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Abstract

The main objective of this dissertation is to study finite volume element methods (FVEMs)

for incompressible miscible displacement problems in porous media. The mathematical

model describing such a displacement in a reservoir gives rise to a system of coupled

nonlinear partial differential equations consisting of the pressure-velocity equation or just

the pressure equation which is of elliptic type and the concentration equation which is of

parabolic type.

Mixed finite volume element procedures have been applied for the pressure equation

to obtain an accurate approximation to the Darcy velocity which, in turn, yields a better

approximation of the concentration. Since FVEMs are conservative, we have applied a

standard FVEM for approximation of the concentration equation. Discontinuous Galerkin

finite element methods are also element wise conservative and are easy to implement com-

pared to other conforming and nonconforming finite elements methods. Therefore, an

attempt has also been made to apply a discontinuous Galerkin FVEM for approximating

the concentration equation. Then existence of a unique discrete solution is proved. Using

backward-Euler difference method, we have discussed a fully discrete scheme and a priori

error estimates in L∞(L2) norm are derived for velocity, pressure and concentration for

both the schemes under appropriate smoothness on the exact solutions. Since the concen-

tration equation is convection dominated diffusion type, the standard numerical schemes

fail to provide a physically relevant solution because these methods suffer from grid orien-

tation effects. One way to minimize the grid orientation effect is to use modified methods

of characteristics (MMOC). We apply MMOC combined with standard FVEM for approx-

imating the concentration equation. Moreover, a priori error estimates are derived for the

velocity and concentration in the L∞(L2) norm. Further, some numerical experiments are

conducted at the end of Chapters 2 through 4 to support our theoretical findings. Finally,

the thesis deals with informal observations regarding the possible extension of the present

work.
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Chapter 1

Introduction

The main objective of this dissertation is to study finite volume element methods (FVEM)

for a coupled system of nonlinear elliptic and parabolic equations arising in incompressible

miscible displacement problems in porous media.

1.1 Motivation

An oil reservoir is a porous medium, whose pores contain some hydrocarbon components,

collectively called as “Oil”. There are mainly three stages of oil recovery.

Primary Recovery. In this stage, the oil or gas is produced by simple natural decompo-

sition. This stage ends rapidly when the pressure equilibrium between the oil field and the

atmosphere is attained. This way upto 10 to 15 percent of the total amount of oil and gas

can be recovered.

To produce more oil from the field, one may think of pumping out oil through the wells and,

thereby, driving the remaining oil towards these wells. But this process has the following

main disadvantages:

• The pressure around the wells may fall below the bubble pressure (see [18]) of the

oil. Hence, mostly gases will be produced and the heavier components will remain

trapped in the field.

• If the pressure in the fluid phase is diminished, this may lead to the collapse of the

1



Chapter 1. Introduction 2

rocks which, in turn, results in a low permeability field and, hence, it will be difficult

to recover oil subsequently.

Secondary recovery. To overcome the above mentioned difficulties, one may divide the

wells into two sets: injection and production wells. In order to push the remaining

oil towards the production well, an inexpensive fluid (e.g. water) is injected through the

injection wells into the porous medium. This helps to maintain a high pressure and flow

rate in the reservoir. In this stage, we have the following two possibilities:

(a) If the pressure is maintained above the bubble pressure of the oil, then the flow in

the reservoir is two-phase immiscible type (say, water and oil) with no mass transfer

between the two phases.

(b) If the pressure goes below the bubble pressure at some points, then the oil may get

split into two phases (liquid and gaseous). Then the flow in the reservoir is of three-

phase type, water phase, which does not exchange mass with the other phases and

two hydrocarbon phases (liquid which is called black oil and gas) which exchange

mass when the pressure and temperature change.

Even in the best case scenario, this stage may produce only 25%−35% of the oil contained

in the field. The main reasons for this low recovery are:

(i) There are some regions which are never flooded by water and, hence, the residual oil

in that part of the reservoir is not recovered.

(ii) Even in the completely flooded regions, a non negligible part of the oil like 20− 30%

remains trapped in the pores due to the capillary forces. In literature, it is called

residual oil.

(iii) In comparison to the oil which is heavy and viscous, the water is extremely mobile.

Therefore, instead of pushing the oil, the water finds its own way very quickly to the

production wells. This is called the fingering effect. Thereafter, only water will come

out through the production wells.
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Tertiary or enhanced recovery. To recover more oil which is left behind after the first

two recovery stages, the miscibility of the fluids must be improved, see [18]. The miscibil-

ity is sought by increasing the field temperature, or by introduction of other components

(usually expensive) like certain polymers or carbon dioxide flooding. Since the demand of

oil is increasing day by day and the prices are going up, these alternatives are now seriously

considered as a viable option to produce more oil. The mathematical model which describes

polymer flooding gives rise to a system of strongly coupled partial differential equations

consisting of an elliptic equation in pressure and a convection dominated diffusion equation

in concentration and this process is known as incompressible miscible displacement in a

porous medium ( see [67]). However, as we have mentioned above, another alternative

is to use carbon dioxide flooding and in this case, the displacement process is known as

compressible miscible displacement.

In the present thesis, we study finite volume element methods for the approximation of in-

compressible miscible displacement problems in porous media. In general, the displacement

problem arises from the natural law of conservation. The standard Galerkin finite element

methods may fail to satisfy the conservation law, but the FVEM are conservative in na-

ture. Therefore, these methods are more suitable for the approximation of the displacement

problems in porous media. Most of the commercial packages like ECLIPSE are also based

on finite volume methods. Moreover, these methods are also widely used in the approxi-

mation of conservation laws, computational fluid mechanics, etc, see, [13, 45, 54, 61]. For

more applications and details of FVEM, we refer to [64]. Since the discontinuous Galerkin

(DG) methods are also element wise conservative, an attempt has been made in this dis-

sertation to apply discontinuous Galerkin finite volume element methods to approximate

the concentration equation.

1.2 Notations and Preliminaries

In this section, we introduce some standard notations which will be used throughout the

thesis.

Let Ω be a bounded domain in R
d, that is, the d-dimensional Euclidean space and ∂Ω
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denote its boundary. Let Lp(Ω) denote the linear space of equivalence classes of measurable

functions φ, defined on Ω, with
∫

Ω

|φ(x)|p dx <∞.

The space Lp(Ω) equipped with the norm

‖φ‖Lp(Ω) =

(
∫

Ω

|φ(x)|p dx
)1/p

, 1 ≤ p <∞,

is a Banach space. For p = ∞, let L∞(Ω) be the linear space consisting of all functions φ

that are essentially bounded on Ω, which is equipped with the norm

‖φ‖L∞ = ess sup
x∈Ω

|φ(x)|.

For p = 2, we denote the inner product and norm on L2(Ω) as

(φ, ψ) =

∫

Ω

φ(x)ψ(x)dx and ‖φ‖ =

(
∫

Ω

|φ(x)|2 dx
)1/2

,

respectively. It is well known that L2(Ω) is a Hilbert space with respect to the inner product

(·, ·).
A multi index α = (α1, α2, · · · , αd) is a d-tuple with non-negative integers αi ≥ 0 and its

order is denoted by |α| =

d
∑

i=1

αi. Set the αth order partial derivative as

Dα =
∂|α|

∂xα1

1 · · ·∂xαd

d

.

For non-negative integer s and 1 ≤ p ≤ ∞, the Sobolev space of order (s, p) over Ω, denoted

by W s,p(Ω) is defined as the set of functions in Lp(Ω) whose generalized derivatives up to

order s are also in Lp(Ω), i.e.,

W s,p(Ω) = {φ ∈ Lp(Ω) : Dαφ ∈ Lp(Ω), |α| ≤ s}.

This is also a Banach space with the norm

‖φ‖s,p,Ω = ‖φ‖s,p =





∑

|α|≤s

‖Dαφ‖pLp





1/p

for 1 ≤ p <∞,
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and for p = ∞,

‖φ‖s,∞,Ω = ‖φ‖s,∞ = sup
|α|≤s

‖Dαφ‖L∞(Ω).

We also introduce seminorms denoted by | · |s,p which are defined as

|φ|s,p,Ω = |φ|s,p =





∑

|α|=s

‖Dαφ‖pLp





1/p

for 1 ≤ p <∞,

and for p = ∞,

|φ|s,∞,Ω = |u|s,∞ = sup
|α|=s

‖Dαu‖L∞(Ω).

When p = 2, we denote W s,2(Ω) by simply Hs(Ω). Note that Hs(Ω) is a Hilbert space

with the natural inner product defined by

(φ, ψ) =
∑

|α|≤s

∫

Ω

DαφDαψdx ∀φ, ψ ∈ Hs(Ω),

and induced norm

‖φ‖s =





∑

|α|≤s

‖Dαφ‖2
L2





1/2

.

For our notational convenience, we write Hs(Ω) simply by Hs.

The dual space of Hs(Ω) is denoted by H−s(Ω) and is equipped with the norm

‖φ‖−s = sup
ψ∈Hs(Ω)/{0}

|(φ, ψ)|
‖ψ‖s

.

We denote by Lq(a, b;W s,p(Ω)), 1 ≤ q, p ≤ ∞, s ≥ 0, the space of functions

ψ : [a, b] −→ W s,p(Ω) such that ‖ψ(t)‖s,p,Ω ∈ Lq(a, b), see [43, pp.285].

The norm on Lq(a, b;W s,p(Ω)) is defined as

‖φ‖Lq(a,b;W s,p(Ω)) =

(
∫ b

a

‖φ(t)‖qs,pds
)1/q

1 ≤ q <∞,

and for q = ∞
‖φ‖L∞(a,b;W s,p(Ω)) = ess sup

t∈(a,b)

‖φ(t)‖s,p.
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We would also use the following matrix notations.

For a matrix A = (aij(x))1≤i,j≤2, with x ∈ Ω, we define the following norms:

|A|1 = max
1≤j≤2

2
∑

i=1

|aij(x)|, |A|2 =

(

2
∑

i,j=1

|aij(x)|2
)1/2

, (1.2.1)

‖A‖(L2(Ω))2×2 =

(

2
∑

i,j=1

∫

Ω

|aij(x)|2dx
)1/2

. (1.2.2)

Also, we have

1√
2
|A|1 ≤ |A|2 ≤

√
2|A|1. (1.2.3)

We frequently use the following standard inequalities.

Young’s Inequality. For a, b ≥ 0 and ε > 0, the following inequality holds:

ab ≤ a2

2ε
+
εb2

2
. (1.2.4)

Lemma 1.2.1 (Hölder’s inequality, [52]) Let 1 ≤ p, q < ∞ be such that 1/p+ 1/q = 1

and Ω ⊂ IRd. Further, let φ ∈ Lp(Ω) and ψ ∈ Lq(Ω). Then
∣

∣

∣

∣

∫

Ω

φψ dx

∣

∣

∣

∣

≤
(
∫

Ω

|φ|p dx
)1/p(∫

Ω

|ψ|q dx
)1/q

.

Lemma 1.2.2 (Generalized Hölder’s inequality, [52]) Let 1 ≤ p, q, r < ∞ be such

that 1/p+ 1/q + 1/r = 1 and Ω ⊂ IRd. Further, let φ ∈ Lp(Ω), ψ ∈ Lq(Ω) and χ ∈ Lr(Ω).

Then
∣

∣

∣

∣

∫

Ω

φψχ dx

∣

∣

∣

∣

≤
(
∫

Ω

|φ|p dx
)1/p(∫

Ω

|ψ|q dx
)1/q (∫

Ω

|χ|r dx
)1/r

.

Lemma 1.2.3 (Cauchy-Schwarz inequality, [68]) Let 1 ≤ p, q <∞ be such that 1/p+

1/q = 1. Suppose that {ai}Ni=1 and {bi}Ni=1 are positive real numbers. Then

(

N
∑

i=1

aibi

)

≤
(

N
∑

i=1

api

)1/p( N
∑

i=1

bqi

)1/q

.

Lemma 1.2.4 (Generalized Cauchy-Schwarz inequality, [68]) For 1 ≤ p, q, r < ∞
with 1/p+ 1/q + 1/r = 1, let {ai}Ni=1, {bi}Ni=1 and {ci}Ni=1 be positive real numbers. Then

(

N
∑

i=1

aibici

)

≤
(

N
∑

i=1

api

)1/p( N
∑

i=1

bqi

)1/q( N
∑

i=1

cri

)1/r

.
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Lemma 1.2.5 (Poincaré-Friedrich’s Inequality, [8, pp. 102]) Let Ω be open, bounded

domain in R
2 with Lipschitz boundary ∂Ω. Let v ∈ H1(Ω) be such that

∫

Ω

v dx = 0.

Then

‖v‖0,Ω ≤ C‖∇v‖0,Ω, (1.2.5)

where C = C(Ω) is positive constant.

Lemma 1.2.6 (Green’s Formula [52]) Let u and v be in H1(Ω). Then for 1 ≤ i ≤ d,

the following integration by parts formula holds:

∫

Ω

u
∂v

∂xi
dx = −

∫

Ω

v
∂u

∂xi
dx+

∫

∂Ω

uvnids,

where ni is the ith component of the outward normal to the boundary ∂Ω.

Lemma 1.2.7 (Gronwall’s Lemma [69]) Let g(t) be a continuous function and let h(t)

be a nonnegative continuous function on the interval t0 ≤ t ≤ t0 + a. If a continuous

function φ(t) has the following property

φ(t) ≤ g(t) +

∫ t

t0

φ(s)h(s)ds, for t ∈ [t0, t0 + a],

then

φ(t) ≤ g(t) +

∫ t

t0

g(s)h(s)exp

[
∫ t

s

h(τ)dτ

]

ds, for t ∈ [t0, t0 + a].

In particular, when g(t) = K is a nonnegative constant, then we have

φ(t) ≤ Kexp

[
∫ t

t0

h(s)ds

]

, for t ∈ [t0, t0 + a].

We note that for a nondecreasing nonnegative function g we obtain the above result with

K replaced by g(t). We also use the following discrete form of the Gronwall’s Lemma,

proof of which can be found in Pani et al. [65].
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Lemma 1.2.8 (Discrete Gronwall’s Lemma) Let {ξn} be a sequence of nonnegative

numbers satisfying

ξn ≤ αn +

n−1
∑

j=0

βjξj, for n ≥ 0,

where αn is a nondecreasing sequence and βj’s are nonnegative. Then

ξn ≤ αnexp

(

n−1
∑

j=0

βj

)

, for n ≥ 0.

Throughout the thesis, we use the notations C, Ci for i = 1, 2, 3 · · · to denote generic

positive constants.

1.3 The Mathematical Model

In this section, we derive a mathematical model which describes the miscible displacement

of one incompressible fluid by another in a porous medium. We study the flow of one

incompressible fluid flooding from the injection well into a petroleum reservoir that mixes

with the originally resident fluid to reduce the surface tension with an intention to push

the oil towards production wells. The invading and displaced fluid are referred to as the

solvent and resident fluid, respectively. We further assume that the solvent and resident

fluid mix in all proportions forming a single phase and we neglect the influence of gravity.

Let Ω ⊂ R
2 with boundary ∂Ω be a rectangular reservoir with unit thickness. The assump-

tion of unit thickness on the reservoir Ω is quite reasonable because the height (in metres)

is very small compared to the length and breadth (in kilometres in both directions) of the

reservoir.

Let c denote the concentration of the solvent/invading fluid in the fluid mixture. The

miscibility of the components imply that the Darcy velocity u of the fluid satisfies

u = −κ(x)
µ(c)

∇p ∀(x, t) ∈ Ω × J = (0, T ], (1.3.1)

and the incompressibility implies that

∇ · u = q ∀(x, t) ∈ Ω × J, (1.3.2)
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where x = (x1, x2) ∈ Ω, u(x, t) = (u1(x, t), u2(x, t)) and p(x, t) are, respectively, the Darcy

velocity and the pressure of the fluid mixture, µ(c) is the concentration dependent viscosity

of the mixture, κ(x) is the 2 × 2 permeability tensor of the medium, q(x, t) represents the

fluid flow rates at injection and production wells. We assume that there is no change in the

volume due to the mechanical mixing. Here, the diffusion-dispersion tensor D(u) consisting

of molecular-diffusion and mechanical dispersion (due to mechanical mixing, see Peacemen

[66]) is given by

D(u) = φ(x)
[

dmI + |u|
(

dlE(u) + dt(I − E(u))
)]

, (1.3.3)

where dm is the molecular diffusion, dl and dt are, respectively, the longitudinal and trans-

verse dispersion coefficients, E(u) is the tensor that projects onto u direction, whose ij th

component is given by

(E(u))ij = uiuj/|u|2; 1 ≤ i, j ≤ 2, |u|2 = u2
1 + u2

2,

I being the identity matrix of order 2 and φ(x) denotes the porosity of the medium. We note

that in realistic situations mechanical dispersion is more important compared to molecular

diffusion and also dl > dt. The conservation of mass in the mixture satisfies the following

equation

φ(x)ρ
∂c

∂t
+ ρ∇ · (cu) − ρ∇ · (D(u)∇c) = c̃ρq ∀(x, t) ∈ Ω × J, (1.3.4)

where ρ is the density of the fluid mixture and c̃ is the concentration of the injected fluid

at the injection well. Using (1.3.2), the equation (1.3.4) can be rewritten in the following

form

φ(x)
∂c

∂t
+ u · ∇c−∇ · (D(u)∇c) = (c̃− c)q ∀(x, t) ∈ Ω × J. (1.3.5)

The above equation (1.3.5) is in non-divergence form. Hence, the system of equations

describing the incompressible miscible displacement of one fluid by another in a porous

medium is given by

u = −κ(x)
µ(c)

∇p ∀(x, t) ∈ Ω × J, (1.3.6)

∇ · u = q ∀(x, t) ∈ Ω × J, (1.3.7)

φ(x)
∂c

∂t
+ u · ∇c−∇ · (D(u)∇c) = g(x, t, c) ∀(x, t) ∈ Ω × J. (1.3.8)
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Assume that no flow occurs across the boundary ∂Ω, i.e.,

u · n = 0 ∀(x, t) ∈ ∂Ω × J, (1.3.9)

D(u)∇c · n = 0 ∀(x, t) ∈ ∂Ω × J, (1.3.10)

and the initial condition

c(x, 0) = c0(x) ∀x ∈ Ω, (1.3.11)

where

g(x, t, c) = g(c) = (c̃− c)q, (1.3.12)

and c0(x) represents the initial concentration and n denotes the unit exterior normal to

∂Ω. For physically relevant situations, c0 must satisfy 0 ≤ c0(x) ≤ 1. For well-posedness,

the following compatibility condition is imposed on the data

∫

Ω

q(x, t)dx = 0 ∀t ∈ J. (1.3.13)

This can be easily derived from (1.3.6)-(1.3.7) and (1.3.9). Here, the equation (1.3.13)

indicates that for an incompressible flow with an impermeable boundary, the amount of in-

jected fluid and the amount of fluid produced are equal. In general, equations (1.3.6)-(1.3.7)

and (1.3.8) are referred as the pressure-velocity equations or just the pressure equation and

the concentration equation, respectively. Since the equations (1.3.6)-(1.3.11) are strongly

coupled and nonlinear, to find an analytic solution of this system would be a very difficult

task. Therefore, one resorts to numerical methods for solving the above system of equa-

tions approximately. In the next two sections, we discuss the theoretical and computational

issues related to the system (1.3.6)-(1.3.11).

1.4 Theoretical Issues

When one looks for the theoretical analysis of this model, we come across the following two

main difficulties:
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(i) In general, the viscosity depends on the concentration in the following manner:

µ(c) = µ(0)
[

1 + (M1/4 − 1)c
]−4

, c ∈ [0, 1], (1.4.1)

where M = µ(0)
µ(1)

is the mobility ratio. With (1.4.1), the pressure equation (1.3.6)-

(1.3.7) becomes potentially degenerate. There are two reasons for occurrence of this

degeneracy. The degeneracy occurs when either c < 0 and M > 1 (non-physical case)

or c > 1 and M ≤ 1 (physical case).

(ii) In the concentration equation the diffusion and convection terms may have unbounded

coefficients due to the potentially unbounded velocity. For example, it can be seen

easily that for u ∈ (C(Ω̄))2 the following inequality holds true:

φ(dm + dt|u|)|ξ|2 ≤ D(u)ξ · ξ ≤ φ(dm + dl|u|)|ξ|2 ∀ξ ∈ R
2. (1.4.2)

Now it is clear from (1.4.2) that when the velocity u is unbounded, then D(u) is also

unbounded.

In the past, efforts have been made to show existence and uniqueness of solution to the

system (1.3.6)-(1.3.11) under some reasonable regularity assumptions on the data. Sammon

[74] in 1986, has proved existence of a unique strong solution with the assumption that the

matrix D is independent of velocity u, i.e., D(x) = φ(x)dmI. It is also assumed in [74] that

the mobility ratio M = 1, i.e., µ(c) = constant. To overcome the first difficulty, that is,

the degeneracy, Feng [49] in 1995, instead of defining µ(c) for all real numbers c by using

(1.4.1), has extended ξ(c) = µ(c)−1 to R in a reasonable way so that ξ ∈ W 2,∞(R) and

there exists a positive constant ξ0 such that

0 < ξ−1
0 ≤ ξ(c) ≤ ξ0 <∞ ∀c ∈ R. (1.4.3)

Based on the method of regularization the original problem is approximated by a family of

regularized problems. In [49] the author has considered the following regularized problem

corresponding to the system (1.3.6)-(1.3.11): Given ε > 0,

uε = − κ(x)

µ(cε)
∇pε ∀(x, t) ∈ Ω × J, (1.4.4)

∇ · uε = qε ∀(x, t) ∈ Ω × J, (1.4.5)

φ(x)
∂cε
∂t

+ uε · ∇cε −∇ · (D(vε)∇cε) = (c̃− cε)qε ∀(x, t) ∈ Ω × J, (1.4.6)
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uε · n = 0 ∀(x, t) ∈ ∂Ω × J, (1.4.7)

D(vε)∇cε · n = 0 ∀(x, t) ∈ ∂Ω × J, (1.4.8)

cε(x, 0) = cε0(x) ∀x ∈ Ω, (1.4.9)

∫

Ω

pεdx = 0 ∀t ∈ J, (1.4.10)

where vε =
1

1 + ε|uε|
. It is shown that each regularized problem possesses one and only

one semi-classical solution. Using some uniform estimates for this family of regularized

approximate solutions and applying compactness arguments, a weak solution to the original

boundary value problem, i.e., (1.3.6)-(1.3.11) is proved.

Subsequently, Chen and Ewing [20] in 1999 have also studied the mathematical analysis

of (1.3.6)-(1.3.11). They have shown that the system (1.3.6)-(1.3.8) with various boundary

conditions possesses a weak solution under physically reasonable hypothesis on the data.

However, it is difficult to prove the uniqueness in their setting. In stead of regularization,

they have discretized the system in temporal direction to obtain a system of elliptic PDEs

at each time level. Then using Rothe method and existence results for elliptic PDEs,

a sequence of approximations is derived on the whole time interval. Finally, a limiting

procedure is used to prove existence of a weak solution. More recently, Choquet [21] has

studied the analysis for compressible miscible displacement problem in porous media. More

attention has been paid to take care of the difficulty occurring through the strong coupling.

To show the existence of relevant weak solutions, the author has used non-classical estimates

and renormalization tools.

1.5 Computational Issues

In the last few decades, many numerical methods have been proposed in literature for

obtaining good approximations of the miscible displacement problems in porous media.

In this section, we discuss the computational difficulties associated with the simulation of

the incompressible miscible displacement problems described in (1.3.6)-(1.3.11) that too in
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tertiary recovery process.

It is well known that in realistic situations the matrix D(u) in the concentration equation

(1.3.8) is very small in comparison to the convective or transport term, and hence, the con-

centration equation is strongly convection dominated. Unfortunately, most of the standard

numerical methods exhibit grid orientation 1 which really affects the numerical solution and

may not be accepted as a physically relevant solution. Todd [79] has noted that whether

the spatial discretization is taken either parallel to the direction of the streamlines connect-

ing the injection and production wells (parallel grid), or diagonally to the direction of the

streamlines, the solution obtained from these two grids are different. Therefore, it is not

easy to decide a priori which grid should be taken for the approximation. Different numeri-

cal schemes have been proposed, in literature, to minimize the grid orientation effect. Finite

difference methods are very popular in petroleum simulation more because of their com-

putational simplicity. But these methods suffer from grid orientation effects. Some of the

earlier results with special attention to grid orientation effect can be found in [62, 71, 79].

Finite element methods are also successful in eliminating the grid orientation effect, pro-

vided an effective numerical diffusion term is added to these schemes. For an extensive

reference on Galerkin methods for incompressible displacement problems in porous media,

we refer to Wheeler [73] Ewing [37] and Douglas et al. [40] and references, therein. Below,

we discuss some finite element methods applied to pressure and concentration equations.

1.5.1 Pressure equation

Since the concentration equation (1.3.8) depends explicitly on the velocity, it is desirable to

find a good approximation of the velocity. The standard finite element, finite volume and

finite difference methods for approximating pressure equation (1.3.6)-(1.3.7) first determine

an approximation, say ph to the pressure p and then, in order to compute the velocity uh

from ph, one has to differentiate or take the difference quotient of ph and multiply by a

rough function κ/µ, where uh is an approximation to the velocity u. This process may not

yield an accurate approximation for uh. Therefore, for a more accurate approximation uh

1A numerical discretization procedure is said to exhibit grid orientation effect if the discrete solution is

sensitive to the spatial orientation of the grids.



Chapter 1. Introduction 14

of the velocity u, it is natural to consider both p and u as primary variables. To achieve

this, we split the pressure equation into a couple of first order equations (1.3.6)-(1.3.7) and

then apply mixed methods. In the past, mixed finite elements methods are proposed in

the literature, see, Douglas et al. [38, 37], Darlow et al.[31], Duran [42], Ewing et al. [44]

and Dawson et al. [34] for approximating the pressure equation in incompressible miscible

displacement problems. There is hardly any result on mixed finite volume element methods

for the approximation of the pressure equation. Therefore, in Chapter 2, an attempt has

been made to introduce and analyze mixed FVEM for approximating the pressure equation.

1.5.2 Concentration equation

Since the concentration equation (1.3.8) is a convection dominated diffusion equation, the

solution of (1.3.8) varies rapidly from one point to other in the domain. Therefore, standard

numerical methods fail to provide an accurate solution of the concentration. To overcome

this difficulty, different numerical methods which provide appropriate numerical diffusion

have been proposed in the past for the approximation of the concentration equation.

One such method is the modified method of characteristics (MMOC) which has been pro-

posed in literature to deal with the grid orientation effect. The basic idea behind using

MMOC is to combine the time derivative and the convective term as a directional derivative

and apply time-stepping along the characteristics. Since the magnitude of the derivative

is small compared to the magnitude in the direction of time, this procedure allows us to

use larger and accurate time-stepping in the direction of time. In [2, 34, 41, 42], a mod-

ified method of characteristics combined with finite element method has been studied for

the approximation of the concentration equation. Based on this analysis, in Chapter 4,

MMOC combined with the standard finite volume element method for the approximation of

the concentration equation has been applied and a priori error estimates in L∞(L2) norm

for the concentration as well as velocity has been derived.

Douglas and Dupont [35] have introduced and analyzed a C0- interior penalty method

which uses interior penalties across the interior edges of the triangular elements of the

finite element mesh in the direction of the normal derivatives enforcing the approximate
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solution to lie between C0 and C1- finite element spaces. The grid orientation effect is

then reduced by introducing numerical diffusion through penalties. Wheeler and Darlow

[83] have extended this procedure to the convection dominated diffusion equation for the

incompressible miscible displacement in porous media, with the assumption that the matrix

D(u) is independent of velocity u. Later, Das and Pani [32] applied the same technique to

slightly compressible miscible displacement problem with the same assumption that D(u)

is independent of u, i.e., only molecular diffusion is considered and the effect of tensor dis-

persion is neglected. But in physical problems the mechanical dispersion is more important

than the molecular diffusion. Subsequently, in the thesis of Ali [1], the result has been ex-

tended to slightly compressible miscible displacement problems when the dispersion matrix

D depends on u. In Chapter 3, we have applied a discontinuous Galerkin finite volume

element method for the approximation of the concentration equation when the matrix D(u)

depends on u and have also derived the error estimates in L∞(L2) norm for the velocity as

well as for the concentration.

Sun et al. [76] applied the mixed FEM for pressure-velocity equation and discontinuous

Galerkin FEM for approximating the concentration equation. Further, Sun and Wheeler

[77] applied symmetric and non symmetric discontinuous Galerkin methods for the approx-

imation of the concentration equation by assuming that the velocity is known and is time

independent. The Eulerian-Lagrangian localized adjoint method (ELLAM) has been used

to approximate the concentration equation in [80]. Daoqi Yang [84], considered the mixed

methods with dynamic finite element spaces, i.e., different number of element and different

basis functions were adopted at different time levels.

Efficient time-stepping procedure. Since the mathematical model which describes the

miscible displacement is a coupled system of nonlinear partial differential equation (1.3.6)-

(1.3.11), the fully discrete schemes give rise to a very large system of linear algebraic

equation at each time level. Moreover, at each time step the matrices may change with

time, so that a use of direct methods may be expensive, especially for the concentration

equation. Dougals et al. [36] have observed that the computational cost can be minimized

for quasi-linear parabolic equations by using an iterative time-stepping method. The basic

idea is to factorize only once instead of factorizing a different large matrix at each time
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level, and then update after a fixed number of time steps. Further, a preconditioner is used

in an iterative procedure and to stabilize the process, a few iterations are performed at each

time level. This saves a substantial amount of computational cost. The conjugate gradient

methods are one of those iteration procedures which can be used for this purpose. Ewing

and Russell [47] have applied preconditioned conjugate gradient method without reducing

the order of convergence for the approximation of incompressible miscible displacement

problems in porous media. They have also derived a priori error estimates. Subsequently,

Russell [72], has also studied time-stepping procedure combined with method of character-

istics by extending the analysis [47]. It is further observed that the pressure and velocity

are more smooth in time than the concentration and therefore large time steps can be

used in computing the pressure and velocity than the concentration. Such analysis without

loosing the order of convergence has been discussed by Ewing et al. [44] and Russell et al.

[72].

1.6 Literature review on finite volume element meth-

ods

The finite volume element method, like finite element method and finite difference method

is a numerical technique for approximating the solutions of partial differential equations.

The basic idea of the FVEM is to apply Gauss divergence theorem for the elliptic operator

on each computational cells, which converts the volume integral to a boundary integral. The

idea is old and the resulting method comes under a variety of names, e.g., the generalized

difference methods [60], box method [7] and the covolume methods [25, 27].

1.6.1 The standard finite volume element methods

The standard finite volume element method can be considered as a Petrov-Galerkin finite

element method in which the trial space is chosen as C0- piecewise linear polynomials on

the finite element partition of the domain and the test space, as piecewise constants over

the control volumes to be defined in Chapter 2. Since the test space is piecewise constants,
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computationally, the FVEM are less intensive compared to the standard FEM.

In case of nonstructured triangular meshes, Bank and Rose [7] have analyzed a finite

volume method, which is called as box method, for the Poisson as well as more general

elliptic problems. They have considered a nonuniform triangulation of a polygonal domain

in R
2, which satisfies the minimum angle condition, i.e., there exists a constant, say θ0 > 0

such that all the angles of the triangle are bounded below by θ0. In order to construct the

dual partition of the domain, a point zT is chosen inside each triangle T and is connected

with midpoint of each side of triangle T . They have also shown that the derived error

estimates are comparable with those obtained from the standard Galerkin finite element

methods using piecewise linear polynomials. A similar technique has been used by Cai [10]

for the approximation of a self-adjoint elliptic problem in a two dimensional domain. But

the choice of the interior point zT , which was important in the analysis is taken as either

circumcenter, orthocenter, incenter or centroid of the triangle T . Optimal error estimate

has been derived only in the H1- norm in [7, 10].

Jiangou et al. [51] have also analyzed FVEM for a general self adjoint elliptic problem with

mixed boundary conditions and derived optimal error estimates in energy norm without

putting any restriction on the mesh. Further, a counter example has been provided to show

that an expected L2- error estimate may not exist in the usual sense. It is conjectured that

the FVE solution cannot have optimal order of convergence if the exact solution is in H 2

and the source term f in L2.

For second order linear elliptic problems, Li et al. [60] have obtained the following L2 error

estimate:

‖u− uh‖0 ≤ Ch2‖u‖W 3,p(Ω), p > 1,

where u is the exact solution and uh is the FV approximation of u. Note that the regularity

on the exact solution seems to be too high compared to the finite element methods. In

[25, 27], optimal H1, W 1,∞- estimates and superconvergence results in H1 and W 1,∞- norms

have been derived by extending the analysis of [60]. In addition, the following maximum

norm estimate

‖u− uh‖∞ ≤ Ch2 (‖u‖2,∞ + ‖u‖3)
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is also proved in [25, 27]. However, in all these papers, H3- regularity of the exact solution

is assumed. Chatzipantelidis [15] has also studied FVEM with nonconforming Crouzeix-

Raviart linear element and has derived optimal error estimate in L2- norm, but he has failed

to mention that the H1- regularity on the source term is essential for deriving optimal error

estimates in L2- norm. Recently, Ewing et al. [46] have presented the L2 and L∞- error

estimates for the following elliptic problem: Given f , find u such that

∇ · (A∇u) = f in Ω,

u = 0 on ∂Ω,

where Ω is a bounded convex polygon in R
2 with boundary ∂Ω and A is a 2×2 symmetric,

positive definite matrix in Ω. In this paper, they have derived the following L2 and L∞-

error estimates

‖u− uh‖0 ≤ C
(

h2‖u‖2 + h1+β‖f‖β
)

,

and

‖u− uh‖∞ ≤ Ch2|ln1

h
|
(

‖u‖2,∞ + h1+β‖f‖β
)

.

The above results leads to the optimal convergence rate of the FVEM if f ∈ Hβ with

β ≥ 1. Li [59] and Chatzipantelidis et al. [16] have studied the finite volume method for

nonlinear elliptic problems and derived a priori error estimates.

Chatzipantelidis et al. [17] have discussed the piecewise linear standard FVEM for the

approximation of the parabolic problems in a convex polygonal domain. They have obtained

optimal H1 and L2- error estimates by assuming suitable regularity conditions on the initial

data. The authors [25, 27, 60] also have studied the FVEM for the parabolic problem

and have derived optimal L2- error estimates with higher order regularity assumption on

the exact solution compared to the regularity results used for the standard finite element

methods. Ewing et al. [45, 75] have discussed a priori error estimates for the parabolic

integro-differential equations. More recently, Kumar et al. in [56] have studied a standard

FVEM with and without numerical quadrature for the second order hyperbolic problems

and have derived optimal error estimates in L2 and H1- norms and quasi-optimal estimates

in L∞ -norm.
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1.6.2 Mixed finite volume or covolume methods

In a covolume method, one uses two different kind of grids: a primal grid and a dual grid.

Mixed covolume methods can also be thought of as a Petrov-Galerkin method. The analysis

of these methods is based on the tools borrowed from the mixed finite element methods.

Using a transfer operator which maps the trial space to the test space, the mixed covolume

methods can be put in the framework of mixed finite element methods. This transfer

operator plays a vital role in deriving the optimal error estimates. Earlier, Chou et al.

[23, 26] have discussed and analyzed mixed covolume or finite volume element method for

the second order linear elliptic problems in two dimensional domains. In [26], the velocity u

and pressure p have been approximated by the lowest order Raviart-Thomas element space

on triangles, while in [23] rectangular elements have been used to approximate the solutions.

In these two papers, a priori error bounds for the velocity in L2 and H(div)- norms have

been derived. For the nonstaggered quadrilateral grids, Chou et al. in [24] have constructed

a mixed finite volume method for elliptic problems with Dirichlet boundary condition. Like

in [23, 26], they have also used the Raviart-Thomas spaces for approximating velocity and

pressure and derived the following error estimates:

‖p− ph‖0 + h‖p− ph‖1 ≤ Ch2‖f‖1,

and

‖u − uh‖0 + ‖divu − divuh‖0 ≤ Ch(‖u‖1 + ‖f‖1).

Chou in [22] has discussed the convergence of the mixed covolume method for the Stokes

equation. To approximate the velocity, instead of using lowest-order Raviart-Thomas ele-

ment, nonconforming linear polynomials have been used whereas to approximate the pres-

sure, piecewise constant polynomials are used. A priori error estimates are derived in L2-

norm for the velocity as well as for the pressure.

Based on the analysis of Milner [63], Kwak et al. [57] have extended the results of [23, 26]

to quasi-linear elliptic problems. The author in [53] has also discussed mixed finite vol-

ume methods for the approximation of a nonlinear elliptic problem. More recently, Tongke

[81] has discussed a mixed finite volume method on rectangular mesh for the biharmonic

equation and compared the analysis with [26]. In this dissertation, a mixed finite vol-
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ume element method is applied to approximate both pressure and velocity in the pressure

equation.

1.6.3 Discontinuous Galerkin finite volume element methods

Keeping in mind the advantages of the FVEM and the discontinuous Galerkin methods, it

is natural to think of discontinuous Galerkin finite volume element methods (DGFVEM)

for the numerical approximation of the second order partial differential equations. In these

methods, the support of the control volumes are small compared to the standard FVM [60]

and mixed FVM [26]. Also the control volumes have support inside the triangle in which

they belong and there is no contribution from the adjacent triangles. This property of the

control volumes makes the DGFVEM more suitable for parallel computing.

The DGFVEM for elliptic problems has been discussed by Ye [85] and Chou et al. [28].

Further in [85], optimal error estimates in broken H1-norm and suboptimal estimates in

L2- norm have also been derived. More recently, Kumar et al. [55] have developed and

analyzed a one parameter family of DGFVE methods for approximating the solution of

the second order linear elliptic problems and derived optimal error estimates in broken H 1

and L2-norms. They have also reported numerical experiments to support their theoretical

results. In this thesis, an attempt has been made to apply the DGFVEM for approximating

the concentration equation.

1.7 Layout of the Thesis

The organization of the thesis is as follows. While Chapter 1 is introductory in nature,

in Chapter 2, we apply mixed FVEM for approximation of the pressure-velocity equation

and a standard FVEM for the approximation of the concentration equation. A priori

error estimates in L∞(L2) norm are derived for the pressure, velocity and concentration.

Existence and uniqueness results for the discrete solution are also discussed in details.

Some numerical experiments are conducted using the data from [80] to corroborate our

theoretical findings.

Taking into account the advantage of discontinuous Galerkin method and FVEM, Chapter
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3 is devoted to DGFVEM for approximating the concentration equation. We also apply

mixed FVEM for the approximation of the pressure equation. Then existence of a unique

discrete solution has been proved. A priori error estimates have been derived for the

velocity and concentration in the L∞(L2) norm. The final section of this chapter is devoted

to some numerical experiments.

Since the concentration equation is convection dominated, in Chapter 4, we have applied a

modified method of characteristics combined with standard FVEM for the approximation

of the concentration equation and a mixed FVEM for the approximation of the pressure

equation. A priori error estimates have been derived for velocity and concentration in the

L∞(L2) norm and numerical experiments are also reported to substantiate the theoretical

findings.

Finally, Chapter 5 is devoted to the critical evaluation of the present work. Some of the

main results of this thesis are highlighted. We also discuss the scope of other discontinuous

Galerkin methods for the approximation of the concentration equation. We conclude this

chapter with a possible extension of the present work.



Chapter 2

Finite Volume Element

Approximations

In this chapter, we discuss finite volume element methods (FVEMs) for incompressible

miscible displacement problems in porous media.

2.1 Introduction

We now recall from Chapter 1, a mathematical model describing the miscible displacement

of one incompressible fluid by another in a reservoir Ω in R
2 of unit thickness with boundary

∂Ω over a time period of J = (0, T ] given by

u = −κ(x)
µ(c)

∇p ∀(x, t) ∈ Ω × J, (2.1.1)

∇ · u = q ∀(x, t) ∈ Ω × J, (2.1.2)

φ(x)
∂c

∂t
+ u · ∇c−∇ · (D(u)∇c) = g(c) ∀(x, t) ∈ Ω × J, (2.1.3)

with boundary conditions

u · n = 0 ∀(x, t) ∈ ∂Ω × J, (2.1.4)

D(u)∇c · n = 0 ∀(x, t) ∈ ∂Ω × J, (2.1.5)

and initial condition

c(x, 0) = c0(x) ∀x ∈ Ω. (2.1.6)

22
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For the approximation of the pressure-velocity equation, we use mixed FVEM and for the

concentration equation, we apply the standard FVEM. A priori error estimates in L∞(L2)

norm are derived for velocity, pressure and concentration for semidiscrete and fully discrete

schemes.

We now make the following assumptions on the coefficients D, φ, κ, µ, the forcing func-

tions g and q through out the thesis:

Assumptions

(A1) : The matrix D is uniformly positive definite, i.e., there exists a positive constant α

independent of x and u such that

2
∑

i,j=1

Dijξiξj ≥ α|ξ|2 ∀ξ ∈ R
2.

(A2) : The functions µ and g are Lipschitz continuous, i.e., there exist Lipschitz constants

C1 and C2 such that for (x, t) ∈ Ω × J

|g(c1) − g(c2)| ≤ C1|c1 − c2|, (2.1.7)

|µ(c1) − µ(c2)| ≤ C2|c1 − c2|. (2.1.8)

(A3) : The functions φ, µ, κ and q are bounded, i.e., there exist positive constants φ∗, φ
∗, µ∗,

µ∗, κ∗, κ
∗, q∗, D∗, D

∗ such that

0 < φ∗ ≤ φ(x) ≤ φ∗, (2.1.9)

0 < µ∗ ≤ µ(x, c) ≤ µ∗, (2.1.10)

0 < κ∗ ≤ κ(x) ≤ κ∗, (2.1.11)

|q(x)| ≤ q∗, (2.1.12)

0 < D∗ ≤ D(x,u) ≤ D∗. (2.1.13)

(A4) : The diffusion-dispersion tensor D(u) satisfies

D(u) ∈ [W 2,∞(Ω)]2×2. (2.1.14)
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(A5) : The problem (2.1.1)-(2.1.6) has a unique smooth solution {p, c} as demanded by the

error analysis.

The authors in [20, 49, 74] have discussed existence of a unique weak solution of the above

system (2.1.1)-(2.1.6) under suitable assumptions on the data. The pressure-velocity equa-

tion is elliptic type while the concentration equation is convection dominated diffusion type.

Since in the concentration equation only velocity is present, one would like to find a good

approximation of the velocity. Therefore, for approximating velocity, it is natural to think

of some mixed methods, which provide more accurate solution for the velocity compared

to the standard finite element methods.

Earlier, Douglas et al. [37, 38], Ewing et al. [48] and Darlow et al. [31] have discussed

the mixed finite element method for approximating the velocity as well as pressure and a

standard Galerkin method for the concentration equation. They have also derived opti-

mal error estimates in L∞(L2) norm for the velocity and concentration. Moreover, in [37]

authors have proposed a modification of mixed methods when the flow is located at injec-

tion and production wells. Yang [84] has considered mixed methods with dynamic finite

element spaces, i.e., different number of elements and different basis functions are adopted

at different time levels. Compared to the conforming finite element methods (FEM), the

finite volume methods are conservative in nature and hence, they preserve the physical

conservative properties.

In this chapter, we discuss a mixed FVEM for approximating the pressure-velocity equa-

tions (2.1.1)-(2.1.2) and a standard FVEM for the approximation of the concentration

equation (2.1.3). Moreover, we present some numerical experiments to support our theo-

retical results.

This chapter is organized as follows. Section 2.1 is introductory in nature. In Section

2.2, the weak formulation for the incompressible miscible displacement problems in porous

media is described. In Section 2.3, we state and prove some auxiliary results to be used

in our subsequent analysis. The existence and uniqueness results for the discrete prob-

lem is also discussed. A priori error estimates of velocity, pressure and concentration for

the semidiscrete scheme are presented in Section 2.4. In Section 2.5, we discuss the fully

discrete scheme and derive a priori error bounds. Finally in Section 2.6, the numerical
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procedure is discussed and some numerical experiments are conducted to substantiate the

theoretical results obtained in this chapter.

2.2 Weak formulation

Let H(div; Ω) = {v = (v1, v2) ∈ (L2(Ω))2 : ∇ · v ∈ L2(Ω)} be associated with the norm

‖v‖2

H(div;Ω)
= ‖v‖2

(L2(Ω))2 + ‖∇ · v‖2
L2(Ω), (2.2.1)

where ‖v‖2
(L2(Ω))2 = ‖v1‖2 + ‖v2‖2. Further, let

U = {v ∈ H(div; Ω) : v · n = 0 on ∂Ω}.

The pressure-velocity equations (2.1.1)-(2.1.2) with the Neumann boundary condition (2.1.4)

has a unique solution for the pressure upto an additive constant. This non-uniqueness may

be avoided by considering the following quotient space:

W = L2(Ω)/R.

Multiply (2.1.1) and (2.1.2) by v ∈ U and w ∈ W , respectively, and integrate over Ω.

Further, use of Green’s formula and v ·n = 0 on ∂Ω, yields the following weak formulation:

Find (u, p) : J −→ U ×W satisfying

(κ−1µ(c)u,v) − (∇ · v, p) = 0 ∀v ∈ U, (2.2.2)

(∇ · u, w) = (q, w) ∀w ∈ W. (2.2.3)

Similarly, multiplying (2.1.3) by z ∈ H1(Ω) and integrating over Ω, we obtain using (2.1.5)

a weak formulation for the concentration equation (2.1.3) as follows:

Find a map c : J −→ H1(Ω) such that for t ∈ (0, T ],

(φ
∂c

∂t
, z) + (u · ∇c, z) + a(u; c, z) = (g(c), z) ∀z ∈ H1(Ω), (2.2.4)

c(x, 0) = c0(x) ∀x ∈ Ω,

where (·, ·) denotes the standard L2- inner product and a(u; ·, ·) : H1(Ω)×H1(Ω) −→ R is

a bilinear form defined by

a(u;φ, ψ) =

∫

Ω

D(u)∇φ · ∇ψdx ∀φ, ψ ∈ H1(Ω).
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In fact, in order that (2.2.4) makes sense, it is necessary that u · ∇c ∈ L2(Ω).

Since D is positive definite, the bilinear form a(u; ·, ·) satisfies the following condition

a(u;φ, φ) ≥ α|φ|21 ∀φ ∈ H1(Ω), (2.2.5)

where | · |1 denotes the usual semi-norm on H1(Ω).

2.3 Finite volume element approximation

We use a mixed finite volume element method for the simultaneous approximation of ve-

locity and pressure in (2.1.1)-(2.1.2) and a standard finite volume element method for the

approximation of the concentration in (2.1.3). For this purpose, we introduce three kinds

of grids: one primal grid and two dual grids.

Let Th = {T} be a regular, quasi-uniform partition of the domain Ω̄ into closed triangles

T , that is, Ω = ∪T∈Th
T . Let hT = diam(T ) and h = maxT∈Th

hT . Let P1, P2 · · · , PNh

and M1,M2 · · · ,MNm
denote respectively the vertices and midpoints of the edges of the

triangles in the triangulation Th, where Nh and Nm are the total number of vertices and

total number of midpoints of the sides of the triangles of Th.
Let the trial function spaces Uh and Wh associated with the approximation of velocity and

pressure respectively be the lowest order Raviart-Thomas space for triangles defined by

Uh = {vh ∈ U : vh|T = (a+ bx, c + by) ∀T ∈ Th} , (2.3.1)

and

Wh = {wh ∈ W : wh|T is a constant ∀T ∈ Th} . (2.3.2)

Next, we construct the dual partition for the pressure-velocity equation and the related test

spaces. The dual grid T ∗
h consists of interior quadrilaterals and boundary triangles which

are constructed as follows. For an interior mid-side node, the associated dual element is a

quadrilateral. This is the union of two triangles formed by joining the end points of the side

of the triangle on which the mid-side node lies with the barycenter of the triangles which

share the mid-side node. For a mid-side node of a triangle which lies on the boundary ∂Ω,
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Figure 2.1: Primal grid Th and dual grid T ∗
h

the dual element is the border triangle obtained by joining the end points of the edges of

the triangle in Th on which the mid side node lies with the barycenter of the triangle. For

example, in Figure 2.1, the interior mid side node M3 belongs to 4P1P4P2 and 4P2P4P5.

The dual element associated with M3 is the quadrilateral P2B1P4B3P2 (say T ∗
M3

), where B1

and B3 are the barycenters of the triangles 4P1P4P2 and 4P2P4P5, respectively. Similarly,

for the boundary mid-side node M2, the associated dual element is 4P3P1B2 (say T ∗
M2

). In

general, let T ∗
M denote the dual element corresponding to the mid-side node M . The union

of all the dual elements/control volume elements form a partition T ∗
h of Ω̄. The test space

Vh is defined by

Vh =
{

vh ∈ (L2(Ω))2 : vh|T ∗

M
is a constant vector ∀T ∗

M ∈ T ∗
h and vh · n = 0 on ∂Ω

}

.

For connecting our trial and test spaces, we define a transfer operator γh : Uh −→ Vh by

γhvh(x) =

Nm
∑

i=1

vh(Mi)χ
∗
i (x) ∀x ∈ Ω, (2.3.3)

where χ∗
i ’s are the scalar characteristic functions corresponding to the control volume T ∗

Mj

defined by

χ∗
i (x) =







1, if x ∈ T ∗
Mi

0, elsewhere.
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Multiplying (2.1.1) by γhvh ∈ Vh, integrating over the control volumes T ∗
M ∈ T ∗

h , applying

the Gauss’s divergence theorem and summing up over all the control volumes, we obtain

(κ−1µ(c)u, γhvh) −
Nm
∑

i=1

vh(Mi) ·
∫

T ∗

Mi

p nT ∗

Mi
ds = 0 ∀vh ∈ Uh, (2.3.4)

where nT ∗

Mi
denotes the outward normal vector to the boundary of T ∗

Mi
. Set

b(γhvh, wh) = −
Nm
∑

i=1

vh(Mi) ·
∫

∂T ∗

Mi

wh nT ∗

Mi
ds ∀vh ∈ Uh, ∀wh ∈ Wh. (2.3.5)

Then, the mixed FVE approximation corresponding to (2.1.1)-(2.1.2) can be written as:

find (uh, ph) : J −→ Uh ×Wh such that for t ∈ (0, T ]

(κ−1µ(ch)uh, γhvh) + b(γhvh, ph) = 0 ∀vh ∈ Uh, (2.3.6)

(∇ · uh, wh) = (q, wh) ∀wh ∈ Wh, (2.3.7)

where ch is an approximation to c obtained from (2.3.9).

Now, we introduce a dual mesh V∗
h based on Th which will be used for the approximation

of the concentration equation. For an interior vertex of Th, identify the barycenters of

the triangles in which this vertex lies and also the midpoints of the edges connecting this

vertex with the adjacent vertices. The dual element associated with the vertex is obtained

by joining successively these midpoints and the barycenters of the triangles which these

mid-side points belong to. For example, in Figure 2.2, for the interior vertex P4, the

associated dual element is M4B2M5B5M8B4M7B3M3B1M4 (say V ∗
P4

). Similarly, for the

vertex on the boundary ∂Ω, say P1, the associated dual element is P1M2B2M4B1M1P1

(say V ∗
P1

). In general, let V ∗
P denote the dual element associated with the vertex P . The

union of all these dual elements also form a partition V∗
h of Ω̄, corresponding to the primal

partition Th. For applying the standard finite volume element method to approximate the

concentration, we define the trial space Mh on Th and the test space Lh on V∗
h as follows:

Mh =
{

zh ∈ C0(Ω̄) : zh|T ∈ P1(T ) ∀T ∈ Th
}

,

and

Lh =
{

wh ∈ L2(Ω) : wh|V ∗

P
is a constant ∀V ∗

P ∈ V∗
h

}

.
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Figure 2.2: Primal grid Th and dual grid V∗
h

Again, we define a transfer function Π∗
h : Mh −→ Lh by

Π∗
hzh(x) =

Nh
∑

j=1

zh(Pj)χj(x) ∀x ∈ Ω, (2.3.8)

where χj’s are the characteristic functions corresponding to the control volume V ∗
Pj

given

by

χj(x) =







1, if x ∈ V ∗
Pj

0, elsewhere.

The FVE approximation ch of c is to seek ch : J −→Mh such that for t ∈ (0, T ],

(

φ
∂ch
∂t

,Π∗
hzh
)

+ (uh · ∇ch,Π∗
hzh) + ah(uh; ch, zh) = (g(ch),Π

∗
hzh) ∀zh ∈ Mh(2.3.9)

ch(0) = c0,h,

where c0,h is an approximation to c0 to be defined later and the bilinear form ah(v; ·, ·) is

defined by

ah(v;χ, ψh) = −
Nh
∑

j=1

∫

∂V ∗

Pj

(

D(v)∇χ · nPj

)

Π∗
hψh ds, (2.3.10)

nPj
being the unit outward normal to the boundary of V ∗

Pj
with v ∈ U, χ ∈ H1(Ω) and

ψh ∈Mh.
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Figure 2.3: A triangular partition

Remark 2.3.1 Three grids are introduced one each for the pressure, velocity and concen-

tration variables. This is to balance the number of unknowns and the equations in the

coupled system (2.3.6)-(2.3.7) and (2.3.9).

Next, we discuss the existence and uniqueness of solution for the discrete system (2.3.6)-

(2.3.7) and (2.3.9). For this purpose, we now recall some results from [26] and [60].

2.3.1 Some Auxiliary Results

We define the following numerical quadrature formulae on a triangle T ∈ Th which is exact

for polynomials of degree one and two, respectively,:

∫

T

χhdx =
|T |
3

(

χh(P1) + χh(P2) + χh(P3)
)

, (2.3.11)

and

∫

T

χhdx =
|T |
3

(

χh(M1) + χh(M2) + χh(M3)
)

, (2.3.12)

where P1, P2, P3 are the vertices of triangle T and M1,M2, M3 denote the midpoints of

the sides P1P2, P2P3 and P1P3, respectively, (see Figure 2.3). Here, |T | denotes the area
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of the triangle T .

We also use frequently the following trace inequality [14, pp. 417]: for w ∈ H 1(T ),

‖w‖2
∂T ≤ C

(

h−1
T ‖w‖2

T + hT |w|21,T
)

, (2.3.13)

where ‖w‖2
∂T =

∫

∂T

w2ds and ∂T denoting the boundary of the triangle T . Further, we

need the following inverse inequalities (see [29, pp. 141]):

‖χ‖1,∞ ≤ Ch−1‖χ‖1 ∀χ ∈Mh, (2.3.14)

and

‖χ‖1 ≤ Ch−1‖χ‖ ∀χ ∈Mh. (2.3.15)

By the usual interpolation theory, the operator Π∗
h has the following approximation property

[27, pp. 466]:

‖χ− Π∗
hχ‖0,k ≤ Chβ|χ|s,k, 0 ≤ β ≤ s ≤ 1, 1 ≤ k ≤ ∞. (2.3.16)

For our future use, let us introduce the following notations. For T ∈ Th with vertices P1, P2

and P3, set

|φh|0,h,T =

{ |T |
3

(

φ2
1 + φ2

2 + φ2
3

)

}1/2

, (2.3.17)

and

|φh|1,h,T =

{

(|∂φh
∂x

|2 + |∂φh
∂y

|2)|T |
}1/2

, (2.3.18)

where |T | is the area of triangle T and φj = φh(Pj), 1 ≤ j ≤ 3.

Define the discrete norms for φh ∈Mh as

‖φh‖0,h =

(

∑

T∈Th

|φh|20,h,T

)1/2

, |φh|1,h =

(

∑

T∈Th

|φh|21,h,T

)1/2

,

and

‖φh‖1,h =
(

‖φh‖2
0,h + |φh|21,h

)1/2
.

We also use the notation ‖φh‖T to denote ‖φh‖0,T =

(
∫

T

φ2
hdx

)1/2

.

The following lemma establishes a relation between the discrete norms and the continuous

norms on the Sobolev spaces.
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Lemma 2.3.1 [60, pp. 124] For φh ∈Mh, | · |1,h and | · |1 are identical. Further, ‖ ·‖0,h and

‖ · ‖1,h are equivalent to ‖ · ‖ and ‖ · ‖1, respectively, that is, there exist positive constants

C3, · · · , C6 > 0, independent of h, such that

C3‖φh‖0,h ≤ ‖φh‖ ≤ C4‖φh‖0,h ∀φh ∈Mh, (2.3.19)

and

C5||φh||1,h ≤ ||φh||1 ≤ C6||φh||1,h ∀φh ∈Mh. (2.3.20)

Proof. Since
∂φh
∂x

and
∂φh
∂y

are constants on a triangle T , the norms | · |1 and | · |1,h are

identical. Now using the quadrature formula (2.3.12), we obtain

‖φh‖2
T =

∫

T

|φh|2dx =
|T |
3

(

φh(M1)
2 + φh(M2)

2 + φh(M3)
2
)

=
|T |
3

[

(

φ1 + φ2

2

)2

+

(

φ2 + φ3

2

)2

+

(

φ1 + φ3

2

)2
]

=
|T |
12

[

φ2
1 + φ2

2 + φ2
3 + (φ1 + φ2 + φ3)

2
]

. (2.3.21)

Using Young’s inequality (1.2.4) with ε = 1, (2.3.21) can be written as

‖φh‖2
T =

|T |
12

[

2(φ2
1 + φ2

2 + φ2
3) + 2φ1φ2 + 2φ2φ3 + 2φ1φ3

]

≤ |T |
4

[

φ2
1 + φ2

2 + φ2
3

]

. (2.3.22)

A use of (2.3.17) yields

‖φh‖2 ≤ ‖φh‖2
0,h. (2.3.23)

From (2.3.23) and (2.3.21), we find that

1

4
‖φh‖2

0,h ≤ ‖φh‖2 ≤ ‖φh‖2
0,h. (2.3.24)

Now the estimate (2.3.20) follows from (2.3.24) and the fact that |·|1 and |·|1,h are identical.

This completes the proof.
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Lemma 2.3.2 The following results hold true for ∀φh ∈ Mh,
∫

T

(φh − Π∗
hφh) dx = 0 ∀T ∈ Th, (2.3.25)

and
∫

∂T

(φh − Π∗
hφh) ds = 0 (2.3.26)

Proof. Since φh is linear on each triangle T , from (2.3.11), we obtain

∫

T

(φh − Π∗
hφh)dx =

∫

T

φhdx−
3
∑

i=1

∫

V ∗

i ∩T

Π∗
hφhdx

=

∫

T

φhdx−
3
∑

i=1

φi|V ∗
i ∩ T |,

where |V ∗
i ∩ T | denotes the area of the control volume V ∗

i ∩ T .

Since |V ∗
i ∩ T | =

|T |
3
, i = 1, 2, 3, we find that

∫

T

(φh − Π∗
hφh)dx =

|T |
3

(φ1 + φ2 + φ3) −
3
∑

i=1

φi
|T |
3

= 0.

This proves (2.3.25). Now (ii) follows directly from the definition of Π∗
h and this completes

the rest of the proof.

Now introduce the following function

εh(ψ, χh) = (ψ, χh) − (ψ,Π∗
hχh) ∀χh ∈Mh. (2.3.27)

Lemma 2.3.3 [68, pp. 40] Let z ∈ P1(T ) and zT be the average of z on T , i.e., zT =
1

|T |

∫

T

z dx. Then

‖z − zT ‖0,T ≤ ChT |∇z|0,T . (2.3.28)

Proof. Let v = z − zT , then
∫

T

v dx =

∫

T

(z − zT )dx =

∫

T

z dx−
∫

T

zT dx = 0.
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Figure 2.4: Reference element T̂ and mapping FT from T̂ to the element T

Now by using a scaling argument and Lemma 1.2.5, we have

‖v‖0,T ≤ hT‖v̂‖0,T̂ ≤ C(T̂ )hT‖∇̂v̂‖0,T̂ ≤ hT‖∇v‖0,T , (2.3.29)

where T̂ is the reference triangle corresponding to the triangle T , see Figure 2.4. Since

v = z − zT and zT is constant, it is follows from (2.3.29) that

‖z − zT ‖0,T ≤ ChT |∇z|0,T . (2.3.30)

This completes the proof.

Lemma 2.3.4 For χh ∈Mh and ψ ∈ H1(Ω), there exists a positive constant C independent

of h such that

|εh(ψ, χh)| ≤ Ch2|ψ|1|χh|1.

Proof. Using (2.3.25), (2.3.16), (2.3.28), we obtain
∫

T

ψ(χh − Π∗
hχ)dx =

∫

T

(ψ − ψT )(χh − Π∗
hχ)dx

≤ ‖ψ − ψT‖T‖χh − Π∗
hχh‖T ≤ Ch2|ψ|1,T |χh|1,T . (2.3.31)

Sum up over all triangles T ∈ Th to complete the rest of the proof.

Remark 2.3.2 In general, we can say that εh has the following property (see, [15, pp.

317]): for χ ∈Mh and ψ ∈ W i,p(Ω) with i, j = 0, 1, 1
p

+ 1
q

= 1

|εh(ψ, χ)| ≤ Chi+j|ψ|W i,p|χ|W j,q . (2.3.32)
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Lemma 2.3.5 [76, pp. 332] The matrix D(u) defined in (1.3.3) is uniformly Lipschitz

continuous, i.e., there exists a constant C such that for u and v ∈ (L2(Ω))2,

‖D(u) −D(v)‖(L2(Ω))2×2 ≤ C‖u − v‖(L2(Ω))2 . (2.3.33)

Proof. Using (1.2.1) and (1.3.3), we obtain

|D(u) −D(v)|1 =

2
∑

i=1

max
j=1,2

|D(u)i,j −D(v)i,j|

≤
2
∑

i=1

max
j=1,2

|φ(x)|
∣

∣

∣

∣

(dl − dt)

(

uiuj
|u| − vivj

|v|

)

+ dtδij(|u| − |v|)
∣

∣

∣

∣

.

Using (2.1.9), we find that

|D(u) −D(v)|1 ≤ φ∗

(

2
∑

i=1

|dl − dt|max
j=1,2

∣

∣

∣

∣

uiuj
|u| − vivj

|v|

∣

∣

∣

∣

+ 2dt ||u| − |v||
)

.

Note that

uiuj
|u| − vivj

|v| =
uiuj
|u| − uivj

|u| +
uivj
|u| − uivj

|v| +
uivj
|v| − vivj

|v|

=
ui(uj − vj)

|u| +
uivj(|v| − |u|)

|u||v| +
vj(ui − vi)

|v|
≤ 2|u − v| + (|v| − |u|)

≤ 3|u − v|.

Hence,

|D(u) −D(v)|1 ≤ 2K1(dt + 3|dl − dt|)|u− v|. (2.3.34)

Using (1.2.3) and (2.3.34), we obtain

|D(u) −D(v)|2 ≤ 21/2|D(u) −D(v)|1 ≤ 23/2K1(dl + 3|dl − dt|)|u − v|. (2.3.35)

Now integrate over Ω to complete the rest of the proof.

The following lemma yields a relation between the bilinear forms a(u; ·, ·) and ah(u; ·, ·),
the proof of which is based on the ideas of a similar result in [46, pp. 1871].
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Lemma 2.3.6 Assume that χh, ψh ∈Mh. Then

ah(u;χh, ψh) = a(u;χh, ψh) +
∑

T∈Th

∫

∂T

(D(u)∇χh · n)(Π∗
hψh − ψh)ds

+
∑

T∈Th

∫

T

∇ · (D(u)∇χh)(ψh − Π∗
hψh)dx. (2.3.36)

Moreover, the following inequality holds:

ah(u;χh, ψh) ≥ a(u;χh, ψh) − Ch|ψh|1|φh|1. (2.3.37)

Proof. A use of Gauss’s divergence theorem on each of V ∗
j ∩ T, (j = 1, 2, 3), (see Figure

2.3) yields

ah(u;χh, ψh) = −
∑

T∈Th

3
∑

j=1

Π∗
hψh

∫

∂V ∗

j ∩T

(D(u)∇χh) · n ds, (2.3.38)

with n denoting the unit outward normal to ∂V ∗
j ∩ T . Now (2.3.38) can be rewritten as:

ah(u;χh, ψh) =
∑

T∈Th

3
∑

j=1

Π∗
hψh

∫

PjPj+1

(D(u)∇χh) · n ds

−
∑

T∈Th

3
∑

j=1

∫

V ∗

j ∩T

Π∗
hψh∇ · (D(u)∇χh) dx

=
∑

T∈Th

∫

∂T

(Π∗
hψh − ψh)(D(u)∇χh) · n ds+

∑

T∈Th

∫

∂T

ψh(D(u)∇χh) · n ds

−
∑

T∈Th

3
∑

j=1

∫

V ∗

j ∩T

Π∗
hψh∇ · (D(u)∇χh) dx.

Applying Green’s formula on triangle T for the second term, we obtain

ah(u;χh, ψh) =
∑

T∈Th

∫

∂T

(Π∗
hψh − ψh)(D(u)∇χh) · n ds+

∑

T∈Th

∫

T

D(u)∇χh · ∇ψh dx

+
∑

T∈Th

∫

T

∇ · (D(u)∇χh)ψh dx−
∑

T∈Th

3
∑

j=1

∫

V ∗

j ∩T

Π∗
hψh∇ · (D(u)∇χh) dx

=
∑

T∈Th

∫

∂T

(Π∗
hψh − ψh)(D(u)∇χh) · n ds+

∑

T∈Th

∫

T

D(u)∇χh · ∇ψh dx

+
∑

T∈Th

∫

T

∇ · (D(u)∇χh)(ψh − Π∗
hψh) dx.
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This proves (2.3.36). To prove (2.3.37), we first use (2.3.26) to obtain

∑

T∈Th

∫

∂T

(Π∗
hψh − ψh)(D(u)∇χh) · nds =

∑

T∈Th

∫

∂T

(Π∗
hψh − ψh)(D −DT ) · ∇χh.n ds,

where DT = D(xc), xc ∈ ∂T . Since |D − DT |∞ ≤ Ch‖D‖1,∞ (see [46, pp. 1873]), we

have

∑

T∈Th

∫

∂T

(Π∗
hψh − ψh)(D(u)∇χh) · n ds ≤ Ch‖D‖1,∞

∑

T∈Th

∫

∂T

(Π∗
hψh − ψh)∇χh.n ds.

(2.3.39)

Using the Cauchy-Schwarz inequality, the trace inequality (2.3.13) and (2.3.16) in (2.3.39),

we arrive at

∑

T∈Th

∫

∂T

(Π∗
hψh − ψh)(D(u)∇χh) · n ds ≤ Ch‖D‖1,∞

(

∑

T∈Th

∫

∂T

|Π∗
hψh − ψh|2ds

)1/2

(

∑

T∈Th

∫

∂T

|∇χh · n|2ds
)1/2

≤ Ch

(

∑

T∈Th

h−1‖Π∗
hψh − ψh‖2

T + h|Π∗
hψh − ψh|21,T )

)1/2(
∑

T∈Th

h−1|∇χh|21,T + h|χh|22,T

)1/2

≤ Ch

(

∑

T∈Th

|ψh|21,T

)1/2(
∑

T∈Th

|χh|21,T

)1/2

≤ Ch|ψh|1|χh|1. (2.3.40)

In the last inequality, we have used the fact that χh is linear on triangle T , i.e., |χh|2,T = 0.

Again use |χh|2,T = 0, the Cauchy-Schwarz inequality and (2.3.16) to obtain

∑

T∈Th

∫

T

∇ · (D(u)∇χh)(ψh − Π∗
hψh)dx ≤ ‖D‖1,∞

(

∑

T∈Th

∫

T

|∇χh|2dx
)1/2

(

∑

T∈Th

∫

T

|ψh − Π∗
hψh|2dx

)1/2

≤ Ch|χh|1|ψh|1. (2.3.41)

Now (2.3.37) follows from (2.3.40) and (2.3.41). This completes the proof.
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Remark 2.3.3 : Note that (2.3.36) also holds true for χ ∈ H1(Ω).

Lemma 2.3.7 Under the assumption that the matrix D is positive definite, there exists a

positive constant α0 independent of h such that

ah(uh;χh, χh) ≥ α0|χh|21 ∀χh ∈Mh. (2.3.42)

Proof. Since the matrix D is uniformly positive, we find that

a(uh;χh, χh) ≥ α|χh|21. (2.3.43)

Use (2.3.37) and (2.3.43) to obtain

ah(uh;χh, χh) ≥ α|χh|21 − Ch|χh|21. (2.3.44)

Choose h small so that α− Ch = α0 > 0 and this completes the rest of the proof.

Lemma 2.3.8 [60, pp. 240 ] The operator Π∗
h has the following properties.

(i) For Π∗
h : Mh −→ Lh defined in (2.3.8)

(φh,Π
∗
hψh) = (ψh,Π

∗
hφh) ∀φh, ψh ∈Mh. (2.3.45)

(ii) With ‖|φh‖| = (φh,Π
∗
hφh)

1/2, the norms ‖| · ‖| and ‖ · ‖ are equivalent on Uh, that is,

there exist positive constants C7 and C8, independent of h, such that

C7||φh|| ≤ ‖|φh‖| ≤ C8||φh|| ∀φh ∈Mh. (2.3.46)

(iii) Π∗
h is stable with respect to the L2 norm, i.e., there exists a positive constant C

independent of h such that

‖Π∗
hχh‖ ≤ C‖χh‖ ∀χh ∈Mh. (2.3.47)

Proof. To prove (i), we note that

(φh,Π
∗
hψh) =

∑

T∈Th

3
∑

j=1

∫

V ∗

j ∩T

φh Π∗
hψh dx.
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Using the definition of Π∗
h and the quadrature formula (2.3.11), we obtain with φj = φh(Pj)

3
∑

j=1

∫

Vj∩T

φhΠ
∗
hψhdx = ψ1

∫

V ∗

1
∩T

φhdx+ ψ2

∫

V ∗

2
∩T

φhdx+ ψ3

∫

V ∗

3
∩T

φhdx

= ψ1 (2φ1 + φh(M1) + φh(M3) + 2φh(B))
|V ∗

1 ∩ T |
6

+ψ2 (2φ2 + φh(M1) + φh(M2) + 2φh(B))
|V ∗

2 ∩ T |
6

+ψ3 (2φ3 + φh(M2) + φh(M3) + 2φh(B))
|V ∗

3 ∩ T |
6

.

Using φh(B) =
φ1 + φ2 + φ3

3
and φh(Mi) =

φi+1 + φi
2

, i = 1, 2, 3, φ4 = φ1, we find that

3
∑

j=1

∫

Vj∩T

φhΠ
∗
hψhdx =

|T |
108

[

ψ1(22φ1 + 7φ2 + 7φ3) + ψ2 (22φ2 + 7φ1 + 7φ3)

+ψ3 (22φ3 + 7φ1 + 7φ2)
]

=
|T |
54

[ψ1, ψ2, ψ3]









22 7 7

7 22 7

7 7 22









[φ1, φ2, φ3]
T ,

where we have used the fact that |V ∗
j ∩ T | =

|T |
3
, j = 1, 2, 3, see Figure 2.3. This proves

that the inner product (·, γ·) is symmetric.

For (ii) that is for the equivalence of the norms, we now rewrite

3
∑

j=1

γφh|V ∗

j

∫

V ∗

j ∩T

φhdx =
|T |
108

[

22(φ2
1 + φ2

2 + φ2
3) + 14(φ1φ2 + φ2φ3 + φ1φ3)

]

=
|T |
54

[

15(φ2
1 + φ2

2 + φ2
3) + 7(φ1 + φ2 + φ3)

2
]

. (2.3.48)

The equivalence of the norms follow from (2.3.48) and (2.3.21). This completes the proof

of (ii).

In order to prove (iii), we note that

‖Π∗
hχh‖2 =

∑

T∈Th

3
∑

j=1

∫

V ∗

j ∩T

|Π∗
hχh|2dx.
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Now using the definition of Π∗
h, we obtain

3
∑

j=1

∫

V ∗

j ∩T

|Π∗
hχh|2dx =

3
∑

j=1

χ2
j |V ∗

j ∩ T |

=
3
∑

j=1

χ2
j

|T |
3
. (2.3.49)

Now (iii) follows from (2.3.21) and (2.3.49). This completes the rest of the proof.

Lemma 2.3.9 [26, pp. 1854] The operator γh defined in (2.3.3) has the following proper-

ties:

(a) ‖γhvh‖(L2(Ω))2 ≤ ‖vh‖(L2(Ω))2 ∀vh ∈ Uh, (2.3.50)

(b) ‖vh − γhvh‖(L2(Ω))2 ≤ Ch‖vh‖H(div;Ω). (2.3.51)

(c) b(γhvh, wh) = −(∇ · vh, wh) ∀vh ∈ Uh, ∀wh ∈ Wh. (2.3.52)

(d) There exists a positive constant C which depends on the bounds of κ−1 and µ and is

independent of h such that

(

κ−1µ(ch)vh, γhvh

)

≥ C‖vh‖2
H(div;Ω) ∀vh ∈ Uh, (2.3.53)

with ∇ · vh=0.

Proof. Since vh is linear on triangle T , (a) can be proved in the same way as we have

proved (iii) of Lemma 2.3.8. To prove (b), we proceed as follows. Note that

‖vh − γhvh‖2
(L2(Ω))2 =

∑

T∈Th

∫

T

|vh − γhvh|2dx. (2.3.54)

Using the definition of γh and referring to Figure 2.5, for vh = (v1
h, v

2
h), we obtain

∫

T

|vh − γhvh|2dx =

3
∑

j=1

∫

4Pj+1BPj

|vh(x) − γhvh(x)|2dx

=

3
∑

j=1

∫

4Pj+1BPj

|vh(x) − vh(Mj)|2dx

=
3
∑

j=1

∫

4Pj+1BPj

2
∑

k=1

(|vkh(x) − vkh(Mj)|2dx.
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Figure 2.5: Triangle T

Using Taylor series expansion, we find that

∫

T

|vh − γhvh|2dx =
3
∑

j=1

∫

4Pj+1BPj

(

|x−Mj|2
2
∑

k=1

|∇vkh|2
)

dx

≤ h2

3
∑

j=1

∫

4Pj+1BPj

|∇ · vh|2dx = h2

∫

T

|∇ · vh|2dx. (2.3.55)

Take the summation over all triangles T ∈ Th to complete the rest of the proof for (b).

The bilinear form b(γh·, ·) can be written as

b(γhvh, wh) = −
Nm
∑

i=1

vh(Mi) ·
∫

T ∗

Mi

whnT ∗

Mi

= −
∑

T∈Th

3
∑

j=1

∫

Pj+1BPj

vh(Mj)wh · n. (2.3.56)

A use of Gauss’s divergence theorem on 4Pj+1BPj, yields

3
∑

j=1

∫

Pj+1BPj

vh(Mj)wh · nds = −
3
∑

j=1

∫

Pj+1Pj

vh(Mj)wh · n ds

+
3
∑

j=1

∫

4Pj+1BPj

∇ · (vh(Mj)wh) dx.
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Using the fact that vh is linear on each triangle and Mj is the mid point of PjPj+1, we find

that

3
∑

j=1

∫

Pj+1BPj

vh(Mj)wh · n = −
3
∑

j=1

∫

Pj+1Pj

vh(Mj)wh · n ds = −
3
∑

j=1

wh(vh(Mj) · n) |PjPj+1|

= −
3
∑

j=1

wh
vh(Pj) + vh(Pj+1)

2
· n |PjPj+1|

= −
3
∑

j=1

∫

PjPj+1

whvh · n ds

= −
∑

∂T

whvh · n ds = −wh
∫

T

∇ · vh dx. (2.3.57)

This completes the proof for (c).

Since ∇ · vh = 0, to prove (2.3.53), it is enough to show that

(vh, γhvh) ≥ C‖vh‖(L2(Ω))2 . (2.3.58)

This can be proved using the same arguments as in the proof of (i) and (ii) in Lemma

2.3.8. This completes the proof.

Lemma 2.3.10 [19, pp. 130] There exists a positive constant β independent of h such that

the following inf-sup condition holds true:

sup
06=vh∈Uh

(∇ · vh, wh)

‖vh‖H(div;Ω)

≥ β‖wh‖ ∀wh ∈ Wh. (2.3.59)

2.3.2 Existence and Uniqueness of Discrete Solution

Using (2.3.52), the problem (2.3.6)-(2.3.7) yields a system of linear algebraic equations for

a given ch. To show the existence of a solution, it is enough to prove the uniqueness of the

solution of the corresponding homogeneous system

(κ−1µ(ch)uh, γhvh) − (∇ · vh, ph) = 0 ∀vh ∈ Uh, (2.3.60)

(∇ · uh, wh) = 0 ∀wh ∈ Wh. (2.3.61)

For uniqueness, it is sufficient to show that uh = 0, ph = 0. Substitute wh = ∇ · uh in

(2.3.61) to obtain ∇ · uh = 0. Put wh = ph in (2.3.61) and vh = uh in (2.3.60) and use
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(2.3.53) to obtain

‖uh‖H(div;Ω)
= 0.

This implies that uh = 0. Use uh = 0 in (2.3.60) and the inf-sup condition (2.3.59), to find

that ph = 0. Hence, for a given ch, there exists a unique solution
(

uh(ch),ph(ch)
)

satis-

fying (2.3.6)-(2.3.7). On substituting in (2.3.9), we obtain a system of nonlinear ordinary

differential equations in ch. An appeal to Picard’s Theorem yields the existence of a unique

solution in (0, th) for some 0 < th ≤ T . To continue the solution for all t ∈ J , we need an

a priori bound for ch. Now the quasi-uniformity of the mesh implies that

‖uh‖(L∞(Ω))2 ≤ Ch−1‖uh‖(L2(Ω))2 . (2.3.62)

For a priori bound, choose zh = ch in (2.3.9) and use (2.3.62) to bound uh. Then a use of

Lemma 2.3.8 yields

1

2

d

dt
(φch,Π

∗
hch) + ah(uh; ch, ch) ≤ S(h)‖ch‖2, (2.3.63)

where S(h) = O(h−1). For a given uh, the positive-definiteness of ah(uh; ch, ch) given in

(2.3.42) with (2.1.9) yields a priori estimates in L2 and H1- norms for ch. Now the a priori

bound ‖ch‖L∞(L2) can be used to show the existence of an uniqueness solution ch of the

concentration equation for all t ∈ J and for a fixed h. This completes the part of unique

solvability of (2.3.6)-(2.3.7) and (2.3.9).

2.4 Error estimates

In this section, we discuss the error estimates for the semidiscrete method. First of all,

we derive the estimates for the velocity and pressure in terms of the concentration using

the Raviart- Thomas projection and L2 projection. Then for finding the estimates for the

concentration, we split c − ch = (c − Rhc) + (Rhc − ch), where Rh is the Ritz projection

to be defined in (2.4.27) . In Lemma 2.4.1 and Lemma 2.4.3, we derive, respectively, H 1

and L2- error estimates for Rh. Based on these estimates, we finally obtain a priori error

estimates for the concentration in L∞(L2)- norm.
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2.4.1 Estimates for the velocity

Let Πh be the usual Raviart-Thomas projection Πh : U −→ Uh defined by

(∇ · (u − Πhu), wh) = 0 ∀wh ∈ Wh, (2.4.1)

which has the following approximation properties (see [19, pp. 163]):

‖u − Πhu‖(L2(Ω))2 ≤ Ch‖u‖(H1(Ω))2 , (2.4.2)

‖∇ · (u − Πhu)‖ ≤ Ch‖∇ · u‖H1(Ω), (2.4.3)

and (see [58, pp. 48])

‖u − Πhu‖(L∞(Ω))2 ≤ Ch‖u‖(W 1,∞(Ω))2 . (2.4.4)

Let Ph be the L2- projection of W onto Wh defined by

(p− Php, wh) = 0 ∀wh ∈ Wh. (2.4.5)

The operator Ph satisfies the following approximation property (see [19, pp. 163]):

‖p− Php‖ ≤ Ch‖p‖H1(Ω). (2.4.6)

Further, the following inverse property holds:

‖vh‖(L∞(Ω))2 ≤ Ch−1‖vh‖(L2(Ω))2 ∀vh ∈ Uh. (2.4.7)

Now, we introduce the following auxiliary functions (ũh, p̃h) : [0, T ] −→ Uh×Wh satisfying

(κ−1µ(c)ũh,vh) − (∇ · vh, p̃h) = 0 ∀vh ∈ Uh, (2.4.8)

(∇ · ũh, wh) = (q, wh) ∀wh ∈ Wh. (2.4.9)

For a proof of the the existence and uniqueness of the solution of (2.4.8)-(2.4.9), we refer

to [9, pp. 52]. The following error estimates for (ũh, p̃h) can be obtained by using the

properties of Raviart-Thomas projection Πh and L2 projection Ph defined in (2.4.1) and

(2.4.5), respectively:

‖u − ũh‖(L2(Ω))2 + ‖p− p̃h‖ ≤ Ch
(

‖u‖(H1(Ω))2 + ‖p‖1

)

, (2.4.10)
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and

‖∇ · (u − ũh)‖ ≤ Ch‖∇ · u‖1, (2.4.11)

where the constant C is independent of h, but may depend on the bounds of µ and κ−1

given in (2.1.10) and (2.1.11). For a proof, see [19, pp. 166].

The bound for ũh in L∞- norm can be found by using (2.4.2), (2.4.4), (2.4.7) and (2.4.10)

as follows:

‖ũh‖(L∞(Ω))2 ≤ ‖u − ũh‖(L∞(Ω))2 + ‖u‖(L∞(Ω))2

≤ ‖u − Πhu‖(L∞(Ω))2 + ‖Πhu − ũh‖(L∞(Ω))2 + ‖u‖(L∞(Ω))2

≤ C
(

h‖u‖(W 1,∞(Ω))2 + h−1‖Πhu − ũh‖(L2(Ω))2 + ‖u‖(L∞(Ω))2
)

≤ C
(

h‖u‖(W 1,∞(Ω))2 + h−1‖Πhu − u‖(L2(Ω))2

+h−1‖u − ũh‖(L2(Ω))2 + ‖u‖(L∞(Ω))2

)

≤ C
(

h‖u‖(W 1,∞(Ω))2 + ‖u‖(H1(Ω))2 + ‖p‖1 + ‖u‖(L∞(Ω))2

)

. (2.4.12)

Theorem 2.4.1 Assume that the triangulation Th is quasi-uniform. Let (u, p) and (uh, ph),

respectively, be the solutions of (2.2.2)-(2.2.3) and (2.3.6)-(2.3.7). Then, there exists a pos-

itive constant C, independent of h, but dependent on the bounds of κ−1 and µ such that

‖u − uh‖(L2(Ω))2 + ‖p− ph‖ ≤ C
[

‖c− ch‖ + h(‖u‖(H1(Ω))2 + ‖p‖1)
]

, (2.4.13)

and

‖∇ · (u − uh)‖ ≤ Ch‖∇ · u‖1, (2.4.14)

provided u(t) ∈ (H1(Ω))2, ∇ · u(t) ∈ H1(Ω) and p(t) ∈ H1(Ω).

Proof. Write u − uh = (u − ũh) + (ũh − uh) and p− ph = (p− p̃h) + (p̃h − ph). Since the

estimates of u− ũh and p− p̃h are known from (2.4.10), it is sufficient to estimate ũh−uh

and p̃h − ph . Let ẽ1h = ũh − uh and ẽ2h = p̃h − ph. Using (2.3.52) in (2.3.6)-(2.3.7), we

obtain

(κ−1µ(ch)uh, γhvh) − (∇ · vh, ph) = 0 ∀vh ∈ Uh, (2.4.15)

(∇ · uh, wh) = (q, wh) ∀wh ∈ Wh. (2.4.16)
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Subtracting (2.4.15) from (2.4.8) and (2.4.16) from (2.4.9), we find that

(κ−1µ(ch)ẽ1h, γhvh) − (∇ · vh, ẽ2h) = −(κ−1µ(c)ũh,vh − γhvh)

−(κ−1(µ(c) − µ(ch))ũh, γhvh) ∀vh ∈ Uh, (2.4.17)

(∇ · ẽ1h, wh) = 0 ∀wh ∈ Wh. (2.4.18)

Since ∇ · Uh ⊂ Wh, take wh = ∇ · ẽ1h in (2.4.18) to arrive at

‖∇ · ẽ1h‖ = 0, (2.4.19)

and hence, using (2.2.1), we obtain

‖ẽ1h‖H(div;Ω)
= ‖ẽ1h‖(L2(Ω))2 . (2.4.20)

Choosing vh = ẽ1h in (2.4.17) and wh = ẽ2h in (2.4.18), we arrive at

(κ−1µ(ch)ẽ1h, γhẽ1h) = −(κ−1µ(c)ũh, ẽ1h − γhẽ1h) − (κ−1(µ(c) − µ(ch))ũh, γhẽ1h).

Using (2.3.51), (2.3.53) with (2.1.10)-(2.1.11) and (2.1.8), we obtain

‖ẽ1h‖2

H(div;Ω)
≤ C

(

‖ũh‖(L2(Ω))2‖ẽ1h − γhẽ1h‖(L2(Ω))2 + ‖c− ch‖‖ũh‖(L∞(Ω))2‖ẽ1h‖(L2(Ω))2

)

≤ C
(

h‖ũh‖(L2(Ω))2‖ẽ1h‖H(div;Ω)
+ ‖c− ch‖‖ũh‖(L∞(Ω))2‖ẽ1h‖(L2(Ω))2

)

.

(2.4.21)

Substitute (2.4.21) in (2.4.20) to find that

‖ẽ1h‖(L2(Ω))2 ≤ C
(

h‖ũh‖(L2(Ω))2 + ‖c− ch‖‖ũh‖(L∞(Ω))2

)

. (2.4.22)

For estimating ẽ2h, choose vh = ẽ1h in (2.4.17), use (2.1.10)-(2.1.11), (2.1.8) and (2.4.20)

to obtain

(∇ · ẽ1h, ẽ2h) ≤ C
(

h‖ũh‖(L2(Ω))2 + ‖c− ch‖‖ũh‖(L∞(Ω))2

+‖ẽ1h‖(L2(Ω))2

)

‖ẽ1h‖(L2(Ω))2 . (2.4.23)

A use of the inf-sup condition (2.3.59) on the left hand side of (2.4.23) yields

‖ẽ2h‖ ≤ C
(

h‖ũh‖(L2(Ω))2 + ‖c− ch‖‖ũh‖(L∞(Ω))2 + ‖ẽ1h‖(L2(Ω))2

)

. (2.4.24)
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Using (2.4.10), (2.4.12), (2.4.22) and (2.4.24) can be written as

‖ẽ1h‖(L2(Ω))2 ≤ C
(

h‖u‖(H1(Ω))2 + ‖c− ch‖
)

, (2.4.25)

and

‖ẽ2h‖ ≤ C
(

h‖u‖(H1(Ω))2 + ‖c− ch‖
)

, (2.4.26)

where the constant C depends on ‖ũh‖(L∞(Ω))2 derived in (2.4.12). An application of the

triangle inequality completes the proof of (2.4.13). Now the estimate for (2.4.14) directly

follows from (2.4.19) and (2.4.11). This completes the rest of the proof.

2.4.2 Estimates for the concentration

Let Rh : H1(Ω) −→Mh be the projection of c defined by

A(u; c−Rhc, χ) = 0 ∀χ ∈Mh, (2.4.27)

where

A(u;ψ, χ) = ah(u;ψ, χ) + (u · ∇ψ, χ) + (λψ, χ) ∀χ ∈Mh. (2.4.28)

The function λ is chosen in such a way that A(·; ·, ·) is coercive.

Since

(u · ∇ψ, ψ) =

∫

Ω

ψu · ∇ψdx = −
∫

Ω

∇ · (ψu)ψdx+

∫

∂Ω

u · nψ2dx

= −
∫

Ω

∇ · (ψu)ψdx = −
∫

Ω

ψu · ∇ψdx−
∫

Ω

∇ · uψ2dx,

we obtain

(u · ∇ψ, ψ) = −1

2
(∇ · u, ψ2) = −1

2
(q, ψ2). (2.4.29)

If we choose λ = 1 + 1
2
q, then (u · ∇χ, χ) + (λχ, χ) = (χ, χ) for χ ∈Mh.

Now we derive the error bound in H1 and L2 norms for c−Rhc. Let Ih be the continuous

interpolant onto Mh satisfying the following approximation properties. For φ ∈ Hk+1(Ω)

with k ≥ 1, we have [29]:

‖φ− Ihφ‖j ≤ hk+1−j‖φ‖k+1 j = 0, 1. (2.4.30)
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Moreover, if φ ∈ W 2,∞(Ω), then

‖φ− Ihφ‖1,∞ ≤ Ch‖φ‖2,∞. (2.4.31)

Lemma 2.4.1 There exists a positive constant C independent of h such that

‖c−Rhc‖1 ≤ Ch‖c‖2, (2.4.32)

provided c ∈ H2(Ω), for t ∈ (0, T ] a.e.

Proof. The coercivity and boundedness of bilinear form A(u; ·, ·) with (2.4.27) yield

‖Ihc−Rhc‖2
1 ≤ CA(u; Ihc− Rhc, Ihc− Rhc)

≤ CA(u; Ihc− c, Ihc− Rhc)

≤ C‖c− Ihc‖1‖Ihc− Rhc‖1,

and hence,

‖Ihc− Rhc‖1 ≤ C‖c− Ihc‖1, (2.4.33)

where C depends on the bound of D(u) given in (2.1.13). Combine the estimates (2.4.33)

and (2.4.30) and use the triangle inequality to complete the proof.

For deriving the L2- error bounds for c− Rhc, we need the following Lemma.

Lemma 2.4.2 There exists a positive constant C such that for ψ ∈ H 1(Ω) and χh ∈Mh

|εa(u; c− Rhc, ψh)| ≤ Ch2

(

|g|1 + |u · ∇c|1 + |φ∂c
∂t

|1 + ‖c‖2

)

|ψh|1 ∀ψh ∈Mh,(2.4.34)

where εa(u;ψ, χh) = a(u;ψ, χh) − ah(u;ψ, χh).

Proof. Using (2.3.36) (see Remark 2.3.3 also), we find that

|εa(u; c−Rhc, ψh)| ≤
∣

∣

∣

∣

∣

∑

T∈Th

∫

T

∇ · (D(u)∇(c− Rhc))(ψh − Π∗
hψh)dx

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

T∈Th

∫

∂T

(D(u)∇(c− Rhc) · n)(ψh − Π∗
hψh)ds

∣

∣

∣

∣

∣

= J1 + J2, say. (2.4.35)
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To bound J1, first we use the fact that Rhc is linear on each triangle T to obtain

J1 =

∣

∣

∣

∣

∣

∑

T∈Th

∫

T

∇ · (D(u)∇(c− Rhc)) (ψh − Π∗
hψh)dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

T∈Th

∫

T

(

∇ · (D(u)∇c) − (∇ ·D(u)) · ∇Rhc
)

(ψh − Π∗
hψh)dx

∣

∣

∣

∣

∣

.

Now use (2.1.3), (2.3.25) (2.3.32) to obtain

J1 ≤
∣

∣

∣

∣

∣

∑

T∈Th

∫

T

(

−g + u · ∇c+ φ
∂c

∂t

)

(ψh − Π∗
hψh)dx

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

T∈Th

∫

T

[(∇ ·D(u) − (∇ ·D(u))T ) · ∇Rhc] (ψh − Π∗
hψh)dx

∣

∣

∣

∣

∣

≤ Ch2

(

|g|1 + |u · ∇c|1 + |φ∂c
∂t

|1 + ‖c‖2

)

|ψh|1,

where (∇ ·D(u))T denotes the average value of ∇ ·D(u) on triangle T .

Based on the analysis in [46, pp. 1873], we estimate J2 as follows. Note that an appeal to

the continuity of ∇c · n with (2.3.26) yields

J2 =

∣

∣

∣

∣

∣

∑

T∈Th

∫

∂T

(

(D −DT )∇(c− Rhc) · n
)

(ψh − Π∗
hψh)ds

∣

∣

∣

∣

∣

,

where D = D(u) and DT is a function such that for any edge of a triangle T ∈ Th,

DT (x) = D(xc), x ∈ E,

and xc is the mid point of E. Since |D(x) − DT | ≤ ChT‖D‖1,∞, we use trace inequality

(2.3.13) and (2.4.32) to arrive at

J2 ≤ Ch|
∑

T∈Th

∫

∂T

(∇(c−Rhc) · n)(ψh − Π∗
hψh)ds|

≤ Ch

(

∑

T∈Th

∫

∂T

|(∇(c− Rhc) · n)|2
)1/2

×
(

∑

T∈Th

∫

∂T

|ψh − Π∗
hψh|2

)1/2

≤ Ch
(

h
−1/2
T ‖c− Rhc‖1 + h

1/2
T ‖c‖2

)

×
(

h
−1/2
T ‖ψh − Π∗

hψh‖ + h
1/2
T |ψh|1

)

≤ Ch2‖c‖2|ψh|1.

Substitute the estimates of J1 and J2 in (2.4.35) to complete the rest of the proof.
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Lemma 2.4.3 : There exists a positive constant C independent of h such that

‖c− Rhc‖ ≤ Ch2

(

‖c‖2 + |g|1 + |u · ∇c|1 + |φ∂c
∂t

|1
)

, (2.4.36)

provided c ∈ H2(Ω), u · ∇c ∈ H1(Ω) and
∂c

∂t
∈ H1(Ω) for t ∈ (0, T ] a.e.

Proof. To obtain optimal L2 error estimates for c−Rhc, we now appeal to Aubin-Nitsche

duality argument. Let ψ ∈ H2(Ω) be a solution of the following adjoint problem

−∇ · (D(u)∇ψ + uψ) + λψ = c− Rhc in Ω, (2.4.37)

(D(u)∇ψ + uψ) · n = 0 on ∂Ω,

which satisfies the elliptic regularity condition:

‖ψ‖2 ≤ C‖c− Rhc‖. (2.4.38)

Multiply the above equation by c−Rhc and integrate over Ω. An integration by parts and

a use of (2.4.27) yield

‖c− Rhc‖2 = a(u; , ψ, c−Rhc) − (u · ∇ψ, c− Rhc) − (∇ · uψ, c− Rhc) + λ(ψ, c−Rhc)

=
[

a(u; c− Rhc, ψ − ψh) + (u · ∇(c− Rhc), ψ − ψh)

+λ(c− Rhc, ψ − ψh)
]

+ εa(u; c− Rhc, ψh) ∀ψh ∈Mh

= I1 + I2, say. (2.4.39)

For I1, use (2.4.32) to find that

|I1| = |a(u; c− Rhc, ψ − ψh) + (u · ∇(c−Rhc), ψ − ψh) + λ(c− Rhc, ψ − ψh)|

≤ C‖c− Rhc‖1‖ψ − ψh‖1

≤ Ch‖c‖2‖ψ − ψh‖1. (2.4.40)

The bound for I2 follows from Lemma 2.4.2 and hence,

|I2| ≤ Ch2

(

|g|1 + |u · ∇c|1 + |φ∂c
∂t

|1 + ‖c‖2

)

|ψh|1. (2.4.41)

Substitute (2.4.40) and (2.4.41) in (2.4.39) to find that

‖c−Rhc‖2 ≤ C

[

h‖c‖2‖ψ − ψh‖1 + h2

(

|g|1 + |u · ∇c|1 + |φ∂c
∂t

|1 + ‖c‖2

)

|ψh|1
]

. (2.4.42)
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Now choose ψh = Ihψ in (2.4.42). Then use elliptic regularity condition (2.4.38) with

(2.4.30) to obtain

‖c− Rhc‖ ≤ Ch2

(

‖c‖2 + |g|1 + |u · ∇c|1 + |φ∂c
∂t

|1)
)

,

and this completes the proof.

For ‖Rhc‖1,∞, we use inverse inequality (2.3.14), (2.4.31) (2.4.30) and (2.4.33) to obtain

‖Rhc‖1,∞ ≤ ‖c−Rhc‖1,∞ + ‖c‖1,∞

≤ ‖c− Ihc‖1,∞ + ‖Ihc−Rhc‖1,∞ + ‖c‖1,∞

≤ C
(

‖c− Ihc‖1,∞ + h−1‖Ihc− Rhc‖1 + ‖c‖1,∞

)

≤ C‖c‖2,∞. (2.4.43)

Lemma 2.4.4 There exists a positive constant C such that ∀θ ∈Mh,

|ah(u;Rhc, θ) − ah(uh;Rhc, θ)| ≤ C
(

‖u − uh‖(L2(Ω))2 + h‖∇ · (u − uh)‖
)

|θ|1. (2.4.44)

Proof. Note that

|ah(u;Rhc, θ) − ah(uh;Rhc, θ)| =

∣

∣

∣

∣

∣

Nh
∑

i=1

∫

∂V ∗

i

(D(u) −D(uh))∇Rhc · ni Π∗
hθ ds

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

T∈Th

KT

∣

∣

∣

∣

∣

,

where KT =

3
∑

l=1

∫

∂V ∗

l
∩T

(D(u) −D(uh))∇Rhc · nlθl ds and θl = θ(Pl), see Figure 2.3. For

each triangle T , KT can be written as

KT =
3
∑

l=1

∫

MlB

(D(u) −D(uh))∇Rhc · nl(θl+1 − θl) ds (θ4 = θ1).

Using the Cauchy-Schwarz inequality and (2.4.43), we obtain

KT ≤
3
∑

l=1

|θl+1 − θl|
∫

MlB

|(D(u) −D(uh))∇Rhc · nl| ds

≤ C
3
∑

l=1

|θl+1 − θl| ‖D(u) −D(uh)‖(L2(MlB))2×2 (meas(MlB))1/2 .
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A use of the trace inequality (2.3.13) and (2.3.33) yields

KT ≤ C
3
∑

l=1

|θl+1 − θl| ‖u − uh‖(L2(MlB))2h
1/2
T

≤ Ch
1/2
T

3
∑

l=1

|θl+1 − θl|
[

h
−1/2
T ‖u − uh‖T + h

1/2
T ‖∇ · (u − uh)‖T

]

. (2.4.45)

Now using Taylor series expansion and (2.3.18), we find that

|θl+1 − θl| ≤ hT

[

|∂θ
∂x

| + |∂θ
∂y

|
]

≤
[(

|∂θ
∂x

|2 + |∂θ
∂y

|2
)

h2
T

]1/2

≤ C|θ|1,h,T , l = 1, 2, 3. (2.4.46)

Substitute (2.4.46) in (2.4.45) to arrive at

KT ≤ C|θ|1,h,T (‖u − uh‖T + hT‖∇ · (u − uh)‖T ) .

With the estimates for KT and Lemma 2.3.1, we obtain

|ah(u;Rhc, θ) − ah(uh;Rhc, θ)| ≤ C
(

‖u − uh‖(L2(Ω))2 + h‖∇ · (u − uh)‖
)

|θ|1,

and this completes the rest of the proof.

Theorem 2.4.2 Let c and ch be the solutions of (2.1.3) and (2.3.9) respectively, and let

ch(0) = c0,h = Rhc(0). Then, for sufficiently small h, there exists a positive constant C(T )

independent of h, but dependent on the bounds of κ−1 and µ such that

‖c− ch‖2
L∞(J ;L2) ≤ C(T )

[

∫ T

0

(

h4(‖c‖2
2 + ‖g‖2

1 + ‖u · ∇c‖2
1 + ‖φ∂c

∂t
‖2

1

+‖ct‖2
2 + ‖gt‖2

1 + ‖(u · ∇c)t‖2
1 + ‖φ∂

2c

∂t2
‖2

1

+‖u‖2
(H1(Ω))2 + ‖p‖2

1 + ‖∇ · u‖2
1)

+h2(‖u‖2
(H1(Ω))2 + ‖p‖2

1)
)

ds

]

, (2.4.47)

provided, c, ct ∈ L2(J ;H2(Ω)), u ∈ L2(J ; (H1(Ω))2), and u · ∇c, (u · ∇c)t, g, gt, ∇ ·
u, p, φ∂c

∂t
, φ∂

2c
∂t2

∈ L2(J ;H1(Ω)).
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Proof. Write c− ch = (c−Rhc) + (Rhc− ch) = ρ+ θ. Since the estimates of ρ are known,

we need to find only the estimates of θ.

Multiply (2.1.3) by Π∗
hzh, integrate over Ω and subtract the resulting equation from (2.3.9)

to obtain

(

φ
∂θ

∂t
,Π∗

hzh

)

+ (u · ∇c,Π∗
hzh) − (uh · ∇ch,Π∗

hzh) + ah(u; c, zh)

−ah(uh; ch, zh) = −
(

φ
∂ρ

∂t
,Π∗

hzh

)

+ (g(c) − g(ch),Π
∗
hzh) ∀zh ∈Mh. (2.4.48)

Using the definition of εh in (2.3.27), (2.4.48) can be rewritten as

(

φ
∂θ

∂t
,Π∗

hzh

)

− (uh.∇ch, zh) + εh(uh.∇ch, zh) + (u · ∇c, zh) − εh(u · ∇c, zh)

+ ah(u; c, zh) − ah(uh, ch, zh) = −
(

φ
∂ρ

∂t
,Π∗

hzh

)

+(g(c) − g(ch),Π
∗
hzh) ∀zh ∈Mh. (2.4.49)

Put zh = θ in (2.4.49) and use the definition of Rh to obtain

(

φ
∂θ

∂t
,Π∗

hθ

)

+ (uh · ∇θ, θ) + ah(uh; θ, θ) = −
(

φ
∂ρ

∂t
,Π∗

hθ

)

+ (λρ, θ) + ((uh − u) · ∇Rhc, θ)

+ [εh(u · ∇c, θ) − εh(uh · ∇ch, θ)] − [ah(u;Rhc, θ) − ah(uh;Rhc, θ)]

+
(

g(c) − g(ch),Π
∗
hθ
)

= I1 + I2 + I3 + I4 + I5 + I6, say. (2.4.50)

To estimate I1, we use the Cauchy-Schwarz inequality, boundedness of φ (see,(2.1.9)) and

(2.3.47) to obtain

|I1| = |
(

φ
∂ρ

∂t
,Π∗

hθ

)

| ≤ C‖∂ρ
∂t

‖‖θ‖. (2.4.51)

Similarly,

|I2| = |(λρ, θ)| ≤ C‖ρ‖‖θ‖. (2.4.52)

Using (2.4.43), I3 is bounded as follows:

|I3| = |((uh − u) · ∇Rhc, θ)| ≤ ‖uh − u‖(L2(Ω))2‖∇Rhc‖L∞‖θ‖

≤ C‖uh − u‖(L2(Ω))2‖‖θ‖, (2.4.53)
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where the constant C depends on the L∞ bound of Rh given in (2.4.43).

The bound for I4 is a bit technical and now we proceed as follows:

|I4| ≤ |εh(u · ∇c, θ)| + |εh(uh · ∇ch, θ)|

≤ |εh(u · ∇c, θ)| + |εh((uh − u) · ∇θ, θ)| + |εh ((uh − u) · ∇Rhc, θ) |

+|εh(u · ∇θ, θ)| + |εh(u · ∇Rhc, θ)|

= A1 + A2 + A3 + A4 + A5, say. (2.4.54)

To estimate A1 · · ·A5, we use the bound for εh in (2.3.32) and the inverse inequalities

(2.3.14)-(2.3.15) and (2.4.32) to find that

A1 = |εh(u · ∇c, θ)| ≤ Ch2‖u · ∇c‖1|θ|1, (2.4.55)

A2 = |εh((uh − u) · ∇θ, θ)|

≤ Ch2 (‖∇ · (u − uh)∇θ‖L1) |θ|1,∞
≤ C‖∇ · (u − uh)‖ ‖θ‖ |θ|1, (2.4.56)

A3 = |εh ((uh − u) · ∇Rhc, θ) | ≤ C‖u − uh‖ ‖∇Rhc‖ h ‖θ‖1,∞

≤ C‖u − uh‖(L2(Ω))2 |θ|1, (2.4.57)

and

A4 = |εh (u · ∇θ, θ) | ≤ C|θ|1‖θ‖. (2.4.58)

Finally for A5, we use the definition of εh(u; ·, ·) in (2.3.27) and (2.4.43) to obtain

A5 ≤ Ch2‖u‖(H1(Ω))2 |θ|1.

Substituting the bounds for A1 to A5 in (2.4.54), we obtain following bound for I4:

|I4| ≤ C|θ|1
[

h2‖u · ∇c‖1 + ‖u − uh‖(L2(Ω))2 + ‖∇ · (u − uh)‖ ‖θ‖

+h2‖u‖H1(Ω) + ‖θ‖
]

. (2.4.59)



Chapter 2.Finite Volume Element Approximations 55

The bound for I5 follows from Lemma 2.4.4, and hence,

|I5| ≤ C
(

‖u − uh‖(L2(Ω))2 + h‖∇ · (u − uh)‖
)

|θ|1. (2.4.60)

Using (2.1.7) and (2.3.47), I6 can be estimated as

|I6| ≤ |(g(ch) − g(c),Π∗
hθ)| ≤ C‖c− ch‖ ‖θ‖. (2.4.61)

Now, we need to bound from below the left-hand side of (2.4.50).

Note that

(uh · ∇θ, θ) = −1

2
(∇ · uh, θ

2) = −1

2
(qθ, θ) − 1

2
(∇ · (uh − u), θ2). (2.4.62)

To estimate the second term in (2.4.62), we use (2.4.14)

|(∇ · (uh − u), θ2)| ≤ ‖∇ · (uh − u)‖L2‖θ‖ ‖θ‖L∞

≤ Ch‖∇ · u‖H1‖θ‖ ‖θ‖L∞

≤ C‖θ‖2. (2.4.63)

The boundedness of q implies that

(qθ, θ) ≤ C‖θ‖2. (2.4.64)

Substitute the estimates for I1, · · · , I6 in (2.4.50) and use (2.4.63)-(2.4.64), (2.3.42), Young’s

inequality ab ≤ 1
2
εa2 + 1

2ε
b2, non singularity of the function φ with standard kick back

argument to obtain

d

dt
‖|θ‖|2 + (α− ε)|θ|21 ≤ C

[

‖∇ · (u − uh)‖4 + h4(‖u · ∇c‖2
1 + ‖u‖2

(H1(Ω))2)

+ h2‖∇ · (u − uh)‖2 + ‖ρ‖2 + ‖∂ρ
∂t

‖2 + (1 + ‖θ‖2)‖θ‖2
]

.(2.4.65)

Now, from (2.4.13),

‖u − uh‖ ≤ C
(

‖ρ‖ + ‖θ‖ + h(‖u‖(H1(Ω))2 + ‖p‖1)
)

. (2.4.66)

A use of (2.4.36), (2.4.66) and (2.4.14) in (2.4.65) gives us

d

dt
‖|θ‖|2 + α0|θ|21 ≤ C

[

h4(‖c‖2
2 + ‖g‖2

1 + ‖u · ∇c‖2
1 + ‖φ∂c

∂t
‖2

1

+‖ct‖2
2 + ‖gt‖2

1 + ‖(u · ∇c)t‖2
1 + ‖φ∂

2c

∂t2
‖2

1

+‖u‖2
(H1(Ω))2 + ‖p‖2

1 + ‖∇ · u‖2
1)

+h2(‖u‖2
(H1(Ω))2 + ‖p‖2

1) + (1 + ‖θ‖2)‖θ‖2
]

. (2.4.67)
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To estimate the last term on the right hand side of (2.4.67), we follow the arguments given

in [37]. Let t∗ ≤ T be the largest time such that the induction hypothesis

‖θ‖L∞(J ;L2) ≤ 1, (2.4.68)

holds true ∀t ≤ t∗. The existence of t∗ > 0 for which (2.4.68) holds true can be justified

in the following way. Since ch(0) = Rhc(0), this implies that θ(0) = 0. An application to

Gronwall’s inequality (1.2.7) with (2.3.46), (2.4.67) and (2.4.68) yields

‖θ‖2
L∞(J ;L2) ≤ C(T )

[

∫ T

0

(

h4(‖c‖2
2 + ‖g‖2

1 + ‖u · ∇c‖2
1 + ‖φ∂c

∂t
‖2

1

+‖ct‖2
2 + ‖gt‖2

1 + ‖(u · ∇c)t‖2
1 + ‖φ∂

2c

∂t2
‖2

1

+‖u‖2
(H1(Ω))2 + ‖p‖2

1 + ‖∇ · u‖2
1)

+h2(‖u‖2
(H1(Ω))2 + ‖p‖2

1)
)

ds

]

∀t ∈ (0, t∗] with t∗ ≤ T. (2.4.69)

Choose h0 > 0, small enough so that for h ∈ (0, h0], ∀t ∈ (0, t∗] with t∗ ≤ T , we have from

(2.4.69) that ‖θ‖L∞(J ;L2) ≤ 1. If t∗ < T , by the continuity of the mapping t −→ ‖θ‖L∞(J ;L2),

either ‖θ‖L∞(J ;L2) ≤ 1 ∀0 ≤ t ≤ T , or there exists some t∗∗ such that t∗ < t∗∗ < T and

‖θ‖L∞(J ;L2) > 1. In both the cases, we get a contradiction due to the fact that t∗ is

the largest interval in (0, T ] such that ‖θ‖L∞(J ;L2) ≤ 1 and hence, t∗ = T . Combine the

estimates for ρ in (2.4.36) and θ given in (2.4.69) to complete the rest of the proof.

Combining the estimates derived in (2.4.13) and (2.4.47), we obtain the following estimates

for u − uh and p− ph.

Theorem 2.4.3 Assume that the triangulation Th is quasi-uniform. Let (u, p) and (uh, ph)

be, respectively, the solutions of (2.2.2)-(2.2.3) and (2.3.6)-(2.3.7) and let ch(0) = c0,h =

Rhc(0). Then for sufficiently small h, there exists a positive constant C(T ) which is inde-

pendent of h but may depend on the bounds of κ−1 and µ such that

‖u − uh‖2
L∞(J ;(L2(Ω))2) + ‖p− ph‖2

L∞(J ;L2(Ω)) ≤ C(T )

[

∫ T

0

(

h4(‖c‖2
2 + ‖g‖2

1 + ‖u · ∇c‖2
1

+‖φ∂c
∂t

‖2
1 + ‖ct‖2

2 + ‖gt‖2
1 + ‖(u · ∇c)t‖2

1 + ‖φ∂
2c

∂t2
‖2

1 + ‖u‖2
(H1(Ω))2

+‖p‖2
1 + ‖∇ · u‖2

1) + h2(‖u‖2
(H1(Ω))2 + ‖p‖2

1)
)

ds

]

. (2.4.70)
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2.5 Completely Discrete Scheme

In Section 2.4, we have discussed a semidiscrete scheme, i.e., we have discretized only the

spatial domain Ω and not the time interval [0, T ] and have derived a priori error estimates

for concentration, velocity and pressure. In this section, we introduce a completely discrete

scheme, i.e., we also discretize the time variable using finite difference methods.

Let 0 = t0 < t1 < · · · tN = T be a given partition of the time interval [0, T ] with time

step size ∆t. Set fn = f(tn) for a generic function f in time. Then, at time level tn, the

fully discrete problem corresponding to pressure-velocity equation (2.3.6)-(2.3.7) is to find

(un
h, p

n
h) ∈ Uh ×Wh such that

(κ−1µ(cnh)u
n
h, γhvh) + (∇ · vh, p

n
h) = 0 ∀vh ∈ Uh, (2.5.1)

(∇ · un
h, wh) = (qn, wh) ∀wh ∈ Wh. (2.5.2)

For the approximation of concentration at time level t = tn+1, we use the approximate

velocity at the previous time level (t = tn) and for approximating the time derivative
∂ch
∂t

,

we use the backward Euler difference scheme:

∂ch
∂t

|t=tn+1
≈ cn+1

h − cnh
∆tn

. (2.5.3)

For the sake of convenience, we choose ∆tn = ∆t, ∀n = 1, 2, · · ·N .

Now, the discrete problem corresponding to the concentration equation (2.3.9) is to find

cn+1
h ∈Mh such that

(

φ
(cn+1
h − cnh)

∆t
,Π∗

hzh
)

+ (un
h · ∇cn+1

h ,Π∗
hzh)

+ah(u
n
h; cn+1

h , zh) = (g(cn+1
h ),Π∗

hzh) ∀zh ∈Mh. (2.5.4)

2.5.1 Error Estimates

The following error bound for velocity and pressure at t = tn is given in Theorem 2.4.1.

‖un − un
h‖(L2(Ω))2 + ‖pn − pnh‖ ≤ C

[

‖cn − cnh‖ + h
(

‖un‖(H1(Ω))2 + ‖pn‖1

)]

, (2.5.5)

and

‖∇ · (un − un
h)‖ ≤ Ch‖∇ · un‖1. (2.5.6)
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Theorem 2.5.1 Let cm and cmh be the solutions of (2.1.3) and (2.5.4) at t = tm, re-

spectively, and let ch(0) = c0,h = Rhc(0). Further, assume that ∆t = O(h). Then, for

sufficiently small h, there exists a positive constant C(T ) independent of h but dependent

on the bounds of κ−1 and µ such that

max
0≤m≤N

‖cm − cmh ‖2 ≤ C
[

h4
(

‖c‖2
L∞(0,T ;H2) + ‖g‖2

L∞(0,T ;H1) + ‖u · ∇c‖2
L∞(0,T ;H1)

+‖∇ · u‖2
L∞(0,T ;H1) + ‖φ∂c

∂t
‖2
L∞(0,T ;H1) + ‖∂c

∂t
‖2
L2(0,T ;H2) + ‖gt‖2

L2(0,T ;H1) + ‖(u · ∇c)t‖2
L2(0,T ;H1)

+‖φ∂
2c

∂t2
‖2
L2(0,T ;H1)

)

+ (∆t)2
(

‖ut‖2
L2(0,T ;(L2(Ω))2) + ‖∇ · ut‖2

L2(0,T ;L2)

+‖∂
2c

∂t2
‖2
L2(0,T,L2)

)

+ h2
(

‖u‖2
L∞(0,T ;(H1(Ω))2) + ‖p‖2

L∞(0,T ;H1)

)]

. (2.5.7)

Proof. Write cn− cnh = (cn−Rhc
n) + (Rhc

n− cnh) = ρn + θn. Since the estimates for ρn are

known from Lemma 2.4.3 at t = tn, it is enough to obtain the bound for θn.

Multiply the concentration equation (2.1.3) by Π∗
hzh and integrate over Ω. Then, at

t = tn+1, we have
(

φ
∂cn+1

∂t
,Π∗

hzh

)

+
(

un+1 · ∇cn+1,Π∗
hzh
)

+ah(u
n+1; cn+1, zh) = (g(cn+1),Π∗

hzh) ∀zh ∈ Mh, (2.5.8)

where ah(·; ·, ·) is defined in (2.3.10).

Subtracting (2.5.4) from (2.5.8) and using (2.3.27), we obtain

(

φ
∂cn+1

∂t
− φ

cn+1
h − cnh

∆t
,Π∗

hzh

)

− (un
h.∇cn+1

h , zh) + εh(u
n
h.∇cn+1

h , zh)

+(un+1 · ∇cn+1, zh) − εh(u
n+1 · ∇cn+1, zh) + ah(u

n+1; cn+1, zh)

−ah(un
h, c

n+1
h , zh) = (g(cn+1) − g(cn+1

h ),Π∗
hzh) ∀zh ∈Mh. (2.5.9)

Choosing zh = θn+1 in (2.5.9) and using the definition of Rh given in (2.4.27), we obtain

the following error equation:

(

φ
θn+1 − θn

∆t
,Π∗

hθ
n+1
)

+ (un
h · ∇θn+1, θn+1)

+ah(u
n
h; θn+1, θn+1) =

[

εh(u
n+1 · ∇cn+1, θn+1) − εh(u

n
h · ∇cn+1

h , θn+1)
]

+
[

ah(u
n
h;Rhc

n+1, θn+1) − ah(u
n+1, Rhc

n+1, θn+1)
]

+ (un
h − un+1 · ∇Rhc, θ

n+1)
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−
(

φ
ρn+1 − ρn

∆t
,Π∗

hθ
n+1

)

−
(

φ
∂cn+1

∂t
− φ

cn+1 − cn

∆t
,Π∗

hθ
n+1

)

+(g(cn+1) − g(cn+1
h ),Π∗

hθ
n+1) + λ(cn+1 −Rhc

n+1,Π∗
hθ

n+1)

= J1 + J2 + J3 + J4 + J5 + J6 + J7, say. (2.5.10)

Now, we estimate Ji, i = 1, 2, · · · , 7 one by one.

Repeating the same arguments, which we have used to bound the term I4 of Theorem 2.4.2,

we obtain the following bound for J1:

|J1| ≤ |εh(un+1 · ∇cn+1, θn+1) − εh(u
n
h · ∇cn+1

h , θn+1)|

≤ C|θn+1|1
[

h2‖un+1 · ∇cn+1‖1 + ‖un+1 − un
h‖(L2(Ω))2

+‖∇ · (un+1 − un
h)‖‖θn+1‖ + h2‖un+1‖(H1(Ω))2 + ‖θn+1‖

]

,

and hence,

|J1| ≤ C|θn+1|1
[

h2‖un+1 · ∇cn+1‖1 + ‖un − un
h‖(L2(Ω))2

+‖∇ · (un − un
h)‖‖θn+1‖ + h2‖un+1‖(H1(Ω))2 + ‖θn+1‖

+‖un+1 − un‖(L2(Ω))2 + ‖∇ · (un+1 − un)‖‖θn+1‖
]

. (2.5.11)

Using Lemma 2.4.4, J2 can be bounded as

|J2| ≤ |ah(un
h;Rhc

n+1, θn+1) − ah(u
n+1, Rhc

n+1, θn+1)|

≤ C
[

‖un+1 − un
h‖(L2(Ω))2 + h‖∇ · (un+1 − un

h)‖
]

|θn+1|1
≤ C

[

‖un − un
h‖(L2(Ω))2 + h‖∇ · (un − un

h)‖

+‖un − un
h‖(L2(Ω))2 + h‖∇ · (un+1 − un)‖

]

|θn+1|1. (2.5.12)

To bound J3, we use (2.4.43):

|J3| ≤ |(un
h − un+1 · ∇Rhc, θ

n+1)| ≤ C‖un+1 − un
h‖(L2(Ω))2‖θn+1‖

≤ C
[

‖un+1 − un
h‖(L2(Ω))2 + ‖un+1 − un‖(L2(Ω))2

]

‖θn+1‖. (2.5.13)

Using (2.1.9) and (2.3.47), we bound J4 as

|J4| ≤
∣

∣

∣

∣

(

φ
ρn+1 − ρn

∆t
,Π∗

hθ
n+1

)∣

∣

∣

∣

≤ C

∥

∥

∥

∥

ρn+1 − ρn

∆t

∥

∥

∥

∥

‖θn+1‖. (2.5.14)
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Using the Cauchy-Schwarz inequality, we have

∣

∣

∣

∣

ρn+1 − ρn

∆t

∣

∣

∣

∣

≤ 1

∆t

∫ tn+1

tn

|ρt|ds ≤ (∆t)−1/2

(
∫ tn+1

tn

|ρt|2ds
)1/2

. (2.5.15)

Using (2.5.15), we obtain
∥

∥

∥

∥

ρn+1 − ρn

∆t

∥

∥

∥

∥

≤ C(∆t)−1/2‖∂ρ
∂t

‖L2(tn ,tn+1;L2). (2.5.16)

This implies that

|J4| ≤ C(∆t)−1/2‖∂ρ
∂t

‖L2(tn,tn+1;L2)‖θn+1‖. (2.5.17)

An application of Taylor series expansion and (2.3.47) gives us

|J5| ≤
∣

∣

∣

∣

(

φ
∂cn+1

∂t
− φ

cn+1 − cn

∆t
,Π∗

hθ
n+1

)∣

∣

∣

∣

≤ φ∗

∥

∥

∥

∥

∂cn+1

∂t
− cn+1 − cn

∆t

∥

∥

∥

∥

‖θn+1‖

≤ C‖θn+1‖
∫ tn+1

tn

‖ctt‖ds ≤ ‖θn+1‖
(

∆t

∫ tn+1

tn

‖ctt‖2ds

)1/2

. (2.5.18)

Since the function g is uniformly Lipschitz continuous (see (2.1.7)), J6 can be bounded in

the following way:

|J6| ≤ |(g(cn+1) − g(cn+1
h ),Π∗

hθ
n+1)| ≤ C‖cn+1 − cn+1

h ‖‖θn+1‖

≤ C(‖ρn+1‖ + ‖θn+1‖)‖θn+1‖. (2.5.19)

Again using (2.3.47), we obtain

|J7| ≤ |λ(cn+1 − Rhc
n+1,Π∗

hθ
n+1)| ≤ C‖ρn+1‖‖θn+1‖. (2.5.20)

Since

|un+1 − un|2 =

∣

∣

∣

∣

∫ tn+1

tn

ut ds

∣

∣

∣

∣

2

≤ ∆t

∫ tn+1

tn

|ut|2ds, (2.5.21)

Hence,

‖un+1 − un‖2
(L2(Ω))2 ≤ ∆t ‖ut‖2

L2(tn,tn+1;(L2(Ω))2), (2.5.22)

and similarly,

‖∇ · (un+1 − un)‖2
L2(Ω) ≤ ∆t ‖∇ · ut‖2

L2(tn,tn+1;L2(Ω)). (2.5.23)
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Now, we need to bound the term (un
h · ∇θn+1, θn+1) in (2.5.10) from below. Note that

(un
h · ∇θn+1, θn+1) = −1

2
(∇ · un

h, (θ
n+1)2)

= −1

2
(qnθn+1, θn+1) − 1

2
(∇ · (un

h − un), (θn+1)2). (2.5.24)

Using (2.5.6), we obtain

|(∇ · (un
h − un), (θn+1)2)| ≤ ‖∇ · (un

h − un)‖ ‖θn+1‖ ‖θn+1‖L∞

≤ Ch‖∇ · un‖H1(Ω)‖θn+1‖ ‖θn+1‖L∞

≤ C‖θn+1‖2. (2.5.25)

The boundedness of qn implies that

|(qnθn+1, θn+1)| ≤ C‖θn+1‖2, (2.5.26)

and hence, from (2.5.24)

(un
h · ∇θn+1, θn+1) ≥ C‖θn+1‖2. (2.5.27)

As in semidiscrete case, we now make the following hypothesis:

max
0≤m≤N

‖θm‖ ≤ 1. (2.5.28)

Substituting all the estimates derived in (2.5.11)-(2.5.20) with (2.5.22),(2.5.23) and (2.5.27)

in (2.5.10), with an application of Young’s inequality, we obtain
(

φ
θn+1 − θn

∆t
,Π∗

hθ
n+1

)

+ ah(uh; θn+1, θn+1) ≤ C
[

(∆t)−1‖∂ρ
∂t

‖2
L2(tn,tn+1,L2) + ‖θn+1‖2

+ ∆t
(

‖ut‖2
L2(tn ,tn+1;(L2(Ω))2) + ‖∇ · ut‖2

L2(tn,tn+1;L2)

)

+ ∆t‖∂
2c

∂t2
‖2
L2(tn ,tn+1,L2) + ‖un − un

h‖2
(L2(Ω))2

+h2‖∇.(un − un
h)‖2 + ‖θn+1‖2

1 + ‖ρn+1‖2
]

. (2.5.29)

A use of (2.3.42), (2.5.5) and (2.5.6) in (2.5.29) with kick back arguments yields

‖|θn+1‖|2 − ‖|θn‖|2 ≤ C
[

∆t
(

‖θn+1‖2 + ‖θn‖2 + ‖ρn‖2 + ‖ρn+1‖2
)

+(∆t)2
(

‖ut‖2
L2(tn,tn+1;(L2(Ω))2) + ‖∇ · ut‖2

L2(tn ,tn+1;L2)

+‖∂
2c

∂t2
‖2
L2(tn,tn+1,L2)

)

+ ‖∂ρ
∂t

‖2
L2(tn,tn+1,L2)

+h2∆t
(

h2‖∇ · un‖2
1 + ‖un‖2

(H1(Ω))2 + ‖pn‖2
1

) ]

. (2.5.30)
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Taking summation over n = 0 · · ·m− 1, we obtain

‖|θm‖|2 − ‖|θ0‖|2 ≤ C
[

m−1
∑

n=0

{

∆t
(

‖θn+1‖2 + ‖θn‖2 + ‖ρn‖2 + ‖ρn+1‖2
)

+ ‖∂ρ
∂t

‖2
L2(tn ,tn+1,L2)

+(∆t)2
(

‖ut‖2
L2(tn,tn+1;(L2(Ω))2) + ‖∇ · ut‖2

L2(tn,tn+1;L2) + ‖∂
2c

∂t2
‖2
L2(tn ,tn+1,L2)

)

+h2∆t
(

h2‖∇ · un‖2
1 + ‖un‖2

(H1(Ω))2 + ‖pn‖2
1

)}]

. (2.5.31)

Use Gronwall’s Lemma (Lemma 1.2.8), equivalence of the norms ‖| · ‖| and ‖ · ‖ given in

(2.3.46) and the estimates of ρ to obtain

‖θm‖2 ≤ C
[

‖θ0‖2 + h4
(

‖c‖2
L∞(0,T ;H2) + ‖g‖2

L∞(0,T ;H1) + ‖u · ∇c‖2
L∞(0,T ;H1)

+‖∇ · u‖2
L∞(0,T ;H1) + ‖φ∂c

∂t
‖2
L∞(0,T ;H1) + ‖ct‖2

L2(0,T ;H2) + ‖gt‖2
L2(0,T ;H1) + ‖(u · ∇c)t‖2

L2(0,T ;H1)

+‖φ∂
2c

∂t2
‖2
L2(0,T ;H1)

)

+ (∆t)2
(

‖ut‖2
L2(0,T ;(L2(Ω))2) + ‖∇ · ut‖2

L2(0,T ;L2)

+‖∂
2c

∂t2
‖2
L2(0,T,L2)

)

+ h2
(

‖u‖2
L∞(0,T ;(H1(Ω))2) + ‖p‖2

L∞(0,T ;H1)

)]

. (2.5.32)

Now since ch(0) = Rhc(0), i.e., θ0 = 0, (2.5.32) implies that

max
0≤m≤N

‖θm‖2 ≤ C
[

h4
(

‖c‖2
L∞(0,T ;H2) + ‖g‖2

L∞(0,T ;H1) + ‖u · ∇c‖2
L∞(0,T ;H1) + ‖φ∂c

∂t
‖2
L∞(0,T ;H1)

+‖∇ · u‖2
L∞(0,T ;H1) + ‖ct‖2

L2(0,T ;H2) + ‖gt‖2
L2(0,T ;H1) + ‖(u · ∇c)t‖2

L2(0,T ;H1) + ‖φ∂
2c

∂t2
‖2
L2(0,T ;H1)

)

+(∆t)2
(

‖ut‖2
L2(0,T ;L2) + ‖∇ · ut‖2

L2(0,T ;L2(Ω)2) + ‖∂
2c

∂t2
‖2
L2(0,T,L2)

)

+h2
(

‖u‖2
L∞(0,T ;(H1(Ω))2) + ‖p‖2

L∞(0,T ;H1)

)]

. (2.5.33)

Using (2.5.33), the hypothesis (2.5.28) can be justified with the assumption that ∆t = O(h)

in the similar way, as we have proved the hypothesis (2.4.68). Now combined the estimate

of θ and ρ to completes the rest of the proof.

Using (2.5.5) and (2.5.7), we obtain the following error estimates for velocity as well as

pressure .

Theorem 2.5.2 Assume that the triangulation Th is quasi-uniform. Let (u, p) and (uh, ph)

be, respectively, the solutions of (2.1.1)-(2.1.2) and (2.5.1)-(2.5.2) and let ch(0) = c0,h =
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Rhc(0). Further, assume that ∆t = O(h). Then for sufficiently small h, there exists a

positive constant C(T ) independent of h but dependent on the bounds of κ−1 and µ such

that

max
0≤m≤N

‖um − um
h ‖2

(L2(Ω))2 + ‖pm − pmh ‖2 ≤ C
[

h4
(

‖c‖2
L∞(0,T ;H2) + ‖g‖2

L∞(0,T ;H1)

+‖u · ∇c‖2
L∞(0,T ;H1) + ‖φ∂c

∂t
‖2
L∞(0,T ;H1) + ‖ct‖2

L2(0,T ;H2) + ‖gt‖2
L2(0,T ;H1) + ‖∇ · u‖2

L∞(0,T ;H1)

+‖(u · ∇c)t‖2
L2(0,T ;H1) + ‖φ∂

2c

∂t2
‖2
L2(0,T ;H1)

)

+ (∆t)2
(

‖ut‖2
L2(0,T ;L2) + ‖∇ · ut‖2

L2(0,T ;L2(Ω)2)

+‖∂
2c

∂t2
‖2
L2(0,T,L2)

)

+ h2
(

‖u‖2
L∞(0,T ;(H1(Ω))2) + ‖p‖2

L∞(0,T ;H1)

)]

.

2.6 Numerical Procedure

In this section, we discuss numerical methods applied to system (2.1.1)-(2.1.6). For the

pressure equations (2.1.1)-(2.1.2), we apply mixed finite volume element method and for

the approximation of the concentration equation (2.1.3), we use the standard finite vol-

ume method. We consider two test problems, one when only the molecular diffusion is

present and the effect of dispersion coefficients is negligible and the second when dispersion

coefficients are present. For our numerical experiments, we consider the following set of

equations:

u = −κ(x)
µ(c)

∇p ∀(x, t) ∈ Ω × J, (2.6.1)

∇ · u = q+ − q− ∀(x, t) ∈ Ω × J, (2.6.2)

φ
∂c

∂t
+ u · ∇c−∇ · (D(u)∇c) + cq− = c̄q+ ∀(x, t) ∈ Ω × J, (2.6.3)

with boundary conditions

u · n = 0 ∀(x, t) ∈ ∂Ω × J, (2.6.4)

D(u)∇ · n = 0 ∀(x, t) ∈ ∂Ω × J, (2.6.5)

and initial condition

c(x, 0) = c0(x) ∀x ∈ Ω. (2.6.6)
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Here, µ(c) is the viscosity of the fluid mixture which depends on the concentration and is

given by

µ(c) = µ(0)
[

(1 − c) +M
1

4 c
]−4

, (2.6.7)

where M is the mobility ratio between the resident and injected fluids and µ(0) is the vis-

cosity of the resident fluid, c̄ is the injection concentration and q+ and q− are the production

and injection rates, respectively. Let Th be an admissible regular, uniform triangulation of

Ω into closed triangles.

Experimentally, it has been observed that the velocity is much smoother in time compared

to the concentration. It was suggested in [47] that for a good approximation to the concen-

tration, one should take larger time step for the pressure equation than the concentration

equation. Let 0 = t0 < t1 < · · · tM = T be a given partition of the time interval (0, T ] with

step length ∆tm = tm+1 − tm for the pressure equation and 0 = t0 < t1 < · · · tN = T be a

given partition of the time interval (0, T ] with step length ∆tn = tn+1 − tn for the concen-

tration equation. We denote Cn ≈ ch(t
n), Cm ≈ ch(tm), Um ≈ uh(tm) and Pm ≈ ph(tm).

If concentration step tn relates to pressure steps by tm−1 < tn ≤ tm, we require a velocity

approximation at t = tn, which will be used in the concentration equation, based on Um−1

and earlier values. We define a velocity approximation [44, pp. 81] at t = tn by

EUn =

(

1 +
tn − tm−1

tm−1 − tm−2

)

Um−1 −
tn − tm−1

tm−1 − tm−2

Um−2 for m ≥ 2, (2.6.8)

EUn = U0 for m = 1. (2.6.9)

The discrete problem corresponding to pressure-velocity equations (2.3.6)-(2.3.7) is to find

(U, P ) : {t0, t1, · · · tM} −→ Uh ×Wh such that

(κ−1µ(Cm)Um, γhvh) + (∇ · vh, Pm) = 0 ∀vh ∈ Uh

(∇ · Um, wh) = (q+ − q−, wh) ∀wh ∈ Wh, m ≥ 0. (2.6.10)

Set
∂C

∂t
|t=tn+1

≈ Cn+1 − Cn

∆tn
. Then, the discrete problem corresponding to concentration

equation (2.3.9) is to find C : {t0, t1, · · · tN} −→Mh such that
(

φ
(Cn+1 − Cn)

∆tn
,Π∗

hzh

)

+ (EUn+1 · ∇Cn+1,Π∗
hzh)

+ah(EUn+1;Cn+1, zh) + (q−cn+1,Π∗
hzh) = (c̄q+,Π∗

hzh) ∀zh ∈Mh. (2.6.11)
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Using C0 = C0 = Rhc0(x), we first find (U0, P0) from (2.6.10) and then using U0, we find

C1 from (2.6.11) and so on.

To put equations (2.6.10) and (2.6.11) in matrix form, let Nm be the total number of edges

of the triangulation Th, (Mi)
Nm

i=1 be the midpoint of edges of triangulation Th, Nh be the

total number of vertices of the triangulation Th and Nt be the total number of triangles.

Let (Φi)
Nm

i=1 be the edge oriented basis functions for the trial space Uh and {χ∗
l }l=1,2,··· ,Nt

be

the characteristic functions corresponding to the triangles which form basis functions for

the test space Wh. Now we discuss the construction of the basis functions Φi, see [6].

Construction of local and global basis functions for the space Uh:

Let the vertices of a triangle be denoted by P1, P2, P3 and the edges opposite to the

vertices be denoted by E1, E2 and E3, respectively. Let the midpoints of E1, E2, E3 be

M1,M2 and M3, respectively. We denote the coordinate of the vertices P1, P2, P3 as

(x1, y1), (x2, y2), (x3, y3), respectively (see Figure 2.6). Let ΦE1
, ΦE2

and ΦE3
be the three

local basis functions corresponding to the edges E1, E2, E3, respectively for the triangle

T = 4P1P2P3 such that

(ΦEi
.nj)(Mj) = δij, i, j = 1, 2, 3. (2.6.12)

Here, nj is the outward normal vector to the edge Ej. If we define local basis functions

for the triangle T as

ΦEi
= a1

|Ei|
2|T |(x− xi, y − yi) (a1 = +1, or = −1),

then it can be easily checked that ΦEi
satisfies (2.6.12). Here, |Ei| denotes the length of

the edge Ei and |T | denotes the area of the triangle T . Now we will construct the global

basis functions with the help of local basis functions. Let {Φi}Nm

1 be the global basis

functions corresponding to the edges ei. Now referring to Figures 2.7 and 2.8, the global

basis functions for Uh can be defined in the following way

Φ1 =







ΦE3
, on T1

0, otherwise.
, Φ2 =







ΦE2
, on T1

0, otherwise.
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Figure 2.6: Normal vectors to the edges
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Figure 2.7: Local numbering (Ei) of edges
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Figure 2.8: Global numbering (ei) of edges

,

Φ3 =















ΦE1
, on T1

ΦE1
, on T2

0, otherwise.

Φ4 =







ΦE2
, on T2

0, otherwise.
, Φ5 =







ΦE3
, on T2

0, otherwise.

So, Um and Pm can be written as

Um(x) =
Nm
∑

j=1

αmj Φj(x), Pm(x) =
Nt
∑

l=1

βml χ
∗
l (x) (2.6.13)

with αj = (uh · nj)(Mj), βl = ph(Bl), nj being the outward normal to the edge Ej and Bl

being the barycenter corresponding to the triangle Tl. Use the definition of the transfer

operator γh and (2.6.13), the equation (2.6.10) can be written in the matrix form




Am Bm

BT
m 0









αm

βm



 =





0

−Fm



 , (2.6.14)

where, BT
m is the transpose of Bm and the matrices are given by

αm = (αmj )Nm

j=1, βm = (βml )Nt

l=1
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Figure 2.9: Local numbering (Li) of vertices

Am = (aij)
Nm

i,j=1 =

∫

K∗
pi

κ−1µ(Cm(x))Φj · Φi(Mi)dx,

Bm = (blj)l=1,2···Nt, j=1,2···Nm
=

∫

Tl

∇ · Φj dx

and

Fm = (fml )Nt

l=1 =

∫

Kl

(q+ − q−)dx.

In the same say, referring to the Figures 2.9 and 2.10, we construct the global basis functions

for the finite dimensional space Mh. Let λ1, λ2 and λ3 be the barycentric coordinates

corresponding to the any triangle T ∈ Th and associated with the vertices P1, P2 and P3,

respectively (see [29, pp. 45]). Then the global basis functions {Ψi}Nh

i=1 for Mh is defined

in the following manner

Ψ1 =







λ1, on T1

0, otherwise.
, Ψ2 =















λ2, on T1

λ3, on T2

0, otherwise.

,

Ψ3 =















λ3, on T1

λ2, on T2

0, otherwise.

, Ψ4 =







λ1, on T2

0, otherwise.



Chapter 2.Finite Volume Element Approximations 69

��� ���

���

���

���

�	�

Figure 2.10: Global numbering (Pi) of vertices

If we set Cn =

Nh
∑

i=1

γni Ψi, where Ψ′
is are the basis functions for the space Mh, then the

concentration equation ( 2.6.11) can be written in the following matrix form:

[Dn + ∆tn(En +Hn +Rn)] γn+1 = Dnγn + ∆tnGn, (2.6.15)

where

γn = (Cn(Pi))
Nh

i=1, Dn = (dij)
Nh

i,j=1 =

∫

Vi

ψjdx,

En = (eij)
Nh

i,j=1 =

∫

Vi

EUn · ∇Ψjdx Hn = (hij)
Nh

i,j=1 = −
∫

∂Vi

D(EUn)∇Ψj · njds,

and

Rn = (rij)
Nh

i,j=1 =

∫

Vi

q−Ψjdx, Gn = (gni )
Nh

i=1 =

∫

Vi

c̄q+dx.

2.6.1 Test Problems

For the test problems, we have taken the data from [80]. The spatial domain is Ω =

(0, 1000) × (0, 1000) ft2 and the time period is [0, 3600] days, viscosity of oil is µ(0) = 1.0

cp. The injection well is located at the upper right corner (1000, 1000) with the injection

rate q+ = 30ft2/day and injection concentration c̄ = 1.0. The production well is located at
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Figure 2.11: Contour (a) and surface plot (b) in Test 1 at t = 3 years.

the lower left corner with the production rate q− = 30ft2/day and the initial concentration

is c(x, 0) = 0. In the numerical simulation for spatial discretization we choose in 20 divi-

sions on both x and y axes. For time discretization, we take ∆tp = 360 days and ∆tc = 120

days, i.e., we divide each pressure time interval into sub three intervals.

Test 1: We assume that the porous medium is homogeneous and isotropic. The perme-

ability κ is 80. The porosity of the medium is φ = .1 and the mobility ratio between the

resident and injected fluid is M = 1. Further, we assume that the molecular diffusion is

dm = 1 and dispersion coefficients are zero.

The surface and contour plots for the concentration at t = 3 and t = 10 years are presented

in Figure 2.11 and Figure 2.12, respectively. Since only molecular diffusion is present and

viscosity is also independent of the velocity, Figure 2.11, shows that the velocity is radial

and the contour plots for the concentration is almost circular until the invading fluid reaches

the production well. Figure 2.12 shows that when these plots are reached at production

well, the invading fluid continues to fill the whole domain until c = 1.

Test 2: In this test, the permeability tensor is same as in test 1. The adverse mobility

ratio is M = 41. We assume that the physical diffusion and dispersion coefficients are

given by φdm = 0.0ft2/day, φdt = 5.0ft and φdt = .5ft. From (2.6.7), in test 1, µ(c) was
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Figure 2.12: Contour (a) and surface plot (b) in Test 1 at t = 10 years.
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Figure 2.13: Contour (a) and surface plot (b) in Test 2 at t = 3 years.
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Figure 2.14: Contour (a) and surface plot (b) in Test 2 at t = 10 years.

independent of the concentration c but here µ(c) depends on c . The difference between the

longitudinal and the transverse dispersity coefficients implies that the fluid flow is much

faster along the diagonal direction see Figures 2.13 and 2.14.

Test 3: In this test we consider the numerical simulation of a miscible displacement problem

with discontinuous permeability. Here, the data is same as given in Test 1 except the per-

meability of the medium κ(x). We take κ = 80 on the sub domain ΩL := (0, 1000)×(0, 500)

and κ = 20 on the sub domain ΩU := (0, 1000)× (500, 1000). The contour and surface plot

at t = 3 and t = 10 years are given in Figure 2.15 and Figure 2.16 respectively.

Test 4:. In this test, we consider the miscible displacement problem with effect of

numerical dispersion with discontinuous permeability. Here data is same as in given

Test 2 except the permeability of the medium. We take κ = 80 on the sub domain

ΩL := (0, 1000)×(0, 500) and κ = 20 on the sub domain ΩU := (0, 1000)×(500, 1000). The

contour and surface plot at T = 3 and T = 10 years are given in Figure 2.17 and Figure

2.18 respectively. The lower half domain has a larger permeability than the upper half.

Therefore, when the injecting fluid reaches the lower half domain, it starts moving much

faster in the horizontal direction on this domain compared to the low permeability domain

that is upper half domain. We observe that one should put the production well in a low



Chapter 2.Finite Volume Element Approximations 73

0

500

1000

0

500

1000
0

0.2

0.4

0.6

0.8

1

x

(b)

y

c h

x

y

(a)

0 500 1000
0

100

200

300

400

500

600

700

800

900

1000

Figure 2.15: Contour (a) and surface plot (b) in Test 3 at t = 3 years.
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Figure 2.16: Contour (a) and surface plot (b) in Test 3 at t = 10 years.
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Figure 2.17: Contour (a) and surface plot (b) in Test 4 at t = 3 years.
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Figure 2.18: Contour (a) and surface plot (b) in Test 4 at t = 10 years
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Figure 2.19: Order of convergence in L2- norm for Test 1

permeability zone to increase the area swept by the injected fluid. It is also can be noted

that the area occupied by the invading fluid at t = 10 year in Test 4 is larger compared

to the area occupied by invading fluid in Test 2, where the permeability is constant. This

tells us how the numerical simulations could help the decision making in the petroleum

reservoir industry.

Order of Convergence: In order to verify our theoretical results we also compute

the order of convergence for the concentration. We compute the order of convergence in

L2 norm. To discretize the time interval [0, T ], we take uniform time step ∆t = 360 days

for pressure and concentration equation. The computed order of convergence is given in

Figure 2.19. Note that the computed order of convergence matches with the theoretical

order of convergence derived in Theorem 2.5.1.



Chapter 3

Discontinuous Galerkin Finite

Volume Element Approximations

3.1 Introduction

The main objective in this chapter is to study a discontinuous finite volume element method

for the approximation of the concentration equation. As in Chapter 2, we have used a mixed

finite volume element method for the approximation of the pressure-velocity equation. A

priori error estimates in L∞(L2) norm are derived for velocity, pressure and concentration

for the semidiscrete and the fully discrete schemes. Numerical results are presented to

validate our theoretical results.

In recent years, there has been a renewed interest in Discontinuous Galerkin (DG) meth-

ods for the numerical approximation of partial differential equations. This is due to their

flexibility in local mesh adaptivity and handling nonuniform degrees of approximation for

solutions whose smoothness exhibit variation over the computational domain. DG methods

have the advantage that they are element-wise conservative and are easy to implement with

high degree of piecewise polynomials compared to other numerical methods such as con-

forming finite element methods, finite volume element methods, mixed finite element and

finite volume methods. In conforming finite element methods, the approximating functions

should satisfy some continuity criteria across the interelement boundaries, but in DG meth-

76
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ods, we have the freedom to choose discontinuous functions in the finite element spaces.

The first work on DG methods for elliptic and parabolic problems trace back to the

work by Douglas et al.[35] and Wheeler [82]. In 1973, Babuška [5] introduced a penalty

method to impose the Dirichlet boundary condition weakly. Interior Penalty (IP) methods

by Arnold [3] and Wheeler [82] arose from the observation that just as Dirichlet boundary

conditions, interelement continuity of approximating functions could be imposed weakly

instead of being built into the finite element space. This makes it possible to use spaces

of discontinuous piecewise polynomials of higher degree. These IP methods are based on

the Nitsche’s symmetric formulation and hence are presently called as symmetric interior

penalty Galerkin (SIPG) methods. The variational formulation of the SIPG methods is

symmetric and adjoint consistent. This helps in developing optimal L2- error estimates.

However, for the coercivity of the associated bilinear form, we need to choose the penalty

parameter large enough. Rivière et al. [70] and Houston et al. [50] have introduced and

analyzed the non-symmetric interior penalty Galerkin (NIPG) methods. A significant prop-

erty of NIPG method is that it is unconditionally stable with respect to the choice of the

penalty parameter. Hence, this advantage has stimulated renewed interest in applying these

methods to a large class of partial differential equations. It is noted that NIPG methods

are not adjoint consistent. In this case, optimal L2- error estimates can be derived by using

super-penalty techniques, for more details, we refer to [4].

Keeping in mind the advantages of FVEM and DG methods, it is natural to think of

discontinuous Galerkin finite volume element methods (DGFVEMs) for the numerical ap-

proximation of partial differential equations. In these methods, the support of the control

volumes are small compared to the standard FVM [60], mixed FVM [26]. Also the control

volumes have support inside the triangle in which they belong to and there is no contribu-

tion from adjacent triangles, see Figures 3.1 and 3.4. This property of the control volumes

makes DGFVEM more suitable for parallel computing. DGFVEM for the elliptic problems

has been discussed in [28, 55, 85] and for Stokes problem in [86].

As mentioned in Chapter 1, a mathematical model, which describes the miscible displace-

ment of one incompressible fluid over another in a porous medium is given by the following

set of partial differential equations.
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For a given T > 0, the pressure p and the concentration c satisfy

u = −κ(x)
µ(c)

∇p ∀(x, t) ∈ Ω × J, (3.1.1)

∇ · u = q ∀(x, t) ∈ Ω × J, (3.1.2)

φ(x)
∂c

∂t
−∇ · (D(u)∇c− uc) = g(c) ∀(x, t) ∈ Ω × J, (3.1.3)

with boundary conditions

u · n = 0 ∀(x, t) ∈ ∂Ω × J, (3.1.4)

(D(u)∇c− uc) · n = 0 ∀(x, t) ∈ ∂Ω × J, (3.1.5)

and initial condition

c(x, 0) = c0(x) ∀x ∈ Ω, (3.1.6)

where g(c) = c̃q. Since the concentration equation (3.1.3) has the transport term u · ∇c,
which dominates the diffusion term, the solution of (3.1.3) varies rapidly from one part of

the domain to the other. Standard Galerkin methods based on C0- piecewise-polynomials

for such problems show unacceptable oscillations in the approximation. A use of C1-

piecewise-polynomials smear the front excessively leading to very smooth approximations.

To strike a balance between these two methods, Douglas and Dupont [35] have introduced

and analyzed a new method which uses interior penalties across the interior edges of the

triangles for convection dominated diffusion equation. Wheeler et al. [83] have extended

this procedure for the approximation of convection dominated diffusion equation for in-

compressible miscible displacement problem in a porous media.

Sun et al. [76] applied the mixed FEM for pressure-velocity equation and discontinuous

Galerkin FEM for approximating the concentration. Further, Sun and Wheeler [77] ap-

plied symmetric and nonsymmetric discontinuous Galerkin methods for approximation of

the concentration equation by assuming that the velocity is known and time independent.

In this chapter, we apply mixed FVEM for the approximation of pressure-velocity equations

(3.1.1)-(3.1.2) and a discontinuous Galerkin FVEM for approximating the concentration

equation (3.1.3).
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This chapter is organized as follows. In Section 3.2, the weak formulation for incom-

pressible miscible displacement problems in a porous media is described. In Section 3.3, we

discuss the DGFVEM formulation. The existence and uniqueness of solution to the discrete

problem is also discussed. A priori error estimates for velocity, pressure and concentration

are presented in Section 3.4. Finally in Section 3.5, the numerical procedure is discussed

and the results of some numerical experiments are presented.

3.2 Weak formulation

Define

U = {v ∈ H(div; Ω) : v · n = 0 on ∂Ω}.

and

W = L2(Ω)/R.

Then, the weak form the pressure-velocity equations (2.1.1)-(2.1.2) is to seek

(u, p) : J −→ U ×W satisfying

(κ−1µ(c)u,v) − (∇ · v, p) = 0 ∀v ∈ U, (3.2.1)

(∇ · u, w) = (q, w) ∀w ∈ W. (3.2.2)

The concentration equation (3.1.3) can be put in the weak form as follows. Find a differ-

entiable map c : J −→ H1(Ω) such that

(φ
∂c

∂t
, z) + a(u; c, z) = (g(c), z) ∀z ∈ H1(Ω), (3.2.3)

c(x, 0) = c0(x) ∀x ∈ Ω,

where a(v; ·, ·) : H1(Ω) ×H1(Ω) −→ R is a continuous bilinear form defined by

a(v;φ, ψ) =

∫

Ω

(D(v)∇φ− vφ) · ∇ψ dx ∀φ, ψ ∈ H1(Ω),v ∈ R
2.
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3.3 Discontinuous Finite volume element approxima-

tion

A mixed finite volume element approximation for the pressure equation is defined as:

Find (uh, ph) ∈ Uh ×Wh such that

(κ−1µ(ch)uh, γhvh) + b(γhvh, ph) = 0 ∀vh ∈ Uh, (3.3.1)

(∇ · uh, wh) = (q, wh) ∀wh ∈ Wh, (3.3.2)

where the bilinear form b(·, γ·) is defined in (2.3.5). The trial spaces Uh and Wh for velocity

and pressure, respectively, and the transfer operator γh are already defined in Section 2.3

of Chapter 2 (see, (2.3.1), (2.3.2) and (2.3.3)).

Let Th be a regular, quasi-uniform triangulation of Ω̄ into closed triangles T . With Γ

denoting the union of all the interior edges of the triangles T of Th, we now introduce the

the dual mesh V∗
h based on Th which will be used in the approximation of concentration

equation. The dual partition V∗
h corresponding to the primal partition Th is constructed as

follows: Divide each triangle T ∈ Th into three triangles by joining the barycenter B and

the vertices of T as shown is Figure 3.1. In general, let V ∗ denote the dual element/control

volume in V∗
h, see Figure 3.2. The union of these sub-triangles form the dual partition V∗

h

of Ω̄.

We introduce the standard definitions of jumps and averages [4] for scalar and vector

functions as follows. For an interior edge e shared by two elements T1 and T2, having

normal vectors n1 and n2 pointing exterior to T1 and T2 (see Figure 3.3) respectively, the

average 〈·〉 and jump [·] on e for a scalar q and a vector r are defined, respectively, as:

〈q〉 =
1

2
(q1 + q2), [q] = q1n1 + q2n2,

〈r〉 =
1

2
(r1 + r2), [r] = r1 · n1 + r2 · n2,

where qi = (q|Ti
)|e, ri = (r|Ti

)|e, i = 1, 2.

In case e is an edge on ∂Ω, we define

〈q〉 = q, [q] = qn,
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Figure 3.1: Triangular partition and dual elements.
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Figure 3.2: An element V ∗ in the dual partition.
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Figure 3.3: Outward normal vectors to the edge e.

〈r〉 = r, [r] = r · n,

n being the outward normal vector to the boundary ∂Ω.

For applying DGFVEM to approximate the concentration equation, we define the finite

dimensional trial and test spaces Mh and Lh on Th and V∗
h, respectively, as

Mh = {vh ∈ L2(Ω) : vh|T ∈ P1(T ) ∀T ∈ Th},

Lh = {wh ∈ L2(Ω) : wh|V ∗ ∈ P0(V
∗) ∀V ∗ ∈ V∗

h},

where Pm(T )( resp. Pm(V ∗)) denotes the polynomials of degree less than or equal to m

defined on T (resp. V ∗).

Let M(h) = Mh +H2(Ω). Define

|||v|||2 = |v|21,h +
∑

e∈Γ

1

he

∫

e

[v]2ds, (3.3.3)

and

‖|v‖|1 = ‖|v‖| + ‖v‖, (3.3.4)

where, |v|21,h =
∑

T∈Th

|v|21,T .

For connecting the trial and test spaces, define the transfer operator γ : M(h) −→ Lh as

γv|V ∗ =
1

he

∫

e

v|V ∗ds, V ∗ ∈ V∗
h, (3.3.5)
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Figure 3.4: A triangular partition and its dual elements

where ′e′ is an edge in T and V ∗ is the dual element in V∗
h containing e, he being the length

of the edge e (see Figure 3.2). We also assume that he and hT are equivalent, i.e., there

exist positive constants C1 and C2 such that

C1he ≤ hT ≤ C2he. (3.3.6)

By usual interpolation theory, it is easy to see that the operator γ has the following ap-

proximation properties [29]: For χ ∈ H1(T )

‖χ− γχ‖T ≤ Ch‖∇χ‖T . (3.3.7)

We frequently use the following trace inequality [3, pp. 745].

For w ∈ H2(T ) and for an edge e of triangle T , we have

‖w‖2
0,e ≤ C

(

h−1
e ‖w‖2

0,T + he|w|21,T
)

, (3.3.8)

where ‖w‖2
0,e =

∫

e

w2ds.

Since γzh is a constant over each control volume, multiplying (3.1.3) by γzh ∈ Lh, inte-

grating, applying the Gauss’s divergence theorem over the control volumes V ∗ ∈ V∗
h and

summing up over all control volumes, we obtain

(

φ
∂c

∂t
, γzh

)

−
∑

V ∗∈V∗

h

∫

∂V ∗

(D(u)∇c− uc).nγzh = (g(c), γzh) ∀zh ∈Mh, (3.3.9)
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where n denotes the outward unit normal vector to the boundary ∂V ∗ of V ∗.

Let V ∗
j ∈ V∗

h(j = 1, 2, 3) be the three triangles in T ∈ Th, (see Figure 3.4). Then,

∑

V ∗∈V∗

h

∫

∂V ∗

(D(u)∇c− uc) · nγzhds =
∑

T∈Th

3
∑

j=1

∫

∂V ∗

j

(D(u)∇c− uc) · nγzhds

=
∑

T∈Th

3
∑

j=1

∫

Pj+1BPj

(D(u)∇c− uc) · nγzhds+
∑

T∈Th

∫

∂T

(D(u)∇c− uc) · nγzhds,(3.3.10)

where, P4 = P1, see Figure 3.4.

For any four real numbers a, b, c and d, we have

ac− bd =
1

2
(a + b)(c− d) +

1

2
(a− b)(c + d). (3.3.11)

Since [(D(u)∇c− uc)] = 0 from (2.1.14), we have from (3.3.10) and (3.3.11)

∑

V ∗∈V∗

h

∫

∂V ∗

(D(u)∇c− uc) · nγzhds =
∑

T∈Th

3
∑

j=1

∫

Pj+1BPj

(D(u)∇c− uc) · nγzhds

+
∑

e∈Γ

∫

e

[γzh] · 〈D(u)∇c− uc〉ds. (3.3.12)

For a fixed positive real number M , and v ∈ R
2, define the following cut-off operator

vM = M(v)(x) = min (|v(x)|,M)
v(x)

|v(x)| , (3.3.13)

Moreover, since later on we will assume that the Darcy velocity u ∈ (L∞(Ω))2, then M

can be chosen such that ‖u‖(L∞(Ω))2 ≤M and this implies that

uM = M(u) = u. (3.3.14)

It is easy to check that the “cut-off” operator M is uniformly Lipschitz continuous in the

following sense, (see [76, pp. 331]):

‖M(u) −M(v)‖(L∞(Ω))2 ≤ ‖u − v‖(L∞(Ω))2 . (3.3.15)

Proof of (3.3.15) is straightforward. Note that for a fixed x ∈ Ω, we have

|M(u) −M(v)|(x) ≤ |u − v|(x), (3.3.16)
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which can be shown by taking three cases (i) |u| ≤M, |v| ≤ M , (ii) |u| > M, |v| ≤M and

(iii) |u| > M, |v| > M and using the definition of M. Now take the essential supremum

on both sides of (3.3.16) the proof is completed.

By definition of M, it can be seen that

‖uMh ‖(L∞(Ω))2 ≤M. (3.3.17)

Now we are in a position to define the DG finite volume scheme for the concentration equa-

tion. The discontinuous Galerkin finite volume element scheme corresponding to (3.2.3) is

defined as:

Find ch(t) ∈Mh such that

(φ
∂ch
∂t

, γzh) + Ah(u
M
h ; ch, zh) = (g(ch), γzh) ∀zh ∈Mh, (3.3.18)

ch(0) = c0,h.

Here, uMh is the “cut-off” function of uh defined in (3.3.13) and c0,h be an approximation

to c0 to be defined later, the bilinear form Ah(v; ·, ·) : M(h) ×M(h) −→ R be defined by

Ah(v;φ, ψ) = A1(v;φ, ψ) −
∑

e∈Γ

∫

e

[γψ] · 〈D(v)∇φ− vφ〉ds

−
∑

e∈Γ

∫

e

[γφ] · 〈D(v)∇ψ〉ds+
∑

e∈Γ

∫

e

α

he
[φ] · [ψ]ds ∀v ∈ R

2, (3.3.19)

with A1(v;φ, ψ) = −
∑

T∈Th

3
∑

j=1

∫

Pj+1BPj

(

D(v)∇φ−vφ
)

·n γψ ds and α is a penalty parameter

to be defined later. Note that (3.3.18) is consistent with (3.3.9). Now, based on the analysis

of [85], we prove the following two lemmas, which will be useful in proving the coercivity

and boundedness of the bilinear form Ah(u; ·, ·).

Lemma 3.3.1 The following result holds true: For χ, ψ ∈ M(h), we have

A1(u;χ, ψ) =
∑

T∈Th

∫

T

(D(u)∇χ− uχ) · ∇ψ dx+
∑

T∈Th

∫

∂T

(D(u)∇χ− uχ) · n)(γψ − ψ)ds

+
∑

T∈Th

∫

T

∇ · (D(u)∇χ− uχ)(ψ − γψ)ds. (3.3.20)
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Proof. A use of Gauss divergence theorem on each on the control volume V ∗
j , j = 1, 2, 3,

(see Figure 3.4), yields

A1(u;χ, ψ) = −
∑

T∈Th

3
∑

j=1

γψ

∫

Pj+1BPj

(D(u)∇χ− uχ) · n ds

=
∑

T∈Th

3
∑

j=1

γψ

∫

PjPj+1

(D(u)∇χ− uχ) · n ds−
∑

T∈Th

3
∑

j=1

∫

V ∗

j

γψ∇ · (D(u)∇χ− uχ)dx

=
∑

T∈Th

∫

∂T

(γψ − ψ)(D(u)∇χ− uχ) · n ds+
∑

T∈Th

∫

∂T

ψ(D(u)∇χ− uχ) · n ds

−
∑

T∈Th

3
∑

j=1

∫

V ∗

j

γψ∇ · (D(u)∇χ− uχ)dx

A use of Gauss’s divergence theorem once more yields,

A1(u;χ, ψ) =
∑

T∈Th

∫

∂T

(γψ − ψ)(D(u)∇χ− uχ) · n ds+
∑

T∈Th

∫

T

(D(u)∇χ− uχ) · ∇ψ dx

+
∑

T∈Th

∫

T

∇ · (D(u)∇χ− uχ)ψ dx−
∑

T∈Th

3
∑

j=1

∫

V ∗

j

γψ∇ · (D(u)∇χ− uχ) dx

=
∑

T∈Th

∫

∂T

(γψ − ψ)(D(u)∇χ− uχ) · n ds+
∑

T∈Th

∫

T

(D(u)∇χ− uχ) · ∇ψ dx

+
∑

T∈Th

∫

T

∇ · (D(u)∇χ− uχ)(ψ − γψ)dx.

This completes the proof.

Following the similar proof techniques, which we have used in Lemma 3.3.1. It is easy to

check that for χ, ψ ∈M(h), we have

A1(u;χ, ψ) =
∑

T∈Th

∫

T

(D(u)∇χ) · ∇ψ dx+
∑

T∈Th

∫

∂T

(D(u)∇χ) · n)(γψ − ψ)ds

+
∑

T∈Th

∫

T

∇ · (D(u)∇χ)(ψ − γψ)ds, (3.3.21)

where

A1(u;χ, ψ) = −
∑

T

3
∑

j=1

∫

Pj+1BPj

(D(u)∇χ) · nγψ ds

.
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Lemma 3.3.2 If χh ∈Mh, then

A1(u;χh, χh) ≥ α0

∑

T∈Th

‖∇χh‖2 − C1h‖|χh‖|2 − C2‖χh‖2. (3.3.22)

Proof. Rewrite A1(u, χh, ψh) as

A1(u, χh, ψh) = −
∑

T∈Th

3
∑

j=1

∫

Pj+1BPj

(D(u)∇χh) · n γψh ds

+
∑

T∈Th

3
∑

j=1

∫

Pj+1BPj

u · nχh γψh ds. (3.3.23)

Using the same argument as in the proof of (2.3.37), it can be easily proved that

−
∑

T∈Th

3
∑

j=1

∫

Pj+1BPj

(D(u)∇χh) · nγχh ds ≥ α0

∑

T∈Th

‖∇χh‖2
T − C1h‖|χh‖|2. (3.3.24)

Since γψh is constant on each control volume V ∗, set γψh|V ∗

l
= ψl. Using the Cauchy-

Schwarz inequality and referring to Figure 3.4, we obtain

3
∑

j=1

∫

Pj+1BPj

u · nχh γψh ds =
3
∑

l=1

∫

PlB

u · nlχh(ψl+1 − ψl)ds (ψ4 = ψ1)

≤
3
∑

l=1

|ψl+1 − ψl|
∫

PlB

u · nl χh ds ≤ C
3
∑

l=1

|ψl+1 − ψl|
∫

PlB

χh ds

A use of the trace inequality (3.3.8) yields

3
∑

j=1

∫

Pj+1BPj

u · nχhγψh ds ≤ C
3
∑

l=1

|ψl+1 − ψl| ‖χh‖L2(PlB)(meas(PlB))1/2

≤ C
3
∑

l=1

|ψl+1 − ψl| ‖χh‖L2(PlB)h
1/2
T

≤ Ch
1/2
T

3
∑

l=1

|ψl+1 − ψl|
[

h
−1/2
T ‖χh‖T + h

1/2
T ‖∇χh‖T

]

(3.3.25)

Now using Taylor series expansion and (2.3.18), we find that

|ψl+1 − ψl| ≤ hT

[

|∂ψh
∂x

| + |∂ψh
∂y

|
]

≤
[(

|∂ψh
∂x

|2 + |∂ψh
∂y

|2
)

h2
T

]1/2

≤ C|ψh|1,h,T , l = 1, 2, 3. (3.3.26)
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Substituting (3.3.26) in (3.3.25), we arrive at

3
∑

j=1

∫

Pj+1BPj

u · nχh γψh ds ≤ C|ψh|1,h,T
[

‖χh‖T + hT‖∇χh‖T
]

. (3.3.27)

Taking summation over all the triangles T ∈ Th, we obtain

∑

T∈Th

3
∑

j=1

∫

Pj+1BPj

u · nχh γψh ds ≤ C‖|ψh‖| (‖χh‖ + h‖|χh‖|) . (3.3.28)

Substituting (3.3.24) and (3.3.28) in (3.3.23) and using Young’s inequality, we complete

the rest of the proof.

Lemma 3.3.3 [3, pp. 744] There exists a positive constant C independent of mesh size h

such that

‖φ‖ ≤ C‖|φ‖| ∀φ ∈M(h). (3.3.29)

Lemma 3.3.4 [60] The following results hold true: ∀φh ∈Mh,

(i)

∫

T

(φh − γφh) dx = 0 ∀T ∈ Th (ii)

∫

e

(φh − γφh) ds = 0 ∀e ∈ Γ.

Proof. Using (3.3.5), we have

∫

T

(φh − γφh)dx =

∫

T

φh dx−
3
∑

i=1

∫

V ∗

i

γφh dx

=

∫

T

φh dx−
3
∑

i=1

γφh|V ∗

i
|V ∗
i |

=

∫

T

φh dx−
3
∑

i=1

1

hei

∫

ei

φh ds |V ∗
i |

= 0.

Here |V ∗
i | denotes the area of the control volume V ∗

i . In the last equality we have used

|V ∗
i | =

|T |
3
, i = 1, 2, 3 and the quadrature formula (2.3.11). Now (ii) follows directly from

(3.3.5). This completes the proof.
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Let fT be the average value of f over the triangle T . The using Lemma 3.3.4, the Cauchy-

Schwarz inequality and (3.3.7), we find that

∫

T

f(ψh − γψh)dx =

∫

T

(f − fT )(ψh − γψh)dx

≤ ‖f − fT‖T‖ψh − γψh‖T ≤ Ch2‖∇f‖T‖∇ψh‖T . (3.3.30)

Next, we show that the bilinear form Ah(u; ·, ·) satisfies a Gärding type inequality. Using

Cauchy-Schwarz inequality and the trace inequality (3.3.8), we arrive at

∑

e∈Γ

∫

e

[γφh] · 〈D(u)∇ψh〉ds ≤
(

∑

e∈Γ

h−1
e

∫

e

[γφh]
2ds

)1/2(
∑

e∈Γ

he

∫

e

〈D(u)∇ψh〉2ds
)1/2

≤ C‖D(u)‖0,∞

(

∑

e∈Γ

[γφh]
2
e

)1/2(
∑

T∈Th

|∇ψh|2T

)1/2

≤ C

(

∑

e∈Γ

[γφh]
2
e

)1/2

‖|ψh‖|,

where [γφh]e =
1

he

∫

e

[φh]ds. Now using (3.3.5) and the Cauchy-Schwarz inequality, we

obtain

[γφh]
2
e =

(

1

he

∫

e

[φh]ds

)2

≤
(

1

he

)2 ∫

e

[φh]
2ds

∫

e

ds =

∫

e

1

he
[φh]

2ds. (3.3.31)

This implies that

∑

e∈Γ

∫

e

[γφh] · 〈D(u)∇ψh〉ds ≤ C

(

∑

e∈Γ

1

he

∫

e

[φh]
2ds

)1/2

‖|ψh‖|, (3.3.32)

and similarly,

∑

e∈Γ

∫

e

[γφh] · 〈(D(u)∇ψh − uψh〉ds ≤ C

(

∑

e∈Γ

1

he

∫

e

[φh]
2ds

)1/2

(‖|ψh‖| + ‖ψh‖).(3.3.33)

Lemma 3.3.5 There exist positive constants C and C3 independent of h such that for α

large enough, h small enough and v ∈ (L∞(Ω))2,

Ah(v;φh, φh) ≥ C‖|φh‖|2 − C3‖φh‖2 ∀φh ∈Mh. (3.3.34)
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Proof. Use (3.3.29), (3.3.32), (3.3.33) and (3.3.22) to obtain

Ah(v;φh, φh) ≥ α0

∑

T∈Th

‖∇φh‖2 − C1h‖|φh‖|2 − C2‖φh‖2 − C‖|φh‖|
(

∑

e∈Γ

1

he

∫

e

[φh]
2ds

)1/2

+α
∑

e∈Γ

1

he

∫

e

[φh]
2ds.

A use of Young’s inequality yields

Ah(v;φh, φh) ≥ α0

∑

T∈Th

‖∇φh‖2 − C1h‖|φh‖|2 − C2‖φh‖2 − C2

2α0

(

∑

e∈Γ

1

he

∫

e

[φh]
2ds

)

−α0

2
‖|φh‖|2 + α

∑

e∈Γ

1

he

∫

e

[φh]
2ds

≥ α0

2

∑

T∈Th

‖∇φh‖2 − C1h‖|φh‖|2 − C2‖φh‖2 +
(

α− C2

2α0
− α0

2

)

∑

e∈Γ

1

he

∫

e

[φh]
2ds

≥ C(α)‖|φh‖|2 − C3‖φh‖2 − C1h‖|φh‖|2

≥ C‖|φh‖|2 − C3‖φh‖2,

where C(α) = min
(

α0

2
, α− C2

2α0
− α0

2

)

and α0 is the lower bound for matrix D(v). Here we

have to choose the parameter α such that the term
(

α− C2

2α0
− α0

2

)

is positive and h small

enough such that C = C(α) − C1h > 0. This completes the proof.

Lemma 3.3.6 For φ, ψ ∈M(h), we have

|Ah(u;φ, ψ)| ≤ C

[{

‖|φ‖| +
(

∑

T∈Th

h2
T |φ|2,T

)1/2}

‖|ψ‖|

+

{

‖|ψ‖| +
(

∑

T∈Th

h2
T |ψ|2,T

)1/2}

‖|φ‖|
]

. (3.3.35)

Further if φh, ψh ∈Mh, then

|Ah(u;φh, ψh)| ≤ C‖|φh‖| ‖|ψh‖|. (3.3.36)
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Proof. Rewrite Ah(u;φ, ψ) = A1
h(u;φ, ψ) + A2

h(u;φ, ψ),

where

A1
h(u;φ, ψ) = −

∑

T∈Th

3
∑

j=1

∫

Pj+1BPj

(

D(u)∇φ
)

· nγψ ds−
∑

e∈Γ

∫

e

[γψ].〈D(u)∇ψ〉ds

−
∑

e∈Γ

∫

e

[γφ] · 〈D(u)∇ψ〉ds+
∑

e∈Γ

∫

e

α

he
[φh] · [ψ]ds, (3.3.37)

and

A2
h(u;φ, ψ) =

∑

T∈Th

3
∑

j=1

∫

Pj+1BPj

uφ · nγψ +
∑

e∈Γ

∫

e

[γψ] · 〈uφ〉ds. (3.3.38)

To bound the first term of A1
h(u;φ, ψ), we use (3.3.21 ) to obtain

∣

∣

∣

∑

T∈Th

3
∑

j=1

∫

Pj+1BPj

(

D(u)∇φ
)

· nγψ ds
∣

∣

∣
≤
∣

∣

∣

∣

∣

∑

T∈Th

∫

T

D(u)∇φ · ∇ψ dx

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

T∈Th

∫

∂T

(D(u)∇φ · n)(γψ − ψ)ds

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

T∈Th

∫

T

∇ · (D(u)∇φ)(ψ − γψ)ds

∣

∣

∣

∣

∣

A use of the Cauchy-Schwarz inequality gives us

∣

∣

∣

∑

T∈Th

3
∑

j=1

∫

Pj+1BPj

(

D(u)∇φ
)

· nγψ ds
∣

∣

∣
≤ ‖D(u)‖0,∞

(

∑

T∈Th

|∇φ|2T

)1/2(
∑

T∈Th

|∇ψ|2T

)1/2

+‖D(u)‖0,∞

(

∑

T∈Th

∫

∂T

|∂φ
∂n

|2ds
)1/2(

∑

T∈Th

∫

∂T

|ψ − γψ|2ds
)1/2

+‖D(u)‖1,∞

(

∑

T∈Th

|φ|1,T‖ψ − γψ‖T
)

+ ‖D(u)‖0,∞

(

∑

T∈Th

|φ|2,T‖ψ − γψ‖T
)

.

Using the trace inequality (3.3.8), we find that

∣

∣

∣

∑

T∈Th

3
∑

j

∫

Pj+1BPj

(

D(u)∇φ
)

· nγψ ds
∣

∣

∣
≤ C

[

|φ|1,h|ψ|1,h +

(

∑

T∈Th

h−1
T |∇φ|2T + hT |φ|22,T

)1/2

(

∑

T∈Th

h−1
T |ψ − γψ|2T + hT |ψ − γψ|21,T

)1/2

+
∑

T∈Th

hT (|φ|1,T + |φ|2,T ) |ψ|1,T
]

.
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Now using (3.3.7), we obtain

∣

∣

∣

∑

T∈Th

3
∑

j=1

∫

Pj+1BPj

(

D(u)∇φ
)

· nγψ ds
∣

∣

∣
≤ C

[

|φ|1,h|ψ|1,h +

(

∑

T∈Th

|φ|21,T + h2
T |φ|22,T

)1/2

(

∑

T∈Th

|ψ|1,T
)1/2

+
∑

T∈Th

hT (|φ|1,T + |φ|2,T ) |ψ|1,T
]

≤ C

[

|φ|1,h|ψ|1,h +

(

∑

T∈Th

h2
T |φ|22,T

)1/2

|ψ|1,h
]

(3.3.39)

Following the proof techniques of (3.3.32), we arrive at

|
∑

e∈Γ

∫

e

[γψ] · 〈D(u)∇φ〉ds| ≤ C

(

∑

e∈Γ

1

he

∫

e

[ψ]2ds

)1/2 [
∑

T∈Th

(

|φ|21,T + h2
T |φ|22,T

)

]1/2

, (3.3.40)

and

|
∑

e∈Γ

∫

e

[γφ] · 〈D(u)∇ψ〉ds| ≤ C

(

∑

e∈Γ

1

he

∫

e

[φ]2ds

)1/2 [
∑

T∈Th

(

|ψ|21,T + h2
T |ψ|22,T

)

]1/2

. (3.3.41)

Note that

∣

∣

∣

∣

∣

∑

e∈Γ

1

he

∫

e

[φ] · [ψ]ds

∣

∣

∣

∣

∣

≤
(

∑

e∈Γ

1

he

∫

e

[φ]2ds

)1/2(
∑

e∈Γ

1

he

∫

e

[ψ]2ds

)1/2

. (3.3.42)

Using (3.3.39)-(3.3.42) in (3.3.37), we obtain

|A1
h(u;φ, ψ)| ≤ C

[

|φ|1,h|ψ|1,h +

(

∑

e∈Γ

1

he

∫

e

[ψ]2ds

)1/2(
∑

T∈Th

(

|φ|21,T + h2
T |φ|22,T

)

)1/2

+

(

∑

e∈Γ

1

he

∫

e

[φ]2ds

)1/2(
∑

T∈Th

(

|ψ|21,T + h2
T |ψ|22,T

)

)1/2

+

(

∑

e∈Γ

1

he

∫

e

[φ]2ds

)1/2(
∑

e∈Γ

1

he

∫

e

[ψ]2ds

)1/2 ]

.
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Using (3.3.3),

|A1
h(u;φ, ψ)| ≤ C

[

|φ|1,h|ψ|1,h +

(

∑

e∈Γ

1

he

∫

e

[ψ]2ds

)1/2(
∑

T∈Th

(

|φ|21,T + h2
T |φ|22,T

)

)1/2

+|φ|1,h|ψ|1,h +

(

∑

e∈Γ

1

he

∫

e

[φ]2ds

)1/2(
∑

T∈Th

(

|ψ|21,T + h2
T |ψ|22,T

)

)1/2

+

(

∑

e∈Γ

1

he

∫

e

[φ]2ds

)1/2(
∑

e∈Γ

1

he

∫

e

[ψ]2ds

)1/2 ]

≤ C

[{

‖|φ‖| +
(

∑

T∈Th

h2
T |φ|22,T

)1/2}

‖|ψ‖|

+

{

(‖|ψ‖| +
(

∑

T∈Th

h2
T |ψ|22,T

)1/2}

‖|φ‖|
]

.

Now we proceed to estimate the first term in A2
h(u;φ, ψ). From (3.3.28), we have

∣

∣

∣

∣

∣

∑

T∈Th

3
∑

j=1

∫

Pj+1BPj

u · n φ γψ ds

∣

∣

∣

∣

∣

≤ C ‖|ψ‖| (‖φ‖ + h‖|φ‖|) . (3.3.43)

Using (3.3.31) it can be easily seen that

∣

∣

∣

∣

∣

∑

e∈Γ

∫

e

[γψ] · 〈uφ〉ds
∣

∣

∣

∣

∣

≤ C‖|ψ‖| ‖|φ‖|. (3.3.44)

Substitute (3.3.43) and (3.3.44) in (3.3.38), to obtain

|A2
h(u;φ, ψ)| ≤ C (‖|φ‖| ‖|ψ‖| + ‖|φ‖| ‖ψ‖) . (3.3.45)

Combining the estimates derived for A1
h(u;φ, ψ) and A2

h(u;φ, ψ) with (3.3.29), we complete

the proof of (3.3.35).

In particular, if φh ∈ Mh, then |φh|2,T = 0 and hence (3.3.36) directly follows from follows

from (3.3.35). This completes the proof.

Lemma 3.3.7 The operator γ has the following properties. For φh, ψh ∈Mh,

(φh, γψh) = (ψh, γφh). (3.3.46)
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Moreover, with ‖|φh‖|h = (φh, γφh) norms ‖| · ‖|h and ‖ · ‖ are equivalent, i.e., there exist

positive constants C1 and C2, independent of h such that

C1‖φh‖ ≤ ‖|φh‖|h ≤ C2‖φh‖ ∀φh ∈Mh, (3.3.47)

and

‖γφh‖ ≤ C‖φh‖ ∀φh ∈ Mh. (3.3.48)

Proof. Since

(φh, γψh) =
∑

T∈Th

3
∑

j=1

γψh|V ∗

j

∫

V ∗

j ∩T

φh dx,

using the definition of γ, we obtain

3
∑

j=1

γψh|V ∗

j

∫

V ∗

j ∩T

φh dx = γψh|V ∗

1

∫

V ∗

1
∩T

φh dx+ γψh|V ∗

2

∫

V ∗

2
∩T

φh dx+ γψh|V ∗

3

∫

V ∗

3
∩T

φh dx

=
1

he1

∫

e1

ψh ds

∫

V ∗

1
∩T

φh dx+
1

he2

∫

e2

ψh ds

∫

V ∗

2
∩T

φh dx

+
1

he3

∫

e3

ψh ds

∫

V ∗

3
∩T

φh dx.

Since ψh is linear on each triangle T , we use the following quadrature formula to compute

the edge integral

∫

ei

ψh ds =
ψi + ψi+1

2
for i = 1, 2, 3. (3.3.49)

Now a use of the quadrature formula (2.3.11) along with (3.3.49), yields

3
∑

j=1

γψh|V ∗

j

∫

V ∗

j ∩T

φh dx =

(

ψ1 + ψ2

2

)

(φ1 + φ2 + φB)
|V ∗

1 |
3

+

(

ψ2 + ψ3

2

)

(φ2 + φ3 + φB)
|V ∗

2 |
3

+

(

ψ1 + ψ3

2

)

(φ1 + φ3 + φB)
|V ∗

3 |
3
.
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Since φB =
φ1 + φ2 + φ3

3
, we have

3
∑

j=1

γψh|V ∗

j

∫

V ∗

j ∩T

φh dx =
|T |
54

[

(ψ1 + ψ2)(4φ1 + 4φ2 + φ3) + (ψ2 + ψ3)(4φ2 + 4φ3 + φ1)

+(ψ3 + ψ1)(4φ3 + 4φ1 + φ2)
]

=
|T |
54

[ψ1, ψ2, ψ3]









8 5 5

5 8 5

5 5 8









[φ1, φ2, φ3]
T .

This prove that the inner product (·, γ·) is symmetric. To prove the equivalence of the

norms, rewrite

3
∑

j=1

γφh|V ∗

j

∫

V ∗

j ∩T

φh dx =
|T |
54

[

8(φ2
1 + φ2

2 + φ2
3) + 10(φ1φ2 + φ2φ3 + φ1φ3)

]

=
|T |
54

[

3(φ2
1 + φ2

2 + φ2
3) + 5(φ1 + φ2 + φ3)

2
]

. (3.3.50)

Since φh is linear on triangle T , we can use midpoint quadrature formula (2.3.12) to compute

the integral

∫

T

|φh|2 dx =
|T |
3

[

(

φ1 + φ2

2

)2

+

(

φ2 + φ3

2

)2

+

(

φ1 + φ3

2

)2
]

=
|T |
12

[

φ2
1 + φ2

2 + φ2
3 + (φ1 + φ2 + φ3)

2
]

. (3.3.51)

Equivalence of norms follow from (3.3.50) and (3.3.51). This completes the proof for

(3.3.47). To prove (3.3.48), note that

‖γφh‖2 =
∑

T∈Th

3
∑

j=1

∫

V ∗

j

|γφh|2dx.

Since γφh is constant over the control volumes, (γφh|V ∗

j
= φj, say), we have

3
∑

j=1

∫

V ∗

j

|γφh|2dx =

3
∑

j=1

φ2
j |V ∗

j | =

3
∑

j=1

φ2
j

|T |
3
. (3.3.52)

Now (3.3.48) follows from (3.3.52) and (3.3.51) and this completes the proof.

For a given ch, the existence and uniqueness of the discrete solution uh and ph can be shown
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in a similar way as in Chapter 2. Since uMh is the cut-off function of uh, the existence of

uh implies the existence of uMh . To show the existence and uniqueness of the concentration

in (3.3.18), we argue as follows. On substituting (uMh (ch)) in (3.3.18), we obtain a system

of nonlinear ordinary differential equations in ch. An appeal to Picard’s theorem yields the

existence of a unique solution in (0, th) for some 0 < th ≤ T . To continue the solution for

all t ∈ J , we need an a priori bound for ch.

Choosing zh = ch in (3.3.18) and using (3.3.46), we obtain

1

2

d

dt
(φch, γch) + Ah(u

M
h ; ch, ch) ≤ |(g(ch), γch)| (3.3.53)

Using the Cauchy-Schwarz inequality and (3.3.48), we obtain

|(g(ch), γch)| ≤ C
(

‖ch‖2 + ‖c̃‖2
)

. (3.3.54)

Substituting (3.3.34) and (3.3.54) in (3.3.53), we arrive at

1

2

d

dt
(φch, γch) + C2‖|ch‖|2 ≤ C3

(

‖ch‖2 + ‖c̃‖2
)

. (3.3.55)

Integrating from 0 to T and using (3.3.47), we obtain

‖ch‖2 +

∫ T

0

‖|ch‖|2ds ≤ C

(

‖ch(0)‖2 +

∫ T

0

‖ch‖2ds+ +

∫ T

0

‖c̃‖2ds

)

(3.3.56)

A use of Gronwall’s lemma in (3.3.56) gives an a priori estimate in L2- norm for ch. Now

the a priori bound ‖ch‖L∞(L2) can be used to show the existence of a unique solution ch of

the concentration equation for all t ∈ J . This completes the part of unique solvability of

(3.3.1)-(3.3.2) and (3.3.18).

3.4 Error estimates

In this section, we discuss the error estimates for the semidiscrete scheme. The following

theorem which gives the estimates for velocity and pressure has been proved in Chapter 2

(see Theorem 2.4.1).
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Theorem 3.4.1 Assume that the triangulation Th is quasi-uniform. Let (u, p) and (uh, ph),

respectively, be the solutions of (3.2.1)-(3.2.2) and (3.3.1)-(3.3.2). Then, there exists a pos-

itive constant C independent of h, but dependent on the bounds of κ−1 and µ such that

‖u − uh‖(L2(Ω))2 + ‖p− ph‖ ≤ C
[

‖c− ch‖ + h(‖u‖(H1(Ω))2 + ‖p‖1)
]

, (3.4.1)

‖∇ · (u − uh)‖ ≤ Ch‖∇ · u‖1, (3.4.2)

provided u(t) ∈ (H1(Ω))2, ∇ · u(t) ∈ H1(Ω) and p(t) ∈ H1(Ω).

Then for finding the estimates for concentration, we split c − ch = (c − Rhc) + (Rhc −
ch), where Rh is the Ritz projection to be defined below in (3.4.3). In Lemma 3.4.1 and

Lemma 3.4.3, we derive respectively H1 and L2- error estimates for Rh. Finally using these

estimates, we obtain a priori error estimates in L2- norm for the concentration.

3.4.1 Elliptic projection

Let Rh : H1(Ω) −→Mh be the projection of c defined by

B(u; c−Rhc, χh) = 0 ∀χh ∈Mh, (3.4.3)

where

B(u;ψ, χh) = Ah(u;ψ, χh) + (λψ, χh) ∀χh ∈Mh. (3.4.4)

Using the boundedness of Ah(u; ·, ·), we have

|B(u;ψ, χh)|











‖|ψ‖|1 +

(

∑

T∈Th

hT |ψ|22,T

)1/2






‖|χh‖|1 + ‖|χh‖|1‖|ψ‖|1



 . (3.4.5)

Since Ah(u;χh, χh) ≥ C‖|χh‖|2 − C2‖χh‖2, if we choose λ such that λ − C2 ≥ 0. Then,

B(u;χh, χh) will be coercive in the norm ‖|·‖|1 defined in (3.3.4), i.e., there exists a positive

constant C independent of h such that

B(u;χh, χh) ≥ C‖|χh‖|21 ∀χh ∈Mh. (3.4.6)
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Below we discuss L2 and H1- a priori error bounds for c−Rhc.

Let Ihc ∈Mh be an interpolant of c, which has the following approximation properties [29]:

|c− Ihc|s,T ≤ Ch2−s
T ‖c‖2,T ∀T ∈ Th, s = 0, 1, 2. (3.4.7)

Moreover, if φ ∈ W 2,∞(Ω), then

‖φ− Ihφ‖1,∞ ≤ Ch‖φ‖2,∞. (3.4.8)

Lemma 3.4.1 There exists a positive constant C independent of h such that

‖|c−Rhc‖|1 ≤ Ch‖c‖2, (3.4.9)

provided c ∈ H2(Ω).

Proof. Write c − Rhc = (c − Ihc) + (Ihc − Rhc), first we derive the bound for ‖|c− Ihc‖|.
By the definition of ‖| · ‖|, we obtain

‖|c− Ihc‖|2 = |c− Ihc|21,h +
∑

e∈Γ

1

he

∫

e

[c− Ihc]
2ds (3.4.10)

Using the trace inequality (3.3.8) and (3.4.7), we find that

1

he

∫

e

[c− Ihc]
2
eds ≤ C

(

h−2
e ‖c− Ihc‖2

0,T + |c− Ihc|21,T
)

≤ Ch2
T ‖c‖2

2,T (3.4.11)

Use (3.4.11), (3.4.10) and (3.4.7), to obtain

‖|c− Ihc‖|1 ≤ Ch‖c‖2. (3.4.12)

The coercivity (3.4.6) and boundedness (3.4.5) of bilinear form B(u; ·, ·) with (3.4.3) yields

‖|Ihc− Rhc‖|21 ≤ CB(u; Ihc− Rhc, Ihc− Rhc)

≤ CB(u; Ihc− c, Ihc− Rhc)

≤ C

[







‖|c− Ihc‖|1 +

(

∑

T∈Th

hT |c− Ihc|22,T

)1/2






‖|Rhc− Ihc‖|1

+‖|Rhc− Ihc‖|1‖|c− Ihc‖|1
]

, (3.4.13)
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and hence,

‖|Ihc− Rhc‖|1 ≤ C‖|c− Ihc‖|1, (3.4.14)

where C depends on bound of D(u) given in (2.1.13). Combine the estimates of (3.4.12)

and (3.4.14) and use the triangle inequality to complete the proof.

Before going to the L2 error estimates, we introduce the following bilinear form

A(u; ·, ·) : M(h) ×M(h) −→ R which will be helpful in deriving optimal error estimate in

L2 norm.

A(u;φ, ψ) =
∑

T∈Th

∫

T

(D(u)∇φ− uφ) · ∇ψ dx−
∑

e∈Γ

∫

e

[ψ] · 〈D(u)∇φ− uφ〉ds

−
∑

e∈Γ

∫

e

[φ] · 〈D(u)∇ψ〉ds+
∑

e∈Γ

∫

e

α

he
[φ] · [ψ]ds. (3.4.15)

For our further use, let us introduce the following error function

εa(u;ψ, χ) = A(u;ψ, χ) − Ah(u;ψ, χ) ∀χ ∈Mh. (3.4.16)

Below, we will prove a lemma which plays an important role in the proof of a priori L2

error estimates for the Ritz projection Rh.

Lemma 3.4.2 There exists a positive constant C such that

|εa(u, c−Rhc, φh)| ≤ Ch2
(

‖g‖1 + |φ∂c
∂t

|1 + ‖c‖2

+‖∇ · u‖1 + ‖u‖(H1(Ω))2

)

‖φh‖1 ∀φh ∈ Mh. (3.4.17)

Proof. From (3.4.15), we obtain

A(u; u− Rhc, φh) =
∑

T∈Th

∫

T

(D(u)∇(c−Rhc) − u(c− Rhc)) · ∇φh dx

−
∑

e∈Γ

∫

e

[φh] · 〈D(u)∇(c− Rhc) − u(c− Rhc)〉ds

−
∑

e∈Γ

∫

e

[c− Rhc] · 〈D(u)∇φh〉ds

+
∑

e∈Γ

∫

e

α

he
[φh] · [c−Rhc]ds

= T1 + T2 + T3 +
∑

e∈Γ

∫

e

α

he
[φh] · [c−Rhc]ds, (3.4.18)
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Similarly, we find that

Ah(u; c− Rhc, φh) = −
∑

T∈Th

3
∑

j=1

∫

Pj+1BPj

((D(u)∇(c− Rhc) − u(c−Rhc)) · n) γφh ds

−
∑

e∈Γ

∫

e

[γφh] · 〈D(u)∇(c− Rhc) − u(c−Rhc)〉ds

−
∑

e∈Γ

∫

e

[γ(c−Rhc)] · 〈D(u)∇φh〉ds

+
∑

e∈Γ

∫

e

α

he
[φh] · [c− Rhc]ds

= Th1
+ Th2

+ Th3
+
∑

e∈Γ

∫

e

α

he
[φh] · [c− Rhc]ds. (3.4.19)

From (3.4.18) and (3.4.19), we arrive at

|A(u; c− Rhc, φh) − Ah(u; c−Rhc, φh)| ≤ |T1 − Th1
| + |T2 − Th2

| + |T3 − Th3
|. (3.4.20)

To estimate |T1 − Th1
|, we use Lemma 3.3.1 to obtain

|T1 − Th1
| ≤

∣

∣

∣

∣

∣

∑

T∈Th

∫

∂T

(φh − γφh)
(

D(u)∇(c−Rhc)) − u(c− Rhc)
)

· n ds

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

T∈Th

∫

T

∇ · (D(u)∇(c− Rhc) − u(c−Rhc))(φh − γφh)dx

∣

∣

∣

∣

∣

= |I1| + |I2|, say. (3.4.21)

To bound |I1| and |I2|, we follow the proof techniques given in [46]. Since ∇c·n is continuous

across the element boundaries, we find that

|I1| ≤
∣

∣

∣

∣

∣

∑

T∈Th

∫

∂T

D(u)∇(c− Rhc) · n(φh − γφh)ds

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

T∈Th

∫

∂T

u(c− Rhc) · n(φh − γφh)ds

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∑

T∈Th

∫

∂T

(

(D − D̄T )∇(c− Rhc)
)

· n(φh − γφh)ds

∣

∣

∣

∣

∣

+‖c− Rhc‖∞

∣

∣

∣

∣

∣

∑

T∈Th

∫

∂T

u · n(φh − γφh)ds

∣

∣

∣

∣

∣

, (3.4.22)
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where D = D(u) and D̄T is a function designed in a piecewise manner such that for any

edge e of a triangle T ∈ Th,

D̄T (x) = D(xc), ∀x ∈ e,

and xc is the mid point of e. Since |D̄T − D| ≤ Ch‖D‖1,∞, we obtain from the Cauchy-

Schwarz inequality that

|I1| ≤ Ch‖D‖1,∞

∑

T∈Th

∫

∂T

|φh − γφh| |∇(c− Rhc) · n|ds

+‖c‖2

∣

∣

∣

∣

∣

∑

T∈Th

∫

∂T

(u − ūT ) · n(φh − γφh)ds

∣

∣

∣

∣

∣

.

Using (3.3.7) and (3.4.9), we obtain

|I1| ≤ Ch
[

(

∑

T∈Th

h−1
T ‖φh − γφh‖2

T + hT |φh − γφh|21,T

)1/2

×
(

∑

T∈Th

h−1
T |c−Rhc|21,T + hT |c− Rhc|22,T

)1/2

+‖c‖2 h
1/2
T

(

∑

T∈Th

h−1
T ‖φh − γφh‖2

T + hT |φh − γφh|21,T

)1/2

≤ Ch2‖φh‖1‖c‖2. (3.4.23)

|I2| can be bounded as follows:

|I2| ≤
∣

∣

∣

∣

∣

∑

T∈Th

∫

T

∇ · (D(u)∇c− uc) −∇ · (D(u)∇Rhc)(φ− γφh)ds

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

T∈Th

∫

T

∇ · (uRhc)(φ− γφh)ds

∣

∣

∣

∣

∣

.

Using (3.1.3), we obtain

I2 ≤
∣

∣

∣

∣

∣

∑

T∈Th

∫

T

(

g − φ
∂c

∂t
−∇ · (D(u)∇Rhc)

)

(φ− γφh)ds

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

T∈Th

∫

T

(∇ · u Rhc+ u · ∇Rhc)(φ− γφh)ds

∣

∣

∣

∣

∣
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A use of (3.3.30) and (3.3.7) yields

|I2| ≤ Ch2

(

‖g‖1 + ‖φ∂c
∂t

‖1 + ‖c‖2 + ‖∇ · u‖1 + ‖u‖(H1(Ω))2

)

‖φh‖1. (3.4.24)

Combining (3.4.23), (3.4.24) and (3.4.21), we obtain the following bound for |T1 − Th1
|.

|T1 − Th1
| ≤ Ch2

(

‖g‖1 + ‖φ∂c
∂t

‖1 + ‖c‖2 + ‖∇ · u‖1 + ‖u‖(H1(Ω))2

)

‖φh‖1. (3.4.25)

To obtain an estimate for T2 − Th2
, we note that

|T2 − Th2
| ≤

∣

∣

∣

∣

∣

∑

e∈Γ

∫

e

[φh − γφh] · 〈D(u)∇(c− Rhc)〉ds
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

e∈Γ

∫

e

[φh − γφh] · 〈u(c−Rhc)〉ds
∣

∣

∣

∣

∣

= |J1| + |J2|, say. (3.4.26)

Using the same argument as in I1, we bound J1 as

|J1| =

∣

∣

∣

∣

∣

∑

e∈Γ

∫

e

[φh − γφh] · 〈D(u)∇(c− Rhc)〉ds
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

e∈Γ

∫

e

[φh − γφh] · 〈(D − D̄T )∇(c−Rhc)〉ds
∣

∣

∣

∣

∣

.

Using the Cauchy-Schwarz inequality and the trace inequality (3.3.8), (3.3.7) and (3.4.9),

we find that

|J1| ≤ Ch‖D‖1,∞

∑

e∈Γ

∫

e

|[φh − γφh]| |〈∇(c−Rhc)〉|ds

≤ Ch

(

∑

T∈Th

h−1
T ‖φh − γφh‖2

T + hT |φh − γφh|21,T

)1/2

×
(

∑

T∈Th

h−1
T |c− Rhc|21,T + hT |c−Rhc|22,T

)1/2

≤ Ch

(

∑

T∈Th

hT |φh|21,T

)1/2(
∑

T∈Th

hT |c|22,T

)1/2

≤ Ch2‖φh‖1‖c‖2. (3.4.27)
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Similarly, we bound J2 as

|J2| =

∣

∣

∣

∣

∣

∑

e∈Γ

∫

e

[φh − γφh] · 〈u(c− Rhc)〉ds
∣

∣

∣

∣

∣

≤ ‖c‖2

∣

∣

∣

∣

∣

∑

e∈Γ

∫

e

[φh − γφh] · 〈u − ūT 〉ds
∣

∣

∣

∣

∣

≤ Ch‖c‖2‖u‖(W∞

1
(Ω))2

∑

e∈Γ

∫

e

[φh − γφh]ds

≤ Ch2‖c‖2‖φh‖1. (3.4.28)

Substituting (3.4.27) and (3.4.28) in (3.4.26), we obtain

|T2 − Th2
| ≤ Ch2‖φh‖1‖c‖2. (3.4.29)

In order to estimate T3 − Th3
, we rewrite it as

|T3 − Th3
| =

∣

∣

∣

∣

∣

∑

e∈Γ

∫

e

[(c−Rhc) − γ(c− Rhc)] · 〈D(u)∇φh〉ds
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

e∈Γ

∫

e

[(c−Rhc) − γ(c− Rhc)] · 〈(D − D̄T )∇φh〉ds
∣

∣

∣

∣

∣

,

and using the same arguments as in |I1|, we arrive at

|T3 − Th3
| ≤ Ch‖D‖1,∞

∑

e∈Γ

∫

e

|[(c−Rhc) − γ(c− Rhc)]| |〈∇φh〉|ds

≤ Ch

(

∑

T∈Th

h−1
T ‖(c− Rhc) − γ(c− Rhc)‖2

T + hT |(c− Rhc) − γ(c− Rhc)|21,T

)1/2

(

∑

T∈Th

h−1
T ‖φh‖2

1,T

)1/2

≤ Ch

(

∑

T∈Th

hT |c− Rhc|21,T

)1/2(
∑

T∈Th

h−1
T ‖φh‖2

1,T

)1/2

≤ Ch

(

∑

T∈Th

h2
T |c|22,T

)1/2(
∑

T∈Th

‖φh‖2
1,T

)1/2

≤ Ch2‖c‖2‖φh‖1. (3.4.30)
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Now substitute (3.4.25), (3.4.29) and (3.4.30) in (3.4.20) to complete the rest of the proof.

Lemma 3.4.3 There exists a positive constant C independent of h such that

‖c− Rhc‖ ≤ Ch2

(

‖c‖2 + ‖g‖1 + ‖φ∂c
∂t

‖1 + ‖∇ · u‖1 + ‖u‖(H1(Ω))2

)

. (3.4.31)

Proof. To obtain an optimal L2 estimate for c − Rhc, we now appeal to Aubin-Nitsche

duality argument. Let ψ ∈ H2(Ω) be a solution of the following adjoint problem

−∇ · (D(u)∇ψ) − u · ∇ψ + λψ = c− Rhc in Ω, (3.4.32)

D(u)∇ψ · n = 0 on ∂Ω,

satisfying the following elliptic regularity condition:

‖ψ‖2 ≤ C‖c− Rhc‖. (3.4.33)

Multiply the first equation (3.4.32) by c − Rhc and integrate over Ω. Then using (3.4.16)

and (3.4.3), we arrive at

‖c− Rhc‖2 = A(u; c− Rhc, ψ) + λ(ψ, c−Rhc)

=
[

A(u; c− Rhc, ψ − ψh) + λ(c− Rhc, ψ − ψh)
]

+εa(u; c− Rhc, ψh) = I1 + I2, say. (3.4.34)

For I1, use (3.4.9) to obtain

|I1| = |A(u; c− Rhc, ψ − ψh) + (u · ∇(c−Rhc), ψ − ψh) + λ(c− Rhc, ψ − ψh)|

≤ C

[







‖|c− Rhc‖|1 +

(

∑

T∈Th

hT |c− Rhc|22,T

)1/2






‖|ψ − ψh‖|1

+‖|ψ − ψh‖|1‖|c− Rhc‖|1
]

≤ Ch‖c‖2‖|ψ − ψh‖|1. (3.4.35)

The following bound for I2 follows from Lemma 3.4.2.

|I2| ≤ Ch2

(

‖g‖1 + ‖φ∂c
∂t

‖1 + ‖c‖2 + ‖∇ · u‖1 + ‖u‖(H1(Ω))2

)

‖ψh‖1. (3.4.36)
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Substitute (3.4.35) and (3.4.36) in (3.4.34) to find that

‖c− Rhc‖2 ≤ C

[

h‖c‖2‖ψ − ψh‖1 + h2
(

‖g‖1 + ‖φ∂c
∂t

‖1 + ‖c‖2

+‖∇ · u‖1 + ‖u‖(H1(Ω))2

)

‖ψh‖1

]

. (3.4.37)

Now choose ψh = Ihψ in (3.4.37) and use (3.4.33) with (3.4.7) to obtain

‖c− Rhc‖ ≤ Ch2

(

‖c‖2 + ‖g‖1 + ‖φ∂c
∂t

‖1 + ‖∇ · u‖1 + ‖u‖(H1(Ω))2

)

,

and this completes the proof.

For finding a bound for ‖Rhc‖1,∞, we use (2.3.14), (3.4.8) (3.4.9) and (3.4.14)

‖Rhc‖1,∞ = ‖c−Rhc‖1,∞ + ‖c‖1,∞

= ‖c− Ihc‖1,∞ + ‖Ihc−Rhc‖1,∞ + ‖c‖1,∞

≤ C
(

‖c− Ihc‖1,∞ + h−1‖Ihc− Rhc‖1 + ‖c‖1,∞

)

≤ C‖c‖2,∞. (3.4.38)

Lemma 3.4.4 There exists a positive constant C such that

|Ah(uM ;Rhc, θ) − Ah(u
M
h ;Rhc, θ)| ≤ C

(

‖u − uh‖(L2(Ω))2 + h‖∇ · (u − uh)‖

+‖|ρ‖|
)

‖|θ‖| ∀θ ∈Mh. (3.4.39)

Proof: Using the definition of Ah(·; ·, ·), we obtain

|Ah(uM ;Rhc, θ) − Ah(u
M
h ;Rhc, θ)| =

∣

∣

∣

∣

∣

∑

T∈Th

3
∑

j=1

∫

Pj+1BPj

(D(uM) −D(uMh ))∇Rhc · nγθ ds
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

e∈Γ

∫

e

[γRhc] · 〈(D(uM) −D(uMh ))∇θ〉 ds
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

e∈Γ

∫

e

[γθ] · 〈(D(uM) −D(uMh ))∇Rhc〉 ds
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

T∈Th

3
∑

j=1

∫

Pj+1BPj

(uM − uMh )Rhc · n γθ ds

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

e∈Γ

∫

e

[γθ] · 〈(uM − uMh )Rhc〉ds
∣

∣

∣

∣

∣

= A1 + A2 + A3 + A4 + A5, say.
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To estimate A1, we note that

A1 =

∣

∣

∣

∣

∣

∑

T∈Th

3
∑

j=1

∫

Pj+1BPj

(D(uM) −D(uMh ))∇Rhc · n γθ ds

∣

∣

∣

∣

∣

= |
∑

T∈Th

KT |,

where KT =

3
∑

j=1

∫

Pj+1BPj

(D(uM) −D(uMh ))∇Rhc · n γθ ds. Since γθ is constant over each

control volume V ∗, set γθ|V ∗

l
= θl. Referring to Figure 3.4, KT can be written as follows:

KT =

3
∑

l=1

∫

PlB

(D(uM) −D(uMh ))∇Rhc · nl(θl+1 − θl)ds (θ4 = θ1)

Then using (3.4.38) and the Cauchy-Schwarz, we obtain

KT ≤
3
∑

l=1

|θl+1 − θl|
∫

PlB

|(D(uM) −D(uMh ))∇Rhc · nl|ds

≤ C
3
∑

l=1

|θl+1 − θl| ‖D(uM) −D(uMh )‖(L2(PlB))2×2 (meas(PlB))1/2 .

Apply Lemma 2.3.5, trace inequality (3.3.8) and (3.3.15) to obtain

KT ≤ C

3
∑

l=1

|θl+1 − θl| ‖uM − uMh ‖(L2(PlB))2h
1/2
T

≤ C

3
∑

l=1

|θl+1 − θl| ‖u − uh‖(L2(PlB))2h
1/2
T

≤ Ch
1/2
T

3
∑

l=1

|θl+1 − θl|
[

h
−1/2
T ‖u − uh‖T + h

1/2
T ‖∇ · (u − uh)‖T

]

. (3.4.40)

Now using Taylor series expansion and (2.3.18), we obtain

|θl+1 − θl| ≤ hT

[

|∂θ
∂x

| + |∂θ
∂y

|
]

≤
[(

|∂θ
∂x

|2 + |∂θ
∂y

|2
)

h2
T

]1/2

≤ C|θ|1,h,T , l = 1, 2, 3. (3.4.41)

Substitute (3.4.41) in (3.4.40) to arrive at

KT ≤ C|θ|1,h,T (‖u − uh‖T + hT‖∇ · (u − uh)‖T ) .
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With the estimates of KT and Lemma 2.3.1, we obtain

A1 ≤ C
(

‖u − uh‖(L2(Ω))2 + h‖∇ · (u − uh)‖
)

‖|θ‖|. (3.4.42)

Since [γc] = 0, we can write

A2 =

∣

∣

∣

∣

∣

∑

e∈Γ

∫

e

[γRhc] · 〈(D(uM) −D(uMh ))∇θ〉 ds
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

e∈Γ

∫

e

[γRhc− γc] · 〈(D(uM) −D(uMh ))∇θ〉 ds
∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∑

e∈Γ

∫

e

[γρ] · 〈D(uM)∇θ〉ds
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

e∈Γ

∫

e

[γρ] · 〈D(uMh )∇θ〉ds
∣

∣

∣

∣

∣

. (3.4.43)

Using the same argument as in deriving (3.3.32), we obtain
∣

∣

∣

∣

∣

∑

e∈Γ

∫

e

[γρ] · 〈D(uM)∇θ〉ds
∣

∣

∣

∣

∣

≤ C‖|ρ‖| ‖|θ‖|, (3.4.44)

and similarly,
∣

∣

∣

∣

∣

∑

e∈Γ

∫

e

[γρ] · 〈D(uMh )∇θ〉ds
∣

∣

∣

∣

∣

≤ C‖|ρ‖| ‖|θ‖|. (3.4.45)

Substituting (3.4.44) and (3.4.45) in (3.4.43), we obtain

A2 ≤ C‖|ρ‖| ‖|θ‖|. (3.4.46)

Now, we bound A3 as follows: Using (3.4.38) and the Cauchy-Schwarz inequality, we obtain

A3 =

∣

∣

∣

∣

∣

∑

e∈Γ

∫

e

[γθ] · 〈(D(uM) −D(uMh ))∇Rhc〉ds
∣

∣

∣

∣

∣

≤ ‖∇Rhc‖∞

∣

∣

∣

∣

∣

∑

e∈Γ

∫

e

[γθ] · 〈D(uM) −D(uMh )〉ds
∣

∣

∣

∣

∣

≤ C

(

∑

e∈Γ

∫

e

[γθ]2ds

)1/2(
∑

e∈Γ

‖D(uM) −D(uMh )‖2
(L2(e))2×2

)1/2

.

Now using Lemma Lemma 2.3.5 and (3.3.15), we arrive at

A3 ≤ C

(

∑

e∈Γ

∫

e

[γθ]2ds

)1/2(
∑

e∈Γ

‖uM − uMh ‖2
(L2(e))2

)1/2

≤ C

(

∑

e∈Γ

∫

e

[γθ]2ds

)1/2(
∑

e∈Γ

‖u − uh‖2
(L2(e))2

)1/2
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Using the trace inequality (3.3.8), we obtain

A3 ≤ C‖|θ‖|
(

‖u − uh‖(L2(Ω))2 + h‖∇ · (u − uh)‖
)

. (3.4.47)

A4 can be bound in a similar way as A1:

A4 ≤ C‖|θ‖|
(

‖u − uh‖(L2(Ω))2 + h‖∇ · (u − uh)‖
)

. (3.4.48)

To bound A5, we use the same arguments used in A3 to obtain

A5 ≤ C‖|θ‖| (‖u − uh‖ + h‖∇ · (u − uh)‖) (3.4.49)

Combine the estimates derived for A1 · · ·A5 to complete the rest of the proof.

3.4.2 L∞(L2) estimates for concentration

In this subsection, we discuss an L∞(L2) norm error estimate for the concentration.

Theorem 3.4.2 Let c and ch be the solutions of (3.2.3) and (3.3.18), respectively, and let

ch(0) = c0,h = Rhc(0). Then, for sufficiently small h, there exists a positive constant C(T )

independent of h but dependent on the bounds of κ−1 and µ such that

‖c− ch‖2
L∞(J ;L2) ≤ C(T )

[

∫ T

0

(

h4(‖g‖2
1 + ‖φ∂c

∂t
‖2

1 + ‖u‖(H1(Ω))2 + ‖∇ · u‖1

+‖ct‖2
2 + ‖gt‖2

1 + ‖ut‖(H1(Ω))2 + ‖∇ · ut‖1 + ‖φ∂
2c

∂t2
‖2

1

+h2(‖c‖2
2 + ‖u‖2

(H1(Ω))2 + ‖p‖2
1)
)

ds

]

. (3.4.50)

Proof: Write c− ch = (c−Rhc) + (Rhc− ch) = ρ+ θ. Since the estimates of ρ are known,

we need to find only the estimates of θ.

Multiply (3.1.3) by γzh, integrate over Ω. Then subtract the resulting equation from

(3.3.18) to obtain

(

φ
∂θ

∂t
, γzh

)

+ Ah(u
M ; c, zh) − Ah(u

M
h ; ch, zh) = −

(

φ
∂ρ

∂t
, γzh

)

+(g(c) − g(ch), γzh) ∀zh ∈Mh. (3.4.51)
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Put zh = θ and use the definition of Rh to obtain
(

φ
∂θ

∂t
, γθ

)

+ Ah(u
M
h ; θ, θ) = −

(

φ
∂ρ

∂t
, γθ

)

+ (λρ, θ) +
(

g(c) − g(ch), γθ
)

−
[

Ah(u
M ;Rhc, θ) − Ah(u

M
h ;Rhc, θ)

]

= I1 + I2 + I3 + I4, say. (3.4.52)

Now we estimate Ij, j = 1, 2, 3, 4 one by one. To estimate I1, we use the Cauchy Schwartz

inequality, boundedness of φ and (3.3.48) to obtain

|I1| = |
(

φ
∂ρ

∂t
, γθ

)

| ≤ C‖∂ρ
∂t

‖ ‖θ‖. (3.4.53)

Similarly,

|I2| = |(λρ, θ)| ≤ C‖ρ‖ ‖θ‖. (3.4.54)

Using (2.1.7) and (3.3.48), I3 can be estimated as

|I3| ≤ |(g(ch) − g(c), γθ)| ≤ C‖c− ch‖ ‖θ‖. (3.4.55)

The bound for I4 follows from Lemma 3.4.4 and hence,

|I4| ≤ C
(

‖u − uh‖(L2(Ω))2 + h‖∇ · (u − uh)‖ + ‖|ρ‖|
)

‖|θ‖|. (3.4.56)

Substitute the estimates of I1, · · · , I4 in (3.4.52) and use (3.3.34), Young’s inequality, non

singularity of the function φ with standard kick back arguments to obtain

d

dt
‖|θ‖|2h + (α0 − ε)‖|θ‖|2 ≤ C

[

h2‖∇ · (u − uh)‖2 + ‖|ρ‖|2‖u − uh‖2
(L2(Ω))2

+‖c− ch‖2 + ‖ρ‖2 + ‖∂ρ
∂t

‖2 + ‖θ‖2
]

. (3.4.57)

Now, from (3.4.1),

‖u − uh‖(L2(Ω))2 ≤ C
(

‖ρ‖ + ‖θ‖ + h(‖u‖(H1(Ω))2 + ‖p‖1)
)

. (3.4.58)

A use of (3.4.31), (3.4.58) and (3.4.2) in (3.4.57) yields

d

dt
‖|θ‖|2h + α1‖|θ‖|2 ≤ C

[

h4
(

‖g‖2
1 + ‖u‖(H1(Ω))2 + ‖∇ · u‖1 + ‖φ∂c

∂t
‖2

1

+‖ct‖2
2 + ‖gt‖2

1 + ‖ut‖(H1(Ω))2 + ‖∇ · ut‖1 + ‖φ∂
2c

∂t2
‖2

1

)

+h2(‖c‖2
2 + ‖u‖2

(H1(Ω))2 + ‖p‖2
1) + ‖θ‖2

]

. (3.4.59)
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Since ch(0) = Rhc(0), this implies that θ(0) = 0. An application of Gronwall’s inequality

with (3.3.47), (3.4.59) yields

‖θ‖2
L∞(J ;L2) ≤ C(T )

[

∫ T

0

{

h4
(

‖g‖2
1 + ‖u‖(H1(Ω))2 + ‖∇ · u‖1

+‖φ∂c
∂t

‖2
1 + ‖ct‖2

2 + ‖gt‖2
1 + ‖ut‖(H1(Ω))2 + ‖∇ · ut‖1

+‖φ∂
2c

∂t2
‖2

1

)

+ h2(‖c‖2
2 + ‖u‖2

(H1(Ω))2 + ‖p‖2
1)
}

ds
]

. (3.4.60)

Use triangle inequality to complete the rest of the proof.

Combining the estimates derived in (3.4.18) and (3.4.50), we obtain the following estimates

for the velocity and pressure.

Theorem 3.4.3 Assume that the triangulation Th is quasi-uniform. Let (u, p) and (uh, ph),

respectively, be the solutions of (3.2.1)-(3.2.2) and (3.3.1)-(3.3.2) and let ch(0) = c0,h =

Rhc(0). Then, for sufficiently small h, there exists a positive constant C(T ) independent

of h but dependent on the bounds of κ−1 and µ such that

‖u − uh‖2
L∞(J ;(L2(Ω))2) + ‖p− ph‖2

L∞(J ;L2(Ω)) ≤ C(T )
[

∫ T

0

{

h4
(

‖g‖2
1 + ‖u‖(H1(Ω))2

+‖∇ · u‖1 + ‖φ∂c
∂t

‖2
1 + ‖ct‖2

2 + ‖gt‖2
1 + ‖ut‖(H1(Ω))2 + ‖∇ · ut‖1

+‖φ∂
2c

∂t2
‖2

1

)

+ h2(‖c‖2
2 + ‖u‖2

(H1(Ω))2 + ‖p‖2
1)
}

ds
]

.

3.5 Completely Discrete Scheme

In this section, we briefly discuss a fully discrete scheme. In order to approximate the time

derivative, we use the Euler backward difference scheme. Let 0 = t0 < t1 < · · · tN = T be

a given partition of the time interval [0, T ] with time step size ∆tn = tn − tn−1. For the

sake of convenience we assume a uniform time step size ∆t. Set f n = f(tn) for a generic

function f in time. Then, at time level tn, the fully discrete problem corresponding to

pressure-velocity equation (3.3.1)-(3.3.2) is to find (un
h, p

n
h) ∈ Uh ×Wh such that

(κ−1µ(cnh)u
n
h, γhvh) + (∇ · vh, p

n
h) = 0 ∀vh ∈ Uh, (3.5.1)

(∇ · un
h, wh) = (qn, wh) ∀wh ∈ Wh. (3.5.2)
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For the approximation of concentration at time level t = tn+1, we use the approximate

velocity at the previous time level (t = tn). Using backward Euler difference scheme, we

have

∂ch
∂t

|t=tn+1
≈ cn+1

h − cnh
∆t

. (3.5.3)

Here also, we use the cut-off operator M(uh) of the approximate velocity uh at t = tn by

M(un
h) = min (|un

h|,M)
un

h

|un
h|
, (3.5.4)

Since un is bounded, we have

M(un) = un

Now, the discrete problem corresponding to the concentration equation (3.3.18) is to find

cn+1
h ∈Mh such that

(

φ
(cn+1
h − cnh)

∆t
, γzh

)

+ Ah(M(un
h); cn+1

h , zh) = (g(cn+1
h ), γzh) ∀zh ∈Mh. (3.5.5)

3.5.1 Error Estimates

In order to derive the error estimates for concentration, we need the following error bound

for velocity and pressure at t = tn, which is given in Theorem 2.4.1.

‖un − un
h‖(L2(Ω))2 + ‖pn − pnh‖ ≤ C

[

‖cn − cnh‖ + h
(

‖un‖(H1(Ω))2 + ‖pn‖1

)]

, (3.5.6)

and

‖∇ · (un − un
h)‖ ≤ Ch‖∇ · un‖. (3.5.7)

Now we prove our main theorem.

Theorem 3.5.1 Let cm and cmh be the solutions of (3.2.3) and (3.5.5) respectively at t =

tm, 1 ≤ m ≤ N , and let ch(0) = c0,h = Rhc(0). Then for sufficiently small h, there exists

a positive constant C(T ) independent of h but dependent on the bounds of κ−1 and µ such
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that

max
0≤m≤N

‖cm − cmh ‖2 ≤ C
[

h4
(

‖g‖2
L∞(0,T ;H1) + ‖∇ · u‖2

L∞(0,T ;H1) + ‖φ∂c
∂t

‖2
L∞(0,T ;H1)

+‖ct‖2
L2(0,T ;H2) + ‖gt‖2

L2(0,T ;H1) + ‖ut‖2
L2(0,T ;(H1(Ω))2) + ‖∇ · ut‖2

L2(0,T ;H1)

+‖φ∂
2c

∂t2
‖2
L2(0,T ;H1)

)

+ (∆t)2
(

‖ut‖2
L2(0,T ;(L2(Ω))2) + ‖∇ · ut‖2

L2(0,T ;L2)

+‖∂
2c

∂t2
‖2
L2(0,T,L2)

)

+ h2
(

‖c‖2
L∞(0,T ;H2) + ‖u‖2

L∞(0,T ;(H1(Ω))2) + ‖p‖2
L∞(0,T ;H1)

)]

. (3.5.8)

Proof. Write cn − cnh = (cn − Rhc
n) + (Rhc

n − cnh) = ρn + θn. Since the estimates for ρn

known from Lemmas 3.4.1 and 3.4.3 at t = tn, it is enough to obtained the bound for θn.

Multiply the concentration equation (3.1.3) by γzh and integrate over Ω. Then, at t = tn+1,

we have

(

φ
∂cn+1

∂t
, γzh

)

+ Ah(u
n+1; cn+1, zh) = (g(cn+1), γzh) ∀zh ∈ Mh (3.5.9)

Subtracting (3.5.5) from (3.5.9), we obtain

(

φ
∂cn+1

∂t
− φ

cn+1
h − cnh

∆t
, γzh

)

+ Ah(u
n+1; cn+1, zh)

−Ah(M(un
h); cn+1

h , zh) = (g(cn+1) − g(cn+1
h ), γzh) ∀zh ∈Mh. (3.5.10)

Now using choosing zh = θn+1 and using (3.4.3), we obtain the following error equation:

(

φ
θn+1 − θn

∆t
, γθn+1

)

+ Ah(M(un
h); θn+1, θn+1) =

[

Ah(M(un
h);Rhc

n+1, θn+1)

−Ah(un+1;Rhc
n+1, θn+1

]

−
(

φ
ρn+1 − ρn

∆t
, γθn+1

)

−φ
(

∂cn+1

∂t
− cn+1 − cn

∆t
, γθn+1

)

+(g(cn+1) − g(cn+1
h ), γθn+1) + λ(ρn+1, γθn+1)

= J1 + J2 + J3 + J4 + J5, say. (3.5.11)
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Using the same arguments as in the proof of Lemma 3.4.4, J1 can be bounded in the

following manner

|J1| ≤ |Ah(M(un
h);Rhc

n+1, θn+1) − Ah(u
n+1, Rhc

n+1, θn+1)|

≤ C
[

‖un+1 − un
h‖(L2(Ω))2 + h‖∇ · (un+1 − un

h)‖ + ‖|ρn+1‖|
]

‖|θn+1‖|

≤ C
[

‖un − un
h‖(L2(Ω))2 + h‖∇ · (un − un

h)‖

+‖un+1 − un‖(L2(Ω))2 + h‖∇ · (un+1 − un)‖ + ‖|ρn+1‖|
]

‖|θn+1‖|. (3.5.12)

Using (3.3.48) and the Cauchy-Schwarz inequality, J2 can be bounded easily as follows:

|J2| ≤ C(∆t)−1/2‖∂ρ
∂t

‖L2(tn,tn+1;L2)‖θn+1‖. (3.5.13)

An application of Taylor series expansion and (3.3.48) gives us

|J3| ≤ C‖θn+1‖
(

∆t

∫ tn+1

tn

‖ctt‖2ds

)1/2

. (3.5.14)

Since the function g is uniformly Lipschitz continuous (see (2.1.7)), J4 can be bounded in

the following way:

|J4| ≤ |(g(cn+1) − g(cn+1
h ), γθn+1)| ≤ C‖cn+1 − cn+1

h ‖ ‖θn+1‖

≤ (‖ρn+1‖ + ‖θn+1‖)‖θn+1‖. (3.5.15)

Again using (3.3.48), we obtain

J5 ≤ |λ(cn+1 − Rhc
n+1, γθn+1)| ≤ ‖ρn+1‖ ‖θn+1‖. (3.5.16)

Since

|un+1 − un|2 =

∣

∣

∣

∣

∫ tn+1

tn

ut ds

∣

∣

∣

∣

2

≤ ∆t

∫ tn+1

tn

|ut|2ds, (3.5.17)

Hence,

‖un+1 − un‖2
(L2(Ω))2 ≤ ∆t ‖ut‖2

L2(tn,tn+1;(L2(Ω))2), (3.5.18)

and similarly,

‖∇ · (un+1 − un)‖2
L2(Ω) ≤ ∆t ‖∇ · ut‖2

L2(tn,tn+1;L2). (3.5.19)
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Substituting (3.5.12)-(3.5.16) with (3.5.18), (3.5.19) in (3.5.11) and applying Young’s in-

equality, we obtain the following equation
(

φ
θn+1 − θn

∆t
, γθn+1

)

+ Ah(M(un
h); θn+1, θn+1) ≤ C

[

(∆t)−1‖∂ρ
∂t

‖2
L2(tn ,tn+1,L2) + ‖θn+1‖2

+ ∆t
(

‖ut‖2
L2(tn,tn+1;(L2(Ω))2) + ‖∇ · ut‖2

L2(tn,tn+1;L2)

)

+ ∆t‖∂
2c

∂t2
‖2
L2(tn,tn+1,L2) + ‖un − un

h‖2
(L2(Ω))2 + ‖|ρn+1‖|2

+ h2‖∇.(un − un
h)‖|2 + ‖|θn+1‖|2 + ‖ρn+1‖2

]

. (3.5.20)

Now, a use of (3.3.34), (3.5.6) and (3.5.7) in (3.5.20) with kick back arguments yields

‖|θn+1‖|2 − ‖|θn‖|2 ≤ C
[

∆t
(

‖θn+1‖2 + ‖θn‖2 + ‖ρn‖2 + ‖ρn+1‖2 + ‖|ρn+1‖|2
)

+(∆t)2
(

‖ut‖2
L2(tn,tn+1;(L2(Ω))2) + ‖∇ · ut‖2

L2(tn ,tn+1;L2)

+‖∂
2c

∂t2
‖2
L2(tn,tn+1,L2)

)

+ ‖∂ρ
∂t

‖2
L2(tn,tn+1,L2)

+h2∆t
(

h2‖∇ · un‖2
1 + ‖un‖2

(H1(Ω))2 + ‖pn‖2
1

) ]

. (3.5.21)

Taking summation over n = 0 · · ·m− 1, we obtain

‖|θm‖|2h − ‖|θ0‖|2h ≤ C
[

m−1
∑

n=0

{

∆t
(

‖θn+1‖2 + ‖θn‖2 + ‖ρn‖2 + ‖ρn+1‖2 + ‖|ρn+1‖|
)

+(∆t)2
(

‖ut‖2
L2(tn ,tn+1;(L2(Ω))2) + ‖∇ · u)t‖2

L2(tn,tn+1;L2) + ‖∂
2c

∂t2
‖2
L2(0,T,L2)

)

+‖∂ρ
∂t

‖2
L2(0,T,L2) + h2∆t

(

h2‖∇ · un‖2
1

+‖un‖2
(H1(Ω))2 + ‖pn‖2

1

)}]

. (3.5.22)

Use Gronwall’s Lemma 1.2.8, equivalence of the norms ‖| · ‖|h and ‖ · ‖ given in (3.3.47)

and estimates of ρ to obtain

‖θm‖2 ≤ C
[

‖θ0‖2 + h4
(

‖g‖2
L∞(0,T ;H1) + ‖∇ · u‖2

L∞(0,T ;H1) + ‖φ∂c
∂t

‖2
L∞(0,T ;H1)

+‖ct‖2
L2(0,T ;H2) + ‖gt‖2

L2(0,T ;H1) + ‖ut‖2
L2(0,T ;(H1(Ω))2) + ‖∇ · ut‖2

L2(0,T ;H1)

+‖φ∂
2c

∂t2
‖2
L2(0,T ;H1)

)

+ (∆t)2
(

‖ut‖2
L2(0,T ;(L2(Ω))2) + ‖∇ · ut‖2

L2(0,T ;L2)

+‖∂
2c

∂t2
‖2
L2(0,T,L2)

)

+ h2
(

‖c‖2
L∞(0,T ;H2) + ‖u‖2

L∞(0,T ;(H1(Ω))2) + ‖p‖2
L∞(0,T ;H1)

)]

. (3.5.23)
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Now since ch(0) = Rhc(0), i.e., θ0 = 0, (3.5.23) implies that

max
0≤m≤N

‖θm‖2 ≤ C
[

h4
(

‖g‖2
L∞(0,T ;H1) + ‖∇ · u‖2

L∞(0,T ;H1) + ‖φ∂c
∂t

‖2
L∞(0,T ;H1)

+‖ct‖2
L2(0,T ;H2) + ‖gt‖2

L2(0,T ;H1) + ‖ut‖2
L2(0,T ;(H1(Ω))2) + ‖∇ · ut‖2

L2(0,T ;H1)

+‖φ∂
2c

∂t2
‖2
L2(0,T ;H1)

)

+ (∆t)2
(

‖ut‖2
L2(0,T ;L2) + ‖∇ · ut‖2

L2(0,T ;L2)

+‖∂
2c

∂t2
‖2
L2(0,T,L2)

)

+ h2
(

‖c‖2
L∞(0,T ;H2) + ‖u‖2

L∞(0,T ;(H1(Ω))2) + ‖p‖2
L∞(0,T ;H1)

)]

. (3.5.24)

Now combined the estimate of θ and ρ to completes the rest of the proof.

Now using (3.5.6) and (3.5.8), we obtain the similar estimates as in Theorem 3.5.1 for

velocity as well as pressure.

3.6 Numerical Procedure

In this section, we discuss the numerical method applied to pressure-velocity equation and

concentration equation. We consider the following test problem, where only the molecular

diffusion is present and the effect of dispersion coefficients are negligible. Find c, p ,u such

that

u = −κ(x)
µ(c)

∇p ∀(x, t) ∈ Ω × J, (3.6.1)

∇ · u = q+ − q− ∀(x, t) ∈ Ω × J, (3.6.2)

φ
∂c

∂t
+ u · ∇c−∇ · (D(u)∇c) + cq− = c̄q+ ∀(x, t) ∈ Ω × J, (3.6.3)

with boundary conditions

u · n = 0 ∀(x, t) ∈ ∂Ω × J, (3.6.4)

D(u)∇ · n = 0 ∀(x, t) ∈ ∂Ω × J, (3.6.5)

and initial condition

c(x, 0) = c0(x) ∀x ∈ Ω. (3.6.6)

Here µ(c) is the viscosity of the fluid mixture which depends on the concentration as:

µ(c) = µ(0)
[

(1 − c) +M
1

4 c
]−4

, (3.6.7)



Chapter 3. Discontinuous Galerkin Finite Volume Element Approximations 116

where M is the mobility ratio between the resident and injected fluids and µ(0) is the

viscosity of the resident fluid, c̄ is the injection concentration and q+ and q− are the

production and injection rates, respectively. Let Th be an admissible regular, uniform

triangulation of Ω into closed triangles

As we have mentioned in Chapter 2 that for a good approximation to the concentration,

one has to take larger time step for the pressure equation than the concentration. Here

also, we take different time step for pressure and concentration equation. Let 0 = t0 < t1 <

· · · tM = T be a given partition of the time interval (0, T ] with step length ∆tm = tm+1− tm
for the pressure equation and 0 = t0 < t1 < · · · tN = T be a given partition of the time

interval (0, T ] with step length ∆tn = tn+1 − tn for the concentration equation. We denote

Cn ≈ ch(t
n), Cm ≈ ch(tm), Um ≈ uh(tm) and Pm ≈ ph(tm).

If concentration step tn relates to pressure steps by tm−1 < tn ≤ tm, we require a velocity

approximation at t = tn, which will be used in the concentration equation, based on Um−1

and earlier values. We define a velocity approximation at t = tn by

EUn =

(

1 +
tn − tm−1

tm−1 − tm−2

)

Um−1 −
tn − tm−1

tm−1 − tm−2
Um−2 for m ≥ 2, (3.6.8)

EUn = U0 for m = 1. (3.6.9)

The discrete problem corresponding to pressure-velocity equation (3.3.1)-(3.3.2) is to find

(U, P ) : {t0, t1, · · · tM} −→ Uh ×Wh such that

(κ−1µ(Cm)Um, γhvh) + (∇ · vh, Pm) = 0 ∀vh ∈ Uh (3.6.10)

(∇ · Um, wh) = (q+ − q−, wh) ∀wh ∈ Wh, m ≥ 0. (3.6.11)

Set
∂C

∂t
|t=tn+1

≈ Cn+1 − Cn

∆tn
. Then, the discrete problem corresponding to concentration

equation (3.3.18) is to find C : {t0, t1, · · · tN} −→Mh such that

(

φ
(Cn+1 − Cn)

∆tn
,Π∗

hzh
)

+ (EUn+1 · ∇Cn+1,Π∗
hzh)

+Ah(EUn+1;Cn+1, zh) + (q−cn+1,Π∗
hzh) = (c̄q+,Π∗

hzh) ∀zh ∈ Mh, (3.6.12)

where the bilinear form Ah(·; ·, ·) is defined in (3.3.19). To solve (3.6.12)-(3.6.11), we use

mixed finite volume element method. Numerical procedure for solving (3.6.12)-(3.6.11), we



Chapter 3. Discontinuous Galerkin Finite Volume Element Approximations 117

have discussed in details in Chapter 2. Here we will discuss the numerical procedure for

solving (3.6.12).

Now we write (3.6.12) in the matrix form. Let λ1, λ2 and λ3 be the barycentric coordinates

of the triangle 4P1P2P3, associated with nodes P1, P2 and P3, respectively. Since the finite

dimensional space Mh is discontinuous, we take 1, λ2 and λ3 as local basis functions for a

triangle T ∈ Th. Then, we construct the global basis functions Ψi’s for Mh with the help

of these local basis functions (for details see numerical procedure part of Chapter 2 ). Set

Cn =
∑Nh

i=1 δ
n
i Ψi, then the concentration equation ( 3.6.12) can be written in matrix form

as

[Dn + ∆tn(E
n +Hn +Rn)] δn+1 = Dnδn + ∆tnG

n, (3.6.13)

where

δn = (Cn(Pi))
Nh

i=1, Dn = (dij)
Nh

i,j=1 =

∫

V ∗

i

φΨi γΨj dx,

En = (eij)
Nh

i,j=1 =

∫

V ∗

i

(Un · ∇Ψi) γΨj dx

Hn = T n1 + T n2 + T n3 + T n4 ,

with

[T n1 (ij)] = −
∑

T∈Th

3
∑

k=1

∫

Pk+1BPk

(D(Un)∇Ψi·n)γΨj ds, [T n2 (ij)] = −
∑

e∈Γ

∫

e

[γΨi]·〈D(Un)∇Ψj〉ds,

[T n3 (ij)] =
∑

e∈Γ

∫

e

[γΨj] · 〈D(Un)∇Ψi〉ds, [T n4 (ij)] =
∑

e∈Γ

α

he

∫

e

[Ψi] · [Ψj]ds,

and

Rn = (rij)
Nh

i,j=1 =

∫

V ∗

i

q−Ψi γΨj dx, Gn = (gni )
Nh

i=1 =

∫

V ∗

i

c̄q+ γΨi dx

.

3.6.1 Numerical experiments

For the test problem, we have taken the data from [80]. The spatial domain is

Ω = (0, 1000)×(0, 1000) ft2 and the time period is [0, 3600] days, viscosity of oil is µ(0) = 1.0

cp. The injection well is located at the upper right corner (1000, 1000) with injection rate
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Figure 3.5: Surface (b) and contour plot (a) in Test 1 at t = 3 years.

q+ = 30ft2/day and injection concentration c̄ = 1.0. The production well is located at the

lower left corner with the production rate q− = 30ft2/day and the initial concentration is

c(x, 0) = 0. In the numerical simulation for spatial discretization we choose in 20 divisions

on both x and y axes. For time discretization, we take ∆tp = 360 days and ∆tc = 120

days, i.e., we divide each pressure time interval into sub three intervals.

Test 1: We assume that the porous medium is homogeneous and isotropic. The perme-

ability is κ = is 80. The porosity of the medium is φ = .1 and the mobility ratio between

the resident and injected fluid is M = 1. Further more we assume that the molecular

diffusion is dm = 1 and dispersion coefficients are zero. The surface and contour plots for

the concentration at t = 3 and t = 10 years are presented in Figure 3.5 and Figure 3.6,

respectively.

Since only molecular diffusion is present and viscosity is also independent of the velocity,

Figure 3.5, shows that the velocity is radial and the contour plots for the concentration is

almost circular until the invading fluid reaches the production well. Figure 3.6 shows that

when these plots are reached at production well, the invading fluid continues to fill the

whole domain until c = 1.

Test 2: In this test we consider the numerical simulation of a miscible displacement
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Figure 3.6: Surface (b) and contour plot (a) in Test 1 at t = 10 years.

problem with discontinuous permeability. Here, the data is same as given in Test 1 ex-

cept the permeability of the medium κ(x). We take κ = 80 on the sub domain ΩL :=

(0, 1000) × (0, 500) and κ = 20 on the sub domain ΩU := (0, 1000) × (500, 1000). The

contour and surface plot at t = 3 and t = 10 years are given in Figure 3.7 and Figure 3.8

respectively.

In Test 2, the lower half domain has a larger permeability than the upper half. Figure 3.7

and Figure 3.8 shows that when the injecting fluid reaches the lower half domain, it starts

moving much faster in the horizontal direction on this domain compared to the low perme-

ability domain that is upper half domain. We observe that one should put the production

well in a low permeability zone to increase the area swept by the injected fluid.

Order of convergence. We compute the order of convergence in the L2- norm. Figure

3.9 shows that the computed order of convergence in L2- norm is approximately 2, which

matches our theoretical findings.
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Figure 3.7: Contour (a) and surface plot (b) in Test 2 at t = 3 years.
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Figure 3.8: Contour (a) and surface plot (b) in Test 2 at t = 10 years.
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Chapter 4

The Modified Method of

Characteristics Combined with

FVEM

4.1 Introduction

The following system of coupled nonlinear partial differential equations describe the miscible

displacement of one incompressible fluid by another. Find the pressure p, velocity u and

the concentration c such that

u = −κ(x)
µ(c)

∇p ∀(x, t) ∈ Ω × J, (4.1.1)

∇ · u = q ∀(x, t) ∈ Ω × J, (4.1.2)

φ(x)
∂c

∂t
+ u · ∇c−∇ · (D(u)∇c) = (c̃− c)q ∀(x, t) ∈ Ω × J, (4.1.3)

with boundary conditions

u · n = 0 ∀(x, t) ∈ ∂Ω × J, (4.1.4)

D(u)∇c · n = 0 ∀(x, t) ∈ ∂Ω × J, (4.1.5)

and initial condition

c(x, 0) = c0(x) ∀x ∈ Ω, (4.1.6)

122
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where c̃ is the concentration of the injective fluid. We assume that the domain Ω is a

rectangle and all functions in (4.1.1)-(4.1.3) are spatially Ω-periodic. This assumption on

Ω is physically reasonable, because the boundary condition (4.1.5) can be considered as a

reflection boundary and in the reservoir simulation the boundary effect are of less interest

compared to the inner flow.

As mentioned in Chapter 1, the concentration equation (4.1.3) is convection dominated

diffusion type. The standard numerical schemes fail to provide a physically relevant solu-

tion because most of these methods suffer from grid orientation effects. The other way to

minimize the grid orientation effect is to use modified methods of characteristics (MMOC).

Douglas and Russell [41] introduced and analyzed MMOC for the approximation of convec-

tion dominated diffusion equations. The authors in [34, 44, 72] studied MMOC combined

with Galerkin finite element methods for incompressible miscible displacement problems.

In this chapter, we apply MMOC combined with FVEM for the approximation of concen-

tration equation (4.1.3) and mixed FVEM for pressure-velocity equations (4.1.1)-(4.1.2).

The basic idea behind the modified method of characteristics for approximating the con-

centration equation (4.1.3) is to set the hyperbolic part, i.e., φ
∂c

∂t
+ u · ∇c, as a directional

derivative.

Set

ψ(x, t) = (|u(x, t)|2 + φ(x)2)
1

2 = (u1(x, t)
2 + u2(x, t)

2 + φ(x)2)
1

2 .

The characteristic direction with respect to the operator φ
∂

∂t
+ u · ∇ is the unit vector

s(x, t) =
(u1(x, t), u2(x, t), φ(x))

ψ(x, t)
.

The directional derivative of the concentration c(x, t) in the direction of s is given by

∂c

∂s
=
∂c

∂t

φ(x)

ψ(x, t)
+

u.∇c
ψ(x, t)

This implies that

ψ(x, t)
∂c

∂s
= φ(x)

∂c

∂t
+ u.∇c,

where ∇c =
( ∂c

∂x
,
∂c

∂y

)

.

Hence, (4.1.3) can be rewritten as

ψ(x, t)
∂c

∂s
−∇ · (D(u)∇c) = (c̃− c)q ∀(x, t) ∈ Ω × J. (4.1.7)
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Figure 4.1: Direction of ψ(x, t)

Since (4.1.7) is in the form of heat equation, the behavior of the numerical solution of

(4.1.7) should be better than (4.1.3) if the derivative term
∂c

∂s
is approximated properly.

We choose the same time steps for pressure and concentration for simplicity. However, the

analysis can be extended to the case when different time steps are chosen for velocity and

concentration through minor modifications.

Let 0 = t0 < t1 < · · · tN = T be a given partition of the time interval [0, T ] with the time

step size ∆t. For very small values of ∆t, the characteristic direction starting from (x, tn+1)

crosses t = tn at (see Figure 4.2)

x̌ = x− un+1

φ(x)
∆t, (4.1.8)

where un+1 = u(x, tn+1).

This suggests us to approximate the characteristic directional derivative at t = tn+1 as

∂c

∂s
|t=tn+1

≈ cn+1 − c(x̌, tn)

∆s

=
cn+1 − c(x̌, tn)

((x− x̌)2 + (tn+1 − tn)2)1/2
, (4.1.9)

where cn+1 = c(x, tn+1).

Using (4.1.8), we obtain

ψ(x, t)
∂c

∂s
|t=tn+1

≈ φ(x)
cn+1 − čn

∆t
, (4.1.10)
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Figure 4.2: An illustration of the definition x̌

where čn = c(x̌, tn).

This chapter is organized as follows. While Section 4.1 is introductory in nature, in Section

4.2, we discuss the FVEM formulation. In Section 4.3, we derive a priori error estimates

for the velocity and for the concentration. Finally, we present the numerical procedure and

the results of the numerical experiments in Section 4.4 to support our theoretical results.

4.2 Finite Volume element formulation

As mentioned in Chapter 2, the mixed FVE approximation corresponding to (4.1.1)-(4.1.2)

can be written as: find (uh, ph) : J −→ Uh ×Wh such that for t ∈ (0, T ],

(κ−1µ(ch)uh, γhvh) + b(γhvh, ph) = 0 ∀vh ∈ Uh, (4.2.1)

(∇ · uh, wh) = (q, wh) ∀wh ∈ Wh, (4.2.2)

where γh is the transfer operator defined in Chapter 2. Here, the spaces Uh, Vh and Wh are

defined as follows:

Uh = {vh ∈ U : vh|T = (a+ bx, c + by) ∀T ∈ Th} ,

Vh =
{

vh ∈ (L2(Ω))2 : vh|T ∗

M
is a constant vector ∀T ∗

M ∈ T ∗
h and vh · n = 0 on ∂Ω

}

.
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and

Wh = {wh ∈ W : wh|T is a constant ∀T ∈ Th} .

Let us define the discrete norm for vh = (v1
h, v

2
h) ∈ Uh as

‖vh‖2
1,h = ‖vh‖2

(L2(Ω))2 + |vh|21,h, (4.2.3)

where |vh|21,h =
∑

T∈Th

‖∇v1
h‖2

0,T + ‖∇v2
h‖2

0,T . For vh ∈ Uh, it is straight forward to check that

‖vh‖1,h ≤ C‖vh‖H(div;Ω)
, (4.2.4)

where C is a constant independent of h. For vh ∈ Uh the following inequality

‖vh‖(L∞(Ω))2 ≤ C

(

log
1

h

)1/2

‖vh‖1,h, (4.2.5)

holds true when Ω is in R
2 and the triangulation Th is quasi-uniform and can be proved

using the same arguments as in the proof of Lemma 4 in [78, pp. 67].

For applying the standard finite volume element method to approximate the concentration,

we define the trial space Mh on Th and the test space Lh on V∗
h as follows:

Mh =
{

zh ∈ C0(Ω̄) : zh|T ∈ P1(T ) ∀T ∈ Th
}

Lh =
{

wh ∈ L2(Ω) : wh|V ∗

P
is a constant ∀V ∗

P ∈ V∗
h

}

.

We now recall the transfer operator Π∗
h : Mh −→ Lh which is defined as

Π∗
hzh(x) =

Nh
∑

j=1

zh(Pj)χj(x) ∀x ∈ Ω, (4.2.6)

where χj’s are the characteristic functions corresponding to the control volume V ∗
Pj

, i.e.,

χj(x) =







1, if x ∈ V ∗
Pj

0, elsewhere.

For any given v ∈ U, χ ∈ H1(Ω) and ψh ∈ Lh, we define the bilinear form ah(v; ·, ·) as

ah(v;χ, ψh) = −
Nh
∑

j=1

∫

∂V ∗

Pj

(

D(v)∇χ · nPj

)

Π∗
hψhds,
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where nPj
is the unit outward normal to the boundary of V ∗

Pj
.

Then, the FVE approximation corresponding to the concentration equation (4.1.7) is to

find a solution ch : J −→Mh such that for t ∈ (0, T ],

(

ψ
∂ch
∂s

,Π∗
hzh
)

+ ah(uh; ch, zh) + (chq,Π
∗
hzh) = (c̃q,Π∗

hzh) ∀zh ∈Mh (4.2.7)

ch(0) = c0,h,

where c0,h is an approximation to c0 to be defined later.

To approximate the concentration at any time say tn+1, we use the approximation to the

velocity at the previous time step. The fully discrete scheme corresponding to (4.2.1),

(4.2.2) and (4.2.7) is defined as: For n = 0, 1 · · ·N , find (cnh, p
n
h,u

n
h) ∈ Mh ×Wh × Uh such

that

c0h = Rhc(0), (4.2.8)

(κ−1µ(cnh)u
n
h, γhvh) + b(γhvh, p

n
h) = 0 ∀vh ∈ Uh, (4.2.9)

(∇ · un
h, wh) = (qn, wh) ∀wh ∈ Wh, (4.2.10)

(

φ
cn+1
h − ĉnh

∆t
,Π∗

hχh

)

+ ah(u
n
h; cn+1

h , χh) + (qn+1cn+1
h ,Π∗

hχh)

= (qn+1c̃n+1,Π∗
hχh) ∀χh ∈Mh, (4.2.11)

where ĉnh = ch(x̂, tn) = ch(x−
un

h

φ
∆t, tn) and Rhc is a projection of c onto Mh which will be

defined in (4.3.3).

Note that in (4.1.9), we use the following notation for the exact velocity

čn = c(x̌, tn) = c(x− un+1

φ
∆t, tn).

4.3 A priori error estimates

In this section, we derive a priori error estimates for the concentration and the velocity. We

have derived the following estimates for u and p in terms of the concentration in Chapter

2 (see Theorem 2.4.1).
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Theorem 4.3.1 Assume that the triangulation Th is quasi-uniform. Let (u, p) and (uh, ph),

respectively, be the solutions of (4.1.1)-(4.1.2) and (4.2.1)-(4.2.2). Then, there exists a pos-

itive constant C, independent of h, but dependent on the bounds of κ−1 and µ such that

‖u − uh‖(L2(Ω))2 + ‖p− ph‖ ≤ C
[

‖c− ch‖ + h(‖u‖(H1(Ω))2 + ‖p‖1)
]

, (4.3.1)

‖∇ · (u − uh)‖ ≤ Ch‖∇ · u‖1, (4.3.2)

provided u(t) ∈ (H1(Ω))2, ∇ · u(t) ∈ H1(Ω) and p(t) ∈ H1(Ω), for t ∈ (0, T ] a.e.

Let Rh : H1(Ω) −→Mh be the projection of c defined by

A(u; c−Rhc, χ) = 0 ∀χ ∈Mh, (4.3.3)

where

A(u;ψ, χ) = ah(u;ψ, χ) + (qψ, χ) + (λψ, χ) ∀χ ∈Mh. (4.3.4)

The function λ will be chosen such that the coercivity of A(u; ·, ·) is assured.

The following lemma, which gives a bound for the error between the bilinear forms ah(u; ·, ·)
and a(u; ·, ·), can be proved using similar arguments as used in Lemma 2.4.2 of Chapter 2.

Lemma 4.3.1 There exists a positive constant C such that

|εa(u; c−Rhc, χh)| ≤ Ch2

(

|(c− c̃)q|1 + |ψ∂c
∂s

|1 + ‖c‖2

)

|χh|1 ∀χh ∈Mh. (4.3.5)

We also state the following lemma, which gives us H1- norm error estimates for the operator

Rh and can be easily proved using the similar arguments as in proof of Lemma 2.4.1.

Lemma 4.3.2 There exists a positive constant C independent of h such that

‖c−Rhc‖1 ≤ Ch‖c‖2, (4.3.6)

provided c(t) ∈ H2(Ω), for t ∈ (0, T ] a.e.

We also recall the following lemma from Chapter 2.
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Lemma 4.3.3 There exists a positive constant C such that ∀θ ∈Mh,

|ah(u;Rhc, θ) − ah(uh;Rhc, θ)| ≤ C
(

‖u − uh‖(L2(Ω))2 + h‖∇ · (u − uh)‖
)

|θ|1. (4.3.7)

In the next lemma, we state the error estimate for Rh in L2- norm, the proof of which can

be obtained by a modification of Lemma 2.4.3 in Chapter 2.

Lemma 4.3.4 There exists a positive constant C independent of h such that

‖c−Rhc‖ ≤ Ch2

(

|(c− c̃)q|1 + |ψ∂c
∂s

|1 + ‖c‖2

)

, (4.3.8)

provided c ∈ H2(Ω) and ψ
∂c

∂s
∈ H1(Ω) for t ∈ (0, T ] a.e.

Before proving the main theorem, we prove the following two lemmas for our future use.

Lemma 4.3.5 For f ∈ H1(Ω) , there exists a positive constant C independent of h and ∆t

such that

∥

∥f − f̌
∥

∥ ≤ C∆t‖∇fn‖, (4.3.9)

where f̌ = f(x̌) = f
(

x− un+1(x)

φ(x)
∆t
)

.

Proof. Note that

∥

∥f − f̌
∥

∥

2
=

∫

Ω

(

f − f̌
)2
dx

=

∫

Ω

(
∫ x

x̌

∇f · dθ
)2

dx (4.3.10)

where θ = (1− z̄)x̌+ z̄x, with z̄ ∈ [0, 1] parametrizes the line segment joining x̌ to x. Then,

∥

∥f − f̌
∥

∥

2 ≤
∫

Ω

[
∫ 1

0

(x− x̌)2dz̄

]1/2
[

∫ 1

0

(

∂f

∂z
((1 − z̄)x̌+ z̄x)

)2

dz̄|x
]1/2

dx, (4.3.11)

where z is the unit vector in the direction of x− x̌ and
∂fn

∂z
is the directional derivative of

f in the direction of z.

Since |x− x̌| ≤ ∆t

∣

∣

∣

∣

un+1(x)

φ(x)

∣

∣

∣

∣

, we find that

∥

∥f − f̌
∥

∥

2 ≤ (∆t)2

∥

∥

∥

∥

un+1(x)

φ(x)

∥

∥

∥

∥

2

∞

∫

Ω

∫ 1

0

(

∂f

∂z
((1 − z̄)x̌ + z̄x)

)2

dz̄dx (4.3.12)
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Define the transformation

y = Gz̄(x) = (1 − z̄)x̌ + z̄x = x− un+1(x)

φ(x)
∆t(1 − z̄). (4.3.13)

The Jacobian of the map Gz̄, say DGz̄ with un+1 = (un+1
1 , un+1

2 ) is given by

DGz̄ =





1 − ∂
∂x1

(

un+1

1
(x)

φ(x)
∆t(1 − z̄)

)

− ∂
∂x2

(

un+1

1
(x)

φ(x)
∆t(1 − z̄)

)

− ∂
∂x1

(

un+1

2
(x)

φ(x)
∆t(1 − z̄)

)

1 − ∂
∂x2

(

un+1

2
(x)

φ(x)
∆t(1 − z̄)

)



 .

Since un+1 and its first order partial derivatives are bounded, the determinant of DGz̄ is

of the form 1 +O(∆t).

A change in the order of integration and variables in (4.3.12) yields

∥

∥fn − f̌
∥

∥

2 ≤ C(∆t)2

∫ 1

0

∑

T∈Th

∫

Gz̄(T )

∣

∣

∣

∣

∂f

∂z
(y)

∣

∣

∣

∣

2

dxdz̄. (4.3.14)

For small ∆t it can been seen that Gz̄ is one-one mapping on each T . Moreover, for small h

and ∆t, Gz̄ maps T into itself and its its immediate-neighbor element. Hence, Gz̄ is globally

at most finitely one-one and maps Ω into itself and its immediate-neighbor periodic copies.

Thus the sum in (4.3.14) is bounded by finite many multiples of an Ω- integral. This implies

that

∥

∥f − f̌
∥

∥ ≤ C∆t‖∇f‖. (4.3.15)

Lemma 4.3.6 [41, pp. 875] If η ∈ L2(Ω) and η̌(x) = η(x̌) with x̌ = x − r(x)∆t, for a

nonzero function r(x) such that r and ∇ · r are bounded, then

‖η − η̌‖−1 ≤ C‖η‖∆t, (4.3.16)

where C is a positive constant independent of h and ∆t.

Proof. Let z = G(x) = x − r(x)∆t. For sufficiently small ∆t, the determinant of DG is

nonzero. It can be easily seen that the determinant of DG and DG−1 are both of the form

1 +O(∆t).

Using the definition of ‖ · ‖−1 norm, we have

‖η − η̌‖−1 = sup
f∈H1(Ω)/{0}

(

1

‖f‖1

∫

Ω

[η(x) − η(x− r(x)∆t)] f(x)dx

)

. (4.3.17)
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Using a change of variable in the second term of the right hand side of (4.3.17), we obtain

‖η − η̌‖−1 = sup
f∈H1(Ω)/{0}

(

1

‖f‖1

[
∫

Ω

η(x)f(x)dx−
∫

Ω

η(x)f(G−1(x)) detDG−1(x)dx

])

≤ sup
f∈H1(Ω)/{0}

1

‖f‖1

[
∫

Ω

η(x)f(x)
(

1 − detDG−1(x)
)

dx

]

+ sup
f∈H1(Ω)/{0}

1

‖f‖1

[∫

Ω

η(x)
(

f(x) − f(G−1(x))
)

detDG−1(x)dx

]

= W1 +W2, say. (4.3.18)

Since |1 − detDG−1(x)| ≤ C∆t. Hence,

|W1| ≤ C∆t sup
f∈H1(Ω)/{0}

1

‖f‖1
‖f‖‖η‖ ≤ C∆t‖η‖. (4.3.19)

To bound W2, we proceed as follows. Using the Cauchy-Schwarz inequality and the fact

that | detDG−1| ≤ C, we have

|W2| ≤ C sup
f∈H1(Ω)/{0}

1

‖f‖1

‖η(x)‖ ‖f(x) − f(G−1(x))‖. (4.3.20)

Note that

‖f(x) − f(G−1(x))‖2 =

∫

Ω

[

f(x) − f(G−1(x))
]2

dx. (4.3.21)

Proceeding as in the proof of Lemma 4.3.5, we obtain

‖f(x) − f(G−1(x)‖ ≤ C(∆t)‖f‖1. (4.3.22)

Substituting (4.3.22) in (4.3.20), we obtain

|W2| ≤ C∆t‖η‖. (4.3.23)

Substitute (4.3.19) and (4.3.23) in (4.3.18) to complete the rest of the proof.

Now, we prove our main theorem.

Theorem 4.3.2 Let cn and cnh be the solutions of (4.1.3) and (4.2.11) at t = tn respectively,

and let ch(0) = c0,h = Rhc(0). Further assume that ∆t = O(h). Then, for sufficiently small
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h, there exists a positive constant C(T ) independent of h but dependent on the bounds of

κ−1 and µ such that

max
0≤n≤N

‖cn − cnh‖2
(L2(Ω))2 ≤ C

[

h4
(

‖(c− c̃)q‖2
L∞(0,T ;H1) + ‖ψ∂c

∂s
‖2
L∞(0,T ;H1) + ‖c‖2

L∞(0,T ;H2)

+‖∇.u‖2
L∞(0,T ;H1) + ‖ct‖2

L∞(0,T ;H2) + ‖ψ ∂2c

∂t∂s
‖2
L∞(0,T ;H1)

)

+(∆t)2
(

‖ut‖2
L2(0,T ;(L2(Ω))2) + ‖(∇ · u)t‖2

L2(0,T ;L2) + ‖ ∂
2c

∂τ 2
‖2
L2(0,T,L2)

)

+h2
(

‖u‖2
L∞(0,T ;(H1(Ω))2) + ‖p‖2

L∞(0,T ;H1)

)]

. (4.3.24)

Proof. Write cn − cnh = (cn −Rhc
n) − (cnh −Rhc

n) = ρn − θn. Since the estimates of ρn are

known, it is enough to estimate θn.

Multiplying (4.1.3) by Π∗
hχh and subtracting the resulting equation from (4.2.11) at t =

tn+1, we obtain

(

φ
cn+1
h − ĉnh

∆t
,Π∗

hχh

)

+ ah(u
n
h; cn+1

h , χh) − ah(u
n+1; cn+1, χh) + (qn+1cn+1

h ,Π∗
hχh)

− (qn+1cn+1,Π∗
hχ) =

(

un+1 · ∇cn+1 + φ
∂cn+1

∂t
,Π∗

hχh

)

∀χh ∈Mh. (4.3.25)

Choose χh = θn+1 in (4.3.25) and use the definition of Rh to obtain

(

φ
θn+1 − θn

∆t
,Π∗

hθ
n+1

)

+ ah(u
n
h; θn+1, θn+1) = (θn+1qn+1,Π∗

hθ
n+1)

+(ρn+1, θn+1) + (ρn+1qn+1, θn+1 − Π∗
hθ

n+1)

+
[

ah(u
n+1;Rhc

n+1, θn+1) − ah(u
n+1
h ;Rhc

n+1, θn+1)
]

+
(

un+1 · ∇cn+1 + φ
∂cn+1

∂t
− φ

(cn+1 − čn)

∆t
,Π∗

hθ
n+1
)

+

(

φ
(ρn+1 − ρ̌n)

∆t
,Π∗

hθ
n+1

)

−
(

φ
(θn − θ̂n)

∆t
,Π∗

hθ
n+1

)

+

(

φ
(R̂hc

n − Řhc
n
)

∆t
,Π∗

hθ
n+1

)

= T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8. (4.3.26)
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To estimate T1, T2 and T3, we use the Cauchy-Schwarz inequality, boundedness of q and

(2.3.47) to obtain

|T1| = |(θn+1qn+1,Π∗
hθ

n+1)| ≤ C‖θn+1‖2, (4.3.27)

|T2| = |(ρn+1, θn+1)| ≤ C‖ρn+1‖ ‖θn+1‖, (4.3.28)

and

|T3| = |(ρn+1qn+1, θn+1 − Π∗
hθ

n+1)| ≤ C‖ρn+1‖ ‖θn+1‖. (4.3.29)

To bound T4, we use Lemma 4.3.3 to obtain

|T4| = |ah(un+1;Rhc
n+1, θn+1) − ah(u

n+1
h ;Rhc

n+1, θn+1)|

≤ C
(

‖un+1 − un
h‖(L2(Ω))2 + h‖∇ · (un+1 − un+1

h )‖
)

|θn+1|1
≤ C

(

‖un+1 − un‖(L2(Ω))2 + ‖un − un
h‖(L2(Ω))2 + h‖∇ · (un+1 − un)‖

+h‖∇ · (un − un
h)‖
)

|θn+1|1. (4.3.30)

From (2.5.22) and (2.5.23), we find that

‖un+1 − un‖2
(L2(Ω))2 ≤ ∆t‖ut‖2

L2(tn,tn+1;(L2(Ω))2), (4.3.31)

and

‖∇ · (un+1 − un)‖2
L2(Ω) ≤ ∆t‖(∇ · u)t‖2

L2(tn ,tn+1;L2). (4.3.32)

Hence,

|T4| ≤ C
[

(∆t)1/2
(

‖ut‖L2(tn,tn+1,(L2(Ω))2) + h‖(∇ · u)t‖L2(tn ,tn+1,L2(Ω))

)

+‖un − un
h‖(L2(Ω))2 + h‖∇ · (un − uh

n)‖
]

|θn+1|. (4.3.33)

Using the Cauchy- Schwarz inequality and (2.3.47), we obtain

|T5| =

∣

∣

∣

∣

(

un+1 · ∇cn+1 + φ
∂cn+1

∂t
− φ

(cn+1 − ĉn)

∆t
,Π∗

hθ
n+1
)

∣

∣

∣

∣

≤ C

∥

∥

∥

∥

un+1 · ∇cn+1 + φ
∂cn+1

∂t
− φ

(cn+1 − ĉn)

∆t

∥

∥

∥

∥

‖θn+1‖. (4.3.34)
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To bound

∥

∥

∥

∥

un+1 · ∇cn+1 + φ
∂cn+1

∂t
− φ

(cn+1 − ĉn)

∆t

∥

∥

∥

∥

, we use the similar arguments given in

[44]. Let σ(x) = [φ(x)2 + un+1(x)2]
1/2

, so that

φ
∂cn+1

∂t
+ un+1 · ∇cn+1 = σ

∂cn+1

∂τ
. (4.3.35)

where τ approximates the characteristic unit vector s. Let τ̄ ∈ [0, 1] parametrize the

approximate characteristic tangent from (x̌, tn)[τ̄ = 0] to (x, tn+1)[τ̄ = 1]. A use of Taylor

expansion along the characteristic gives us

σ
∂cn+1

∂τ
− φ

cn+1 − čn

∆t
=

φ

∆t

∫ (x,tn+1)

(x̌,tn)

[|x(τ) − x̌|2 + (t(τ) − tn)
2]1/2

∂2c

∂τ 2
dτ. (4.3.36)

Taking the square of the L2(Ω) norm, we obtain

∥

∥

∥

∥

σ
∂cn+1

∂τ
− φ

cn+1 − čn

∆t

∥

∥

∥

∥

2

≤
∫

Ω

[

φ

∆t

]2 [
σ∆t

φ

]2
∣

∣

∣

∣

∣

∫ (x,tn+1)

(x̌,tn)

∂2c

∂τ 2
dτ

∣

∣

∣

∣

∣

2

dx.

Using the Cauchy-Schwarz inequality, we find that

∥

∥

∥

∥

σ
∂cn+1

∂τ
− φ

cn+1 − čn

∆t

∥

∥

∥

∥

2

≤ ∆t

∥

∥

∥

∥

σ3

φ

∥

∥

∥

∥

∞

∫

Ω

∫ (x,tn+1)

(x̌,tn)

∣

∣

∣

∣

∂2c

∂τ 2

∣

∣

∣

∣

2

dτdx

≤ ∆t

∥

∥

∥

∥

σ4

φ2

∥

∥

∥

∥

∞

∫

Ω

∫ tn+1

tn

∣

∣

∣

∣

∂2c

∂τ 2
(τ̄ x̌ + (1 − τ̄ )x, t)

∣

∣

∣

∣

2

dtdx.(4.3.37)

For a fixed τ̄ consider the transformation

y = fτ̄ = τ̄ x̌ + (1 − τ̄ )x = x− un+1

φ
∆tτ̄ .

Since u, φ and their first order partial derivatives are bounded, the determinant of Dfτ̄ is

1 + O(∆t) and hence Dfτ̄ is invertible for sufficiently small ∆t. By a change of variable

argument, we have

∥

∥

∥

∥

σ
∂cn+1

∂τ
− φ

cn+1 − čn

∆t

∥

∥

∥

∥

2

≤ C∆t‖ ∂
2c

∂τ 2
‖2
L2(tn,tn+1;L2). (4.3.38)

Hence, T5 bounded as follows

|T5| ≤ C(∆t)1/2‖ ∂
2c

∂τ 2
‖L2(tn,tn+1;L2)‖θn+1‖. (4.3.39)
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To bound T6, we proceed as follows

|T6| =

∣

∣

∣

∣

(

φ
(ρn+1 − ρ̌n)

∆t
,Π∗

hθ
n+1

)∣

∣

∣

∣

≤
∣

∣

∣

∣

(

φ
(ρn+1 − ρ̌n)

∆t
, θn+1 − Π∗

hθ
n+1

)∣

∣

∣

∣

+

∣

∣

∣

∣

(

φ
(ρn+1 − ρ̌n)

∆t
, θn+1

)∣

∣

∣

∣

= I1 + I2. (4.3.40)

Now I1 can be written as

I1 ≤
∣

∣

∣

∣

(

φ
(ρn+1 − ρn)

∆t
, θn+1 − Π∗

hθ
n+1

)∣

∣

∣

∣

+

∣

∣

∣

∣

(

φ
(ρn − ρ̌n)

∆t
, θn+1 − Π∗

hθ
n+1

)∣

∣

∣

∣

. (4.3.41)

A use of Lemma 4.3.5 yields
∥

∥

∥

∥

(ρn − ρ̌n)

∆t

∥

∥

∥

∥

≤ C‖∇ρn‖. (4.3.42)

It is easy to show that
∥

∥

∥

∥

(ρn+1 − ρn)

∆t

∥

∥

∥

∥

≤ C(∆t)−1/2‖∂ρ
∂t

‖L2(tn ,tn+1,L2). (4.3.43)

Using (4.3.42), (4.3.43), (2.3.16) and the Cauchy-Schwarz inequality, we obtain

I1 ≤ C

[

‖θn+1 − Π∗
hθ

n+1‖
(

(∆t)−1/2‖∂ρ
∂t

‖L2(tn,tn+1,L2) + ‖∇ρn‖
)]

≤ Ch

[

(∆t)−1/2‖∂ρ
∂t

‖L2(tn ,tn+1,L2) + ‖∇ρn‖
]

‖∇θn+1‖. (4.3.44)

I2 can be bounded as follows:

I2 ≤
∣

∣

∣

∣

(

φ
(ρn+1 − ρn)

∆t
, θn+1

)∣

∣

∣

∣

+

∣

∣

∣

∣

(

φ
(ρn − ρ̌n)

∆t
, θn+1

)∣

∣

∣

∣

= J1 + J2. (4.3.45)

A use of Cauchy-Schwarz inequality yields

J1 ≤ C(∆t)−1/2‖∂ρ
∂t

‖L2(tn,tn+1,L2)‖θn+1‖. (4.3.46)

Using Lemma 4.3.6, we obtain

J2 ≤ C

∥

∥

∥

∥

(ρn − ρ̂n)

∆t

∥

∥

∥

∥

−1

‖θn+1‖1 ≤ C‖ρn‖‖θn+1‖1. (4.3.47)

This implies that

I2 ≤ C

(

(∆t)−1/2‖∂ρ
∂t

‖L2(tn,tn+1,L2) + ‖ρn‖
)

‖θn+1‖. (4.3.48)
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Using (4.3.44), (4.3.48) and (4.3.40), we obtain the following bound for T6:

|T6| ≤ C

(

(∆t)−1/2‖∂ρ
∂t

‖L2(tn ,tn+1,L2) + h‖∇ρn‖ + ‖ρn‖
)

‖θn+1‖. (4.3.49)

Using the Cauchy-Schwarz inequality, we obtain

|T7| ≤
∣

∣

∣

∣

∣

(

(θn − θ̂n)

∆t
,Π∗

hθ
n+1 − θn+1

)∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

(

(θn − θ̂n)

∆t
, θn+1

)∣

∣

∣

∣

∣

≤
∥

∥

∥

∥

∥

(θn − θ̂n)

∆t

∥

∥

∥

∥

∥

‖Π∗
hθ

n+1 − θn+1‖ +

∥

∥

∥

∥

∥

(θn − θ̂n)

∆t

∥

∥

∥

∥

∥

−1

‖θn+1‖1. (4.3.50)

We use Lemma 4.3.5 and Lemma 4.3.6 to bound

∥

∥

∥

∥

∥

θn − θ̂n

∆t

∥

∥

∥

∥

∥

and

∥

∥

∥

∥

∥

θn − θ̂n

∆t

∥

∥

∥

∥

∥

−1

, respectively.

For this, we need that un
h and its first derivative are bounded.

First let us make an induction hypothesis. Let there is a constant say K∗ ≥ 2K with

‖ũn
h‖(L∞(Ω))2 ≤ K such that

‖un
h‖(L∞(Ω))2 ≤ K∗, (4.3.51)

where ũh is the projection of uh at t = tn defined by (see Chapter 2, (2.4.8)-(2.4.9))

(κ−1µ(c)ũh,vh) − (∇ · vh, p̃h) = 0 ∀vh ∈ Uh, (4.3.52)

(∇ · ũh, wh) = (q, wh) ∀wh ∈ Wh. (4.3.53)

To bound ‖∇.un
h‖∞, we use inverse inequality and (4.3.51)

‖∇.un
h‖∞∆t ≤ Ch−1∆t‖un

h‖∞ ≤ C. (4.3.54)

where we have used the assumption that ∆t = O(h).

Using Lemma 4.3.5, we have
∥

∥

∥

∥

∥

θn − θ̂n

∆t

∥

∥

∥

∥

∥

≤ C(K∗)‖∇θn‖. (4.3.55)

Similar arguments as in the proof of Lemma 4.3.6, gives
∥

∥

∥

∥

∥

θn − θ̂n

∆t

∥

∥

∥

∥

∥

−1

≤ C(K∗)‖θn‖. (4.3.56)
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Now using (2.3.16), (4.3.55), inverse inequality (2.3.15) and (4.3.56), we obtain the following

bound for T7:

|T7| ≤ C(K∗)‖θn‖ ‖θn+1‖1. (4.3.57)

To bound T8, we use maximum norm estimate of ∇Rhc (see (2.4.43)).
∥

∥

∥

∥

∥

R̂hc
n − Řhc

n

∆t

∥

∥

∥

∥

∥

≤ ‖Rhc‖1,∞‖un − un
h‖ ≤ C‖un − un

h‖(L2(Ω))2 , (4.3.58)

and hence, using (2.3.47), T8 is bounded as follows

T8 ≤ C‖θn+1‖ ‖un − un
h‖(L2(Ω))2 . (4.3.59)

Substitute the estimates of T1, T2 · · ·T8 in (4.3.26) and use non-singular property of φ, kick

back argument with the Young’s inequality to obtain

1

∆t

[

(θn+1,Π∗
hθ

n+1) − (θn,Π∗
hθ

n+1)
]

≤ C(K∗)
[

∆t−1‖∂ρ
∂t

‖2
L2(tn ,tn+1,L2) + ‖θn+1‖2

+‖θn+1‖2
1 + ‖θn‖2 + ‖ρn+1‖2 + ∆t

(

‖ut‖2
L2(tn ,tn+1;(L2(Ω))2) + ‖∇ · u)t‖2

L2(tn,tn+1;L2

+‖ ∂
2c

∂τ 2
‖2
L2(tn,tn+1,L2)

)

+ ‖un − un
h‖2

(L2(Ω))2

+h2‖∇.(un − un
h)‖2 + ‖ρn‖2 + h2‖∇ρn‖2

]

. (4.3.60)

Using (4.3.1) and (4.3.2), we obtain

‖un − un
h‖(L2(Ω))2 ≤ C

[

‖cn − cnh‖ + h
(

‖un‖(H1(Ω))2 + ‖pn‖2
1

)

]

≤ C
[

‖θn‖ + ‖ρn‖ + h
(

‖un‖(H1(Ω))2 + ‖pn‖2
1

)

]

, (4.3.61)

and

‖∇ · (un − un
h)‖ ≤ Ch‖∇ · un‖1. (4.3.62)

Substitute (4.3.61) and (4.3.62) in (4.3.60) to obtain

‖|θn+1‖|2 − ‖|θn‖|2 ≤ C(K∗)
[

∆t
(

‖θn+1‖2 + ‖θn‖2 + ‖ρn‖2 + ‖ρn+1‖2 + h2‖∇ρn‖2
)

+(∆t)2
(

‖ut‖2
L2(tn,tn+1;(L2(Ω))2) + ‖∇ · ut‖2

L2(tn,tn+1;L2)

+‖ ∂
2c

∂τ 2
‖2
L2(tn,tn+1,L2)

)

+ ‖∂ρ
∂t

‖2
L2(tn,tn+1,L2)

+h2∆t
(

h2‖∇ · un‖2
1 + ‖un‖2

(H1(Ω))2 + ‖pn‖2
1

) ]

. (4.3.63)
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Taking summation over n = 0 · · ·m− 1, we obtain

‖|θm‖|2 − ‖|θ0‖|2 ≤ C(K∗)
[

m−1
∑

n=0

{

∆t
(

‖θn+1‖2 + ‖θn‖2 + ‖ρn‖2 + ‖ρn+1‖2 + h2‖∇ρn‖2
)

+(∆t)2
(

‖ut‖2
L2(tn,tn+1;(L2(Ω))2) + ‖∇ · ut‖2

L2(tn ,tn+1;L2) + ‖ ∂
2c

∂τ 2
‖2
L2(tn ,tn+1,L2)

)

+‖∂ρ
∂t

‖2
L2(tn,tn+1;L2) + h2∆t

(

h2‖∇ · un‖2
1 + ‖un‖2

(H1(Ω))2 + ‖pn‖2
1

)}]

. (4.3.64)

Now using discrete Gronwall’s ( see Lemma 1.2.8), equivalence of the norms (2.3.46) and

the estimates of ρ, we obtain

‖θm‖2 ≤ C(K∗)
[

‖θ0‖2 + h4
(

‖(c− c̃)q‖2
L∞(0,T ;H1) + ‖ψ∂c

∂s
‖2
L∞(0,T ;H1) + ‖c‖2

L∞(0,T ;H2)

+‖∇.u‖2
L∞(0,T ;H1) + ‖ct‖2

L∞(0,T ;H2) + ‖ψ ∂2c

∂t∂s
‖2
L∞(0,T ;H1)

)

+(∆t)2
(

‖ut‖2
L2(0,T ;(L2(Ω))2) + ‖∇ · ut‖2

L2(0,T ;L2) + ‖ ∂
2c

∂τ 2
‖2
L2(0,T,L2)

)

+h2
(

‖u‖2
L∞(0,T ;(H1(Ω))2) + ‖p‖2

L∞(0,T ;H1)

)]

. (4.3.65)

Now it remains to show the induction hypothesis (4.3.51). Using (4.2.4) and (4.2.5), we

have

‖un
h‖(L∞(Ω))2 ≤ ‖un

h − ũn
h‖(L∞(Ω))2 + ‖ũn

h‖(L∞(Ω))2

≤ C
(

log
1

h

)1/2

‖un
h − ũn

h‖H(div;Ω) +K.

Using ‖∇.(un
h − ũn

h)‖ = 0, we have

‖un
h − ũn

h‖(L∞(Ω))2 ≤ C
(

log
1

h

)1/2

‖un
h − ũn

h‖(L2(Ω))2 . (4.3.66)

Now using (2.4.22) and (4.3.65), we obtain for small h

‖un
h‖(L∞(Ω))2 ≤ C(K∗) log

1

h
(h+ ∆t) +K ≤ 2K. (4.3.67)

Here we have used ∆t = O(h) and h log
1

h
−→ 0 as h → 0 and this proves our induction

hypothesis (4.3.51).

Now combine the estimates of ρ and θ and use triangle inequality to complete the rest of

the proof.

Using (4.3.1) and Theorem 4.3.2, we obtain the following error estimates for velocity as

well as pressure.
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Theorem 4.3.3 Assume that the triangulation Th is quasi-uniform. Let (u, p) and (uh, ph)

be respectively the solutions of (4.1.1)-(4.1.2) and (4.2.1)-(4.2.2) and let ch(0) = c0,h =

Rhc(0). Further assume that ∆t = O(h). Then for sufficiently small h there exists a

positive constant C(T ) independent of h but dependent on the bounds of κ−1 and µ such

that

max
0≤n≤N

‖un − un
h‖2

(L2(Ω))2 ≤ C
[

h4
(

‖(c− c̃)q‖2
L∞(0,T ;H1) + ‖ψ∂c

∂s
‖2
L∞(0,T ;H1) + ‖c‖2

L∞(0,T ;H2)

+‖∇.u‖2
L∞(0,T ;H1) + ‖ct‖2

L∞(0,T ;H2) + ‖ψ ∂2c

∂t∂s
‖2
L∞(0,T ;H1)

)

+(∆t)2
(

‖ut‖2
L2(0,T ;(L2(Ω))2) + ‖∇ · ut‖2

L2(0,T ;L2) + ‖ ∂
2c

∂τ 2
‖2
L2(0,T,L2)

)

+h2
(

‖u‖2
L∞(0,T ;(H1(Ω))2) + ‖p‖2

L∞(0,T ;H1)

)]

. (4.3.68)

4.4 Numerical Experiments

As mentioned in Chapter 2, we use larger time steps for the pressure equation than the

concentration equation. Let 0 = t0 < t1 < · · · tM = T be a given partition of the time

interval (0, T ] with step length ∆tm = tm+1−tm for the pressure equation and 0 = t0 < t1 <

· · · tN = T be a given partition of the time interval (0, T ] with step length ∆tn = tn+1 − tn

for the concentration equation. Let Cn, Um and Pm be the approximation values of ch, uh,

ph at t = tn and t = tm, respectively.

If concentration step tn relates to pressure steps by tm−1 < tn ≤ tm, we require a velocity

approximation at t = tn, which will be used in the concentration equation, based on Um−1

and earlier values. We define a velocity approximation [44, pp. 81] at t = tn by

EUn =

(

1 +
tn − tm−1

tm−1 − tm−2

)

Um−1 −
tn − tm−1

tm−1 − tm−2
Um−2 for m ≥ 2, (4.4.1)

EUn = U0 for m = 1. (4.4.2)
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Then the combined time stepping procedure is defined as: Find C : {t0, t1, · · · tN} −→Mh

and (U, P ) : {t0, t1, · · · tM} −→ Uh ×Wh such that

(κ−1µ(Cm)Um, γhvh) + b(γhvh, Pm) = 0 ∀vh ∈ Uh, (4.4.3)

(∇ · Um, wh) = (q+ − q−, wh) ∀wh ∈ Wh, m ≥ 0, (4.4.4)

(

φ
Cn+1 − Ĉn

∆t
,Π∗

hχh

)

+ ah(EUn+1;Cn+1, χh) + (q−Cn+1,Π∗
hχh)

= (q+c̄,Π∗
hχh) ∀χh ∈Mh, (4.4.5)

where Ĉn = Cn(x− (EUn

φ
)∆t).

To solve the pressure equations, i.e., (4.4.3) and (4.4.4), we use the mixed finite volume

element method and for concentration equation (4.4.5), we use the standard finite volume

element method. We have already discussed the matrix formulation for the pressure equa-

tions in Chapter 2. Now we will discuss the matrix formulation and solution procedure for

the concentration equation (4.4.5).

Let {Ψi}Nh

i=1 be the basis functions for the finite dimensional space Mh. Then the approxi-

mate concentration at time level t = tn can be written as

Cn =

Nh
∑

i=1

γni Ψi, (4.4.6)

where γni = Cn(Pi), i.e., the value of the nth level concentration at the vertices Pi.

Now using (4.4.6), the concentration equation (4.4.5) can be written in the following matrix

form:

[Dn + ∆tn(Hn +Rn)] γn+1 = Enγn + ∆tnGn, (4.4.7)

where

γn = (Cn(Pi))
Nh

i=1, Dn = (dij)
Nh

i,j=1 =

∫

Vi

Ψjdx,

En = (eij)
Nh

i,j=1 =

∫

Vi

Ψ
(

xj−
EUn(xj)

φ(xj)
∆tn

)

dx, Hn = (hij)
Nh

i,j=1 = −
∫

∂Vi

D(EUn)∇Ψj·njds,

and

Rn = (rij)
Nh

i,j=1 =

∫

Vi

q−Ψjdx, Gn = (gni )
Nh

i=1 =

∫

Vi

c̄q+dx.
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4.4.1 Test Problem

For the test problems, we take spatial domain as Ω = (0, 1000)× (0, 1000) ft2 and the time

period is [0, 3600] days, viscosity of oil as µ(0) = 1.0 cp. The injection well is located at

the upper right corner (1000, 1000) with the injection rate q+ = 30ft2/day and injection

concentration c̄ = 1.0. The production well is located at the lower left corner with the

production rate q− = 30ft2/day and the initial concentration is c(x, 0) = 0. For time dis-

cretization, we take ∆tp = 360 days and ∆tc = 120 days, i.e., we divide each pressure time

interval into three subintervals.

Test1: We assume that the porous medium is homogeneous and isotropic. The perme-

ability κ = is 80. The porosity of the medium is φ = .1 and the mobility ratio between

the resident and injected fluid is M = 1. Further more, we assume that the molecular

diffusion is dm = 1 and the dispersion coefficients are zero. In the numerical simulation for

spatial discretization we divide in 20 number of divisions both along x and y axis. For time

discretization, we take ∆tp = 360 days and ∆tc = 120 days, i.e., we divide each pressure

time interval into three subintervals.

The surface and contour plots for the concentration at t = 3 and t = 10 years are presented

in Figure 4.3 and Figure 4.4, respectively. Since only molecular diffusion is present and

viscosity is also independent of the velocity, Figure 4.3, shows that the velocity is radial

and the contour plots for the concentration is circular until the invading fluid reaches the

production well. Figure 4.4 shows that when these plots are reached at production well,

the invading fluid continues to fill the whole domain until c = 1.

Test 2: In this test, we take the permeability tensor is same as in Test 1 and M = 41

i.e., viscosity is dependent on the concentration. We assume that the physical diffusion

and dispersion coefficients are given by φdm = 0.0ft2/day, φdt = 5.0ft and φdt = .5ft . The

difference between the longitudinal and the transverse dispersity coefficients implies that

the fluid flow is much faster along the diagonal direction see Figures 4.5 and 4.6.

Test 3: In this test we consider the numerical simulation of a miscible displacement

problem with discontinuous permeability. Here, the data is same as given in Test 1 ex-

cept the permeability of the medium κ(x). We take κ = 80 on the sub domain ΩL :=



Chapter 4. The Modified Method of Characteristics 142

0

500

1000

0

500

1000
0

0.2

0.4

0.6

0.8

1

x

(b)

y

c h
x

y

(a)

0 500 1000
0

100

200

300

400

500

600

700

800

900

1000

Figure 4.3: Contour (a) and surface plot (b) in Test 1 at t = 3 years.
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Figure 4.4: Contour (a) and surface plot (b) in Test 1 at t = 10 years.
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Figure 4.5: Contour (a) and surface plot (b) in Test 2 at t = 3 years.

0

500

1000

0

500

1000
0

0.2

0.4

0.6

0.8

1

x

(b)

y

c h

x

y

(a)

0 500 1000
0

100

200

300

400

500

600

700

800

900

1000

Figure 4.6: Contour (a) and surface plot (b) in Test 2 at t = 10 years.
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Figure 4.7: Contour (a) and surface plot (b) in Test 3 at t = 3 years

(0, 1000) × (0, 500) and κ = 20 on the sub domain ΩU := (0, 1000) × (500, 1000). The

contour and surface plot at t = 3 and t = 10 years are given in Figure 4.7 and Figure 4.8

respectively.

Figure 4.7 and Figure 4.8 shows that when the injecting fluid reaches the lower half

domain, it starts moving much faster in the horizontal direction on this domain compared

to the low permeability domain that is upper half domain. We observe that one should put

the production well in a low permeability zone to increase the area swept by the injected

fluid.

Order of Convergence: In order to verify our theoretical results we also compute the

order of convergence for the concentration for this particular test problem. We compute

the order of convergence in L2 norm. To discretize the time interval [0, T ], we take uniform

time step ∆t = 360 days for pressure and concentration equation. The computed order of

convergence is given in Figure 4.9. Note that the computed order of convergence matches

with the theoretical order of convergence derived in Theorem 4.3.2.
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Figure 4.8: Contour (a) and surface plot (b) in Test 3 at t = 10 years
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Chapter 5

Conclusions and Future Directions

In this thesis, an attempt has been made to study finite volume element methods for a

coupled system of nonlinear elliptic and parabolic equations arising in the incompressible

miscible displacement problems in porous media.

5.1 Summary

In Chapters 2, 3 and 4, we have applied a mixed finite volume element method for approx-

imating the pressure equation and different kinds of methods for the approximation of the

concentration equation. In Chapter 1, we have discussed briefly theoretical and computa-

tional issues related to the incompressible miscible displacement problems in porous media.

Moreover, an extensive survey for the finite volume element methods is presented.

In Chapter 2, we have applied a mixed finite volume element method for the pressure equa-

tion and a standard finite volume element method for the approximation of the concen-

tration equation. The trial space for velocity consists of the lowest order Raviart-Thomas

element while the trial space for concentration is C0- piecewise linear. We have obtained

a priori error estimates in L∞(L2) norm for the concentration as well as for the velocity,

see Theorem 2.4.2 and 2.4.3. We have also presented a couple of numerical experiments for

the verification of our theoretical findings.

In Chapter 3, we have applied a discontinuous Galerkin finite volume element method for

the approximation of the concentration equation and a mixed finite volume element method

146
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for the approximation of the pressure equation. In Theorems 3.4.2 and 3.4.3, we have de-

rived a priori L∞(L2) error estimates for the concentration and for velocity, respectively.

Numerical experiments are also presented, which confirm our theoretical results.

As the modified method of characteristics reduces grid orientation effects, many re-

searchers have studied modified methods of characteristics combined with finite element

methods or finite difference methods for the approximation of the concentration equation,

see [2, 34, 41, 42, 44, 72] etc. In Chapter 4 , we have analyzed a modified method of

characteristics combined with the finite volume element method for approximating the

concentration equation. Following the analysis of [41, 44, 72], we have derived a priori er-

ror bounds in L∞(L2)- norm. Finally, we conclude this chapter with a couple of numerical

examples.

5.2 Some Remarks

In [37, 44], the authors have chosen different mesh sizes; hc and hp for the concentration

and the pressure equation, respectively. In the context of finite element method, they

have derived order of convergence in L∞(L2)- norm as (h2
c + hp) for both concentration

and velocity when lowest order Raviart-Thomas elements and piecewise linear polynomials

are used for approximating the velocity and concentration, respectively. Though, we have

chosen the same spatial discretization parameter ′h′ for both pressure as well concentration

equation, it is possible to obtain error estimates in L∞(L2)- norm depending on (hc, hp) as

in [37, 44] in our analysis by making some minor modifications.

In Chapters 2 to 4, we have taken in the analysis the same time steps for the pressure as

well as for the concentration equation. Since velocity is more smooth in time compared

to concentration, it has been suggested in [47, 44] that one should take larger time steps

for the pressure equation compared to the concentration equation. However in our nu-

merical experiments, we have taken care to choose different time steps for pressure and

concentration. The analysis can also be easily modified for this case by estimating the

term ‖un+1 − E(un+1
h )‖ in place of the term ‖un+1 − un

h‖, using the ideas given in [44].
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5.3 Comparison

In Chapter 2, we have applied a mixed FVEM for approximating the pressure equation and

a standard FVEM for approximation of the concentration equation. Since discontinuous

Galerkin methods are easy to implement and also element wise conservative, in Chapter

3, we have applied DGFVEM for approximating the concentration equation. In numeri-

cal procedure presented in Chapter 2, for approximating the concentration equation, we

have chosen the basis functions which are continuous through the inter element boundaries

but, in Chapter 3, the basis functions are discontinuous. In DGFVEM, the support of the

control volume is small compared to the support of the control volume in the standard

FVEM. In addition, in DGFVEM the control volumes have support inside the triangle in

which they belong to, but in the standard FVEM the control volumes have support in

neighboring triangles also. The construction of the control volumes in DGFVEM is also

similar to the construction of the control volumes in mixed FVEM which is not the case in

the standard FVEM. We find that DGFVEM are also suitable for the approximation of the

miscible displacement problems. But like DGFEMs, DGFVEMs are not well developed in

the literature for miscible displacement problems. The main aim of Chapter 3 is to study

DGFVEM for the miscible displacement problems in porous media. Using cut-off functions

technique, we have derived a priori error estimates for the velocity and the concentration

which match with the order of convergence obtained as in the case of the standard FVEM.

In Chapter 4, we have applied modified methods of characteristics combined with FVEM

for the approximation of the concentration equation. After applying MMOC, the concentra-

tion equation behaves like the heat equation. It is expected that behavior of the numerical

solution of the heat equation should be better compared to the convection dominated dif-

fusion equation. If we compare the numerical results of this chapter with those obtained in

the remaining chapters ( Chapter 2 and 3) for the case when only the molecular diffusion

is present and the effect of molecular diffusion is negligible, we observe that the contour

plots are almost circular until the invading fluids reach to the production well. Figure 4.3

shows the contour plots are much circular compared to Figures 2.11 and 3.5. Essentially,

we may infer that MMOC combined with FVEM yields better approximation for the con-

centration compared to standard FVEM and DGFVEM. Note that the derived order of
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convergence in L∞(L2)- norm for the velocity as well concentration are same in the three

chapters (Chapter 2, 3 and 4).

5.4 Future Directions

Since the concentration equation behaves more like a hyperbolic equation. It is expected

that use of local discontinuous Galerkin (LDG) method with appropriate choice of numerical

fluxes may provide a good approximation to the concentration equation. LDG finite element

methods have been studied for elliptic problems by [11, 33] etc. In [11], the authors have

considered the P k − P k elements while in [33] P k+1 − P k elements are used, where k

being degree of the polynomial. Now, we briefly discuss the local discontinuous Galerkin

finite volume element method (LDGFVEM) for the approximation of the following elliptic

problem based on [33].

Given f , find (u, p) such that

u = −K∇p in Ω, (5.4.1)

∇ · u = f in Ω, (5.4.2)

p = 0 on Ω, (5.4.3)

where Ω is a bounded, convex polygonal domain in R
2 with boundary ∂Ω and K =

(kij(x))2×2 ∈
(

W 2,∞(Ω)
)4

is a real valued, symmetric and uniformly positive definite ma-

trix, i.e., there exists a positive constant α0 such that

ξTKξ ≥ α0ξ
T ξ ∀ξ ∈ R

2. (5.4.4)

We also assume that K satisfy the following condition

K∗ ≥ K−1 ≥ K∗ > 0, (5.4.5)

where K∗ and K∗ are constants.
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Figure 5.1: A triangular partition and its dual elements

5.4.1 P 1-P 0 LDGFVEM formulation

Let Th be a regular, quasi-uniform triangulation of Ω̄ into closed triangles T with h =

maxT∈Th
(hT ), where hT is the diameter of the triangle T . Let Γ denote the union of the

boundaries of the triangles T of Th. The dual partition T ∗
h corresponding to the primal

partition Th is constructed as follows: Divide each triangle T ∈ Th into three triangles

by joining the barycenter B and the vertices of T . In general, let T ∗ denote the dual

element/control volume in T ∗
h , see Figure 5.1. Let the Uh and Vh be the trial and test

spaces, respectively, associated with approximation of velocity defined by

Uh = {vh ∈ L2(Ω)2 : vh|T ∈ (P1(T ))2} ∀T ∈ Th

Vh = {vh ∈ L2(Ω)2 : vh|T ∈ (P0(T
∗))2} ∀T ∗ ∈ T ∗

h

and the trial space Wh associated with the pressure is defined by

Wh = {wh ∈ L2(Ω) : wh|T ∈ P0(T ) ∀T ∈ Th},

where Pm(T )( resp. Pm(T ∗)) denotes the polynomials of degree less than or equal to m

defined on T (resp. T ∗).
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Let U(h) = Uh + H2(Ω). For connecting the trial and test spaces, define the transfer

operator γ : V (h) −→ Uh as follows:

γv|T ∗ =
1

he

∫

e

v|T ∗ds, T ∗ ∈ T ∗
h , (5.4.6)

where e is an edge in T , T ∗ is the dual element in T ∗
h containing e and he is the length of

the edge e.

Multiplying (5.4.1) by vh ∈ Vh, integrating over the control volumes T ∗ ∈ T ∗
h , applying

Gauss’s divergence theorem and summing up over all the control volumes, we obtain

(K−1u,vh) −
∑

T ∗∈T ∗

h

∫

∂T ∗

pvh · nds = 0 ∀vh ∈ Vh, (5.4.7)

where n denotes the outward unit normal vector to the boundary ∂T ∗ of T ∗. Let T ∗
j ∈

T ∗
h (j = 1, 2, 3) be the three triangles in T ∈ Th, (see Figure 5.1). Then, for wh ∈ Wh

∑

T ∗∈T ∗

h

∫

∂T ∗

pvh · nds =
∑

T∈Th

3
∑

j=1

∫

∂T ∗

j

pvh · nds

=
∑

T∈Th

3
∑

j=1

∫

Aj+1BAj

pvh · nds+
∑

T∈Th

∫

∂T

pvh · nds. (5.4.8)

In order to rewrite the last term on the right hand side of (5.4.8), we note that for any four

real numbers a, b, c and d, we have

ac− bd =
1

2
(a + b)(c− d) +

1

2
(a− b)(c + d). (5.4.9)

Using (5.4.3), (5.4.9) and the fact that [p] = 0, (5.4.8) becomes

∑

T ∗∈T ∗

h

∫

∂T ∗

pvh · nds =
∑

T∈Th

3
∑

j=1

∫

Aj+1BAj

pvh · nds+
∑

e∈Γ

∫

e

[vh] · 〈p〉ds. (5.4.10)

Now we are in position to define our P 1 − P 0 LDGFVEM:

Find (uh, ph) ∈ Uh ×Wh such that

(uh, γvh) +
∑

T∈Th

3
∑

j=1

∫

Aj+1BAj

phγvh · nds+
∑

e∈Γ

∫

e

p̂h[γvh]ds = 0 ∀vh ∈ Uh (5.4.11)

(∇.uh) −
∑

e∈Γ

∫

e

ŵh[γuh] = (f, wh) ∀wh ∈ Wh (5.4.12)
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where ŵh are the approximation of wh referred to as numerical flux, on the boundary of a

triangle T ∈ Th.
In immediate future, we propose to develop the error estimates for the LDGFVEM applied

to the concentration equation. Note that LDG methods also can be a good choice for

the approximation of the convection-diffusion equations if the numerical fluxes are chosen

suitably, see [12, 30].

5.4.2 Modified methods of characteristics with adjust advection

(MMOCAA) procedure

The modified method of characteristics is not conservative in nature, but a modification

of MMOC called MMOCAA, proposed by Douglas et al. [39] is conservative in nature. It

also has been observed that this new scheme is naturally parallelizable and more accurate

as it reduces the effects of grid orientation, the excessive smoothing of the sharp fronts and

has low storage requirements. As in Chapter 4, the concentration equation can be written

as

ψ(x, t)
∂c

∂s
−∇ · (D(u)∇c) = (c̃− c)q ∀(x, t) ∈ Ω × J. (5.4.13)

where ψ(x, t) = (|u(x, t)|2 + φ(x)2)
1

2 = (u1(x)
2 + u2(x)

2 + φ(x)2)
1

2 and s be the unit vector

in the direction of (u1, u2, φ) in Ω × J .

In MMOCAA procedure one splits the concentration equations into two sub equations

namely, advection and transport equations and different time steps can be used for these

equations. Essentially, in the MMOCCA procedure the advection term is treated as a

primary variable and hence, more accurate approximation for the advection is excepted.

Following this procedure, the concentration equation (5.4.13) can be split into a system of

partial differential equations as

v = −D(u)∇c ∀(x, t) ∈ Ω × J, (5.4.14)

ψ(x)
∂c

∂s
+ ∇ · v = (c̃− c)q ∀(x, t) ∈ Ω × J, (5.4.15)

It is also noted through experiments in [39] that there are advantages if one considers larger

time step for advection term. We also plan to study MMOCAA for the approximation of the
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concentration equation. Since in LDG methods also, we split the second order equations

into two first order equations, it would be good idea to combined LDG methods with

MMOC.
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