b∫
a

x dx = aw0 +

(
a+ b

2

)
w1 + bw2.

• The condition that the formula (6.14) is exact for the polynomial p(x) = x2 yields

b3 − a3

3
=

b∫
a

x2 dx = a2w0 +

(
a+ b

2

)2

w1 + b2w2

Thus, we have a linear system of three equations satisfied by w0, w1, and w2. By solving
this system, we get

w0 =
1

6
(b− a),

w1 =
2

3
(b− a),

w2 =
1

6
(b− a),

which gives us the familiar Simpson’s rule. ⊓⊔

This motivates the following definition.

Definition 6.8 (Degree of Precision).

The degree of precision (also called order of exactness) of a quadrature formula is
the largest positive integer n such that the formula is exact for all polynomials of degree
less than or equal to n.
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Example 6.9. Let us determine the degree of precision of Simpson’s rule. It will suffice
to apply the rule over the interval [0, 2] (in fact any interval is good enough and we chose
this interval for the sake of having easy computation).

2∫
0

dx = 2 =
2

6
(1 + 4 + 1),

2∫
0

xdx = 2 =
2

6
(0 + 4 + 2),

2∫
0

x2dx =
8

3
=

2

6
(0 + 4 + 4),

2∫
0

x3dx = 4 =
2

6
(0 + 4 + 8),

2∫
0

x4dx =
32

5
̸= 2

6
(0 + 4 + 16) =

20

3
.

Therefore, the degree of precision of Simpson’s rule is 3. ⊓⊔

Remark 6.10. In Example 6.7 we have obtained the Simpson’s rule using the method of
undetermined coefficients by requiring the exactness of the rule for polynomials of degree
less than or equal to 2, the above example shows that the rule is exact for polynomials of
degree three as well. ⊓⊔

6.1.5 Gaussian Rules

In Example 6.7 we have fixed the nodes and obtained the weights in the quadrature rule
(6.14) such that the rule is exact for polynomials of degree less than or equal to 2. In
general, by fixing the nodes, we can obtain the weights in (6.13) such that the rule is
exact for polynomials of degree less than or equal to n. But it is also possible to derive a
quadrature rule such that the rule is exact for polynomials of degree less than or equal to
2n+ 1 by choosing the n+ 1 nodes and the weights appropriately. This is the basic idea
of Gaussian rules.

Let us consider the special case

1∫
−1

f(x)dx ≈
n∑

i=0

wif(xi). (6.15)

The weights wi and the nodes xi (i = 0, · · · , n) are to be chosen in such a way that the
rule (6.15) is exact, that is
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1∫
−1

f(x)dx =
n∑

i=0

wif(xi), (6.16)

whenever f(x) is a polynomial of degree less than or equal to 2n + 1. Note that (6.16)
holds for every polynomial f(x) of degree less than or equal to 2n+1 if and only if (6.16)
holds for f(x) = 1, x, x2, · · · , x2n+1.

Case 1: (n = 0). In this case, the quadrature formula (6.15) takes the form

1∫
−1

f(x)dx ≈ w0f(x0).

The condition (6.16) gives

1∫
−1

1 dx = w0 and

1∫
−1

x dx = w0x0.

These conditions give w0 = 2 and x0 = 0. Thus, we have the formula

1∫
−1

f(x)dx ≈ 2f(0) =: IG0(f), (6.17)

which is the required Gaussian rule for n = 0.

Case 2: (n = 1). In this case, the quadrature formula (6.15) takes the form

1∫
−1

f(x)dx ≈ w0f(x0) + w1f(x1).

The condition (6.16) gives

w0 + w1 = 2,

w0x0 + w1x1 = 0,

w0x
2
0 + w1x

2
1 =

2

3
,

w0x
3
0 + w1x

3
1 = 0.

A solution of this nonlinear system is w0 = w1 = 1, x0 = −1/
√
3 and x1 = 1/

√
3. This

lead to the formula

1∫
−1

f(x)dx ≈ f

(
− 1√

3

)
+ f

(
1√
3

)
=: IG1(f), (6.18)
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which is the required Gaussian rule for n = 1.

Case 3: (General). In general, the quadrature formula is given by (6.15), where there are
2(n + 1) free parameters xi and wi for i = 0, 1, · · · , n. The condition (6.16) leads to the
nonlinear system

n∑
j=0

wjx
i
j =

{
0 , i = 1, 3, · · · , 2n+ 1
2

i+ 1
, i = 0, 2, · · · , 2n .

These are nonlinear equations and their solvability is not at all obvious and therefore the
discussion is outside the scope of this course.

So far, we derived Gaussian rule for integrals over [−1, 1]. But this is not a limitation
as any integral on the interval [a, b] can easily be transformed to an integral on [−1, 1] by
using the linear change of variable

x =
b+ a+ t(b− a)

2
, −1 ≤ t ≤ 1. (6.19)

Thus, we have
b∫

a

f(x)dx =
b− a

2

1∫
−1

f

(
b+ a+ t(b− a)

2

)
dt.

Example 6.11. We now use the Gaussian rule to approximate the integral

I(f) =

1∫
0

f(x) dx,

where

f(x) =
1

1 + x
.

Note that the true value is I(f) = log(2) ≈ 0.693147.

To use the Gaussian quadrature, we first need to make the linear change of variable
(6.19) with a = 0 and b = 1 and we get

x =
t

2
, − 1 ≤ t ≤ 1.

Thus the required integral is

I(f) =

1∫
0

dx

1 + x
=

1∫
−1

dt

3 + t
.

We need to take f(t) = 1/(3 + t) in the Gaussian quadrature formula (6.18) and we get

1∫
0

dx

1 + x
=

1∫
−1

dt

3 + t
≈ f

(
− 1√

3

)
+ f

(
1√
3

)
≈ 0.692308 ≈ IG1(f).

Therefore, the error is I(f)− IG1(f) ≈ 0.000839. ⊓⊔
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6.2 Numerical Differentiation

The aim of this section is to obtain formulas to approximate the values of derivatives of a
given function at a given point. Such a formula for the first derivative of a function can be
obtained directly using the definition of the derivative, namely, the difference quotients of
the function. This will be discussed in Subsection 6.2.1. But this idea cannot be adopted
for higher order derivatives. Approximating formulas for derivatives can be obtained in at
least two ways, namely,

(1) Methods based on Interpolation

(2) Methods based on Undetermined Coefficients

These methods are discussed in Subsections 6.2.2 and 6.2.3, respectively.

6.2.1 Approximations of First Derivative

Forward Difference Formula

The most simple way to obtain a numerical method for approximating the derivative of a
C1 function f is to use the definition of derivative

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

The approximating formula can therefore be taken as

f ′(x) ≈ f(x+ h)− f(x)

h
=: D+

h f(x) (6.20)

for a sufficiently small value of h > 0. The formula D+
h f(x) is called the forward differ-

ence formula for the derivative of f at the point x.

Theorem 6.12. Let f ∈ C2[a, b]. The mathematical error in the forward difference for-
mula is given by

f ′(x)−D+
h f(x) = −h

2
f ′′(η) (6.21)

for some η ∈ (x, x+ h).

Proof: By Taylor’s theorem, we have

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(η) (6.22)

for some η ∈ (x, x+ h). Using (6.20) and (6.22), we obtain

D+
h f(x) =

1

h

{[
f(x) + hf ′(x) +

h2

2
f ′′(η)

]
− f(x)

}
= f ′(x) +

h

2
f ′′(η).

This completes the proof. ⊓⊔
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Remark 6.13. If we consider the left hand side of (6.21) as a function of h, i.e., if

g(h) = f ′(x)−Dhf(x),

then we see that ∣∣∣∣g(h)h
∣∣∣∣ = 1

2
|f ′′(η)|.

Let M > 0 be such that |f ′′(x)| ≤M for all x ∈ [a, b]. Then we see that∣∣∣∣g(h)h
∣∣∣∣ ≤ M

2
.

That is, g = O(h) as h → 0. We say that the forward difference formula D+
h f(x) is of

order 1 (order of accuracy). ⊓⊔

Backward Difference Formula

The derivative of a function f is also given by

f ′(x) = lim
h→0

f(x)− f(x− h)

h
.

Therefore, the approximating formula for the first derivative of f can also be taken as

f ′(x) ≈ f(x)− f(x− h)

h
=: D−

h f(x) (6.23)

The formula D−
h f(x) is called the backward difference formula for the derivative of f

at the point x.

Deriving the mathematical error for backward difference formula is similar to that of
the forward difference formula. It can be shown that the backward difference formula is
of order 1.

Central Difference Formula

The derivative of a function f is also given by

f ′(x) = lim
h→0

f(x+ h)− f(x− h)

2h
.

Therefore, the approximating formula for the first derivative of f can also be taken as

f ′(x) ≈ f(x+ h)− f(x− h)

2h
=: D0

hf(x), (6.24)

for a sufficiently small value of h > 0. The formulaD0
hf(x) is called the central difference

formula for the derivative of f at the point x.

The central difference formula is of order 2 as shown in the following theorem.
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. ..
xx−h x+h

Forward
Backward

Central

x

y

y=f(x)

f’

Fig. 6.4. Geometrical interpretation of difference formulae.

Theorem 6.14. Let f ∈ C3[a, b]. The mathematical error in the central difference formula
is given by

f ′(x)−D0
hf(x) = −h

2

6
f ′′′(η), (6.25)

where η ∈ (x− h, x+ h).

Proof: Using Taylor’s theorem, we have

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(η1)

and

f(x− h) = f(x)− hf ′(x) +
h2

2!
f ′′(x)− h3

3!
f ′′′(η2),

where η1 ∈ (x, x+ h) and η2 ∈ (x− h, x).

Therefore, we have

f(x+ h)− f(x− h) = 2hf ′(x) +
h3

3!
(f ′′′(η1) + f ′′′(η2)).

Since f ′′′(x) is continuous, by intermediate value theorem applied to f ′′, we have

f ′′′(η1) + f ′′′(η2)

2
= f ′′′(η)

for some η ∈ (x− h, x+ h). This completes the proof. ⊓⊔
Geometric interpretation of the three primitive difference formulae (forward, backward,

and central) is shown in Figure 6.4.
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Example 6.15. To find the value of the derivative of the function given by f(x) = sinx
at x = 1 with h = 0.003906, we use the three primitive difference formulas. We have

f(x− h) = f(0.996094) = 0.839354,

f(x) = f(1) = 0.841471,

f(x+ h) = f(1.003906) = 0.843575.

(1) Backward difference: D−
h f(x) =

f(x)− f(x− h)

h
= 0.541935.

(2) Central Difference: D0
hf(x) =

f(x+ h)− f(x− h)

2h
= 0.540303.

(3) Forward Difference: D+
h f(x) =

f(x+ h)− f(x)

h
= 0.538670.

Note that the exact value is f ′(1) = cos 1 = 0.540302.

6.2.2 Methods based on Interpolation

Using the polynomial interpolation we can obtain formula for derivatives of any order for
a given function. For instance, to calculate f ′(x) at some point x, we use the approximate
formula

f ′(x) ≈ p′n(x),

where pn(x) denotes the interpolating polynomial for f(x). Many formulas can be obtained
by varying n and by varying the placement of the nodes x0, · · · , xn relative to the point
x of interest.

Let us take n = 1. The linear interpolating polynomial is given by

p1(x) = f(x0) + f [x0, x1](x− x0).

Hence, we have the formula

f ′(x) ≈ p′1(x) = f [x0, x1]. (6.26)

In particular,

• if we take x0 = x and x1 = x + h for a small value h > 0, we obtain the forward
difference formula D+

h f(x).

• if we take x0 = x − h and x1 = x for small value of h > 0, we obtain the backward
difference formula D−

h f(x).

• if we take x0 = x − h and x1 = x + h for small value of h > 0, we get the central
difference formula D0

hf(x).

We next prove the formula for mathematical error in approximating the first derivative
using interpolating polynomial.
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Theorem 6.16 (Mathematical Error).

Hypothesis:

(1) Let f be an (n+ 2)-times continuously differentiable function on the interval [a, b].

(2) Let x0, x1, · · · , xn be n+ 1 distinct nodes in [a, b].

(3) Let pn(x) denote the polynomial that interpolates f at the nodes x0, x1, · · · , xn.
(4) Let x be any point in [a, b] such that x /∈ {x0, x1 · · · , xn}.

Conclusion: Then

f ′(x)− p′n(x) = wn(x)
f (n+2)(ηx)

(n+ 2)!
+ w′

n(x)
f (n+1)(ξx)

(n+ 1)!
(6.27)

with wn(x) =
n∏

i=0

(x−xi) and ξx and ηx are points in between the maximum and minimum

of x0, x1 · · · , xn and x, that depend on x.

Proof. For any x ∈ [a, b] with x /∈ {x0, x1 · · · , xn}, by Newton’s form of interpolating
polynomial, we have

f(x) = pn(x) + f [x0, · · · , xn, x]wn(x),

where pn(x) is the polynomial (of degree ≤ n) that interpolates f at x0, · · · , xn. Taking
derivative on both sides, we get

f ′(x) = p′n(x) + wn(x)
d

dx
f [x0, · · · , xn, x] + w′

n(x)f [x0, · · · , xn, x].

But we know that (Theorem 5.25)

d

dx
f [x0, · · · , xn, x] = f [x0, · · · , xn, x, x].

Therefore, we have

f ′(x) = p′n(x) + wn(x)f [x0, · · · , xn, x, x] + w′
n(x)f [x0, · · · , xn, x].

Further, from Theorem 5.27, we see that there exists an ξx ∈ (a, b) such that

f [x0, · · · , xn, x] =
f (n+1)(ξx)

(n+ 1)!
.

Using Theorem 5.27 along with the Hermite-Genocchi formula, we see that there exists
an ηx ∈ (a, b) such that

f [x0, · · · , xn, x, x] =
f (n+2)(ηx)

(n+ 2)!
.

Therefore, we get

f ′(x)− p′n(x) = wn(x)
f (n+2)(ηx)

(n+ 2)!
+ w′

n(x)
f (n+1)(ξx)

(n+ 1)!

which is what we wish to show. ⊓⊔
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Difference formulas for higher order derivatives and their mathematical error can be ob-
tained similarly. The derivation of the mathematical error for the formulas of higher order
derivatives are omitted for this course.

Example 6.17. Let x0, x1, and x2 be the given nodes. Then, the Newton’s form of inter-
polating polynomial for f is given by

p2(x) = f(x0) + f [x0, x1](x− x0) + f [x0, x1, x2](x
2 − (x0 + x1)x+ x0x1).

Therefore, we take the first derivative of f as

f ′(x) ≈ p′2(x) = f [x0, x1] + f [x0, x1, x2](2x− x0 − x1).

• If we take x0 = x − h, x1 = x, and x2 = x + h for any given x ∈ [a, b], we obtain the
central difference formula D0

h(f) and the corresponding error obtained from (6.27) is
precisely the error given in (6.25).

• If we take x0 = x, x1 = x + h and x2 = x + 2h for any given x ∈ [a, b], we obtain the
difference formula

f ′(x) ≈ −3f(x) + 4f(x+ h)− f(x+ 2h)

2h

with mathematical error obtained using (6.27) as

f ′(x)− p′2(x) =
h2

3
f ′′′(ξ),

for some ξ ∈ (x, x+ 2h). ⊓⊔

6.2.3 Methods based on Undetermined Coefficients

Another method to derive formulas for numerical differentiation is called the method of
undetermined coefficients. The idea behind this method is similar to the one discussed
in deriving quadrature formulas.

Suppose we seek a formula for f (k)(x) that involves the nodes x0, x1, · · · , xn. Then,
write the formula in the form

f (k)(x) ≈ w0f(x0) + w1f(x1) + · · ·+ wnf(xn) (6.28)

where wi, i = 0, 1, · · · , n are free variables that are obtained by imposing the condition
that this formula is exact for polynomials of degree less than or equal to n.

Example 6.18. We will illustrate the method by deriving the formula for f ′′(x) at nodes
x0 = x− h, x1 = x and x2 = x+ h for a small value of h > 0.

For a small value of h > 0, let

f ′′(x) ≈ D
(2)
h f(x) := w0f(x− h) + w1f(x) + w2f(x+ h) (6.29)
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where w0, w1 and w2 are to be obtained so that this formula is exact when f(x) is a
polynomial of degree less than or equal to 2. This condition is equivalent to the exactness
for the three polynomials 1, x and x2.

Step 1: When f(x) = 1 for all x. Then the formula of the form (6.29) is assumed to be
exact and we get

w0 + w1 + w2 = 0. (6.30)

Step 2: When f(x) = x for all x. Then the formula of the form (6.29) is assumed to be
exact and we get

w0(x− h) + w1x+ w2(x+ h) = 0.

Using (6.30), we get

w2 − w0 = 0. (6.31)

Step 3: When f(x) = x2 for all x. Then the formula of the form (6.29) is assumed to be
exact and we get

w0(x− h)2 + w1x
2 + w2(x+ h)2 = 2.

Using (6.30) and (6.31), we get

w0 + w2 =
2

h2
. (6.32)

Solving the linear system of equations (6.30), (6.31), and (6.32), we get

w0 = w2 =
1

h2
, w1 = − 2

h2
.

Substituting these into (6.29), we get

D
(2)
h f(x) =

f(x+ h)− 2f(x) + f(x− h)

h2
, (6.33)

which is the required formula.

Let us now derive the mathematical error involved in this formula. For this, we use the
Taylor’s series

f(x± h) = f(x)± hf ′(x) +
h2

2!
f ′′(x)± h3

3!
f (3)(x) + · · ·

in (6.33) to get

D
(2)
h f(x) =

1

h2

(
f(x) + hf ′(x) +

h2

2!
f ′′(x) +

h3

3!
f (3)(x) +

h4

4!
f (4)(x) + · · ·

)
− 2

h2
f(x)

+
1

h2

(
f(x)− hf ′(x) +

h2

2!
f ′′(x)− h3

3!
f (3)(x) +

h4

4!
f (4)(x)− · · ·

)
.
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After simplification, we get

D
(2)
h f(x) = f ′′(x) +

h2

24
[(f (4)(x) + · · · ) + (f (4)(x)− · · · )].

Now treating the fourth order terms on the right hand side as remainders in Taylor’s
series, we get

D
(2)
h f(x) = f ′′(x) +

h2

24
[f (4)(ξ1) + f (4)(ξ2)],

for some ξ1, ξ2 ∈ (x − h, x + h). Using intermediate value theorem for the function f (4),
we get the mathematical error as

f ′′(x)−D
(2)
h f(x) = −h

2

12
f (4)(ξ) (6.34)

for some ξ ∈ (x− h, x+ h), which is the required mathematical error. ⊓⊔

6.2.4 Arithmetic Error in Numerical Differentiation

Difference formulas are useful when deriving methods for solving differential equations.
But they can lead to serious errors when applied to function values that are subjected to
floating-point approximations. Let

f(xi) = fi + ϵi, i = 0, 1, 2.

To illustrate the effect of such errors, we choose the approximation D
(2)
h f(x) given by

(6.33) for the second derivative of f with x0 = x− h, x1 = x and x2 = x + h. Instead of
using the exact values f(xi), we use the appoximate values fi in the difference formula
(6.33). That is,

D̄
(2)
h f(x1) =

f2 − 2f1 + f0
h2

.

The total error committed is

f ′′(x1)− D̄
(2)
h f(x1) = f ′′(x1)−

f(x2)− 2f(x1) + f(x0)

h2
+
ϵ2 − 2ϵ1 + ϵ0

h2

= −h
2

12
f (4)(ξ) +

ϵ2 − 2ϵ1 + ϵ0
h2

.

Using the notation ϵ∞ := max{|ϵ0|, |ϵ1|, |ϵ3|}, we have

|f ′′(x1)− D̄
(2)
h f(x1)| ≤

h2

12
|f (4)(ξ)|+ 4ϵ∞

h2
. (6.35)

The error bound in (6.35) clearly shows that, although the first term (bound of mathe-
matical error) tends to zero as h → 0, the second term (bound of arithmetic error) can
tend to infinity as h → 0. This gives a possibility for the total error to be as large as
possible when h→ 0. In fact, there is an optimal value of h to minimize the right side of
(6.35) (as shown in Figure 6.5), which we will illustrate in the following example.
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Fig. 6.5. A sketch of the upper bound in total error as given in (6.35) as a function of h. The black star indicates
the optimal value of h.

Example 6.19. In finding f ′′(π/6) for the function f(x) = cos x, if we use the function
values fi that has six significant digits when compared to f(xi), then

|f(xi)− fi|
|f(xi)|

≤ 0.5× 10−5.

Since |f(xi)| = | cos(xi)| ≤ 1, we have |f(xi)− fi| ≤ 0.5× 10−5.

We now use the formula D̄
(2)
h f(x) to approximate f ′′(x). Assume that other than the

approximation in the function values, the formula D̄
(2)
h f(x) is calculated exactly. Then

the bound for the absolute value of the total error given by (6.35) takes the form

|f ′′(π/6)− D̄
(2)
h f(π/6)| ≤ h2

12
|f (4)(ξ)|+ 4ϵ∞

h2
,

where ϵ∞ ≤ 0.5× 10−5 and ξ ≈ π/6. Thus, we have

|f ′′(π/6)− D̄
(2)
h f(π/6)| ≤ h2

12
cos
(π
6

)
+

4

h2
(0.5× 10−5) ≈ 0.0722h2 +

2× 10−5

h2
=: E(h).

The bound E(h) indicates that there is a smallest value of h, call it h∗, such that the
bound increases rapidly for 0 < h < h∗ when h → 0. To find it, let E ′(h) = 0, with its
root being h∗. This leads to h∗ ≈ 0.129. Thus, for close values of h > h∗ ≈ 0.129, we have
less error bound than the values 0 < h < h∗. This behavior of E(h) is observed in the
following table. Note that the true value is f ′′(π/6) = − cos(π/6) ≈ −0.86603.

h D̄
(2)
h f(π/6) Total Error E(h)

0.2 -0.86313 -0.0029 0.0034
0.129 -0.86479 -0.0012 0.0024
0.005 -0.80000 -0.0660 0.8000
0.001 0.00000 -0.8660 20

When h is very small, f(x− h), f(x) and f(x+ h) are very close numbers and therefore
their difference in the numerator of the formula (6.33) tend to have loss of significance.

This is clearly observed in the values of D̄
(2)
h f(π/6) when compared to the true value

where, we are not loosing much number of significant digits for h > 0.129, whereas for
h < 0.129, there is a drastic loss of significant digits. ⊓⊔
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6.3 Exercises

Numerical Integration

(1) Apply Rectangle, Trapezoidal, Simpson and Gaussian methods to evaluate

(i) I =

π/2∫
0

cosx

1 + cos2 x
dx (exact value ≈ 0.623225)

(ii) I =

π∫
0

dx

5 + 4 cos x
dx (exact value ≈ 1.047198)

(iii) I =

1∫
0

e−x2

dx (exact value ≈ 0.746824),

(iv) I =

π∫
0

sin3 x cos4 x dx (exact value ≈ 0.114286)

(v) I =

1∫
0

(1 + e−x sin(4x)) dx. (exact value ≈ 1.308250)

Compute the relative error (when compared to the given exact values) in each method.

(2) Write down the errors in the approximation of

1∫
0

x4dx and

1∫
0

x5dx

by the Trapezoidal rule and Simpson’s rule. Find the value of the constant C for which
the Trapezoidal rule gives the exact result for the calculation of the integral

1∫
0

(x5 − Cx4)dx.

(3) A function f has the values shown below:

x 1 1.25 1.5 1.75 2
f(x) 10 8 7 6 5

.

(i) Use trapezoidal rule to approximate
∫ 2

1
f(x) dx.

(ii) Use Simpson’s rule to approximate
∫ 2

1
f(x) dx.

(iii) Use composite Simpson’s rule to approximate
∫ 2

1
f(x) dx.
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(4) Obtain expressions for the arithmetic error in approximating the integral
∫ b

a
f(x) dx

using the trapezoidal and the Simpson’s rules. Also obtain upper bounds.

(5) Let a = x0 < x1 < · · · < xn = b be equally spaced nodes (i.e., xk = x0 + kh for
k = 1, 2, · · · , n) in the interval [a, b]. Note that h = (b − a)/n. Let f be a twice
continuously differentiable function on [a, b].

(i) Show that the expression for the mathematical error in approximating the integral∫ b

a
f(x) dx using the composite trapezoidal rule, denoted by En

T (f), is given by

En
T (f) = −(b− a)h2

12
f ′′(ξ),

for some ξ ∈ (a, b).

(ii) Show that the mathematical error En
T (f) tends to zero as n → ∞ (one uses the

terminology Composite trapezoidal rule is convergent in such a case).

(6) Determine the minimum number of subintervals and the corresponding step size h so
that the error for the composite trapezoidal rule is less than 5×10−9 for approximating
the integral

∫ 7

2
dx/x.

(7) Let a = x0 < x1 < · · · < xn = b be equally spaced nodes (i.e., xk = x0 + kh for
k = 1, 2, · · · , n) in the interval [a, b], and n is an even natural number. Note that
h = (b− a)/n. Let f be a four times continuously differentiable function on [a, b].

(i) Show that the expression for the mathematical error in approximating the integral∫ b

a
f(x) dx using the composite Simpson rule, denoted by En

S(f), is given by

En
S(f) = −(b− a)h4

180
f (4)(ξ),

for some ξ ∈ (a, b).

(ii) Show that the mathematical error En
S(f) tends to zero as n → ∞ (one uses the

terminology Composite Simpson rule is convergent in such a case).

(8) Use composite Simpson’s and composite Trapezoidal rules to obtain an approximate
value for the improper integral

∞∫
1

1

x2 + 9
dx, with n = 4.

(9) Determine the coefficients in the quadrature formula

2h∫
0

x−1/2f(x) dx ≈ (2h)1/2(w0f(0) + w1f(h) + w2f(2h))

such that the formula is exact for all polynomials of degree as high as possible. What
is the degree of precision?
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(10) Use the two-point Gaussian quadrature rule to approximate
∫ 1

−1
dx/(x+2) and compare

the result with the trapezoidal and Simpson’s rules.

(11) Assume that xk = x0 + kh are equally spaced nodes. The quadrature formula

x3∫
x0

f(x)dx ≈ 3h

8
(f(x0) + 3f(x1) + 3f(x2) + f(x3))

is called the Simpson’s 3
8
rule. Determine the degree of precision of Simpson’s 3

8
rule.

Numerical Differentiation

(12) In this problem, perform the calculations using 6-digit rounding arithmetic.

(i) Find the value of the derivative of the function f(x) = sin x at x = 1 using the
forward, backward, and central difference formulae with h1 = 0.015625, and h2 =
0.000015.

(ii) Find f ′(1) directly and compare with the values obtained for each hi (i = 1, 2).

(13) Obtain the central difference formula for f ′(x) using polynomial interpolation with
nodes at x− h, x, x+ h, where h > 0.

(14) Given the values of the function f(x) = ln x at x0 = 2.0, x1 = 2.2 and x2 = 2.6, find
the approximate value of f ′(2.0) using the method based on quadratic interpolation.
Obtain an error bound.

(15) The following data corresponds to the function f(x) = sin x.

x 0.5 0.6 0.7
f(x) 0.4794 0.5646 0.6442

Obtain the approximate value of f ′(0.5), f ′(0.6), and f ′(0.7) using forward, backward,
and central difference formulae whichever are applicable. Compute the relative error
in all the three cases.

(16) The following data corresponds to the function f(x) = ex − 2x2 + 3x+ 1.

x 0.0 0.2 0.4
f(x) 0.0 0.7414 1.3718

Obtain the approximate value of f ′(0.0), f ′(0.2), and f ′(0.4) using forward, backward,
and central difference formulae whichever are applicable. Compute the relative error
in all the three cases.

(17) Obtain expressions for the arithmetic error in approximating the first derivative of a
function using the forward, backward, and central difference formulae.

(18) Find an approximation to f ′(x) as a formula involving f(x), f(x+ h), and f(x+ 2h).
Obtain an expression for the mathematical error involved in this approximation.
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(19) Let h > 0. Use the method of undetermined coefficients to find a numerical differentia-
tion formula for approximating f ′′(x) such that the formula uses values of the function
f at each of the following sets of points:

(i) x+ 2h, x+ h and x.

(ii) x+ 3h, x+ 2h x+ h and x.

Obtain expressions for mathematical error in both the cases.

(20) Show that the formula

D(2)f(x) :=
f(x)− 2f(x− h) + f(x− 2h)

h2

gives approximate value for f ′′(x). Find the order of accuracy of this formula.

(21) For the method

f ′(x) ≈ 4f(x+ h)− f(x+ 2h)− 3f(x)

2h
,

obtain an expression for mathematical error, arithmetic error, and hence total error.
Find a bound on the absolute value of the total error as function of h. Determine the
optimal value of h for which the bound obtained is minimum.

(22) Repeat the previous problem when central difference formula is used for numerical
differentiation.

(23) Let f(x) = ln(x) (here ln denotes the natural logarithm). Give the formula for approx-
imating f ′(x) using central difference formula. When we use this formula to get an
approximate value of f ′(1.5) with the assumption that the function values f(1.5− h)
and f(1.5 + h) are rounded to 2 digits after decimal point, find the value of h such
that the total error is minimized. (Final Exam, Autumn 2010 (M.Sc.))

(24) The voltage E = E(t) in an electrical circuit obeys the equation

E(t) = L

(
dI

dt

)
+RI(t),

where R is resistance and L is inductance. Use L = 0.05 and R = 2 and values for I(t)
in the table following.

x 1.0 1.1 1.2 1.3 1.4
f(x) 8.2277 7.2428 5.9908 4.5260 2.9122

Find I ′(1.2) using (i) central difference formula, and (ii) the formula given in Problem
(21) and use it to compute E(1.2). Compare your answer with I(t) = 10e−t/10 sin(2t).
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CHAPTER 7

Numerical Ordinary Differential Equations

Consider a first order ordinary differential equation (ODE) of the form

y′ = f(x, y),

where y = y(x) is an unknown variable, x ∈ R is an independent variable and the function
f : R× R → R is given. Here, we used the notation y′ := dy/dx. The objective is to find
the solution y for all x ∈ [a, b] subject to an initial condition

y(x0) = y0, x0 ∈ [a, b].

We call the problem of solving the above ODE along with this initial condition, the initial
value problem.

It is well-known that there are many ODEs of physical interest that cannot be solved
exactly although we know that such problems have unique solutions. If one wants the
solution of such problems, then the only way is to obtain it approximately. One common
way of obtaining an approximate solution to a given initial value problem is to numerically
compute the solution using a numerical method (or numerical scheme). In this chapter, we
introduce some basic numerical methods for approximating the solution of a given initial
value problem.

In Section 7.1, we review the exact solvability of a given initial value problem and
motivate the need of numerical methods. In Section 7.3, we introduce a basic numerical
method called Euler’s method for obtaining approximate solution of an initial value
problem and discussed the error involved in this method. We also show in this section
that the Euler method is of order 1. Modified forms of Euler method can be obtained
using numerical quadrature formulas as discussed in Section 7.4. Taylor approximation
with higher order terms can be used to obtain numerical methods of higher order accuracy.
However, such methods involve the higher order derivatives of the unknown function and
are called Taylor methods. Taylor methods are hard to implement on a computer as
they involve higher order derivatives. An alternate way of achieving higher order accuracy
without using higher order derivatives of the unknown function is the famous Runge-
Kutta methods. Runge-Kutta method of order 2 is derived in full detail in section 7.5
and the formula for the Runge-Kutta method of order 4 is stated.
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7.1 Review of Theory

In this section, we will discuss solving an initial value problem (IVP) for an ordinary
differential equation. Let f be a continuous function of two variables defined on a domain
D ⊂ R2. Let (x0, y0) ∈ D be given. The initial value problem for an ODE is given by

y′ = f(x, y), (x, y) ∈ D, (7.1a)

y(x0) = y0. (7.1b)

The following result is concerning the equivalence of the initial value problem (7.1) with
an integral equation.

Lemma 7.1. A continuous function y defined on an interval I containing the point x0 is
a solution of the initial value problem (7.1) if and only if y satisfies the integral equation

y(x) = y0 +

∫ x

x0

f(s, y(s)) ds, (7.2)

for all x ∈ I.

Proof: If y is a solution of the initial value problem (7.1), then we have

y′(x) = f(x, y(x)). (7.3)

Integrating the above equation from x0 to x yields the integral equation (7.2).

On the other hand let y be a solution of integral equation (7.2). Observe that, due to
continuity of the function x→ y(x), the function s→ f(s, y(s)) is continuous on I. Thus
by fundamental theorem of integral calculus, the right hand side of (7.2) is a differentiable
function with respect to x and its derivative is given by the function x→ f(x, y(x)), which
is a continuous function. From (7.2), we see that y is continuously differentiable and hence
a direct differentiation of this equation yields the ODE (7.1a). Evaluating (7.2) at x = x0
gives the initial condition y(x0) = y0. ⊓⊔

Remark 7.2. The following are the consequences of Lemma 7.1.

• If f is a function of x only, ie., f = f(x), which can be integrated explicitly, then
the integration on the right hand side of (7.2) can be obtained explicitely to get the
solution y of the IVP (7.1a) exactly.

For instance, if f(x, y) = ex, then the solution of (7.1a) is y(x) = y0 + ex − ex0 .

• If f depends on y, ie., f = f(x, y), then (7.2) is an integral equation which in general
cannot be solved explicitly. However, there are some particular cases, for instance when
(7.1a) is linear, separable or exact, then we can obtain a solution of (7.1a). There are
certain other cases where an integral factor can be obtained through which the equation
can be made exact. But, there are many ODEs for which none of the above mentioned
methods can be used to obtain solution.
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For instance, the equation
y′ = x2 + y2

is clearly neither linear nor separable nor exact. Also any of the standard ways of
finding integrating factor will not work for this equation.

When standard method cannot be used to obtain solutions exactly, several approxi-
mation procedures may be proposed for finding an approximate solution to the initial
value problem (7.1). In these procedures, one may use the ODE (7.1a) itself or its
equivalent integral formulation (7.2). If we choose the ODE (7.1a), then the derivative
may be approximated by a numerical differentiation formula. In case we choose the
integral formulation (7.2), then we may use various numerical integration techniques
(quadrature rules) to adopt a numerical method for approximating the solution of the
initial value problem (7.1). ⊓⊔

Before going for a numerical method, it is important to ensure that the given initial
value problem has a unique solution. Otherwise, we will be solving an initial value problem
numerically, which actually does not have a solution or it may have many solutions and
we do not know which solution the numerical method obtains. Let us illustrate the non-
uniqueness of solution of an initial value problem.

Example 7.3 (Peano). Let us consider the initial value problem

y′ = 3 y2/3, y(0) = 0. (7.4)

Note that y(x) = 0 for all x ∈ R is clearly a solution for this initial value problem.
Also, y(x) = x3 for all x ∈ R. This initial value problem has infinite family of solutions
parametrized by c ≥ 0, given by

yc(x) =

{
0 if x ≤ c,

(x− c)3 if x > c,

defined for all x ∈ R. Thus, we see that a solution to an initial value problem need not be
unique. ⊓⊔

However by placing additional conditions on f , we can achieve uniqueness as stated in
the following theorem. The proof of this theorem is omitted for this course.

Theorem 7.4 (Cauchy-Lipschitz-Picard’s Existence and Uniqueness Theorem).
Let D ⊆ R2 be a domain and I ⊂ R be an interval. Let f : D → R be a continuous
function. Let (x0, y0) ∈ D be a point such that the rectangle R defined by

R = {x : |x− x0| ≤ a} × {y : |y − y0| ≤ b} (7.5)

is contained in D. Let f be Lipschitz continuous with respect to the variable y on R, i.e.,
there exists a K > 0 such that

|f(x, y1)− f(x, y1)| ≤ K|y1 − y2| ∀(x, y1), (x, y2) ∈ R.

Then the initial value problem (7.1) has at least one solution on the interval |x− x0| ≤ δ
where δ = min{a, b

M
}. Moreover, the initial value problem (7.1) has exactly one solution

on this interval.
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Remark 7.5. We state without proof that the function f(x, y) = y2/3 in Example 7.3 is
not a Lipschitz function on any rectangle containing the point (0, 0) in it.

While verifying that a given function f is Lipschitz continuous is a little difficult, one
can easily give a set of alternative conditions that guarantee Lipschitz continuity, and also
these conditions are easy to verify.

Lemma 7.6. Let D ⊆ R2 be an open set and f : D → R be a continuous function such
that its partial derivative with respect to the variable y is also continuous on D, i.e.,
∂f
∂y

: D → R is a continuous function. Let the rectangle R defined by

R = {x : |x− x0| ≤ a} × {y : |y − y0| ≤ b}

be contained in D. Then f is Lipschitz continuous with respect to the variable y on R.

Proof: Let (x, y1), (x, y2) ∈ R. Applying mean value theorem with respect to the y
variable, we get

f(x, y1)− f(x, y1) =
∂f

∂y
(x, ξ)(y1 − y2), (7.6)

for some ξ between y1 and y2. Since we are applying mean value theorem by fixing x, this
ξ will also depend on x. However since ∂f

∂y
: D → R is a continuous function, it will be

bounded on R. That is, there exists a number L > 0 such that∣∣∣∣∂f∂y (x, y)
∣∣∣∣ ≤ L for all (x, y) ∈ R. (7.7)

Taking modulus in the equation (7.6), and using the last inequality we get

|f(x, y1)− f(x, y1)| =
∣∣∣∣∂f∂y (x, ξ)

∣∣∣∣ |(y1 − y2)| ≤ L |(y1 − y2)|.

This finishes the proof of lemma. ⊓⊔
The following theorem can be used as a tool to check the existence and uniqueness of

solution of a given initial value problem (7.1).

Corollary 7.7 (Existence and Uniqueness Theorem).

Let D ⊆ R2 be a domain and I ⊆ R be an interval. Let f : D → R be a continuous
function. Let (x0, y0) ∈ D be a point such that the rectangle R defined by

R = {x : |x− x0| ≤ a} × {y : |y − y0| ≤ b} (7.8)

is contained in D.

If the partial derivative ∂f/∂y is also continuous in D, then there exists a unique
solution y = y(x) of the initial value problem (7.1) defined on the interval |x − x0| ≤ δ
where δ = min{a, b

M
}.
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We state an example (without details) of an initial value problem that has a unique
solution but the right hand side function in the differential equation is not a Lipschitz
function. Thus this example illustrates the fact that condition of Lipschitz continuity is
only a sufficient condition for uniqueness and by no means necessary.

Example 7.8. The IVP

y′ =

{
y sin 1

y
if y ̸= 0

0 if y = 0,
y(0) = 0.

has unique solution, despite the RHS not being Lipschitz continuous with respect to the
variable y on any rectangle containing (0, 0). ⊓⊔

Remark 7.9 (On Existence and Uniqueness Theorem).

(1) Though we have stated existence theorems without proof, we can confirm that their
proofs do not give an explicit soluton of the initial value problem being considered. In
fact, the proofs give a sequence of functions that converge to a solution of the initial
value problem.

(2) Even when the RHS of the ordinary differential equation is a function of x only, we do
not have explicit solutions. For example,

y′ = e−x2

, y(0) = 0.

The only alternative is to approximate its solution by a numerical procedure. ⊓⊔

7.2 Discretization Notations

A numerical method gives approximate value of the solution of the initial value problem
(7.1) at only a discrete set of point. Thus, if we are interested in obtaining solution for
(7.1a) in an interval [a, b], then we first discretize the interval as

a = x0 < x1 < · · · < xn = b, (7.9)

where each point xi, i = 0, 1, · · · , n is called a node. Unless otherwise stated, we always
assume that the nodes are equally spaced. That is,

xj = x0 + jh, j = 0, 1, · · ·n (7.10)

for a sufficiently small positive real number h. We use the notation for the approximate
solution as

yj = yh(xj) ≈ y(xj), j = 0, 1, · · · , n. (7.11)
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7.3 Euler’s Method

The most simplest numerical method for a first order ordinary differential equation (7.1a)
is obtained by replace the first order derivative of the unknown function by its finite
difference formula. Assume that we know the value of the unknown function y at a point
x = x0. For obtaining the value of y at the point x1 = x0+h, we use the forward difference
formula for the derivative given by

y′(x) ≈ 1

h
(y(x+ h)− y(x))

in (7.1a) to get
1

h
(y(x1)− y(x0)) ≈ f(x0, y(x0)).

This can be used to obtain the value of y(x1) in terms of x0 and y(x0) as

y(x1) ≈ y(x0) + hf(x0, y(x0)).

Since we assumed that we know the value of y(x0), the right hand side is fully known and
hence y(x1) can now be computed explicitly.

In general, if you know the value of y(xj), j = 0, 1, · · · , n, we can obtain the value of
y(xj+1) by using the forward difference formula in (7.1a) at x = xj to get

1

h
(y(xj+1)− y(xj)) ≈ f(xj, y(xj)).

Denoting the approximate value of y(xj) by yj, we can adopt the formula

yj+1 = yj + hf(xj, yj), j = 0, 1, · · · , n− 1 (7.12)

for obtaining the values of the solution y at the discrete points xj, j = 1, 2, · · · , n by
taking the value of y0 from the initial condition (7.1b). The formula (7.12) is called the
forward Euler’s method.

The backward Euler’s method can be obtained by using the backward difference
formula for the derivative of y in (7.1) and is given by

yj−1 = yj − hf(xj, yj), j = 0,−1, · · · ,−n+ 1. (7.13)

By Euler’s method we mean either forward or backward Euler’s method depending on
the context.

Geometrical Interpretation:
A geometric insight into Euler’s method is shown in Figure 7.1 The tangent line to the
graph of y(x) at x = xj has slope f(xj, yj). The Euler’s method approximates the value
of y(xj+1) by the corresponding value of tangent line at the point x = xj+1. ⊓⊔
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Fig. 7.1. Geometrical interpretation of Euler’s method

Example 7.10. Consider the initial value problem

y′ = y, y(0) = 1.

The Euler method (7.12) for this equation takes the form

yj+1 = yj + hyj = (1 + h)yj.

Note that the exact solution for the given initial value problem is y(x) = ex.

On applying Euler’s method with h = 0.01 and using 7-digit rounding, we get

y(0.01) ≈ y1 = 1 + 0.01 = 1.01

y(0.02) ≈ y2 = 1.01 + 0.01(1.01) = 1.0201

y(0.03) ≈ y3 = 1.0201 + 0.01(1.0201) = 1.030301

y(0.04) ≈ y4 = 1.030301 + 0.01(1.030301) = 1.040604

The numerical results along with the error is presented in the following table for h = 0.01.

h x yh(x) Exact Solution Error Relative Error
0.01 0.00 1.000000 1.000000 0.000000 0.000000
0.01 0.01 1.010000 1.010050 0.000050 0.000050
0.01 0.02 1.020100 1.020201 0.000101 0.000099
0.01 0.03 1.030301 1.030455 0.000154 0.000149
0.01 0.04 1.040604 1.040811 0.000207 0.000199
0.01 0.05 1.051010 1.051271 0.000261 0.000248
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Since the exact solution of this equation is y = ex, the correct value at x = 0.04 is
1.040811.

By taking smaller values of h, we may improve the accuracy in the Euler’s method.
The numerical results along with the error is shown in the following table for h = 0.005.

h x yh(x) Exact Solution Error Relative Error
0.005 0.00 1.000000 1.000000 0.000000 0.000000
0.005 0.00 1.005000 1.005013 0.000013 0.000012
0.005 0.01 1.010025 1.010050 0.000025 0.000025
0.005 0.01 1.015075 1.015113 0.000038 0.000037
0.005 0.02 1.020151 1.020201 0.000051 0.000050
0.005 0.02 1.025251 1.025315 0.000064 0.000062
0.005 0.03 1.030378 1.030455 0.000077 0.000075
0.005 0.03 1.035529 1.035620 0.000090 0.000087
0.005 0.04 1.040707 1.040811 0.000104 0.000100
0.005 0.04 1.045910 1.046028 0.000117 0.000112
0.005 0.05 1.051140 1.051271 0.000131 0.000125

7.3.1 Error in Euler’s Method

In Example (7.10), we illustrated that as we reduce the step size h, we tend to get more
accurate solution of a given IVP at a given point x = xj. The truncation error confirms
this illustration when y′′ is a bounded function. However, the mathematical error which
involves the truncation error in the computed solution yj and the propagating error from
the computation of the solution at x = xi for i = 0, 1, · · · j − 1. In addition to the
mathematical error, we also have arithmetic error due to floating-point approximation in
each arithmetic operation. In this section, we study the total error involved in forward
Euler’s method. Total error involved in backward Euler’s method can be obtained in a
similar way.

Using Taylor’s theorem, write

y(xj+1) = y(xj) + hy′(xj) +
h2

2
y′′(ξj)

for some xj < ξj < xj+1. Since y(x) satisfies the ODE y′ = f(x, y(x)), we get

y(xj+1) = y(xj) + hf(xj, y(xj)) +
h2

2
y′′(ξj).

Thus, the local truncation error in forward Euler’s method is

Tj+1 =
h2

2
y′′(ξj), (7.14)

which is the error involved in obtaining the value y(xj+1) using the exact value y(xj). The
forward Euler’s method uses the approximate value yj in the formula and therefore the
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finally computed value yj+1 not only involves the truncation error but also the propagated
error involved in computing yj. Thus, the local mathematical error in the forward
Euler’s method is given by

ME(yj+1) := y(xj+1)− yj+1 = y(xj)− yj + h(f(xj, y(xj))− f(xj, yj)) +
h2

2
y′′(ξj).

Here, y(xj)− yj + h(f(xj, y(xj))− f(xj, yj)) is the propagated error.

The propagated error can be simplified by applying the mean value theorem to f(x, z)
considering it as a functin of z:

f(xj, y(xj))− f(xj, yj) =
∂f(xj, ηj)

∂z
[y(xj)− yj],

for some ηj lying between y(xj) and yj. Using this, we get the mathematical error

ME(yj+1) =

[
1 + h

∂f(xj, ηj)

∂z

]
ME(yj) +

h2

2
y′′(ξj) (7.15)

for some xj < ξj < xj+1, and ηj lying between y(xj) and yj.

We now assume that over the interval of interest,∣∣∣∣∂f(xj, y(xj))∂z

∣∣∣∣ < L, |y′′(x)| < Y,

where L and Y are fixed positive constants. On taking absolute values in (7.15), we obtain

|ME(yj+1)| ≤ (1 + hL)|ME(yj)|+
h2

2
Y. (7.16)

Applying the above estimate recursively, we get

|ME(yj+1)| ≤ (1 + hL)2|ME(yj−1)|+ (1 + (1 + hL))
h2

2
Y

≤ · · ·
≤ · · ·

≤ (1 + hL)j+1|ME(y0)|+
(
1 + (1 + hL) + (1 + hL)2 + · · ·+ (1 + hL)j

)h2
2
Y.

Using the formulas

(1) For any α ̸= 1,

1 + α + α2 + · · ·+ αj =
αj+1 − 1

α− 1

(2) For any x ≥ −1,
(1 + x)N ≤ eNx,

in the above inequality, we have proved the following theorem.
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Theorem 7.11. Let y ∈ C2[a, b] be a solution of the IVP (7.1) with∣∣∣∣∂f(x, y)∂y

∣∣∣∣ < L, |y′′(x)| < Y,

for all x and y, and some constants L > 0 and Y > 0. The mathematical error in the
forward Euler’s method at a point xj = x0 + jh satisfies

|ME(yj)| ≤
hY

2L

(
e(xn−x0)L − 1

)
+ e(xn−x0)L|y(x0)− y0| (7.17)

Example 7.12. Consider the initial value problem

y′ = y, y(0) = 1, x ∈ [0, 1].

Let us now find the upper bound for the mathematical error of forward Euler’s method
in solving this problem.

Here f(x, y) = y. Therefore, ∂f/∂y = 1 and hence we can take L = 1.

Since y = ex, y′′ = ex and |y′′(x)| ≤ e for 0 ≤ x ≤ 1. Therefore, we take Y = e.

We now use the estimate (7.17) with x0 = 0 and xn = 1 to obtain

|ME(yj)| ≤
he

2
(e− 1) ≈ 2.3354h.

Here, we assume that there is no approximation in the initial condition and therefore the
second term in (7.17) is zero.

To validate the upper bound obtained above, we shall compute the approximate so-
lution of the given IVP using forward Euler’s method. The method for the given IVP
reads

yj+1 = yj + hf(xj, yj) = (1 + h)yj.

The solution of this difference equation satisfing y(0) = 1 is

yj = (1 + h)j.

Now, if h = 0.1, n = 10, we have yj = (1.1)10. Therefore, the forward Euler’s method gives
y(1) ≈ y10 ≈ 2.5937. But the exact value is y(1) = e ≈ 2.71828. The error is 0.12466,
whereas the bound obtained from (7.17) was 0.2354. ⊓⊔

Remark 7.13. The error bound (7.17) is valid for a large family of the initial value prob-
lems. But, it usually produces a very poor estimate due to the presence of the exponential
terms. For instance, in the above example, if we take xn to be very large, then the corre-
sponding bound will also be very large. ⊓⊔

The above error analysis assumes that the numbers used are of infinite precision and
no floating point approximation is assumed. When we include the floating point approxi-
mation that yn = ỹn+ ϵn, then the bound for total error is given in the following theorem.
The proof of this theorem is left as an exercise.
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Theorem 7.14. Let y ∈ C2[a, b] be a solution of the IVP (7.1) with∣∣∣∣∂f(x, y)∂y

∣∣∣∣ < L, |y′′(x)| < Y,

for all x and y, and some constants L > 0 and Y > 0. Let yj be the approximate solution
of (7.1) computed using the forward Euler’s method (7.12) with infinite precision and let
ỹj be the corresponding computed value using finite digit floating-point arithmetic. If

yj = ỹj + ϵj,

then the total error TE(yj) := y(xj)− ỹj in forward Euler’s method at a point xj = x0+jh
satisfies

|TE(yj)| ≤
1

L

(
hY

2
+
ϵ

h

)(
e(xn−x0)L − 1

)
+ e(xn−x0)L|ϵ0|, (7.18)

where ϵ := max{|ϵi|/i = 0, 1, · · · , n}. ⊓⊔

7.4 Modified Euler’s Methods

The Euler’s method derived in the previous section can also be derived using the equivalent
integral form of the IVP (7.1) as discussed in Lemma 7.1. Using this integral form in the
interval [xj, xj+1], we get

y(xj+1) = y(xj) +

∫ xj+1

xj

f(s, y)ds. (7.19)

The Euler’s method can be obtained by replacing the integral on the right hand side by
the rectangle rule.

Using the integral form in the interval [xj−1, xj+1] and using the mid-point quadrature
formula given by ∫ xj+1

xj−1

f(s, y)ds ≈ f(xj, yj)(xj+1 − xj−1),

we get the Euler’s mid-point method

yj+1 = yj−1 + 2hf(xj, yj). (7.20)

To compute the value of yj+1, we need to know the value of yj−1 and yj. Note that the
above formula cannot be used to compute the value of y1. Hence, we need another method
to obtain y1 and then yj, for j = 2, 3, · · · , n can be obtained using (7.20). This method
belongs to the class of 2-step methods.

Example 7.15. Consider the initial-value problem

y′ = y, y(0) = 1.
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To obtain the approximate value of y(0.4) with h = 0.01:

We first use Euler’s method to get

y(0.01) ≈ y1 = 1 + 0.01 = 1.01

Next use Euler’s mid-point method to get

y(0.02) ≈ y2 = y0 + 2× h× y1 = 1 + 2× 0.01× 1.01 = 1.0202

y(0.03) ≈ y3 = y1 + 2× h× y2 = 1.01 + 2× 0.01× 1.0202 ≈ 1.030404

y(0.04) ≈ y4 = y2 + 2× h× y3 = 1.040808

Since the exact solution of this equation is y = ex, the correct value at x = 0.04 is
1.040811. The error is 0.000003.

Recall the error in Euler method was 0.000199. ⊓⊔

The methods derived above are explicit methods in the sense that the value of yj+1 is
computed using the known values. If we using the trapezoidal rule for the integration on
the right hand side of (7.19), we get

yj+1 = yj +
h

2
(f(xj, yj) + f(xj+1, yj+1)). (7.21)

This method is called the Euler’s Trapezoidal method. Here, we see that the formula
(7.21) involves an implicit relation for yj+1. Such methods are referred to as implicit
methods.

Although the Euler’s Trapezoidal method gives an implicit relation for yj+1, sometimes
it is explicit to compute the values yj+1 as illustrated in the following example.

Example 7.16. Let us use the Euler’s trapezoidal rule with h = 0.2 to obtain the appox-
imate solution of the initial value problem

y′ = xy, y(0) = 1.

We have y0 = 1 and

y1 = y0 +
h

2
(x0y0 + x1y1) = 1 + 0.1(0 + 0.2y1),

which gives (1− 0.02)y1 = 1, and this implies y1 ≈ 1.0204. Similarly,

y2 = y1 +
h

2
(x1y1 + x2y2) = 1.0204 + 0.1(0.2× 1.0204 + 0.4y2),

and

y(0.4) ≈ y2 =
1.0408

1− 0.04
≈ 1.0842.

⊓⊔
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In general, the Euler’s trapezoidal rule gives a nonlinear equation for yj+1 as illustrated
below.

Example 7.17. Consider the initial value problem

y′ = e−y, y(0) = 1.

We use the Euler’s trapezoidal rule with h = 0.2 to solve the above problem. We have,

y1 = y0 +
h

2
(e−y0 + e−y1) = 1 + 0.1(e−1 + e−y1),

which gives the nonlinear equation

g(y1) = y1 − 0.1e−y1 − (1 + 0.1e−1) = 0,

and the solution of this equation is the approximate value of the solution y(x1) of the
given initial value problem. ⊓⊔

7.5 Runge-Kutta Methods

Although Euler’s method is easy to implement, this method is not so efficient in the sense
that to get a better approximation, one needs a very small step size. One way to get
a better accuracy is to include the higher order terms in the Taylor expansion to get
an approximation to y′. But the higher order terms involve higher derivatives of y. The
Runge-Kutta methods attempts to obtain higher order accuracy and at the same time
avoid the need for higher derivatives, by evaluating the function f(x, y) at selected points
on each subintervals. We first derive the Runge-Kutta method of order 2. The derivation
of the Runge-Kutta method of order 4 can be done in a similar way. So, we skip the
derivation of this method and present only final formula.

7.5.1 Order Two

Let y be a solution of the ODE (7.1a). The Runge-Kutta method of order 2 is obtained
by truncating the Taylor expansion of y(x+h) after the quadratic term. We derive now a
formula for this method. Taylor expansion of y(x + h) at the point x upto the quadratic
term is given by

y(x+ h) = y(x) + hy′(x) +
h2

2
y′′(x) +O(h3). (7.22)

Since y satisfies the given ODE y′ = f(x, y), by differentiating this ODE with respect to
x both sides gives

y′′(x) =
∂f

∂x
(x, y(x)) + y′(x)

∂f

∂y
(x, y(x)) (7.23)

Substituting the values of y′, y′′ in (7.22), we get
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y(x+ h) = y(x) + hf(x, y(x)) +
h2

2

[
∂f

∂x
(x, y(x)) + f(x, y(x))

∂f

∂y
(x, y(x))

]
+O(h3).

The last equation is re-written as

y(x+ h) = y(x) +
h

2
f(x, y(x))

+
h

2

[
f(x, y(x)) + h

∂f

∂x
(x, y(x)) + hf(x, y(x))

∂f

∂y
(x, y(x))

]
+O(h3) (7.24)

Taking x = xj for j = 0, 1, · · · , n− 1 with xj+1 = xj + h in (7.24), we get

y(xj+1) = y(xj) +
h

2
f(xj, y(xj))

+
h

2

[
f(xj, y(xj)) + h

∂f

∂x
(xj, y(xj)) + hf(xj, y(xj))

∂f

∂y
(xj, y(xj))

]
+O(h3). (7.25)

Let us now expand the function f = f(s, t), which is a function of two variables, into its
Taylor series at the point (ξ, τ) and truncate the series after the linear term. It is given
by

f(s, t) = f(ξ, τ) + (s− ξ)
∂f

∂s
(ξ, τ) + (t− τ)

∂f

∂t
(ξ, τ) +O

(
(s− ξ)2

)
+O

(
(t− τ)2

)
.

Taking (ξ, τ) = (xj, y(xj)) and comparing the above equation with the term in the square
brackets in the equation (7.25), we get

y(xj+1) = y(xj) +
h

2
f(xj, y(xj)) +

h

2
[f(xj+1, y(xj) + hf(xj, y(xj)))] +O(h3). (7.26)

Truncating the higher order terms and denoting the approximate value of y(xj+1) as yj+1,
we get

yj+1 = yj +
h

2
f(xj, yj) +

h

2
[f(xj+1, yj + hf(xj, yj))] . (7.27)

Although the terms dropped from (7.26) to get (7.27) are of order 3 (namely, O(h3)),
the resultant approximation to y′ is of order 2 as is evident from the Taylor’s formula
(7.22). The equation (7.27) is therefore known as Runge-Kutta method of order 2.
To facilitate easy memorizing, the formula (7.27) may be written as

yj+1 = yj +
1

2
(k1 + k2),

where

k1 = h f(xj, yj)

k2 = h f(xj+1, yj + k1).

The truncation error of Runge-Kutta method of order 2 is of order O(h3) whereas the
Euler’s method is of order O(h2). Therefore, for a fixed h > 0 we expect to get more
accurate result from Runge-Kutta method order 2 when compared to Euler’s method.
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Example 7.18. Consider the initial-value problem

y′ = y, y(0) = 1.

Using Runge-Kutta method of order 2, we obtain

x y k1 k2
0.000000 1.000000 0.010000 0.010100
0.010000 1.010050 0.010000 0.010100
0.020000 1.020201 0.010100 0.010202
0.030000 1.030454 0.010202 0.010304
0.040000 1.040810 0.010305 0.010408

Recall the exact solution is y(x) = ex and y(0.04) ≈ 1.040811. Therefore, the error involved
is 0.000001 which is much less than the error (0.000199) obtained in Euler’s method for
h = 0.01. ⊓⊔

7.5.2 Order Four

We state without derivation, the formula for the Runge-Kutta method of order 4.

yj+1 = yj +
1

6
(k1 + 2k2 + 2k3 + k4)

where

k1 = hf(xj, yj),

k2 = hf

(
xj +

h

2
, yj +

k1
2

)
,

k3 = hf

(
xj +

h

2
, yj +

k2
2

)
,

k4 = hf(xj + h, yj + k3)

The local truncation error of the 4th order Runge-Kutta Method is of O(h5).

Example 7.19. Consider the initial-value problem

y′ = y, y(0) = 1.

Using Runge-Kutta method of order 4, we obtain

xj yj Exact Solution Error Relative Error
0.00 1.000000 1.000000 0.000000 0.000000
0.01 1.010050 1.010050 0.000000 0.000000
0.02 1.020201 1.020201 0.000000 0.000000
0.03 1.030455 1.030455 0.000000 0.000000
0.04 1.040811 1.040811 0.000000 0.000000

Note that the exact solution is y(x) = ex. ⊓⊔
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7.6 Exercises

(1) Let h > 0 and let xj = x0 + jh (j = 1, 2, · · · , n) be given nodes. Consider the initial
value problem y′(x) = f(x, y), y(x0) = y0, with

∂f(x, y)

∂y
≤ 0,

for all x ∈ [x0, xn] and for all y.

(i) Using error analysis of the Euler’s method, show that there exists an h > 0 such
that

|en| ≤ |en−1|+
h2

2
f ′′(ξ) for some ξ ∈ (xn−1, xn),

where en = y(xn)− yn with yn obtained using Euler method.

(ii) Applying the conclusion of (i) above recursively, prove that

|en| ≤ |e0|+ nh2 Y where Y =
1

2
max

x0≤x≤xn

|y′′(x)|. (∗∗)

(2) The solution of the initial value problem

y′(x) = λy(x) + cosx− λ sinx, y(0) = 0

is y(x) = sin x. For λ = −20, find the approximate value of y(3) using the Euler’s
method with h = 0.5. Compute the error bound given in (∗∗), and Show that the
actual absolute error exceeds the computed error bound given in (∗∗). Explain why it
does not contradict the validity of (∗∗).

(3) Derive the backward Euler’s method for finding the approximate value of y(xn) for
some xn < 0, where y satisfies the initial value problem y′(x) = f(x, y), y(0) = y0.

(4) Consider the initial value problem y′ = −2y, 0 ≤ x ≤ 1, y(0) = 1.

(i) Find an upper bound on the error in approximating the value of y(1) computed
using the Euler’s method (at x = 1) in terms of the step size h.

(ii) For each h, solve the difference equation which results from the Euler’s method,
and obtain an approximate value of y(1).

(iii) Find the error involved in the approximate value of y(1) obtained in (ii) above by
comparing with the exact solution.

(iv) Compare the error bound obtained in (i) with the actual error obtained in (iii) for
h = 0.1, and for h = 0.01.

(v) If we want the absolute value of the error obtained in (iii) to be at most 0.5×10−6,
then how small the step size h should be?

(5) Consider the initial value problem y′ = xy, y(0) = 1. Estimate the error involved
in the approximate value of y(1) computed using the Euler’s method (with infinite
precision) with step size h = 0.01.
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(6) Find an upper bound for the propagated error in Euler method (with infinite precision)
with h = 0.1 for solving the initial value problem y′ = y, y(0) = 1, in the interval

(i) [0, 1] and

(ii) [0, 5].

(7) For each n ∈ N, write down the Euler’s method for the solution of the initial value
problem y′ = y, y(0) = 1 on the interval [0, 1] with step size h = 1/n. Let the resulting
approximation to y(1) be denoted by αn. Show using limiting argument (without using
the error bound) that αn → y(1) as n→ ∞.

(8) In each of the following initial value problems, use the Euler’s method, Runge-Kutta
method of order 2 and 4 to find the solution at the specified point with specified step
size h:

(i) y′ = x + y; y(0) = 1. Find y(0.2) (For the Euler’s method take h = 0.1 and for
other methods, take h = 0.2). The exact solution is y(x) = −1− x+ 2ex.

(ii) y′ = 2 cosx − y, y(0) = 1. Find y(0.6) (For the Euler’s method take h = 0.1 and
for other methods, take h = 0.2) The exact solution is y(x) = sinx+ cos x.

(9) Use the Euler’s, Runge-Kutta methods of order 2 and 4 to solve the IVP y′ = 0.5(x−y)
for all x ∈ [0, 3] with initial condition y(0) = 1. Compare the solutions for h =
1, 0.5, 0.25, 0.125 along with the exact solution y(x) = 3e−x/2 + x− 2.

(10) Show that the Euler’s and Runge-Kutta methods fail to determine an approximation
to the non-trivial solution of the initial value problem y′ = yα, 0 < α < 1, y(0) = 0.
Note that the ODE is in separable form and hence a non-trivial solution to initial value
problem can be found analytically.

(11) Write the formula using the Euler’s method for approximating the solution to the
initial value problem

y′ = x2 + y2, y(x0) = y0

at the point x = x1 with h = x0−x1 > 0. Find the approximate value y1 of the solution
to this initial value problem at the point x1 when x0 = 0, y0 = 1, and h = 0.25. Find
a bound for the truncation error in obtaining y1.

(12) Using the Gaussian rule determine a formula for solving the initial value problem

y′ = e−x2

, y(x0) = y0.

in the form
yj+1 = yj−1 + h

(
e
−(xj− h√

3
)2
+ e

−(xj+
h√
3
)2
)

when the nodes are equally spaced with spacing h = xj+1 − xj, j ∈ Z. (h > 0). Let
x0 = 0, and y0 = 1. Using the method derived above, obtain approximate values of
y(−0.1) and y(0.1). (Mid-sem Exam, Spring 2012)
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l1 norm, 70
n-digit floating-point number, 28
2-step method, 219

Absolute error, 34
Arithmetic error, 27

in interpolating polynomial, 163, 166

Backward difference, 197
Backward substitution, 52, 56, 61
Big Oh, 20, 21
Binary representation, 28
Bisection method, 114
Bounded sequence, 8
Bracketing method, 113

Central difference, 197
Chebyshev nodes, 171
Cholesky’s factorization, 68
Chopping a number, 31
Closed domain method, 113
Composite

Simpson’s rule, 191
trapezoidal rule, 188

Condition number
of a function, 41
of a matrix, 74

Continuity of a function, 11
Continuous function, 11
Contraction map, 135
Convergent sequence, 8
Crout’s factorization, 67
Cubic spline, 173

Data, 150
Decimal representation, 28
Decreasing sequence, 8
Degree of precision, 192
Derivative of a function, 12
Diagonally dominant matrix, 80
Difference

backward, 197
central, 197

forward, 196
Differentiable function, 12
Direct method, 49, 50, 77
Divided difference, 157

higher-order formula, 158
symmetry, 158

Dominant eigenvalue, 88
Doolittle’s factorization, 62
Double precision, 32

Eigenvalue
dominant, 88

Eigenvalues; Power method, 94
Error, 34

absolute, 34
arithmetic, 27
floating-point, 40
in Euler’s method, 216
in interpolating polynomial, 163
arithmetic, 163, 166
mathematical, 163, 164
total, 163

in iterative procedure, 80
in rectangle rule, 184
in Simpson’s rule, 190
in trapezoidal rule, 186
mathematical, 27
percentage, 34
propagated, 40
propagation of, 38
relative, 34
relative total, 40
residual, 84
total, 27, 40
truncation, 18, 35

Euclidean norm, 70
Euler’s method

forward, 214
mid-point, 219
modified, 219
trapezoidal, 220

Exact arithmetic, 32
Explicit method, 220



Index

Exponent, 28

Faber’s theorem, 170
First mean value theorem for integrals, 14
Fixed point, 133

iteration method, 133
Floating-point

approximation, 31
error, 40
representation, 28

Forward
difference, 196
elimination, 52, 56
substitution, 60

Gauss-Seidel method, 82
Gaussian

rules, 193
Gaussian elimination method

modified, 54
Naive, 51
operations count, 56

Gerschgorin’s
circle theorem, 102
disk, 103

Hermite-Gennochi formula, 160
Hilbert matrix, 75

Ill-conditioned
function evaluation, 42

Ill-conditioned matrix, 75
Implicit method, 220
Increasing sequence, 8
Infinite norm, 165
Infinite precision, 32
Initial

condition, 209
value problem, 209

Intermediate value theorem, 12
Interpolating function, 149
Interpolating polynomials; convergence, 170
Interpolation, 149

condition, 150
error, 163
arithmetic, 163, 166
mathematical, 163, 164
total, 163

linear polynomial, 154
piecewise polynomial, 172
polynomial, 150, 152
existence and uniqueness, 150
Lagrange’s form, 154
Newton’s form, 156

quadratic polynomial, 154
spline, 173

Iterative
methods, 113

Iterative method, 49, 77

fixed-point, 133
Gauss-Seidel, 82
Jacobi, 78
refinement, 86
residual corrector, 86

Jacobi method, 78

Lagrange’s
form of interpolating polynomial, 154
polynomial, 153

Limit
of a function, 9
of a sequence, 8
left-hand, 9
of a function, 11
right-hand, 9

Linear system
direct method, 49, 50
Gaussian elimination method, 51, 54
iterative method, 49
LU factorization, 62
Thomas method, 58

Little oh, 20, 21
LU factorization/decomposition, 62

Cholesky’s, 68
Crout’s, 67
Doolittle’s, 62

Machine epsilon, 33
Mantissa, 28
Mathematical error, 27

in central difference formula, 198
in difference formulas, 200
in Euler’s method, 217
in forward difference formula, 196
in interpolating polynomial, 163, 164

Matrix norm, 71
maximum-of-column-sums, 72
maximum-of-row-sums, 72
spectral, 73
subordinate, 71

Maximum norm, 70
Maximum-of-column-sums norm, 72
Maximum-of-row-sums norm, 72
Mean value theorem

derivative, 14, 17
integrals, 14, 15

Mid-point rule, 184, 219
Modified Gaussian elimination method, 54
Monotonic sequence, 8

Naive Gaussian elimination method, 51
Natural spline, 175
Newton’s

divided difference, 157
form of interpolating polynomial, 156

Newton-Cotes formula, 184
Newton-Raphson method, 128
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Nodes, 150, 213
Chebyshev, 171

Nonlinear equation, 113
bisection method, 114
Newton-Raphson method, 128
regula-falsi method, 119
secant method, 126

Norm
infinite, 165
matrix, 71
maximum-of-column-sums, 72
maximum-of-row-sums, 72
spectral, 73
subordinate, 71

vector, 70
l1, 70
Euclidean, 70
maximum, 70

Numerical integration, 183
Gaussian rule, 193
mid-point, 184
Newton-Cotes, 184
rectangle, 184
Simpson’s rule, 189, 192
trapezoidal, 186

Oh
Big and Little, 20, 21

Open domain methods, 114
Optimum bound, 104
Order

of accuracy, 197
of convergence, 22

Order of exactness, 192
Ordinary differential equation, 209
Overflow, 29

Percentage error, 34
Piecewise polynomial interpolation, 172
Polynomial interpolation, 150, 152

existence and uniqueness, 150
Lagrange’s form, 154
Newton’s form, 156
piecewise linear, 172

Positive definite matrix, 67
Power method, 89, 91
Precision, 31

degree of, 192
double, 32
infinite, 32

Principal minors, 62
leading, 62

Principal sub-matrix, 62
Propagated error, 40

in Euler’s method, 217
Propagation of error, 38

Quadrature, 183
Gaussian, 193

mid-point, 184
Newton-Cotes, 184
rectangle, 184
Simpson’s, 189, 192
trapezoidal, 186

Quadrature mid-point, 219

Radix, 28
Rate of convergence, 22
Rectangle rule, 184
Regula-falsi method, 119
Relative error, 34
Relative total error, 40
remainder estimate, 18
Remainder term

in Taylor’s formula, 16
Residual

error, 84
vector, 84

Residual corrector method, 86
Residual error, 125
Rolle’s theorem, 13
Rounding a number, 31
Runge

function, 169
phenomenon, 169

Runge-Kutta method
order 2, 222
order 4, 223

Sandwich theorem, 8, 10
Secant method, 126
Second mean value theorem for integrals, 15
Self map, 134
Sequence, 7

bounded, 8
convergent, 8
decreasing, 8
increasing, 8
limit, 8
monotonic, 8

Sign, 28
Significant digits, 35

loss of, 37
number of, 36

Simpson’s rule, 189, 192
composite, 191

Spectral norm, 73
Spline interpolation, 173

cubic, 173
natural, 175

Stability
in function evaluation, 43

Stable computation, 43
Stopping criteria

method for nonlinear equations, 87, 124
Subordinate norms, 71

Taylor’s
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formula, 17
polynomial, 16
series, 18
Theorem, 35
theorem, 16

Thomas method, 58
Total Error

in polynomial interpolation, 168
Total error, 27, 40

in interpolating polynomial, 163
Trapezoidal rule, 186

composite, 188
Triangle inequality, 70, 71
Truncation error, 18, 35

in Euler’s method, 216

Underflow, 29

Undetermined coefficients
differentiation, 201
integration, 191

Unit round, 33
Unstable computation, 43

Vector norm, 70
l1, 70
Euclidean, 70
maximum, 70

Weights, 183
Well-conditioned

function evaluation, 42
Well-conditioned matrix, 75
Wilkinson’s example, 88
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