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Abstract

The main focus of this thesis has been on the study of hAp-discontinuous Galerkin (DG)
methods for quasilinear and strongly nonlinear elliptic problems of nonmonotone-type.
Amongst all the DG methods which are introduced in the literature, we concentrate on the
Symmetric Interior Penalty Galerkin (SIPG), Non-symmetric Interior Penalty Galerkin
(NIPG) and Local Discontinuous Galerkin (LDG) Finite Element Methods (FEM). The
main emphasis is on the existence and uniqueness of the proposed DG schemes and their
related error estimates in the broken H!'-norm and possibly in the L?-norm. As a key tool
in proving the well-posedness for each of the discrete DG schemes (SIPG, NIPG and LDG),
the nonlinear system is rewritten in a fixed point form. For fixed point formulation, the
corresponding nonlinear system is linearized and a map Sy, : Os(Iu) C Vi, — Vj,, where
Os(Inu) is a ball in the discontinuous finite element space V}, of radius § = §(h) and centered
at an interpolant Ipu € V}, of u is defined. Any fixed point of S}, is indeed a solution to the
nonlinear system of DG or LDG method. It is then shown that S, is Lipschitz continuous
and it maps a ball Os(I,u) into itself. An appeal to Brouwer fixed point theorem yields
the existence of a solution to the discrete problem and further a use of Lipschitz continuity
of S;, implies uniqueness of the solution.

Then we proceed to derive a priori error estimates for the proposed DG and LDG
schemes. The derived a priori error estimates in the broken energy norm are optimal in A
(mesh size) and slightly suboptimal in p (degree of approximation). These estimates lead
precisely to the same optimal in h and suboptimal in p in the case of the linear elliptic
problems. The adjoint consistency plays a vital role in deriving optimal error estimates
in the L?-norm. Since the SIPG and LDG methods are adjoint consistent, a priori error
estimates which are optimal in A and slightly suboptimal in p are derived for SIPG and LDG
schemes. As the NIPG method is not adjoint consistent, it is difficult to derive optimal
error estimate in L? as it stands. However, with additional assumptions that the mesh is
regular and the Dirichlet boundary data is either a piecewise polynomial or zero, optimal

order of convergence in h as well as in p for the NIPG method is derived.



Numerical experiments are presented for each of the method proposed in this thesis. The
experiments confirm the theoretical order of convergence obtained in each of the Chapters
through Chapter 2 to Chapter 5. Numerical experiments are also presented for super-
penalty methods and they confirm the theoretical results. Further, some computational
results are derived for mean curvature problem. Finally, the possible extensions with scope

for future investigations are discussed in the concluding Chapter.
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Chapter 1
Introduction

The main objective of this dissertation is to study Ap-discontinuous Galerkin Finite Element
Methods (DGFEM) for nonlinear elliptic problems. In this study, we mainly focus on the
most popular DG schemes such as Symmetric Interior Penalty Galerkin (SIPG), Non-
symmetric Interior Penalty Galerkin (NIPG) and Local Discontinuous Galerkin (LDG)

methods for a class of non-monotone quasilinear and strongly nonlinear elliptic problems.

1.1 Motivation

In recent years, there has been a renewed interest in Discontinuous Galerkin (DG) methods
for the numerical solution of a wide range of partial differential equations. This is due to
their flexibility in local mesh adaptivity and in handling nonuniform degrees of approxi-
mation for solutions whose smoothness exhibit variation over the computational domain.
Besides, they are elementwise conservative and easy to implement than the finite volume
methods and the standard mixed finite element methods with high degree of piecewise
polynomials.

The first work on DG methods for the elliptic and parabolic problems trace back to
1970’s by Douglas et al. [38], Wheeler [66] and Arnold [4]. In 1971, Nitsche [54] introduced
the concept of enforcing the Dirichlet boundary conditions weakly rather than incorpo-
rating into the finite element space by means of adding a penalty term to the variational

formulation. In 1973, Babuska [6] introduced another penalty method to impose the Dirich-



let boundary condition weakly. Interior Penalty (IP) methods by Wheeler [66] and Arnold
[4] arose from the observation that just as Dirichlet boundary conditions, inter element
continuity could be imposed weakly instead of being built into the finite element space.
This makes it possible and easier to use the spaces of discontinuous piecewise polynomi-
als of higher degree. The IP methods are, presently, called Symmetric Interior Penalty
Galerkin (SIPG) methods. The variational formulation of the SIPG method is symmetric
and adjoint consistent, but the stabilizing penalty parameter in this method depends on the
bounds of the coefficients of the problem and various constants in the inverse inequalities
which are not known explicitly. To over come this shortcoming, Oden, Babuska and Bau-
mann [55] proposed, recently, another DG method for the diffusion problems which is based
on a non-symmetric formulation. This method is shown to be stable when the degree of
approximation is greater than or equal to 2 [55], [61]. Riviére et al. [61] and Houston et al.
[44] introduced and analyzed the Non-symmetric Interior Penalty Discontinuous Galerkin
(NIPG) method which stabilizes the DG method of Oden, Babuska and Baumann [55]
for any degree of approximation which is greater than or equal to 1. Subsequently, there
are other variants of DG methods appeared in the literature to approximate diffusion and
convection-diffusion problems, see [15], [5].

On the other hand, Reed and Hill [59] introduced the first DG method for hyperbolic
equations. Around the same time, Lesiant and Raviart [51] derived a priori error esti-
mates for the DG method when applied to the linear hyperbolic problems. Since then,
there has been an active development on DG methods for hyperbolic and nearly hyper-
bolic problems such as problems with dominant convective part as well as nonnegligible
diffusion part. Cockburn and coauthors developed the Runge-Kutta DG (RKDG) meth-
ods in a series of papers to achieve stability, higher order accuracy and convergence for
the scalar conservation laws [24], [25], [26] and [27]. From the observation that mixed
methods can handle elliptic operators very well and use a discontinuous approximation
for potential, several methods which deal with discontinuous approximation to convective
part and mixed method to diffusive part were proposed [33],[34]. Using the ideas of RKDG
methods, Bassi - Rebay [11] introduced a new and completely discontinuous approximation

for both convective part and diffusive part for the compressible Navier - Stokes equations.



In 1998, Cockburn and Shu [28] introduced Local Discontinuous Galerkin (LDG) method
to approximate the general convection-diffusion problems by generalizing the original DG
method of Bassi - Rebay [11]. The proposed LDG method is in mixed formulation and
uses the approximation to displacement and to each component of velocity from the same
space. Therefore, the coding of LDG method is simpler than the standard mixed method.
The first attempt to apply the LDG method to purely elliptic problems was made in [18].
Since the LDG method in [18] is consistent and stable, this leads to an optimal order of
convergence. Brezzi et al. [15] proposed a method which deals with the lifting operators
and the primal formulation of the DG method of Bassi-Rebay [11]. In [5], a unified frame
work of all the discontinuous Galerkin methods appeared in the literature was proposed
and analyzed which, subsequently, became crucial in the unified adaptive methods, see [19].

Except for [45] and [17], there is hardly any result on DG methods for the nonlinear
elliptic problems. In [45], the authors have applied a one parameter family of the DG
methods to a class of monotone quasilinear elliptic problems while the authors of [17] have
applied LDG method for a similar class of problems. In this dissertation, efforts are made to
analyze the SIPG, NIPG and LDG methods for a class of quasilinear and strongly nonlinear
elliptic problems which are of non-monotone type. Moreover, the analysis discussed in this

thesis can be used to generalize the results of [45] and [17].

1.2 Preliminaries

We split this Section into several subsections to introduce preliminaries which are used
throughout this thesis. In the Subsection 1.2.1, we start with discontinuous finite element
subdivision 7, of the computational domain €2 and introduce the interior I'; and boundary
I's edges which appear in the discontinuous Galerkin formulations. In the Subsection 1.2.2,
we define the broken Sobolev spaces and discontinuous finite element spaces on the subdi-
vision 7,. We then, define jump and average of discontinuous functions. In the Subsection
1.2.3, we introduce some approximation properties of discontinuous finite element spaces,
trace inequalities and inverse inequalities, etc., which are used in our subsequent analysis.

In this subsection, we also derive an hp-approximation property which follows from an



interpolation of approximation properties derived in [1, 2]. We further modify the trace
inequality of [58] so that it can be used in our a priori error estimates for the DG methods
applied to nonlinear problems. In the Subsection 1.2.4, we have discussed the assumptions
such as local bounded variations of the mesh 7, the degree of approximation of the finite

element space V), and hp-quasi uniform which are used in our subsequent Chapters.

1.2.1 Finite elements

Let © c IR? be a bounded domain with boundary dQ. Let 7, = {K; : 1 < i < N,} be
a shape regular finite element subdivision of €2 in the sense that there exists p > 0 such
that if h; is the diameter of K;, then K; contains a ball of radius ph; in its interior |20,
p. 124]. Each element K; € Ty, is either a triangle or a rectangle (possibly curvilinear)
defined as follows. Let K be a shape regular master triangle or rectangle in IR?, and let

{F;} be a family of invertible maps such that F; maps from K onto K;, cf. Figure 1.1. Let

Figure 1.1: An example of construction of finite elements

Yy Yy

K )

h; be the diameter of K; and h = max{h; : 1 < i < N,}. We denote the set of interior
edges of 7y, by I'r = {ei; : e;; = 0K; N 0K, |e;;| > 0} and the set of boundary edges by

Ty ={ein : eisg = OK; N0, |e;s| > 0}, where |- | denotes the one-dimensional measure. Let
I' =T;UTy. Let A be the index set of elements of I'. Since for each e, € I';, k € A, there
exist K;, K; € Ty, such that e, = 0K; N 0K,(i > j), we associate with e, a unit normal
vector v, which is directed outward of K;. For e, € I'y, let v, be the unit outward normal
to the boundary 0€2. For simplicity, we denote v = v;. Note that our definition of ¢, also

admits hanging nodes along each side of the finite elements, cf. Figure 1.2.



Figure 1.2: Normal vector v outward to K;

€1 €2

1.2.2 Discontinuous spaces

In this subsection, we introduce the required broken Sobolev spaces with the associated
norms and define the discontinuous finite element spaces which are used to in DG approxi-
mations. On the subdivision 7, we define the following broken Sobolev space of composite

order s = {s; > 0:1 <17 < N} and exponent 7, with 1 <r < co:
Wi, Th) ={v e L"(Q) : v|g, € W(K;), for all K; € Ty},

where WSi(K;) is the standard Sobolev space of order s; with exponent r, for each K;. For

1 < r < o0, the associated broken norm and seminorm are defined, respectively, by

N, 1/r N, 1/r
IIUIIWf(n,m=(levlm;i(m)) and Iv\wrs(n,m=(2\v|€vﬁ<m)> ,

i=1 i=1
and for the case r = 0o, the associated broken norm and seminorm are defined, respectively,
by

iy and  [vlwe o) = max [vlysik,),

[vllwa, @) = max ||v]ly: 1<i<Nn

1<i< Ny o

where |[v]|yysi(x,) and |v]yysi ) are the standard Sobolev norm and seminorm on K;. When

r =2, we write H*(Q2, T,) = W5(Q, T,) and also write the norm and seminorm as

[v]lsp = [Vllws,m) and  |vlsp = [v[ws@,7m),

and when s = s; for all 1 <i < N, we write H*(Q, Tp,),||v]

s,n and |v]s p, respectively. For

s = 0, we denote the norm by ||.|| which is the standard L? norm. Denote the following



broken Sobolev spaces :

V={velQ): g

i

€ H'(K;), for all K; € T}, (1.1)
and
W = {w € (L*(2))?: wlk, € (H'(K;))®, for all K; € T} (1.2)

Discrete spaces: Let ppi (K' ) be the space of polynomials of total degree less than or equal
to p; on the triangle K , and let sz. (K' ) be the space of polynomials of degree less than
or equal to p; in each variable which are defined on the rectangle K. Let Zp, (IA( ) denote
P,.(K) or Qp,(K) whenever K is a master triangle or a rectangle, respectively. Now, we

set (see, [55], [39])
Zp.(K;) ={v:v="100F"'0¢€Z,(K)}. (1.3)

1

The discontinuous finite element spaces are defined as
Vi ={v € L*(Q) : vk, € Z,,(K)}, (1.4)
and
Wy, = {wy € (L*(2))* : walk, € Zp,(K:)?}. (1.5)

Let p=min{p; > 1:1 <13 < Np}.
We also need the following discontinuous finite element space of piecewise polynomials with

uniform degree p:
Vi ={v e L*(Q) :v|g, € Z,(K;), 1 <i < Ny} (1.6)

We define the following Sobolev space with piecewise polynomial traces which is needed in

our super-penalty results in Chapter 2.
H;(2) ={v € H*(Q) : v|an = w|gn, for some w € V;'}. (1.7)

For e;, € I'y, there are two elements K; and K; such that e, = 0K, NOK. Hence, we define
the ‘degree’ of polynomial in K; and K restricted to e, by pg, by pr = (pi + pj)/2. For

6



er € I'p, we note that there is one element K; with e, = 0K; N 02, and hence, we denote
the degree of polynomial restricted to e by pr = p;.

Jump and Average of scalar function: We now define the jump and average of a
function v € H'(€2, T,) on an edge e, € I as follows. If e, € I'y, that is e, = 0K;NOK; (i >

j) for some i and j, then we set the jump and average as

VK, VK,
[v] = v|k; — v|k;, {v} = w, respectively. (1.8)

In case e € 'y, there exists K; such that e, = O0K; OS2, and we then define, for notational

convenience, the jump and average on e as
[v] = v|k,no0, {v} =v|k,no0, respectively.

For the LDG method discussed in Chapter 3 and 5, we use the following jump: Let e, € 'y,
that is e, = 0K; N 0K for some i and j. Let v; and v; be the outward normals to the

boundary 0K; and 0K}, respectively. On e, we now define the alternate jump of v € V as
[v] = v|Kk.vi + v|K; V-

In case e, € I'p, that is, there exists K; such that e, = 0K;NOSY, then we set, for notational

convenience, the jump of v € V as

[v] = v|k;no0V,

where v is the outward normal to the boundary 0f2.
Jump and Average of vector function: Let e, € I';, that is e, = 0K; N 0K for some
¢ and j. Let v; and v; be the outward normals to the boundary 0K; and 0Kj, respectively.

On ey, we now define the jump and average of w € W as

Wik + W|k.
[w] =w|k, - vi + w|k; - v, {w} = %, respectively.

In case e, € 'y, that is, there exists K; such that e, = 0K; N0S2, then we set for notational

convenience, the jump and average of w € W as

W] = w|k,n00 - v, {w} = wW|Kk,ns0, respectively,



where v is the outward normal to the boundary 0f2.
Broken energy norm: Let v € H%(,7,). We define the following mesh-dependent
norms which appear naturally in the analysis of interior penalty discontinuous Galerkin

methods:

Np,
[[v][]* = (Z/ Vo2 dx + TP (v, v)), (1.9)
i=1 v Ki

and

mwﬁ:( L/vmﬁw+—§jm'/{mfd-+wauﬂ, (1.10)

e €l

7780, w) (ZFak ‘ﬂ/[v] )

0le, = ok and oy, [ are positive real numbers.

where

1.2.3 Properties of finite element spaces

Approximation properties of finite element spaces. Below, we state a Lemma on

some hp-approximation properties.

LEMMA 1.2.1 For ¢ € H*(K;), there exists a positive constant Cy (depending on s but
independent of ¢, p; and h;) and a sequence ¢z;ﬁ € Z,,(K;), pi=1,2,... such that :
(i) for any 0 <1 < s,

h,uz_l
sz i—l

16 — épill iy < Ca—= 16l ek

(i) for s; > 1+ 3,
L.Li—l—l/Q
16 = Spillart(e) < CAWWHH%(K,-),
(#i) for 0 <1 <s; —1+2/r,
hm_l 14+2/r

16 — o lwi(x,) < CAm”(ﬁ“H i(K;)>

8



where p; = min(s;, p; +1).

The proof of properties (i) and (77) can be found in [9, Lemma 4.5]. Then using properties
(1) and (3) in Lemma 1 of [1] and rescaling [2, Lemma 2], it is easy to derive the property
(iii). However for completeness, we provide below a short proof of the property for [ = 0.
The proof follows by applying induction on [ > 1.

Proof of property (iii) of Lemma 1.2.1 with | = 0. Let K be a shape regular reference
triangle or rectangle. Let Fx be an invertible map which maps K onto a finite element K.
Let its inverse be denoted by Fic'. Then for given ¢ € H*(K), define ¢(z) = ¢ o F(%).

From [1, Lemma 1], we easily obtain the following approximation properties :

16 = bpill 2y < C ||¢||Hs (R)> (1.11)

and
~ A 1 A
¢ — ¢pi||Loo(f() < CF”qﬁ“Hs(f()

Let 2 < ¢ < oo and 7 > 2. Then, choose # € [0, 1] such that » = 20 + (1 — 6)q. We easily
see that

o=L""" and (1—0):T_2.
qg—2

q—2

Then, use Holder’s inequality to find that

/"U‘T dr = /|U|29+(19)q dr
K K
= [ o o]0 da
K

(/K o da:)a (/K ot dm) o0

VAN

Thus, we obtain

20/r 1-6)/
10y < ol Il (1.12)
Note that
¢ — ¢pi||Lq(f() < C(measure K)l/q||¢ - ¢m||Loo(12’)- (1.13)

9



Using 26/r + q(1 — 0)/r = 1 and the properties (1.11)-(1.12), we arrive at

n n 20 r 1 0
16 = pillriy < Clid = dnllZ 16 = B %
Cp; 2/ ™ - ”/"n«snm(m

1

IN

—S r—2)/r(1-2 i
< Cp*p! ) 6| iy

1

Since q is arbitrary and the constant C' is independent of ¢, we obtain the estimate

n n —s+1-2/r
16 = dnllirey < O 20l ey

Now, scaling back to K implies the required result and this completes the rest of the
proof. [ |
For given ¢ € H*(2, Ty,), we define I,¢ € Vi by (1h9)|k;, = ¢}i(dlx;), V1 < i< Ny By
virtue of Lemma 1.2.1, I, ¢ satisfies the local approximation properties derived in Lemma
1.2.1, see [45, p. 737].

Trace inequalities. We need the following trace inequalities for our future use.

LEMMA 1.2.2 Let ¢ € H'TY(K;), K; € T,. Then, there exists a constant Cg, > 0 such
that

R A i L P B (1.1

where j=0, 1 and r=2, 4.

Proof. For r = 2, the inequality (1.14) is proved in [58, Appendix A.2]. We now extend the
proof of the inequality to the case r = 4, [ = 0. The proof for [ = 1 follows by induction.
Let D be a star-shaped domain [58] with piecewise smooth boundary 0D, cf., Figure 1.3.
Without loss of generality assume that o € D be the origin. Denote the outward normal to
0D by v and let x be the point vector on 0D. From the definition of star-shaped domain,
there is a 8 > 0 such that

Blx| <x-v

Let ¢ € H?(D). Then, we apply the Green’s theorem [48] to the vector field ¢*x to obtain
¢'x-vds= / V- (¢'x) dx (1.15)
aD D

10



Figure 1.3: Star-shaped domain D

Bl <x-v

N

oD

Using the property of star-shaped domain, we first show that the term on the left hand
side of (1.15) is bounded below

/6D ¢*x v ds > ﬂwiertl?fD x| /aD ¢* ds = 5zier}9fD x| ||(/§||4L4(6D). (1.16)
The term on the right hand side of (1.15) is shown bounded above as
/ V- (¢'x) de = / ®* V-xdw—l—/ 403V ¢ - x dx
D D D
= / 20" dac+/ 4’V - x d,
D D

and therefore,

[ V%) do

< 2ollugpy + 4suplx] [ 1oPIva

< 2/|9llzap) + 451615 %[ [|6/l76(0) IVl 2()- (1.17)

We now combine (1.16)-(1.17) to obtain

161|740y < 3 (||¢||i4(p) + 2s1€1g x| ||¢||?£6(D)||V¢||L2(D)> : (1.18)

inf |x]|
x€dD

To complete the proof, let o be the center of the inscribed circle in K; with radius ph;.
Then
< h; d inf > ph;.
sup x| < hi and  inf [x| > ph;

We obtain from (1.18)
4 1 4 3
||¢||L4(8Ki) < CE (||¢||L4(D) + hi||¢||L6(D)||V¢||L2(D)) )

11



where C' is a positive constant which depends on p but independent of h;. This completes
the rest of the proof. [ |
We recall the following trace inequality on finite element spaces for our future use. For a

proof, we refer to [61, Lemma 2.1].
LEMMA 1.2.3 Let vy, € Zy,(K;). Then, there ezists a constant Cr, > 0 such that
||vl’l)h||L2(ek) S CTQPih;lﬂ||Vl1)h||L2(Ki), l = 0, 1. (119)

Inverse inequalities. Below, we state without proof a Lemma on inverse inequalities.

For a proof, we refer to [49, p. 6], [12, Theorem 6.1].

LEMMA 1.2.4 Let v, € Z,,(K;). Then, for r > 2, there ezists a constant C; > 0 such that

wllory < Cwi ThE T lowl| 2k, (1.20)
lonllry < C -

nlmy < CioihyHopl gy, 1>1 (1.21)
and

||Uh||Lr(ek) S Clp;—Q/'I‘|ek|(1/7‘—1/2)||fUh||L2(6k)’ (122)

where e, C 0K; is an edge.

LEMMA 1.2.5 (L?-Projection I1): Let ¥ € H*(K;)* and v, = Iy € Z,,(K;)? be the L?
projection of ¥ onto Z,,(K;). Then, the following approrimation properties hold :

1/2 B
1% = Yull2myz + ;), 1% — ¥ullr20m:)2 < Cp—§||¢||Hs(Ki)2a
? 7

and A

1% — YullLakiye < Cﬁ“‘#ﬂm(m)%
1

where p = min{s, p; + 1}.

Proof. First inequality of the lemma follows from the Lemma 1.2.1 and the trace inequality
(1.19). For the estimate of [|% — 4, || 4(k;)2, We use inverse inequality (1.20). This completes
the rest of the proof. [ |
For our future use, we state the following Poincaré type inequalities on H'(Q, 7). For a

proof, we refer to [49, Theorem 3.7]; see also [13] for the case of r = 2.
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LEMMA 1.2.6 (Poincaré type inequalities). Let v € H'(Q2,7;) . Then, there ezists a
constant Cp > 0 independent of h and v such that, for 1 <r < oo,

[vllzr@) < Cpll[v]]-

1.2.4 Assumptions on the mesh and degree of approximation
Assumption (P):

1. The finite element subdivision 7}, satisfies the bounded local variation condition in the
sense that if |0K; N 0K,| > 0, for any K; and K; € T, then there exists a constant
k independent of h;, h; such that

| >

! < K.
J
In particular, this implies that for any element K; the number of neighboring elements

>

K; € Ty, with |[0K; NOK;| > 0 is bounded by N, uniformly, for some positive integer
N,..

2. The discontinuous finite element space V}, satisfies the following bounded local vari-
ation : If |0K; N 0K;| > 0, for any K; and K, € T, then there exists a constant p
independent of p; and p; such that

D

Here, |.| denotes the one dimensional Euclidean measure.

We now present some examples which satisfy the assumption P(1).

(i) Regular subdivision: A subdivision of {2 into shape regular elements K;, 1 < i < N,
is such that for any two elements K; and Kj, the common portion 0K; N 0Kj; is either
empty or a vertex of K; or an entire edge e of K;, that is, e = 0K; N 0K; and there is no
other element K; € Ty, (I # j, 1) such that |e N dK;| > 0, [20, p. 132].

(ii) 1-irregular subdivision: A shape regular subdivision {K;}X% of Q is such that for
any side of an element K, there can be at most one hanging node (cf. Figure 1.2), see [44]

and [45, p. 5].
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From the assumption (P), it is easy to see that if e, C 0K then there exist constants ¢;(k),

ca(k), c3(0) and c4(p) which are independent of h and p such that

ci(k)hi < lex| < ca(k)hi,  c3(0)pi < pi < ca(o)pi- (1.23)

Assumption (Q) (hp-quasiuniformity):
Along with the assumption (P), we also assume that the subdivision 7, and discontinuous

space V}, satisfy the following hp quasi-uniformity condition

h; h;
( max —Z) < Cq < min —z) , (1.24)
1<i<Np, Pi 1<i<Np, Pi
where C is a positive constant which is independent of A and p.

Observe that under the assumption (1.24), the following holds

-1
( max &> ( max E) = ( min E) ( max E) < Cy. (1.25)
1<i< Ny, h”L 1<i< Ny, Di 1<i<Np, Di 1<i<Np, Di
1.2.5 Some results from functional analysis

We need some well known results from the functional analysis, which we state without

proof in this subsection.

THEOREM 1.2.1 (Brouwer Fixed Point Theorem, [48, p. 218]) Let V be a finite
dimensional Hilbert space and S be a continuous map from a nonempty, compact and convex

subset K of V' which maps into K. Then, there is a v € K such that S(v) = v.

LEmMMA 1.2.7 (Holder’s inequality, [48]) Let 1 < p,q < oo be such that 1/p+1/g=1
and D C R"™. Suppose that ¢ € LP(D) and ¢ € LY(D). Then

/chw dz| < (/D|¢>|” dx)l/p (/D " dx)l/q-

LEMMA 1.2.8 (Generalized Holder’s inequality, [48]) Let 1 < p, ¢, r < oo be such
that 1/p+1/q+1/r =1 and D C R". Suppose that ¢ € LP(D), y» € LY(D) and x € L" (D).

Then
1/p 1/q Lr
<([rorac) ([ orac) ([ ras)
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LEMMA 1.2.9 (Cauchy-Schwarz inequality, [58]) Let 1 < p,q < 0o be such that 1/p+
1/q = 1. Suppose that {a;} and {b;} are two sequences of N positive real numbers. Then

N N p s N 1/q
(Z aibi> < (Z a? dx) (Z b? dx) :
i=1 i=1 i=1

LEMMA 1.2.10 (Generalized discrete Cauchy-Schwarz inequality, [58]) Let 1 <
p,q,r < oo be such that 1/p+1/q+ 1/r = 1. Suppose that {a;}, {b;} and {¢;} are three

sequences of N positive real numbers. Then

N N 1/p N 1/q N 1/r
(Z aibici> < (Z a? dx) (Z b! dx) (Z c dx) )
i=1 i=1 i=1 i=1

1.3 Literature review

We refer the reader to the review article by C. Cockburn, G. E. Karniadakis and C. W.
Shu, [29] for various motivations in developing the discontinuous Galerkin (DG) methods
over the past 30 years. However, we provide here the results from some of the articles which
play crucial role in developing new DG methods.

In 1973, Babuska [6] introduced the penalty method for incorporating the Dirichlet
boundary condition weakly. Therein the following variational form, given f € L?(Q) and

g € H'/2(0Q), find u € H'(RQ) such that

/QVU-VU dac—i—/ano(u—g)v dSZ/QfU dx (1.26)

is used to approximate the linear elliptic problem

—Au = f in Q, (1.27)
u = g on 0. (1.28)

In [6], for finite element space of degree p, then error estimate of order A(?Pt1)/3 ig derived

provided the penalty parameter o is of order h=(*»*1)/3_ The lack of optimality in order
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of convergence is due to the inconsistent formulation (1.26). Note that the solution u of

(1.27)-(1.28) does not satisfy (1.26) and instead it satisfies

/Vu Vo dx—/ —v ds+/ o(u—g)v dSZ/f’U dx. (1.29)
o0 0 ) Q

In 1971, Nitsche [54] introduced independently another penalty method to approximate
(1.27)-(1.28) which is based on the following variational form

/Vu Vv dz — —vds— —uds+/ ouvdSZ/fvdm
a0 0 a0 0 0 Q

0
—/ —vg ds+/ ogu ds. (1.30)
a0 On a9

Note that the first two term on the left-hand side of (1.30) arise from integration by parts
and, therefore, the formulation is consistent. The third term on the left-hand side of (1.30)
is added to symmetrize the variational formulation and ensures the adjoint consistency.
The fourth term on the left-hand side of (1.30) is to pose the Dirichlet boundary condition
weakly. Nitsche [54] derived optimal order of convergence in both H!-norm and L?-norm
provided the penalty parameter o is of the form o = n/h, where h mesh size and 7 is a
sufficiently large constant.

Based on Nitsche’s formulation, an Interior Penalty (IP) method is introduced by
Wheeler in [66]. The IP methods arose from the observation that just as Dirichlet bound-
ary condition, the inter element continuity could be attained weakly by adding a penalty
term to the variational formulation. To be more precise, the weak form of IP method for
(1.27)-(1.28) reads as : find u € H?(2, T,) such that

Z/K'VU-VU dx—z {8u}[v ds—z { }[u ds+Z/ olul[v] ds

el v €k el v €k epel

/fv dr — —gds—i—/ ogu ds.
a0 0 89
The IP method of Wheeler [66] is presently called as SIPG (IP) method which is applied

to a general linear elliptic problem. The variational form, therein, satisfies a Géarding
type inequality on the finite element space provided the stabilizing penalty parameter o is
bounded below by oy, which depends on the coefficients of the problem and the constants

involved in inverse and trace inequalities. Since this method is consistent as well as adjoint
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consistent, optimal order of convergence are derived in the broken H'-norm as well as in L%
norm. Arnold [4] applied the SIPG method to a second order quasilinear parabolic problems
and derived optimal error estimates. Where as, Douglas and Dupont [38] used the jump
of normal derivative of the continuous approximation to obtain an approximate solution in
between C° and C! for second order elliptic and parabolic problems. This method is known
in the literature as C%interior penalty method. The results of [38] was further generalized
to include the incompressible miscible displacement problems in reservoir studies Wheeler
and Darlow [67], Pani and Das [56]. It is observed that using C%interior penalty method, a
right amount of numerical diffusion is added to the numerical scheme to the concentration
equation which is convection dominated diffusion problem, see Ali [3].

In the conforming FE approximation of the fourth order elliptic problems, the FE space
has to be a subspace of C'* which requires a higher degree polynomials and makes the scheme
very expensive and complicated. The IP methods helped in approximating the fourth
order problems using C? or discontinuous finite element spaces. In particular, Babuska and
Zladmal [7] used the jump of normal derivative of continuous approximation as a penalty
term to obtain an approximate solution in between C° and C*. But the formulation, therein,
is inconsistent, and hence, it is difficult to derive optimal error estimates. Subsequently
using discontinuous FE spaces, an IP method is proposed by Baker in [10] and optimal
error estimates are derived. Recently in Brenner and Sung [14], the idea of [7] has been
used in approximating the fourth order problems using continuous FE spaces. While their
formulation is consistent, the connections between C° finite elements and its C* relatives
are explored. Moreover using a post precessing, they obtain C! approximate solution from
the C° approximate solution.

Since it is observed in the theory and the experiments that the SIPG (IP) method is
sensitive in choosing the stabilizing parameter, a variant of I[P methods which is based on
nonsymmetric formulation is proposed for diffusion problems in [55] by Oden, Babuska and
Baumann. A priori error estimates, therein, which are nearly optimal in A (mesh size)
and slightly suboptimal in p (degree of approximation) are derived in the broken H'-norm.
Riviére et al. [61] have analyzed the DG method of Oden et al. [55] for the self-adjoint

elliptic problems. Using a new interpolant, the optimal estimate in A and suboptimal in p
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is derived. A constrained DG method based on the Oden et al. nonsymmetric formulation
has been proposed and analyzed in [61]. In the constrained DG method, the discontinuous
discrete space satisfies a constraint that the jump of any element of the space is weakly
zero on the edges. This is instrumental in proving the optimal order of convergence in L?
norm though the formulation is not adjoint-consistent. Riviére et al. [61] and Houston et
al. [44] have introduced and analyzed the NIPG method which is a stabilized DG method
of Oden et al. [55] for linear elliptic problems. Therein a priori error estimates which
are optimal in A and slightly suboptimal in p are derived. Since the NIPG formulation is
not adjoint-consistent, it is difficult to prove optimal order of convergence in the L? norm.
However, it is observed that the term which causes the loss of adjoint-consistency can be
made small by imposing a super-penalty on regular mesh. This has made it possible in
[61] to prove optimal order of convergence in L? norm on the regular mesh. For a review
on the stability and a priori error estimates of SIPG and NIPG methods for linear elliptic
problems, we refer to [58]. The NIPG method is applied using discontinuous FE spaces
for fourth order elliptic problems [53] and a priori error estimates are derived. In [35],
NIPG and SIPG methods are applied and analyzed for fourth order semilinear parabolic
problems.

There is an extensive work on the DG methods for diffusion and convection-diffusion
problems [28, 44]. Subsequently, SIPG and NIPG methods are applied to the linear elliptic
systems such as Stokes [65, 62] and elasticity [43] problems. Using the extra degrees of
freedom in DGFEM, it is shown in [43] that the proposed DG method for elastic problems is
locking free which is not the case in the standard finite element methods. The applications
of DG methods for Navier-Stokes equations can be found in [47].

The first attempt to study hp-DG methods for quasilinear elliptic problems has been
made in [45]. The authors of [45] have applied a one parameter family of discontinuous
Galerkin methods for a class of monotone quasilinear elliptic problems and have derived
a priori error estimates in broken H!-norm which are optimal in A and slightly suboptimal
in p. They have also provided numerical experiments to illustrate the theoretical results.
It is difficult to extend the analysis of [45] to a class of quasilinear or strongly nonlinear

elliptic problems of non-monotone type, therefore, in the present study, we discuss and
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analyze the STPG and NIPG methods for such problems.

Apart from the work on DG methods for elliptic and parabolic problems, there is a
substantial work on DG methods for the hyperbolic problems [64], [16] and second order
partial differential equations with nonnegative characteristic form [63].

A parallel work on the LDG method has been pursued by several authors working on
hyperbolic equations. The LDG method is proposed in [18] for linear elliptic problems
in the mixed form in which the flux and displacement variables are approximated at the
same time. This method is also adjoint consistent which is vital in deriving the optimal L?
error estimate. In [18], the authors have discussed stability of the h-version LDG method
applied to the Laplace equation and have derived a priori error estimates which are optimal.
The work on hp-version of LDG method for the diffusion problems can be found in [57],
where a priori error estimates which are optimal in A and slightly suboptimal in p are
derived. Subsequently, there is an extensive work on the LDG methods for diffusion and
convection-diffusion problems [28]. The LDG method is then applied to the Stokes systems
[30]. Recently, the LDG method is extended to incompressible elastic materials [31] and
related error estimates are discussed.

The first attempt on the A-version of the LDG method for the monotone quasilinear el-
liptic problems has been made in [17]. In [17], the authors have used the strongly monotone
property of the associated bilinear form in a crucial way in their analysis and have derived
optimal error estimates in h. Further, they have discussed some numerical results. It is
difficult to extend the work of [17] to the quasilinear or strongly nonlinear elliptic problems
of non-monotone type. Therefore, attempt has been made in this direction to analyze the

hp-LDG method for such problems.

1.4 Organization of the thesis

While Chapter 1 deals with motivation, preliminaries and literature survey, Chapter 2
focuses on the SIPG and NIPG methods for a class of quasilinear elliptic problems of non-
monotone type which lead to a system of nonlinear algebraic equations. For existence of

a solution to this nonlinear system, we first reformulate the nonlinear system in a fixed
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point form and this is then related to the solutions of the associated linearized problem
which is a linear non-selfadjoint elliptic problem. Therefore, in the beginning of Chapter 2,
we study both SIPG and NIPG methods for a general second order linear non-selfadjoint
elliptic problems. The corresponding bilinear form satisfies a Garding type inequality and,
therefore, we need a bound for the error in L?-norm. This estimate is derived using a
discrete dual problem and, hence, a priori error estimates are derived in broken H'-norm
which are optimal in A and suboptimal in p. Then, using Brouwer fixed point theorem, we
have shown that there is a fixed point which is a solution of the nonlinear system. Further
using the Lipschitz continuity of the discrete solution map, we have proved that the solution
is unique. A priori error estimates which are optimal in A and suboptimal in p are obtained
as a by product of our fixed point arguments. In this Chapter, we also apply the super-
penalty arguments for the nonlinear problem to prove optimal order of convergence in the
L?-norm when NIPG method is used. Finally, some numerical experiments are conducted
to illustrate the theoretical results.

In Chapter 3, we analyze the LDG method for a class of quasilinear elliptic problems
of non-monotone type. The key idea of proving the a prior: error estimates is to rewrite
the nonlinear system in the fixed point form. We define a fixed point map which maps the
discrete functions to the solutions of a linear non-self adjoint elliptic problem. We then
show that this fixed point map maps a ball into itself. Since, this map is continuous in the
ball, an appeal to Brouwer fixed point theorem yields a solution to the nonlinear system.
Moreover, as a by product of Lipschitz continuity of the solution map, uniqueness of the
discrete solution is proved. A priori error estimates are immediate from the estimates of
the fixed point map. These error estimates are optimal in A and slightly suboptimal in
p which lead to precisely same optimal order of convergence in h and slightly suboptimal
in p for the linear elliptic problems . Finally, we present some numerical experiments to
illustrate the theoretical results.

Chapter 4 is devoted to the discontinuous Galerkin methods, in particular, the SIPG and
NIPG methods for a class of strongly nonlinear elliptic problems. Under the assumption
that the nonlinear operator is elliptic, we analyze these two DG methods. We consider

the most general form as a model problem which covers many practical cases such as mean
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curvature flow, subsonic flow and Bratu’s problems, etc. The induced bilinear form includes
also the cases linear elliptic [61] and quasilinear elliptic [41] problems. Therefore, the results
of this Chapter can be thought of as an extension of the results presented in Chapter 2.
A priori error estimates are derived in broken H'-norm which are optimal in ~ and nearly
suboptimal in p, when the degree of approximation is greater than or equal to 2.

In Chapter 5, we extend the results of Chapter 3 to a general strongly nonlinear elliptic
problem. By adding a stabilizing term containing the jumps of the flux variable, we prove
a priori error estimates, when the degree of approximation is greater than or equal to 1.
Dropping of these terms needs the degree of approximation greater than or equal to 2. In
both the cases, a priori estimates are optimal in h and slightly suboptimal in p. These
results are precisely the same optimal order of convergence in h and slightly suboptimal in
p, when the method is applied to linear [18] or quasilinear [17] elliptic problems.

Finally, we present, in Chapter 6, some critical assessments of our results. Further, we

discuss the possible extensions and also the scope for future problems.
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Chapter 2

DG Methods for Quasilinear Elliptic

Problems of Non-monotone Type

2.1 Introduction

In literature, optimal a priori error estimates are derived in broken H'-norm for SIPG
and NIPG methods applied to linear self-adjoint elliptic problems, see [5], [61]. Except for
[45], there are hardly any results on the discontinuous Galerkin (DG) approximation to the
nonlinear elliptic problems. In [45], a one parameter family of DG methods is applied to
the quasilinear elliptic problems which are strongly monotone and Lipschitz continuous. In

particular, the authors have considered a class of elliptic problems of the form
=V - (u(=, [Vu|)Vu) = f(z)

subject to mixed Dirichlet-Neumann boundary conditions. Under the structural conditions

on € C(Q x[0,00)) :
mu(t —s) < p(z,t)t — p(z,s)s < Mu(t—s) for t>s>0 (2.1)

and for some positive constants m, and M,, it is shown that the DG formulation is mono-

tone and hence, a priori error estimates in broken H'-norm are derived. For nonlinear
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problems of the following type

-V - (a(u)Vu) = f inQ, (2.2)
u = ¢ on 0%, (2.3)

where 0 < o < a(u) < M, for some positive constants & and M € R™, the nonlinearity
may not satisfy (2.1) and hence, it is difficult to extend the analysis of [45]. Therefore,
an attempt has been made in this Chapter to study DG methods for the problem (2.2)-
(2.3). The results presented in this chapter can be thought of an extension to discontinuous
Galerkin methods of the results established for the nonlinear Dirichlet problem (2.2)-(2.3)
by using a Galerkin method in [37]. Both SIPG and NIPG methods are discussed for the
problem (2.2)-(2.3) and a priori error estimates are derived in the broken H'-norm which
are optimal in h. These results lead precisely the same h-optimal and p-suboptimal rates
of convergence in the broken H'-norm as in the case of linear elliptic problems, when it is
approximated by a NIPG method, see [61, Theorem 3.1].

The organization of this Chapter is as follows. In Section 2.2, DG methods are applied
to linear non-selfadjoint elliptic problems and a prior: error estimates are derived in the
broken H!'-norm, which are optimal in 4 and suboptimal in p. Section 2.3 is devoted to
SIPG and NIPG methods for the quasilinear elliptic problems (2.2)-(2.3). Using Brouwer’s
fixed point theorem, existence of a discrete solution is proved. Then a priori error estimates
are derived in the broken H'-norm, which are optimal in A and suboptimal in p. Further,
an a priori error estimate in the L?-norm is established on regular meshes for (2.2)-(2.3)
with piecewise polynomial or zero Dirichlet boundary datum. In Section 2.4, we provide

some numerical experiments to illustrate the theoretical results obtained in this chapter.

2.2 Non-selfadjoint Linear Elliptic Problems

For our error analysis of DG methods applied to the nonlinear elliptic problem (2.2)-(2.3),
we need some results on the corresponding linearized problems. Since the linearized problem

is a non-selfadjoint elliptic problem, in this section, we consider the following second-order
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linear non-selfadjoint elliptic partial differential equation:

—V - (a(z)Vu) + b(z) - Vu+ap(z)u = f(z) in Q (2.1)
u = g on Of.
We adopt the following assumptions on the problem (2.1).
Assumptions (R):
1. There exists a > 0 such that 0 < o < a(z) and ag(z) > 0, Vz € Q.
2. a € Wi, (Q) and b, ag € L>(Q) with M = max{]|al|L=), ||bllLe@), [laollro@)}-
3. f € L*(Q) and g € H3?(05).
Then, from [40, Lemma 9.17] it is well known that there exists a unique solution u € H?(2)

to the problem (2.1) satisfying

lullz20) < C (If lz2) + N9l mor2o0y) - (2.2)

2.2.1 Weak formulation

For w, v € H?(,T;), we consider the following bilinear form

/ (aVw - Vv + aqwv + (b- Vw)v dx—Z/{a—}[v ds

el
—0 Z {a— | ds+ J7P (w, v) + Z {b- vo}w] ds,
ep€l ¥ €k epcl ¥ €k

and the linear form

/fvdx—HZ/ a—gds+Z/ak vgd8+Z/b vvg ds.

ex€lp ex€lp

where 0 = +1. When b = 0, we note that # = +1 corresponds to a symmetric and § = —
to a non-symmetric interior penalty method.

We define a weak formulation which is suitable for the discontinuous Galerkin methods as
follows: Find v € H?(, T;) such that

B(u, v) = L(v) Yve H*(Q,Th). (2.3)
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Let Vi, = {v € L*(Q) : v|k, € Z,(K;)}, where Z,,(K;) = {v:v =to F 1o € Z,(K)}.

Now the discontinuous Galerkin approximation of u is to seek uy € V}, such that
B(Uh, Uh) = L(’Uh) VU},, S Vh. (24)
Below, we examine the consistency of the above scheme (2.4).

THEOREM 2.2.1 If the solution u of the problem (2.1) is in H*(Q)), then u satisfies the
problem (2.3). Conversely, if the solution u of the problem (2.3) is in H'(Q) N H2(Q, Tp),
then u satisfies the problem (2.1) weakly.

The proof techniques of Riviere et al. [61, Lemma 2.2] or [58, Theorem 3.1] can be easily
modified to prove Theorem 2.2.1 and hence, the proof is omitted. The solvability of (2.4)
will be discussed at the end of Section 3. From the equations (2.3)-(2.4) and Theorem
2.2.1, it is easy to check that

B(u — Up, ’Uh) =0 Vo, €V, (25)
Following [58] and [66], we state the following Gérding type inequality.

LEMMA 2.2.1 Let 8> 1 and0 < 0¢ < 0 < 0. Further, assume that o9 > C(«, M, Cr,, Ny)
when 0 = 1, and 09 > 0 when § = —1. Then, there exist two constants C; = C(a, 0¢) > 0
and Cy = C(a, 09, M, Cg,, N,) > 0 which are independent of h and p such that

B(vn, va) > Cillloall]* = Collvall*  Vop € Vi

A straightforward modification of the analysis of Prodhomme et al. [58, Theorem 3.4
and Theorem 3.5] and of Wheeler [66, Lemma 3] yields the proof of the Lemma 2.2.1 and
hence, we omit the proof. Throughout this chapter, C' denotes a generic constant which
is independent of h, p and w,, but may depend on &, g, 09, Om, o, M, Ca, Cp,, Crp,,
Cr, Cp, Cy and Cs.

Using the trace inequality (1.19) and (1.23), it is an easy exercise to prove the following
Lemma 2.2.2. For details, see [58, Theorem 3.3].

LEMMA 2.2.2 Let 3> 1 and ¢ € H*(U, Ty). If ok is bounded above by a positive number

Om, then there exists a positive constant C, independent of h and p, such that

[B(¢, wa)| < Cll[lll5 ll[oalll  Von € V.
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LEMMA 2.2.3 Let § = 1. Then, there exists a positive constant C' which depends on Cly,
but is, independent of h and p, such that

Ny,

1/2
h2ul—2
¢ — Indl||+ < C(anﬁbnmz(z{)) :

i=1 Pi
where p; = min{p; + 1, s;}.
Proof. Let n* = ¢ — I,¢. Then, using (1.10), Lemma 1.2.1 and (1.23), we obtain

Np,
x " el” (On"
i = 30 [ o es 3 [ S Gy as e 3

el v €k ’ el v €k

hzuz 3+8 h2ﬂz_1 B

hZHl
< CZ( 25,_2||¢||HSZ(K)+WI|¢IIIF Kt [ )(2-6)

1 2

2
d
|ekvf Tl ds

Since B = 1, the lemma is proved by taking a square root on both the sides of (2.6). [ |

We prove the following lemma which will be used in the proof of a prior:i error estimates.

LEMMA 2.2.4 Let 8 = 1 and q € L*(2). Then, for sufficiently small h, there exists a
unique ¢ € Vi, satisfying

B(vp, ép) = / qup dx Vv, € V. (2.7)
Q

Moreover, ¢y, satisfies

[llenlll < Cligll- (2.8)

Proof. Note that (2.7) leads to a system of linear algebraic equations. So it is enough to

prove uniqueness. Set v = ¢y, in (2.7) and use Lemma 2.2.1 to obtain

Cilllnll2 = Colldnl® < Blon, on) = / a6 do
< lall Iéall

N

Therefore, we arrive at

[Hnlll < Cillgll + Callnll- (2.9)
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To estimate ||¢y|| in terms of |||¢n|||, we apply the standard Aubin-Nitsche duality argu-

ment. For ¢, € V},, we consider the following auxiliary problem:

—V - (a(z)VY) + b(z) - Vi + ag(z)y = ¢, in Q, (2.10)
v = 0 on 0N.

Then, assumption (R) implies that 1 satisfies the following elliptic regularity

[l m2(0) < Clldnllr20)- (2.11)

We multiply (2.10) by ¢, and integrate over €2, apply integration by parts and then use
Lemmas 2.2.2-2.2.3 to obtain

lonll” = B, én) = B — Iy, ¢n) + B(Ip, ¢n) = B(Y — InY, ¢p) + /quiﬂ/f dz
< C(h [llgnlll + llal) 1)l (-
From the elliptic regularity (2.11), we now arrive at
[nll < Chll[ @]l + llgl]- (2.12)

Substituting (2.12) in (2.9), we obtain the estimate (2.8) for sufficiently small hA. Hence,
the problem (2.7) has a unique solution and this completes the rest of the proof. [ |

2.2.2 A priori error estimates

Let 8 = 1. Since Lemma 2.2.1 holds for elements in V},, we split e = u — uy, into e = n+ x;,

where n = u — Iyu and x = Iyu — up. Then using Lemma 2.2.1, Lemma 2.2.2 and (2.5),

we obtain
CillIx|[P = Collxl* < B(x, x) = B((Iau—u)+ (u—up), X)
= B(lyu—u, x) = B(n, x)
< CllInlll+ [TxI[l-
Therefore,

[HIxl] < Cllinlll+ + Callx]l- (2.13)

27



In order to estimate ||x||, we set ¢ = x and vy, = x in Lemma 2.2.4. Using (2.5) and Lemma

2.2.2, we now obtain

IxII? = B(x, ¢n) = B(Iyu — un, ¢n) = B(Ihu —u, ¢p)
< CllInlll+ [llgnlll-

Using (2.8), we arrive at

[IxIl < Cllinll];- (2.14)

From the estimates (2.13) and (2.14), we obtain

HIx[II < Cllnl]l+ (2.15)

Now using Lemma 2.2.3, the inequality (2.15) and the triangle inequality, we deduce the

following theorem.

THEOREM 2.2.2 Let B = 1; then for sufficiently small h, there exists a positive constant
C' which is independent of h and p such that

Np, h2/,ai—2 1/2
lu—ul]] < C (Z p;si_?, ||u||§{Si(Ki)> :
i=1

where p; = min{s;, p; + 1}.

Existence and uniqueness. We now prove existence of a unique solution to the problem
(2.4) using the discrete dual problem (2.7) stated in Lemma 2.2.4. Assume that there exist
two distinct solutions u; and u2 for the problem (2.4). Let £ = u; — u? and set ¢ = ¢,

vy, =& in (2.7). Since B(uj, — u?,v,) =0 Vo, € Dy(Th), we obtain

1€ = B(&, ¢n) = B(uy, —u, ¢n) = 0.

Therefore, u; = u} and this leads to a contradiction. Hence, we conclude that there exists
a unique solution wuy, for the problem (2.4). Now uniqueness implies existence of a discrete

solution uy, to the problem (2.4).
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2.3 Quasilinear Elliptic Problems

In this section, we consider the following nonlinear elliptic boundary value problem :

-V - (a(z,u)Vu) = f(z) inQ, (2.1)
u(z) = g¢g(x) on 09, (2.2)

where 2 is a bounded domain in IR? with smooth boundary 9. As in [37], we make the
following assumptions for the problem (2.1)-(2.2). There exist positive constants o, M
such that 0 < a < a(z,u) < M, z € Q, a(-,-) € C}(Q x R), where C2(Q2 x R) is the class
of twice continuously differentiable functions on € x R such that all derivatives of a(-,-) up
to and including second order are bounded in Q x R. Further for some ¢ € (0,1), f € C?(Q)
and g can be extended to 2 to be in C?*9(Q), then, it follows from [36] that there exists
a unique weak solution u to (2.1)-(2.2) and u € C?*%({2), where C™*9({2) consists of all

functions whose mth order derivatives are Holder continuous of order § on .

2.3.1 Weak formulation

For ¢, w and v € H?*(Q,T,), we define the form B(1;w, v) which is linear in w, v for
fixed 1 by

B(¢;w, v) Z/ Y)Vw - Vo dz — Z/ ({a(v v] ds + 0{a() Z}[w]) ds

ekEF]

— Z / —v+9a( )%w) ds+ TP (w, v),

ex€ls
and the linear functional L on H%(Q), T) by
/fvdx—i—HZ/ —gds+2/ak|6k|ﬂvgds
ep€ly ex€lg
where § = +1. Since for each fixed v, B(%;-, -) is a bilinear form, we note that § = +1
corresponds to a symmetric and # = —1 to a non-symmetric method. We define the weak

formulation of (2.1)-(2.2) which is suitable for applying a discontinuous Galerkin method

as: Find u € H?(Q, Tp,) such that
B(u;u, v) = L(v) Vv e H*(Q,Th). (2.3)
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Now the discontinuous Galerkin (SIPG and NIPG) approximation of u is to seek uy, € Vj,
such that

B(uh; Uh, Uh) = L(?}h) Vvh € Vh. (24)

Below, we state without proof the consistency of the above scheme (2.4).

THEOREM 2.3.1 (Equivalence of (2.1)-(2.2) and (2.3)). If the solution u of (2.1)-(2.2) is
in H%(QY), then u satisfies (2.3). Conwversely, if u € HY(Q) N H*(Q,Ty) is a solution of
(2.3) , then u satisfies (2.1)-(2.2) weakly.

The proof follows the lines of the proof given in [61, Lemma 2.2] or [58, Theorem 3.1], so
we omit it. With v = v, € V,, € H%(Q,T3,) in (2.3), we obtain using (2.4)

B(u;u, vp) = B(up;up, vp) VYo, € V. (2.5)
Following Taylor series expansion, we write
a(w) = a(u) + du(w)(w — u), (2.6)
1
where @, (w) = / ay(w + t(u — w))dt, and
0

a(w) = a(u) + ay(u) (W — u) + Gyu(w) (w — u)?, (2.7)

where Gy, (w) = / (1 = t)ayy(w + t(w — u))dt.

0 _ _
Note that since a, € C}(QxR) and ay,, € CP(QxIR), it is easy to see that @, € L®(QxR)
and Gy, € L*(2 x R). We use the following notation throughout this section :

Ca = max [ ”&u”L“(QXIR)a ||&uu||Lw(QXR)] . (28)

REMARK 2.3.1 For our subsequent analysis, it is sufficient to assume that a is locally
bounded. In fact, it is enough to assume that a along with its derivatives are bounded in a
ball around u, see Remark 2.3.5.

For simplicity, we consider the following form B(-; - , -)

Blgiw, 0 = Bwsw. 0+ [ @@V Vodo— 3 [ o) 5ow)l] ds

>

er€lr €k
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Note that B is linear in w and v € H 2(Q, Ty) for a fixed 1. It is clear from the assumptions
on a(u) that Lemma 2.2.1 and Lemma 2.2.2 hold for B. Since a € C2(QxIR) and u € C?(Q),
there is a unique solution ¢ € H%(Q) to the following elliptic problem:

=V - (a(u)VY + ay(u)Vuy) = ¢, in Q, (2.9)
v = 0 on 0f),

and 1) satisfies the elliptic regularity ||¢||s2) < C||@4l|, see [36, Theorem 2], [37, p. 692].
Hence, Lemma 2.2.4 holds as well for B. Now we linearize the problem (2.4) around Iu
for our subsequent analysis. Set e = u — uy. Subtracting B(u;uy, vy) from both the sides

of (2.5), we obtain

B(u;e, vp) Z/ a(up) — a(uw))Vuy - Vo, de — Z/{ a(up) —alu ))auh}[vh]

er€l'r

03 [ {Calun) — () DY o] ds. (2.10)

ex€l'r vV €k

Since [u] = 0 on each e, € 'y, we rewrite (2.10) as

B(u;e, vp) = Z/K'(a(uh) —a(u))V(up —u) - Vup, do — / {(a(un) — a(u))gz}[vh] ds

_ Z/{ Uh —a, ))8(’&}5 )}[Uh] dS+Z/ ’LLh —a( ))VU Vo, ds

ekEFI

-0y /{ aup) — a(u ))(%h}[uh—u] ds. (2.11)

ep€l'r

Finally, we add the following terms to both the sides of (2.11)

—Z/ ay(u)(up — u)Vu - Vo, dx + Z /{au uh—u)g Hon] ds.

ekEFI

We split e = u — up, = u — Iyu + Iyu — up. Now using the Taylor formulae (2.6)-(2.7), the
equation (2.11) takes the form

B(u; Iy — up, v,) = B(u; Inu — u, vp) + Flup;up —u, vp), (2.12)
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where

Np,
Flui—e, u) = Y [ auw)eve Vodo— 3 [ {aulmes o) ds
i=1 v Ki

e €'y €k
-0 Z /{EL (u )e%}[e] ds—l—%/ uu(up)e*Vu - Vo, d
= e u\Uh By < : uu\Uh h

B 20U
= [ {aulun)e ) ds. (2.13)

ekEFI €k

Note that (2.4) is equivalent to (2.12).

2.3.2 Existence and Uniqueness
For a given z € V},, let S, : Vj, = V}, be a map y = S,z € V), satisfying
B(u; Iyu — vy, vy) = B(u; Iyu — u, vp) + F(z;2 —u, vp) VYo, € V. (2.14)

For a given z, the problem (2.14) leads to a system of linear algebraic equations. So using
Lemma 2.2.1 and Lemma 2.2.4, it is easy to show that the map S} is well defined. Now

consider the following ball
Os(Ihu) ={z € Vi : [[lInu — 2[|| < 6}

of radius §, where ¢ will be chosen later. We first show that for some § > 0, S, maps Os(I,u)
into itself and S}, is continuous. Then an appeal to Brouwer’s fixed point theorem yields
the existence of a solution to the problem (2.12) and hence, there exists a solution to the
problem (2.4). The following lemma is a key result for proving existence of a unique solution
to the discrete problem (2.4). Throughout this section, we use the following notation to

denote the Sobolev norm of u:

Cy = max [ |Jullp2q), lullaolulw @] - (2.15)

LEMMA 2.3.1 Let B > 1, and z, vy € V. Set x = z — Iyu and n = u — Iyu. Then, there
exists a constant C' > 0 which is independent of h and p such that

1/2
Di
(F (252 —u, vp)| < CC, (max —) X1+ Cub > U1+ HmlID | [oall]-

1<i<Ny, h;
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Proof. Let z € V}, and set ( = z — u. In (2.13), we now replace uy by z and e by z — u to

obtain

Flet m) =Y /K @2V Vo dr = Y {&u(z)Cg—i}[vh] ds

ep €T v €k
Np,
_eekezrl Lk{dU(Z)C%}[C] ds + ;/Kz uu(2)C*Vu - Vo, d

-y {auu(z)@%}[uh] ds.  (2.16)

ex €l ¥ €k
We split ( = x —n, where x = 2z — Iu and n = u — Ipu. Then, we estimate from below the
bound for each term on the right-hand side of (2.16). For the first term on the right-hand
side of (2.16), we split and then bound it as

Np, Np, Np,
Z/ | (2)CVC - V| da < CaZ/ IXVX - Von| dw+CaZ/ XV - V| dz
i=1 Y Ki i=1 Y Ki i—1 Y Ki

+C“Z/K InVx - Vg dﬂc-i-CaZ/K InVn - Vop| de.  (2.17)
=17 i=1 7 Ki

Using Hoélder’s inequality and the inverse inequality (1.20), we estimate the first term on

the right-hand side of (2.17) as

Np, Np,
Yo IxVx-Vonldz <Y lIxlso IV | Vomll 2oy
i=1 Y Ki

=1
Ny p;/a
< CZ||X||L6(Ki)#||VX||L2(K¢)||VUh||L2(K¢)
=1 [
N 1/3
D
< ClIxllzs(ey Z#"VX||i2(Ki)> |valin
i=1
- n 1/3
1/3 ]
< Clixllzso) H}QXHVXHL/z(Ki) (Z #||VX||i2(Ki)) EAm
’ i=1 '
N, 16 , N 1/3
D
< C|||X|||(Z||VX||%2(Ki)) (Z#"VX||%2(Ki)) [l o]l
i=1 i=1
N
< = 2 . :
¢ (g 2) I il 215)
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For the second term on the right-hand side of (2.17), we use Holder’s inequality, and Lemma

1.2.1 to obtain

Np, Np,
Z/ XV - Vouldz < CY Xl zoen IVl | Vol 2
i=1 Y Ki

i=1
h2/3
< CZ”X”L"’(K 2/3||U||H2(K Vunlle2()
=1
h2/3 Np ; 1/3
< CamliXllzee D Mullfzgey | lonlin
=1

1203 1/3
CW\HXHI maXIIUHHz Z”U’”H2 [onll]

IN

p2/3 N 2
< CW\HXHl leUH%z(m)) [l
=1

h2/3
< CWIIUIIH%Q)HIXH\ [ onl[- (2.19)

To estimate the third term on the right-hand side of (2.17), apply Hélder’s inequality and
the inverse inequality (1.20) to find, following the estimate (2.20), that

Nh Nh
S| Vx-Vuoldz < Y Inllzen) IVxlzecn | Voullzo ()
i=1 v Ki i=1

Np, /3 2/3
x> 4/3||u||Hz 2/3||VX||L2K)||VUh||L2

h2 /3
< Com lull g2y X[ H[vall]- (2.20)

For the last term on the right-hand side of (2.17), we use Lemma 1.2.1 and Lemma 1.2.6

to estimate it as

Nh Nh
Y| nVn-Vulde < Cnllzec) IVl o) I Vonll 2
i=1 Y Ki i=1
h2/3
< 2/3||u||H2 y[ I [ oal]]- (2.21)
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We substitute the estimates (2.18)-(2.21) into (2.17) to obtain

N\ 1/2
/ )V Tunlds < CCy ((max 2) I llonl

h2/3
+COCa s llullmzoy (Xl 1l [loalll. (2.22)

As in (2.17) the second term on the right-hand side of (2.16) becomes

Z/ a2 o }vh]|ds<c<c Z/ X 2w ds + C Z/ x5l onl ds

ex€l'r ex€l'r
S 3 T TTIRED o A I BCES
ekEI‘I ekEFI
Using Hoélder’s inequality, the inverse inequality (1.22), the trace inequalities (1.14)-(1.19)
and (1.23), the first term on the right-hand side of (2.23) is estimated as

x| i v
> / XX llds < cz( o Il VXlliace ([ tslonl*ds
23

er€ly er€Tr
‘ek|ﬁ/2 1 4 1/2
< C Z 1/2 ||X||L4(6k)||VX”L2(ek) | ‘B[fuh] ds
ekEFI Dy,
1/2 2 1/2
< CZ Z |1 /3/2”VX||L2 </ B |ﬂ[Uh] ds)
i=1 ex€0K;
4 3 1/4
(It ey + all X1 17Xl 2 )
1/2
pi 9
< ) .
= 0(12335 - g) [ Honl] (2.24)

Similarly, we use Holder’s inequality, (1.23), the trace inequality (1.14) and Lemma 1.2.1
to estimate the second term on the right-hand side of (2.23) as

2 1/2
e P
S [ gilas < ¢ 3 (‘ st 9l ( [ i funfas )

ekEFI

|€k|’3/ 1/4
D> 2 (I + Bl 190k

i=1 e, €0K;
” 1/2
(190 + Bl Vs 1921 (/ st
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Np, h,_6/271/2 h2 B ) 1/4
< 03 3 M (Bl + il

i=1 e, €O0K; Pk ¢
4 3 1/4 Pi 2 s
(Wl + il 19 2) ([ Z5lonPas
ek
hB/2  pBI2
< Clller (557 + 552 ) Il ol (2.25)

For the third on the right-hand side of (2.23), apply Hélder’s inequality, the trace inequal-
ities (1.14)-(1.19) and Lemma 1.2.1 to find that

> [ mgsimlas < ¢ Y (‘e’“‘ Il 9 xhsscy [ 7 |B[U]ds>1/2>

ex€l'y ekEFI
|€k|ﬂ/2 1/2 1/2
< CZ Z 1/2 ||VX||L2(ek) | |ﬂ[vh] ds
i=1 e €0K;
4 3 1/4
(IS sy + PalllEsacp 19l Lz21c))
h1/2+B/2  p1/2+p/2
< Cllalleay (4= Il el (220)
For the last term on the right-hand side of (2.23), we use a similar argument as in (2.26)
to obtain
|€k pk 1/2
S [ gl < ¢ 3 ||n||L4(ek>||Vn||L4<ek>( D fuas)
e €'y ekEFI €k
\ek\ﬂ/ A 5 1/4
<oy Y = (Il + Al 1920k
i=1 e, €OK;
, 1/4 pk 1/2
(190l + Bl 1922000 ™ ([ L)
ek
hBI2  pB/2
< Clullray (S + 22 ) 1l el (227

We substitute the estimates (2.24)-(2.27) into (2.23). Since 5 > 1, we obtain

1/2
bi 2
S [ gl < . (e 2 NI il

ekEI‘I

+CCah" |l 2y (1111 + [/ oal]] (2.28)
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In a similar way, we find the following estimates for the third, fourth and the last terms on

the right-hand side of (2.16):

Ovy, Di 12 2
/\C II[Cllds < CCu{ max =] [[[x[I[* [||vall|

1<i<Ny, h;
er€l'r

+CCh " [Jull 2oy (Il xI[1 + 1IN [lonll],  (2.29)

Np,
3 [ @@ Vae - Vulds < GOl
OOl o U+ 1) 230

and

Y H(aw(z )C Howllds < CCulllx]II* [[lvnlll

el Ck

+ CCY ullm @ lulwy, @ (X[ [1lnl)]]ea][]. (2:31)

Substituting the estimates (2.22) and (2.28)-(2.31) into (2.16), we complete the rest of the
proof. [ |

LEMMA 2.3.2 Let 3> 1 and z € V},. Set y = Spz. Then, there exists a positive constant
C which is independent of h and p such that

N 1/2
=yl < CC. (max %) e = 2+ Culd | Ty = 2]
> h llg

+CC, [(1+ C,h) || Ihu — ul||4] -

Proof. Let x = Iyu — z, n = Inu — u and & = Iyu — y. Set v, = & in (2.14). Then for the
first term on the right-hand side of (2.14), use Lemma 2.2.2 to obtain

[Blu;n, &)1 < Cllfnlll+ Il (2.32)

Set v, = £ in Lemma 2.3.1 to arrive at

1/2
bi
Flzz—u, &) < cca(max ;) X1 11kl (2.33)

1<i<Np

+CC.Cub (Il + 1ll]) [[1€]1]
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Substituting the estimates (2.32)-(2.33) into (2.14) and using the fact that |||n||| < |||n]l|+,

we obtain

1/2
Sy pi 2 1/2
Blg € < 0G| ((max 2 I+ Cut (H|XH\+HI77IH)+|H77|H+]|||€.|||

1/2
Di
cc, (max _) H|X||\2+cuhl/2mx|\|] el

1<i<Ny h;

IN

+CC(1+ Cuh!?)[[Inl] 1+ [11€]]]

Then using Garding inequality, that is Lemma 2.2.1, we obtain

Gll[[E]P = Calléll® < B(usé, €).
1/2
pi 2 1/2
< oc[(mNh) I+ Cu |||x|H]|||£|||
+CC, [(1+ Cub ) [[Inll[+] I1€]]],

and hence,

1/2
Di 2 1/2
liell < cc[(mNh) Il + Cub |||xm] (2.34)
+CC, [(1+ Ch)[[[nlll+] + ClIE]l-

In order to complete the proof of the lemma, it is now sufficient to obtain an estimate for

|€]]- Setting ¢ = € and v, = £ in the Lemma 2.2.4, it follows that

€7 = B(u; Iyu—y, ¢n) = B(u; Lyu —u, ép) + F(z;2 — u, ¢p)

1/2
Di
< CC, [( max —) \Hx|||2+0uh1/2le||l+(1+Cuh1/2)|||77|||+] [ pnll]-

1<i<Ny h;

Therefore, using the fact from Lemma 2.2.4 that |||@n||| < C||€]|, we obtain

1/2
pi
lell < oCu | (max 2) I+ 120 |+ 1+ cuh1/2)|||n|||+] . 23)
StSINp [Tl
We combine the inequalities (2.34) and (2.35) to complete the rest of the proof. |

THEOREM 2.3.2 Let f = 1. Then, for sufficiently small h, there is a 6 = §(h,p) such that
the map S, maps Og(Iu) into itself.
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1
Proof. Let z € Os(Iyu) and set y = Spz. Choose § = E|||Ihu—u|||+, for some 0 < e < 1/4.
Then using the fact that z € Os(Iu), Lemma 2.2.3 with s; > 2, p; > 1 and (1.25), we
obtain

D 1/2
(s 7)== <

1<i<Ny, h;

IN

1 D 1/2 B2\ /2
S Ok <1§331’6h hj) max =) [ulle 6

< CCuC,h*< 6. (2.36)

We substitute (2.36) in Lemma 2.3.2 to arrive at

[T —yl|| < CC, (CoCuh' 2~ § + Cyh' 26 + (1 + C,h'/?)he5) (2.37)
< OC, (CoCuh'* ¢ + C a2 + (1 + C,h'?)he) 6.

Choose h small so that CC, (CoCyuh'/*=¢ + C,h'? + (1 4+ C,hY*)h¢) < 1 and hence, Sy,
maps Os(I,u) into itself. This completes the rest of the proof. |

THEOREM 2.3.3 Let 8 = 1. There is a 6 = §(h, p) > 0 and a positive constant C such
that the following holds for any given z1, 2o € Os(Iu) and 0 < e < 1

[[[Shz1 = Shzel|| £ CC.CQULAS [||21 — 22]||.
Proof. Set y; = Spz1 and y2 = Spze. Using the definition (2.14) of Sy, it is clear that

B(U; Y2 — Y1, Uh) = F(Zl;zl - u, Uh) - -7:(22;22 - u, Uh)- (2-38)

Choose § = hi

||+, for some 0 < € < 1/4 with n = v — Iyu. Set x = 23 — zo. Using
Taylor’s formulae (1.14)-(1.19) and (2.16), we rewrite the first terms from each of the terms
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on the right-hand side of (2.38) on each K as

1) — a(22) + ay(u)(22 — 21)
1) — a(z2) — au(22)X + (au(22) — au(u)) x

= R(z1,2)X” + Guu(22) (22 — u)X,

G (21) (21 — )% — Gyu(22) (20 — 1) =

a(z
a(z

where R (21, 22) fo t)auy (21 + t[z1 — 22])dt. Similarly, other terms on the right-hand
side of (2.38) can be rewritten in a similar fashion. Now, a similar argument as in Lemma

2.3.1 implies that

1<i<Np h

N\ 1/2
Flesm =, v) = Fless o — u, )| < OC, ( max &) [ 11112 1o

Hl[[z0 = Tnul[[ X ol + 11 Zhw = zo[[] [IxI1] []]val |
< CCCQCAS |[[XI[I [[[vnll]- (2.39)

We set vy, = (y2 — 1) in (2.38) and (2.39). Then, using Lemma 2.2.1 and Lemma 2.2.4, we

obtain
[lyr — ol [| < CC.CQULRE [||21 — 2o,

and this completes the proof. [ |
For sufficiently small h, we deduce from Theorem 2.3.3 that there is a 6 > 0 such that the
map Sy, : Os(Inu) — Os(Ipu) is continuous. Hence, using Theorem 2.3.2, Theorem 2.3.3
and Brouwer’s fixed point theorem, we conclude for small A that there exists a uy, € Os(Ipu)
such that Spu, = up. Then, from Theorem 2.3.3, it is clear that u, is the unique fixed

point of S;,. Hence, we have proved that there exists a unique solution u;, to the problem

(2.4).

2.3.3 A priori error Estimates

Note that, from (2.37), uy, satisfies

[ Tnu — up||| < CC, (CoCLR' 2~ + Cuh' 2 + (1 + C,h 2R 6.
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. 1
Since 6 = We

[n]||+, for any 0 < € < 1/4, we obtain

1
[[Thu = wl[] < CCa (CQOuh™*~¢ + Cub? + (1+ Cub!)he) [l |+
< CC.CQC|Inl] |+ (2.40)

Using Lemma 2.2.3, estimate (2.40) and a triangle inequality, we have obtained the following

estimate which is optimal in A and suboptimal in p.

THEOREM 2.3.4 Let B = 1. Then, for sufficiently small h, there exists a constant C =
C(a, M) which is independent of h and p such that the solution uy of the problem (2.4)
satisfies
Np, h?pi—Z ) 1/2
lu —upll] < CCaCQCu | > sl )

=1 )

where p; = min{p;+1, s;}, Co, Cq and C,, are as in (2.8), (1.24) and (2.15), respectively.

REMARK 2.3.2 Note that the estimate obtained in the Theorem 2.5.4 is optimal in h and
suboptimal in p. However, this results leads precisely the same h-optimal and p-suboptimal

rate of convergence in the broken H'-norm as in the case of linear elliptic problem, when

it is approzimated by NIPG method [61, Theorem 3.1] and [44].

2.3.4 Optimal error estimates in the broken energy norm and the

L*-norm, when u € H3(2), s > 2

In the following, with the additional assumptions on the mesh and g, we prove optimal
error estimates in the broken energy norm as well as in the L2-norm. Therefore, along with
the assumption (Q), we also assume that 7 is a regular subdivision of Q2 into triangles or
rectangles and Vj, = V;*. We also assume that there is a v € V;* such that g = v|s0.

We note from [61, p. 908-913] that by using a continuous interpolant Ifu € Vj, N C°(Q)
of u instead of Iu which may be discontinuous across the edges in I';, the optimal rate
of convergence can be recovered. Since the construction of I is not discussed in [61],

we present below the results related to the construction of Ij. The idea of constructing
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Ifu € VN C%Q) is to modify the sequence u/i € D;(7,) in Lemma 1.2.1, by adding
suitable piecewise polynomials on each K;. For more on the construction of Iy, we refer
to [8, Theorem 4.1], [9, Theorem 4.6], [1, Theorem 4] and [2, Theorem 3]. Following these

constructions, we prove the following lemma.

LEMMA 2.3.3 Let Ty be a regular subdivision. Then, for a given ¢ € Hj(Q), s > 2,
there exists a positive constant Ca, (depending on s but independent of ¢,p and h) and an

Itp € VN C%Q) such that for all K; and ey:

(i) I59lon = Blaq.
(i) for any 0 <1< s and 0 <1 <2,

1/2
! . :
||¢ - I}CL¢”H’(K1) < CAcps_Zl_(sl Z ||¢||HS(K]) )
KjEK;
where 61 = 0, if [=0,1 and 6; = 1, if [=2.
(ii) for s > 1+ 3 and 1 = 0,1,
pl1/2 ) 1/2
¢ — Trdlmie,) < CAch Z 1177 () :
I{J'EI(;k
where dy = 0, if =0 and 6 = 1/2, if I=1.
(w) for0<1<s—1+4+2/randl=0, 1,
1/2
hH—l—l-}-Z/T )
16 — Lrdllwicx:y < CACW > gl |
K€K

where p = min(s, p+1), K; ={K; : |0K; N0K,| > 0} and ey is an edge on 0K;.

REMARK 2.3.3 Note that the assumption P (1) implies that the cardinality of K} is bounded
by N, for all i.

Proof of Lemma 2.3.3. The statement (i) in the lemma is proved in [9, Theorem 4.6]. For
0 <1 <1, the approximation property in (ii) is proved in [2, Theorem 3], [9, Theorem 4.6].
Using the inverse inequality (1.21) and Lemma 1.2.1, we present the proof of the property
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(ii) for [ = 2, as follows:

16 — Lidllmzreyy < M6 — Tndllmzgacry + 1nd — i@l mo (e

2

p c
< ¢ = Ingllmzx) + CEHIh(ﬁ — I; o a1 (k)

IN

2 2
p p c
16— Tullmecry + Cllo — Tndllmscry + 2116 — Tidllm iy

o 1/2
Y
0 | X ol

KjEK*

IN

Then, using the trace inequality (1.14), we deduce the property (iii) of the lemma. Finally,
using similar arguments as in [2, Theorem 3|, the property (iv) can be easily proved. This

completes the rest of the proof. [ |

REMARK 2.3.4 The approzimation property (i) for | = 2 and the property (i) for | =1
of Lemma 2.3.3 are not optimal in terms of p. But as we see in our next analysis, these

properties do not affect the accuracy of the approximation uy,.

LEMMA 2.3.4 Let Ty, be a regular subdivision and Vy, = V;*. Then, for any f > 1 and given
any ¢ € H; (Q), s> 2, there ezists a constant C independent of h and p such that

Np, th 2 1/2
¢ = Igoll[+ < C(Z e 2||</ﬁllm>) , (2.41)

i=1
where p = min{p + 1, s}.
Proof. Let n* = ¢ — If¢. Since Ip € V;yNC%(Q) and Ifd|an = ¢|aq, the jump [¢p—If¢p] =0

on each e, € T'. Hence, using (1.10) and Lemma 2.3.3, we obtain

3*
6 - Il = Z/ virPie+ Y [ ol O

ex€l ¥ €k
2/1 2 hﬂ h2u_3 9
< CZ > | g Wiy + 2 Il
i=1 K €K} p°p
h2u 2 h}fu—2
< 03 (Bl + p%—_2||¢||%,s(m) .
This completes the rest of the proof. [ |

43



THEOREM 2.3.5 Let Ty, be a reqular subdivision and Vi, = V;*. Suppose thatu € H;(9), s >
2. Then, for any 8 > 1 and for sufficiently small h, there ezxists a constant C = C(«, M)
which is independent of h and p such that the solution uy of the problem (2.4) satisfies

1/2
h2 u—2
[t — up||] < CCLCHC, (Zmllullm >> )

i=1
where p = min{p+1, s}, Co, Cg and Cy, are as in (2.8), (1.24) and (2.15), respectively.
Proof. Under the hypotheses on the mesh, there is an If¢ € V,;xNC%(S2) such that If¢|sn =
®|oq- Hence, the jump [¢p — I;¢] = 0 on each e, € I'. Then, using Lemma 2.2.1 and Lemma
2.3.3, it is easy to prove Lemma 2.2.4 for any § > 1. Now, note that estimates (2.25) and
(2.27) in the Lemma 2.3.1 depend on the approximation property (ii) for / = 2. Though
there is a suboptimality in this property, we still obtain the results in Lemma 2.3.1, by
replacing Iu by I;u and for any 8 > 1. Below, we only indicate the changes to be made
in the text of the proof of Lemma 2.3.1. We now consider the term on the left-hand side of
(2.25) with n = u — Ifu. Then, using Ho6lder’s inequality, the trace inequality (1.14) and

Lemma 2.3.3, we estimate this term as follows:

ex P v v
> [ Hogams < 02( sl Vallscy ([ roglonlds
ek

er€l'r ekEPI
|€k‘,3/ 1/4
<oy 2 (I + Bl 19220
i=1 e, €0K;
4 3 2 1/4 v 2 2
(19 + BVl I9220)) ™ ([ Lonl?)
ek
BBI2=1/2 [ 2 h1 1/4
<oy (Sl + )
1=1 e, €0K; pp
1/4 p2 , 1/2
(Wl + il 19 ) ([ L slonPts )
ek
hB/2  pB/2
< Cllllroy (25 + 22 Il il (2.42)

Similarly, a replacement of I,u by Ifu in Lemma 2.3.2 and an application of Lemma 2.3.4,
yield the proof of Theorem 2.3.2 and Theorem 2.3.3 for any S > 1. Hence, the estimate
(2.40) holds for any 5 > 1 with n = u—I{u. Then, an application of Lemma 2.3.4 completes
the rest of the proof. ]
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Now, we proceed to derive the L2-norm error estimate. Since, the SIPG method is adjoint
consistent, one can expect optimal L?-norm error estimates in terms of h. But for the NIPG
method, the bilinear form is not adjoint consistent. In general, it may be difficult to prove
the optimal L? error estimate in terms of h. However, if u € H3(92), s > 2, it is possible to
obtain optimal L?-norm error estimates in terms of both h and p by increasing the penalty
on the uniform regular subdivision. Assume that the hypotheses of Theorem 2.3.5 hold.
Of course, these assumptions are not necessary to derive optimal L2-norm error estimate in
terms of h for the SIPG method. Below, we appeal to the Aubin-Nitsche duality argument

to estimate ||u — uy|.

THEOREM 2.3.6 Let a € C2(Q x R) and u € WL(Q). Suppose that 8 > 3 when § = —1,
and B > 1 when 0 = 1. Further, assume that the hypotheses of Theorem 2.3.5 hold. Then,
there exists a constant C = C(«, M) such that for small h

h#
[ — unl| < CCQC 02 S lulls n,

where p = min{p+1, s}, Co, Cg and Cy are as in (2.8), (1.24) and (2.15), respectively.
Proof. Our assumptions on a and v imply that there is a unique solution ¢ € H?(Q) to the

following linear elliptic problem
=V - (a(u)Ve) + (ay,(u)Vu) -V = e on
¢ = 0 on 09,
and ¢ satisfies the following elliptic regularity, see [40, Lemma 9.17]
9]l m2(0) < Cllellr2@)- (2.43)

Note that

lel? = Bluse, ¢)+/Q(au(u)vu)-ev¢ wr@-ny [ e] ds.  (2.44)

erel

The first term on the right-hand side of (2.44) is rewritten as

B(use, ¢) = B(uju, @) — B(up;un, @)+ B(up;un, ¢) — B(u;up, @)
= (B(u;u, ¢ —x) — B(un;un, ¢ — X)) + (Bup;up, @) — B(u;up, ¢))
- I + I, (2.45)
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where x = Iy ¢ such that x|sq = 0. For the first term on the right-hand side of (2.45), we
note that

I = B(u;u, ¢ —x) — B(up;u, ¢ —x) + B(up;u, ¢ —x) — B(up; up, ¢ — x)

= Z/ ) —a(up))Vu- V(o — de—i—Z/ a(up) — a(u))Ve - V(¢ — x)dz
= [ dtatm) - ) 250 o }[e]ds+z / V(6= )ds

e €l

-y ¢7y)}[e]ds (2.46)

el ek

Since u € Wh*(§2), we use the Cauchy-Schwarz inequality, Lemma 2.3.4, to bound the
first and fourth term of on the right-hand side of (2.46) as

|Z / ) a(un))Vu- V(6 — ldz < Cullell 116 — Xl
h
< el [6lmay,  (247)
and
Np,
3 / (W) V(u—un) - V(6 — e < Mllell| 16— xllar
=1 %

h
< C};IHGH\ 161l 12(5)- (2.48)

Now, using Holder’s inequality, Lemma 2.3.4 and Lemma 1.2.6, we estimate the second

term on the right-hand side of (2.46) as

Np,
|Z/K(a(uh) —a(u)V(un —u) - V(g —x)ldz < C |ells@lllell] |6 — xllwg o)
i=1 v K

< Cllelll” 9l (2.49)

Next, using similar arguments as in (2.42), we bound the third term on the right-hand side
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of (2.46) as

(¢ — x oo /2
Y [ tGatwn) - a0y~ wds < 000 3 el 16— xhwyn
er€l’ ™ o v ex€l
2 1/2
Py 12 )
—=_lel“ds
< €L |ek|ﬂ[ ]
< CCulllell]? 18]l a2(e)- (2.50)

Then, using Lemma 2.3.3, the fifth term on the right-hand side of (2.46) is estimated as

o d) - X h,@/2—|—1/2
3 [ 1023wy gias < el ol (2:51)
e, €l €k
Hence using (2.43), we obtain for any g > 1,
9o h
11 < ccuCu (1Nl + 2111+ el ) el (252

For the second term on the right-hand side of (2.45), that is, I, we note that [u] = 0 on
ex € I';. Thus,

I1 = Z /K-(G(Uh) —a(u))Vuy - Vo dr — : {((a(up) — a(u))g—f}[uh — ulds

= Zh/ -(a(uh) —a(u)V(up —u) - Vo dz + Z/ v(a(uh) —a(u))Vu- V¢ dz
- [ {Catun) - a(w) 52}~ ds. .53

Use Holder’s inequality, the Sobolev imbedding theorem and Lemma 1.2.6 to estimate the

first term on the right-hand side of (2.53) as

Lalldllwy @)

|Z/K'(a(uh) —a(u)V(up —u) - Vo dr < Cullellzsle

< CCulllelll” ol o). (2.54)

Now for the third term on the right-hand side of (2.53), using Hélder’s inequality, the trace

47



inequality (1.14) and Lemma 1.2.6, we arrive at

> [ atw) —atw) SN — i ds < €Y [ 152 el ds

exI'r ¥ Ck epl's ¥ €k
< €Y el I8l T )2
> a €ek) Wi(ex) )
erl'r
hB/2-1/2 )
< OC el Il (2.55)

We rewrite the second term on the right-hand side of (2.53) together with the second term
on the right-hand side of (2.44) as

Z/K‘(a(uh) —a(u) + ay(u)(u —up))Vu - Vo do = Z/K G (Un) (v — up)?Vu - Vo dz,

and then we use Lemma 1.2.6 to obtain

Ny, Np,
> / G () (4 — )V Ve < CuCul 3 / (U — up)? - Volda
=1 i =1 i

< CCCulllel|P 6]l z2)- (2.56)
Hence using (2.43), we obtain for any 8 > 1
11| < CCLCalllell” ell- (2.57)

For § = 1, the third term on the right-hand side of (2.44) becomes zero. For §# = —1, using
the trace inequality (1.14) and (2.43), the third term on the right-hand side of (2.10) is

estimated as

0¢ lex|? 0 1/2 2 1/2
(0} ds < © ( 12124 / (e]2ds
e,cze%‘ €k al/ ekze:F er p% aV ek |ek|ﬂ
hB/2-1/2
< C [[lell] [lell- (2.58)

p
We combine the estimates (2.52)-(2.58) to obtain

h hﬁ/2—1/2
-l < € (= ull+ 2+ 0= 1) u )
p p
A use of Theorem 2.3.5 completes the rest of the proof. [ |
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REMARK 2.3.5 In the proof of Lemma 2.3.1 and the subsequent results in Section 4, we
have assumed that the range of (a: v), z €Q, veR, | =0,1,2 is a compact set, say
[m, M] C R. But, ifu € H5/2(Q), we note that asymptotically only the values of v € [my, —
§*, M, +6*] C R, where 0 < §* < 1, my = influ(z) : x € Q} and M, = sup{u(z) : z € Q}
are considered to derive the proof of Lemma 2.3.1 and the subsequent results. To be more
precise, the terms ay(z) and auy(2), z € Os(Iyu) in (2.16) (see the estimates (2.17)-(2.81))
can be estimated as follows. Since z € Os(Ipu), where § = h™°|||lu — Iyul||4+, 0 < e < 1/4,

using inverse inequality (1.20), Lemma 1.2.6 and Lemma 1.2.1, we find that

Pi
< ¢ (1151%'121)\(% h_z) |z = Thul|L2() + [[Thu — ul| Lo (o)

IN

C’( max p_) [z = Thul|| + |[Thu — u|| oo (o)

1<i<Np h.

- Di
< € I3 B B .
= o (m hz)”'“ Tyl ||+ (1w = ul] g

i=1 7t

1/2
S Bl |+ c@nunm(m
P ) P

IA

Q

=
D
IA
|7\'gB>
2 3
Bl
~_
/_\

1<i<N, P

< Ch°© ( max —z> ( max ’—) l|ull 572 +C’—||u||Hz

< ChYPJul| gorzgy- (2.59)

Therefore, for sufficiently small h, |2z () < 6* + ||u|| Loy, where 0 < 6* < 1. Now, since
the nonlinear functions a, and ay, are continuous, they map the compact set [m, —0*, My +
0*] into a compact set in IR and hence, the results in Lemma 2.3.1 and the subsequent results
in Section 4 remain valid when a(v), a,(v) and ayu,(v) are bounded for bounded u. Finally,
we remark that when u € H%(Q), it may be possible to show the boundedness of a(v) and its
derivatives for v € [m, — §*, M, + 6*] C IR by using better inverse inequalities, say in the
first line of (2.59), apply ||z — Inu||pee(ky) < Cp1/2 1/4||z — Tyul|s(k;) (see [52, p. 916])

and use the Poincaré inequality in Lemma 1.2.6 to complete the estimate (2.59).
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2.4 Numerical Experiments

In this section, we discuss the performance of the proposed NIPG and SIPG methods for
the numerical approximation of the quasilinear elliptic problem (2.1)-(2.2). For this, we

consider the following nonlinear elliptic problem:

-V - (1+u)Vu) = f, in
v = 0, on 09,

where 2 = (0,1) x (0,1) and f is taken in such a way that the exact solution is u =
(1 —2)y(1 —y). We divide 2 into regular uniform triangles. We denote the total number
of triangles by N,. The stabilizing parameter o), appearing in the penalty term J%
is taken as follows: o, = 10 Ve,. We investigate the convergence of NIPG(# = —1) and
SIPG(€ = 1) on a sequence of uniform triangular meshes for each of degree of approximation
p=1,2and 3 (p; =p, 1 <i < Ny). Similarly, we also investigate the convergence of both
methods by enriching the polynomial degree p on a fixed mesh.

Since the discrete space V) can have piecewise polynomials which may be discontinuous
across the edges of elements, we choose basis functions as follows:

For piecewise linear, that is, p =1 and 1 <1 < N,

1 on K,
Pi-1)x3+1 = (2.60)
0 elsewhere,

A oon K, j=2, 3,
D _1)x31j = ! o (2.61)
0 elsewhere.

For piecewise quadratic, that is, p=2 and 1 <1 < N,

1 on KZ',
Q(i_1)x64+1 = (2.62)
0 elsewhere,

A; on Kia | = 2, 3,
Qi-1yx6+j = ! g (2.63)
0 elsewhere,
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)\% on Ki;
Di_1)x644 = (2.64)
0 elsewhere,

_ /\% on Ki;
D 1)x645 = (2.65)
0 elsewhere,

)\2)\3 on Ki,
Qi—1)x6+6 = (2.66)
0 elsewhere.

For picewise cubic, that is, p =3 and 1 <1 < N,

1 on K,
Q11041 = (2.67)
0 elsewhere,

A;j on K, j=2, 3,
Qi—1)x1045 = ’ g (2.68)
0 elsewhere,

A2 on K;,
Q(i1)x10+4 = (2.69)
0 elsewhere,
)\% on Ki;
D 1)x1045 = (2.70)
0 elsewhere,
XAz on K,
Qi 1yx1046 = 2 ' (2.71)
0 elsewhere,
)\g on Ki;
Qi_1)x1047 = (2.72)
0 elsewhere,
)\g on Kia
Qi-1)x10+8 = (2.73)
0 elsewhere,
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/\%)\3 on Ki;

Q(i_1)x1049 = (2.74)
0 elsewhere,
/\2)\2 on Ki:

O 1yx10+10 = ’ (2.75)
0 elsewhere,

where \; and A3 are barycentric coordinates of K;. We note that each of the basis functions
takes support only on the corresponding finite element K;. Let N denote the dimension of
Vi Denote the basis of V,, by {®; : 1 < i < N}, where N = N, wlgﬂ. The discrete

solution uy is written as

N
Up = Z o ®;. (2.76)
i=1

In order to derive the nonlinear algebraic system corresponding to (2.4), we set v, = ®; in
(2.4) and obtain

F;(a) = B(up;up, ®;) — L(®;) =0, 1<j <N,

where o = [aq, ag, -+ - , an],

Bl(up; up, ®;) = Z/}(l—#uh)Vuh-V(I)j dz — Z/{(Huh)wh-y}[@j] ds

er€l'y €k
+ 0 Z / {14+ up)Ve, - v}up ds — Z Vup, - v®; ds
e €'y ¥ €k er €y ¥ ¢k
+ 0 Z / V(DJ - VUp, ds + jo”B(’U,h, (I)]) (277)

er€ly €k

= 11—12+013—I4+015+I6
and L(®;) = (f, ®;). The resulting nonlinear system is then denoted by
F(a) = [Fl(a)7 FQ(a); U aFN(a)]T = [Oa 07 e ;O]T' (278)

We then apply the Newton’s method to find the solution « to (2.78). The Jacobian matrix
of the system F(«) is computed as follows :

J= [63] — [M
1<j,m<N

—_— 2.
ooy, ooy, (2.79)

} 1<j,m<N
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We substitute (2.76) in (2.79) and then using (2.77), we first compute

oL

ooy,

a Np, N N
= 5 (Z/ <1+Zal(1>l) (1+Zalvq>,> VO, dx)
mo\ =1 Y Ki =1 =1

Np, N Np, N
= Z/ - (1 + Zqu@l) - V;dx + Z/ (1 + Zal@l> Vb, - VO;da.
i=1 Y K =1 i=1 v Ki =1

Next, we note that

s (2 L) (e Boen) v

= %an (Z/ ton (1+ch<1>z) v}®)] d )
(5 i) omens)

Similarly,

o, 0
da,,  Oap,

Z/ (1+Zal )vqg v} (1+Zal[c1>> s)

ekEFI

- % (eken / {$,,V®; - v} (1+Zal[¢l]) ds)
(Z/ (1+Zal )vqy v} ®pm] ds).

It is easy to see that

ooy,

O _ o Z/ (Zal[cbl]> [®;] ds = Z/ [%][‘I’ Jds

er€l’ e €l

For the boundary integrals I, and I5, we find the derivative as :

o ey

er€lg er€lp
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and

Now, we use the following algorithm for Newton’s method to solve the system (2.78). For

given o, find o, for 1 < k < ke, such that
of = oF 1 — IR (oY),

where J is given by (2.79). The intial iterate a® is chosen as the solution of the following

linearized problem: Find u) € V}, such that
B(O, ug,vh) = L(Uh) \4 v, € Vh.

The maximum number of iterations k,,,, is set to be k,,,, = 10.

Convergence in the broken H'-norm: We set 3 = 1 for both NIPG and SIPG methods.
In Figure 5.1, we plot the broken H'-norm of the error against the mesh function h for
polynomial degrees p = 1,2 and 3. Here, we observe that for each p, |||u—uy||| converges to
zero at the rate O(h?) as the mesh is refined. These experiments illustrate the theoretical
results obtained in the Theorem 2.3.4. In Figure 5.2, we present the convergence of the

broken H!-norm of the error as the degree of the polynomials increases on a fixed mesh.

Figure 2.1: convergence of NIPG and SIPG with h-refinement

—— NIPG
——NIPG
——NIPG
—+— SIPG p=1
—%— SIPG
10°F| —*—SIPG

Convergence in the L?-norm: According to Theorem 2.3.6, the NIPG method gives

optimal L? order of convergence provided the jump term is super-penalized. We take
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Figure 2.2: convergence of NIPG and SIPG with p-refinement

—— NIPG
—— NIPG
— NIPG
—*—SIPG
—*— SIPG
—*— SIPG

h=1/20
h=1/25
h=1/30

n
w

B = 3, when # = —1. Since the SIPG method is optimal in the L?-norm, we take 3 = 1,
when 6 = 1. We investigate the theoretical results obtained in Theorem 2.3.6 by performing
the experiments with the above values of 5. In Figure 5.3, we plot the L?-norm of the error
against the mesh function h for polynomial degrees p = 1,2 and 3. We note that for each
p, ||u — up|| converges to zero at the rate O(hP*!) as the mesh is refined. The convergence
lines are almost same for both NIPG and SIPG methods. These results show that the
NIPG method exhibits an optimal order of convergence in the L?-norm on a regular mesh,

by imposing the super-penalty. In Figure 5.4, we also plot the L?-norm of the error against

Figure 2.3: convergence of NIPG and SIPG with h-refinement

-1
—NIPG P

L[| ——nNea 2
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1

llu-u,
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Figure 2.4: convergence of NIPG and SIPG with p-refinement

108k h=1/20 4
h=1/25
h=1/30

N
w

the degree of the polynomial p on a fixed mesh. The L2-norm of the error converges expo-

nentially to zero as p increases. These experiments illustrate the theoretical results obtained
in the Theorem 2.3.6.
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Chapter 3

LDG Method for Quasilinear Elliptic

Problems of Non-monotone-Type

3.1 Introduction

In [17], the LDG method is applied to a strongly nonlinear elliptic problem of the following
type:

~V-a(,Vu) = f inQ

with mixed boundary conditions. Under the assumption that the nonlinear operator in-
duced by a is strongly monotone, it is shown that the primal form of the LDG method
is monotone. Then, existence of an approximate solution to the LDG method is shown
and a priori error estimates of only h-version are derived. But for nonmonotone nonlinear

elliptic problem of following type:
-V - (a(u)Vu) = f inQ, (3.1)
u = g on 0%, (3.2)
it is difficult to extend the analysis of [17]. Therefore, an attempt has been made in this
Chapter to study the LDG method for the problem (3.1)-(3.2). We assume that Q is a

bounded domain in IR? with boundary 952, and there exist positive constants e, M such

that 0 < a < a(z,u) < M, a(,-) is a twice continuously differentiable function in Q x IR
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and all the derivatives of a(-,-) through second order are bounded in 2 x IR. Further,
assume that f € L?(Q), g can be extended to € so that the extended g is in H?*({2) and
there exists a unique weak solution u of (3.1) -(3.2) such that u € H?(Q2) N Wh*(Q).

In this Chapter, an hp-LDG method is applied to the problem (3.1) -(3.2) and
error estimates which are optimal in h (mesh size) and slightly suboptimal in p (degree of
approximation) are derived. The results proved in this Chapter are same as in the linear
case, see [57]. Assuming hp-quasiuniformity condition on the mesh, existence of a solution
to the discrete problem is proved using Brouwer fixed point theorem for small h. Moreover,
the Lipschitz continuity of the discrete solution map shows the uniqueness of the discrete
problem.

The rest of the Chapter is organized as follows. Section 3.2 is devoted to the LDG
method, and a prior: error estimates for the method. In Section 3.3, we provide numerical

experiments to illustrate the theoretical results for two different nonlinear elliptic problems.

3.2 Local Discontinuous Galerkin (LDG) method

The LDG methods were originally initiated for the system of first order hyperbolic prob-
lems. To define the method, we rewrite the equation (3.1) as a problem of first order system
of equations. We introduce auxiliary variable @ = Vu and o = a(u)q and rewrite (3.1)

-(3.2) as

q = Vu in Q, (3.1)
o = a(u)q in Q, (3.2)
-V-o = f in Q (3.3)
u = g on O (3.4)

We multiply the equation (3.1) by w € W, the equation (3.2) by 7 € W and the equation
(3.3) by v € V and integrate over the element K € T,. Then using the integration by parts

formula, we obtain
/q-wdaﬁ-l-/uv-wdx—/ uw - vgds =0, we W, (3.5)
K K oK
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/ a(u)q - Tdx — / o-7dr =0, TeW, (3.6)
K

K

and

/ o - Vudr — / o - vivds = / fodx, vevV. (3.7)
K 0K K
Note that there may be difficulty in defining u and q on 0K. Therefore, this is just an

initial formulation which is helpful in defining the following approximate method given
below. The approximate solution (us, qn, o) € Zy(K) X Z,(K)? x Z,(K)? is defined using

above weak formulation, that is by imposing that for all K,

/ qy - whdx +/ upV - wpdzr — / iwy, - vgds =0, wy, € Z,(K)?, (3.8)
K K oK
/ a(up)qn - Th — / o Thdr =0, T € Z,(K)?, (3.9)
K K
and
/ oy, - Vupdr — / O - vgvpds = / fondz, vy € Zy(K), (3.10)
K oK K

where the numerical fluxes 2 and & have to be suitably chosen in order to ensure the
stability of the method and also to improve the order of convergence. The following choice
of numerical fluxes are used in solving the linear elliptic problems. If e, € I';, then the

numerical fluxes are defined on ¢ as :
@(up) = {un}t+ Crz-usl, (3.11)
o(up, on) = {on}— Ciulun] — Cra|om], (3.12)
and if e, € I'y, then the numerical fluxes are taken as :
o = g, (3.13)
6 = op— Cii(up — 9, (3.14)

where 011|€k = ﬁp%/hk, ,3 > 0 and Ciy € ]].:{2 on e, € F[, We set C'i2 = 0 on er € Iy
The numerical fluxes are conservative since they are single valued on e, € I';, that is, on

e, €Iy,

[a] =0, [6] = 0. (3.15)



and consistent since the following holds for smooth » and q :

w(u) = wu, (3.16)
o(u, o) = o. (3.17)

We sum (3.8)-(3.10) over all elements K € T,. Then using the conservative property (3.15)

and the definition of numerical fluxes, we obtain the following equations :

/Q - wydz + 2 /K W -~ /r ({} + o s (3.18)

=/ gwy, - vds, wp € Wy,
La

Np,
> / o - Vopdz — / ({or} — Cuiup] — Cralon])[vn]ds (3.19)
i=1 v Ki r
:/fUthU-l-/ Cngvhds, UhEVh,
Q T'p
/ a(up)ay - Thdx — / op-Trdx =0, T, € Wy, (3.20)
Q Q

Let z € L*(Q) and (¢, p), (v, w) € V x W. We define the following bilinear functional
AL : W xW — R as

Al(paw):/del‘a
Q
Ay WxV = 1R as

Apio) = 3 [ peVodo— [ (b} - Culpllv] ds

= —Z/vvv-pdx—i—/r ({v} + Ci2 - [v])[p] ds,
J: VXV —=1Ras

J(6,0) = / Culéllv] ds,

and B: W x W — R as
B(z;p,w) = / a(z)p - w dx.
Q
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We also define the linear functionals L; : W — IR and Ly : V — 1R as

Li(w) =/F gw.v ds and Ly (v) :/va da:+/r Ciigv ds.
e} Ied

Using the above definitions, we write the LDG method for the problem (3.1)-(3.2) in com-
pact form as : Find (up, qp, o) € Vi x W, x W, such that

A1 (gp, wp) — Ao(Wh, up) = L1(wp), wp € Wy, (3.21)
Ag(O’h, Uh) + J(Uh, ’Uh) = LQ(Uh), vy € Vi, (3.22)
B(up;qn, Th) — A1(oh, 1) =0, 71 € Wy, (3.23)

Since the numerical fluxes @ and & are consistent, we note that the following hold :

Ai(q,w) — As(w,u) = Li(w), wj € Wy, (3.24)
Ay(o,v) + J(u,v) = La(v), vp € Vi, (3.25)
B(u;q,7) — Ai(o,7) =0, T4 € Wy (3.26)

In order to derive the a prior: error estimates and to prove existence of a unique approx-
imate solution to the problem (3.21)-(3.23), we proceed as follows: Using the equations

(3.21)-(3.26), we obtain

A1(q — an, W) — Ag(Wp,u —up) =0, wy € Wy, (3.27)
As(o — op,vp) + J(u—up,vp) =0, vy € Vi, (3.28)
B(u;q,Th) — B(un; an, Th) — A1(0 — o4, Th) =0, T € W (3.29)

Adding and subtracting B(u; qp, T1), we rewrite (3.29) as
B(u;q—an, Th) — Ai(o —op, 7h) = /(a(uh) — a(u))an - Thdz,
Q
and using (2.7), we now arrive at

Blusq — @ 7a) — Ao — on ) + / (au(w)(u — up))q - Tada

= /Q(a(uh) —a(u))(qn — Q) - Thdz + /(a(uh) —a(u) — ay(u)(up — u))q - Trdz.

Q
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For notational simplicity, we introduce for 7, p, q € W and ¢, v € V
Nwaior) = [ (@was: dz
Q
M -wp-ar) = [ (@) aw)e-q-rd
Q

_ / 6, (v) (v — w)(p — q) - Tdz,

and
No(v - wiq,r) = / (a(v) — a(u) — ay(u)(v — u))q - Tdz

_ /Q G (0) (0 — 1)%q - T

Hence, the equations (3.27)-(3.29) take the form

A (g —qp, wp) — Ag(Wh,u —up) =0, w, € Wy, (3.30)
Ay(o — op,vp) + J(u—up,vp) =0, vy € Vi, (3.31)
B(u,q—qn, Th) + N(u, q;u — up, Th) — Ai(0 — o4, Th) = (3.32)

Ni(up —u;qn — d, 7h) + No(up —u;q, 7)), Th € W

We state the following lemma without proof. The proof follows by an appeal to Cauchy-

Schwarz inequality and using the assumption on u and a(u).

LEMMA 3.2.1 There exists positive constants Cy and Co such that for all (v, w) € VXW,

B(u;w,w) + N(u, v, w) + J(v,v) > G, <||w||2 3 cnlvfds) ~ Gyl

e €l €k

3.2.1 Existence and Uniqueness of the Discrete Problem.

For a given z € V},, we define a map S, : Vj, = V,, by Sp(2) =y € V, and q,, o, € W,

satisfying
Ai(q—q,,wy) — As(wh,u—y) =0, w, € Wy, (3.33)
Ay(o —o,,vn) +J(u—y,v5) =0, vy €V, (3.34)
B(u;q— o, ) + N(u, qsu —y,7h) — Ay(o — 0, Th) = (3.35)

Ni(z —u;q, —q,7p) + No(z2 —u; 4, T1), Th € W,
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We write e, = u—y = & —n, where {, = Iyu—y and n, = Iyu—u. Similarly,e, = q—q, =
£, —n,and e, =0 -0, =§, —n,, where {, = ha—qa,, n,=Irha—q, §, =1lo -0,
and n, = Ilo — o. With these notations, we rewrite (3.33)-(3.35) as

Al (Eqa Wh) - AQ(Wha é.y) = Al (nqa Wh) - AQ(WIH nu); w e W7 (336)
Az(&yyvn) + J(&y, vn) = Aa(n,, vn) + T (s vn), vn € Vi, (3.37)
B(U, &qa Th,) + N(“’a q; gya Th,) - Al(go" Th) = B(U, nq’ Th) (338)

+ N(u, &30, Th) — A1(Ny, Th) + Ni(2 — 43, — Q, Th) + No(z — 439, T4), Th € Wh.
First we show that S, maps from a ball Os(I,u) to itself, where
Os(Ihu) = {z € Vi : |||z — Ipul|| < 6}

and

1/2
=7 <|||77u|||2+||77q||2+||m||2+Z/ {Iml}QdS) :

e, €l

REMARK 3.2.1 In our subsequent analysis, it is enough to assume that a(-) is bounded in
a ball around w. This fact follows from Remark 2.3.5 in Chapter 1.
The following lemma will prove to be useful in our error analysis. The proof is an easy

consequence of Lemma 1.2.1 and Lemma 1.2.5.

LEMMA 3.2.2 There is a constant C' which is independent of h and p such that

Np, 2u+
h;™
(I\Inu|||2+||?7q||2+||770||2+Z/ Q{IUUI}ZdS) < C (Z o IIVUI|§,>

e €T i=1 ¥t

Np, hQNl
+ C ZF”u“sﬂrl ;

i=1 i

where p = min{s;, p; + 1} and p} = min{s;, pi}.
Since u € H%(Q), using Lemma 3.2.2, it is easy to see that

1<¢<Np,

50 (lullo) 5 ( mag /ol (3.3
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LEMMA 3.2.3 Let the assumption (Q) holds. For any 0 < € < 1/2, there exists a constant
C such that

INi(2 — useq, T) + No(z —u;q,7)| < C (W279|€, || + A2 8) |7 (3.40)

qll

Proof. First, we consider the first term on the left-hand side of (3.40) and rewrite it as
M- wiao—ar) = [ aa)e- ) - @) rds
0

_ /Q () (2 — Tyw)€, - Tz + / () (2 — Iyu)m, - Tdz

Q

—/&u(z)nuﬁq-‘rda:—i—/&u(z)nunq-rdac. (3.41)
Q

Q

Using the inverse inequality (1.20) and Lemma 1.2.1, we estimate the first term on the

right-hand side of (3.41) as

Np,
‘/Qdu(z)(z — ), - Tdz| < CZ”Z — Tnul| g 1€l a2 || 71| 2 (k)2
1;: 1/2
< CZ%”Z — Thul| iy 1€l L2k |71 22
=1 N
< C(maX ﬁ) [z = Znull] [I€] I
< S5, 7 g

1/2
= ¢ (mN hw) x (mNp—/) AN
< CRPIE | Il (3.42)

For the second term on the right-hand of (3.41), we use Lemma 1.2.5 and the trace inequality

(1.19) to obtain

Np,
|/Q&u(2)(2—fw)77q'7'd$| < O Iz = Ivull a1l acrenp |17 | 22y
=1

Np h;/z
< 0y 7z 2 = Inullsgy lallar o2 1712wy
i—1 P L
< C <1£2)I§h p§/2> |z = Inull| [lallzr @2 (|7l
< ChY%5 ||| (3.43)

64



Similarly, using the inverse inequality (1.20) and Lemma 1.2.1, the third term on the right-
hand of (3.41) is estimated as

Np,
\/Q&U(Z)nuﬁq-‘fdx\ < Imallzagen €l gz 17y
1=1

Np h3/2 1/

2
< Yl il iz
=1 173 7

< Ch gl [Il- (3-44)

For the fourth term on the right-hand side of (3.41), we apply Lemma 1.2.1 to find that

Np,
|/Q5tu(7«)7lu7’lq'7'd$| < Y imallzacen gl g 171l
i=1

Np h}71/2
< CZ%WH%HL‘*(&-)||Q||H1(K¢) 7|l L2k
1=1
< ChY?([|mu]|| |||
< ChY**<5 || (3.45)

Finally, consider the second term on the left-hand side of (3.40). We bound this term as

follows:

Np,
| / dun(zn2a - dz] < O [nullZae 17l
=1

< Olllmalll? 17122 ry2
< Chll[nall[ Il
< Ché ||| (3.46)

Now, we combine (3.41)-(3.46) to complete the rest of the proof for any 0 < e < 1/2. =

LEMMA 3.2.4 There exists a positive constant C' such that

INi(2 — useq, ) + No(z —wsq, )| < C ([l = ulll” + llegll [z = wlll) |7 llzs). (3-47)
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Proof. First, we consider the first term on the left-hand side of (3.47). Using the arguments

as in Lemma 3.2.3, we arrive at

M -wia.—ar) = | [ @) w@ -l
Q
< Clll=ulll e lrllacor (345

Next, consider the second term on the left-hand side of (3.47). We bound this term as

follows:
Nz = wia )| = | [ o)z - wPa-
Q
< Cllz = ullzsg) lallzs? ITllz@y
< Clllz = ulll* I llzacoe. (3-49)
Now, we combine (3.48)-(3.49) to complete the rest of the proof. n

LEMMA 3.2.5 There exists a positive constant C such that
| B(u; 1y Th) + N (u, @31, Tn) — A1(g, Th)| < C ([l + llmall) I7all,  7h € Wi
and for w, € W,
[Au(mgywa) = Aa(wn, 1) < C (llmgl” + [[1mal 1) [

Proof. Since n, = Ilo — o, where Ilo is the L? projection of o, an appeal to the Cauchy-
Schwarz inequality yields the proof of the first inequality of the Lemma. For the second

inequality, we note from the definition that

Np,
A1("7q,Wh) — Ay (Wh, ) = / Ny - widr + Z/ NV - Whdx — {nu}wnlds
Q 1 K T;

_ /r Cia-[mu][walds. (3.50)

For the second term on the right-hand side of (3.50), we integrate by parts to obtain

Nh Nh
S [ nvewide— [ nwalds ==Y [ Vown+ [ Inl{waas
-1 JKi Iy i=1 7 Ki r

66



and hence, using the trace inequality (1.19) for [ = 0, we arrive at

Np,
> [ nvewide = [ {matwalds) <l vl (3.51)
i=1 v Ki Iy
A use of Cauchy-Schwarz inequality yields

| / 1, - wadz| < |l il (3.52)

Next, using the trace inequality (1.19), we bound the last term on the right-hand side of
(3.50) as :

) 1/2
p
[ Culniwlasl < © (Z / h—’“[nuIZ) eI (3:3)
Ty eg k
ekEFI
We combine (3.50)-(3.53) to complete the rest of proof. n

THEOREM 3.2.1 There is a positive constant C' such that for any 0 < € < 1/2

€11 < C (€1l + 1 Il + llmall + [lm | + B/>~5) .
Proof. Using (3.35), we write
B(U, Eqa Th) + N(’U,, q; §y7 Th) - Al (605 Th) = B(U, Ure Th) + N(’U,, q; Ty Th)
—A1(My, Th) + Ni(z —us €4, 7) + No(z —usq, 7). (3.54)
Set 7, = &, in (3.54) to obtain
/EU-Eadx = B(u,&;,&,) + N(u,a;&,&,) — B(u;m,, &,) — N(u,q;ny,&,)
Q
+A41(1,5,&,) — Ni(z — u;€4,€,) — No(z — u;q, ;). (3.55)
Then, a use of Lemma 3.2.3 and Lemma 3.2.5 completes the proof of the Theorem. [ ]

THEOREM 3.2.2 Let z € Os(Ipu) and (y, q, 0,) € V. x W x W be the corresponding
solution of (3.33)-(3.35). For any 0 < € < 1/2 the following estimate holds :

1/2
hi 2 2 2
leyll < (1221@?) (I|£q|| +) [ Culgl ds) + Col||z = ul]]

epel €k
h;
+C3(he + hY/*) ( max —) d+ Culleg| ||z = ull].

L<i<Ny pl/2
7
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Proof. We now appeal to the Aubin-Nitsche duality argument. Consider the following

auxiliary problem :

-V - (a(u)Ve) +a,(v)Vu-V¢ = e, in,
¢ = 0 on 09,

which satisfies the elliptic regularity
18]l 2(2) < Clley|- (3.56)

In order to write the mixed weak formulation, let p = V¢ and —¢ = a(u)p. Then, we

obtain
p = Vé in (3.57)
—¢ = a(u)p inQ, (3.58)
V-Yp+a,(u)g-p = e inf, (3.59)

We multiply (3.59) by ey, (3.58) by €, and (3.57) by e,, then integrate to arrive at
le,I? = / e,V - pdx + / ay(u)qey, - pdz +/ a(u)p - e dz + / Y - e
Q Q Q Q

—/p-egdx—i-/V(ﬁ-egdx.
Q Q

Since [¢] =0, [¢p] =0 on e, € I'; and ¢ = 0 on Of2, we now arrive at

”ey”2 = Al(elb '(,b) - AQ(‘lba ey) + B(U, €q; p) + N(“? q; €y, p) - Al(e07 p)
+A2 (eaa (b) + J(eya ¢)

Then, using (3.33)-(3.35), we obtain

eyl = Ai(eg,my) — Aa(ny. €y) + Aa(es, 1p) + Blus e, m,) — Ai(es, m,)
+N (u, q; ey, m,) + J(ey, 1) + Ni(z — u; eq, Ip) + N(q; 2z — u, I,p),(3.60)
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where ng = ¢ — I¢, n, = p — I,p and n,, = ¢ — I1eh. We now expand (3.60) to find that

Ny,
lel? = / ey - 10z — / er mpdz+Y [ V- mydz— / (e} mylds
I

i=1 Y Ki

Np,
+ 3 [ eo Vo~ [ ({ea} = Culey] — CualesDlnelds
i=1 i

+ /Q a(u)e, - mde — /F Culeylimylds + / 0 (u)aey - 0, dz

Q
— Ni(z — u;eq, Inp) + No(z — u; q, I,p). (3.61)

Since IItp is the L? projection of 1, we bound the following terms using Lemma 1.2.5 as:

> [ eVende— [ {enldsi=1= 3 [ Ve, mydat [ lelimas
=1 i I i=1 i
Np, Np,
- |_Z/ Vn“'n’/’dx_Z/vay nwdx+/|ey]{77w}d5|
i=1 i i=1 i
Np, h2 1/2
< C (Zp—éllvnullim)) 19 1 ()2
i—1 Vi
2o NP e\
(] ) ([ o)
el €k k €k pk
Ny, h2 1/2
< C (Zp_;”V%H%Z(Ki)) %] z1(0)2
=11
h2 p2 9 1/2
+ Z/ —leu ds | l9llmp (3.62)
e €l ekpk hk

Next, using Lemma 1.2.1 we find that

Nh 2

1/2
hi
|/Qeq.77¢dx+/ﬂa(u)eq-npdx\ <c (Zﬁueqniz(w) Ipllme.  (3.63)

=141
Again a use of Lemma 1.2.1 yields

Nh 2

Ny, 1/2
h2
|Z/K €, - V?’]¢d$ - /Qeg - 'r,pd$| S C (Zp_;”ea||%2(l(i)2> ||¢||H2(Q) (364)
i=1 i

i=1"1
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and

Na o 1/2
h;
\/Qau(U)qey-npdx\ <C (Zﬁlleylliz(m)) [Pl (0)2- (3.65)

=11

Using Lemma 1.2.5, we obtain

| 5 Cialeyllnylds| < € ) (/ek Cllley]2d8)1/2 (/ek %{nw}%) 1/2

1/2
h2
C(Z/—gCu[ey]st) 1%|| 1.5y (3.66)
e €l ¥ €k

k

IN

Now an application of Lemma 1.2.1 with the trace inequality (1.19) implies that

[tesr — Culesbinidast <€ Y ([t Minads+ [ G Hinelas)

el

1/2

—{1€,[}ds + ’“{Im\}st) 161l 22
o(m/ Hueres ]
< c(mN p—/> & 1620

(Z/ k{|na|}2d8> 18] m2(0) (3.67)

VAN

and

[eutenan < o5 ([ cukapa)” ([ Rira)”

er€l’

IA

1/2
h2
C Z “£0nle,ds | ol me)- (3.68)
ekEF k

Finally, using Lemma 3.2.4 and the stability of I, that is, || I,p||z@)2 < C||Plla1 ()2, We
find that

|N1(z — useq, Inp) + Nao(z — u;q, I,p)|
< Clllz = ull]® Iplla ey + lledl |z = wll] Ipllar @) (3-69)
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We combine the estimates (3.62)-(3.69) and then use elliptic regularity (3.56) to obtain

1/2
h
leyll < C(Z —llE, ||L2K)2+Z/ ~ECu[&]"d ) + Coll|z — ul|[*

i=1 i e €l
N, 12 1/2
05 | 3 (Ml + Imalliecy: + ||m||%2(K,.>2))
=11

1/2
e Z/ kc“'"“'d”/ k{‘"v‘}2d8> + Calle | [ll2 = ]|

e €l

+Co | max p1/2) [1€51]- (3.70)

Then, a use of Theorem 3.2.1 completes the rest of the proof. [ ]

THEOREM 3.2.3 For all 0 < h < hg where hg < 1, there is a 6 = 6(h) > 0 such that Sy
maps from Og(Inu) into itself.
Proof. Set vy, =&, 74 = §, and w;, = £, in (3.36) -(3.38). Using Lemma 3.2.1, we obtain

v (I + [ Culel) - Callyl” < Axe &) — As(E,6) + Blus €,
—As(€,,€,) + N(u,q;6,&,) + A2(&,, &) + J1(&y, &y
= A1(ny, &,) — A2(&ys ) + Bu;my, €,) — Ai(n,, €

+N (u, o3 7, ) + A2(n,, &) + J1 (1, &y
+Ny (2 — u; €, £q) + No(z — u; q, Eq). (3.71)

)
)
)
)

From the definition of Ay and J, we write

i) 6) = 35 . -veas
- /F({"o} = Culnu] = Cralm, ))& ds- (3.72)

Since Ilo is L? projections of o onto W}, we obtain

> /K My - Véydz = 0. (3.73)



Next, using the trace inequality (1.19) and the assumption that Cy;|e, = 8p?/hk, we bound

the following terms as:

1/2
| [, ~ Culnd - Caln,Dlglas| < C(Z ¥ {|m\}2ds> T(E6)

+ C J(Nusnu) T (&5 &)

An appeal to Lemma 3.2.5 with 7, = £, and w, = &, yields

[ B(u;mg, &) + N(u, 410, &) = AL, €5)| < Clllmgll + lInal 1€, (3.74)

and

[A1(ng,€5) — A2(€q, )| < CllmalI] 1€, (3.75)

For the last two terms on the right-hand side of (3.71), we set 7 = £, in Lemma 3.2.3 to

obtain

|N1(Z — U; €, gq) + N2(z —Uuq, Sq)‘ < C’hl/276||£q||2
+RY2E 5 IE . (3.76)

An appeal to Theorem 3.2.1 implies that

1€, < C (€Il + 1€l + llmall + llmgll + [I75 | + R'7*75) . (3.77)

We combine the estimates (3.71)-(3.77) to obtain for sufficiently small h

(e + [ Cule) < G QimllE + gl + il + 1

+° / {|m\}2ds) Gl P

ep€l

< Oy (Re+ h1=%) 6% + Gy, |12 (3.78)

Using Theorem 3.2.2 and the estimate (3.78), we find that for sufficiently small h

1/2
(IIE I+ / Culél ds) < O (h*+hP7 4 6) 6. (3.79)

er€l
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Next, set wj, = V&, in (3.36) to obtain

Ny, Np,
T /K €, Vedr+S /K 6V - Vedr — /F ({6, + Cuale,)[VE, lds
i=1 i i=1 i I

= Al(?’lq, V&) — A2(VEy, nu)-

An integration by parts yields

Np,

—Ai(n,, V&) + As(VEy, 1)

Then, using the trace inequality (1.19) and Lemma 3.2.5, we obtain

1/2

N 1/2
(Z / i||vsy||%z<&)dx> < c(le+ [culgPas+ ) (250
Substituting (3.79) in (3.80), we obtain for small h and 0 < 6 < 1 with 0 < e < 1/2
1&]1] < C (A€ + BMY* ¢+ 68) 6 <. (3.81)
This completes the rest of the proof. [ ]

THEOREM 3.2.4 Let z1, 2o € Os(Ipu) with 0 < § < 1. Then for sufficiently small h and
0 < e < 1/2, there exists a constant C' such that

[[Shz1 — Shaal|| < CRY27¢||21 — 2o || (3.82)

Proof. Let y; = Sizi, q,, = q; and o,, = oy, for : = 1, 2. From Theorem 3.2.3 and the
estimates (3.77) as well as (3.79), it follows that

(Wlys = Inull| + llai = Inall + llos = Ter| ) < € (A + Y2+ 6) 6.
Using (3.33)-(3.35), we note that for any (wp, vp, 74) € Wp X Vi, X Wy,

Ai(d1 — Qa, W) — Ao(Wp, 91 — y2) =0,
Ay(oy — og,v) + J(y1 — Yo, vp) =0,
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and

B(U;(h—Q2;Th)+N(an;yl—yQ,Th)—Al(U'l—0'2,Th)

= /Q(a(zl) —a(u))(qr — q) - Thdz + /Q(a(zl) —a(u) —ay(u)(z1 —u))q - Trdz
- [ (ale2) = aw) e~ @) 7z — [ (a(e2) = ) = ()~ w)a- e

Q
We rewrite (3.83) as

B(u;q1 — qo, Th) + N(u, a3 y1 — Y2, Th) — A1(01 — 02, Th)

- / (a() — a(z)) (@ — ) - Tade — / (a(z2) — a(w))(ai — az) - Thde

Q

+ /Q(a(zl) —a(z9) — ay(22)(21 — 22))q - Thdx

— /Q(au(zg) — ay(u)) (21 — 22)q - Thdz.

Now using similar arguments as in Theorem 3.2.3, we first obtain

1/2
(”(h - (12||2 + Z Culy — y2]2ds) < 01h1/2_6|||21 — 29|

e €l €k
+Ca|lyr — 1l
and

oy — ool < Cih'?7||21 — 2| + Callyr — v2l-

Then, an application of duality argument as in Theorem 3.2.2 yields

1/2
Iy — woll < CR'P€ (”(h — | + Z Culyr — 92]2d8> .

e €l €k

Since

1/2
[y — gell] < C <||q1 —@lP+ ) [ Culy - y2]2d8> ,

erel’ €k

we combine the estimates (3.84)-(3.87) to complete the rest of the proof.

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

Now, we conclude from Theorem 3.2.4 that the map Sj is well defined, that is, the

linearized problem (3.33)-(3.34) is well-posed and continuous in the ball Os(I,u). Hence,
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an appeal to Brouwer fixed point theorem implies that Sy, has a fixed point u;, in Os(Ipu).
Then, using Theorem 3.2.4, it is easy to see that uy, is the unique fixed point in Os(I,u)
for small h. Moreover, (up,qn = Qu,,0n = 0y,) is the unique solution of the problem

(3.30)-(3.32).

3.2.2 A priori error estimates.

Note that u — uy, satisfies the estimate (3.81) and Theorem 3.2.2 by replacing y by up,
Further, from the estimate (3.79) replacing q, by q; and using the property of I, we
arrive at an estimate of q — qj,. Hence, by choosing € = 1/4, we easily prove the following

theorem.

THEOREM 3.2.5 There exists a constant C' such that for sufficiently small h the following

estimates hold:

IN

[l =

2,u+ hZul
CZ ( %5; ”VUHH%(Kl) +p23l71||u”H5 +1(K)) J

2 u 2u
i h i
la—anl]® < CZ ( — [ VullFsi i,y + ]#”unilsﬁ‘l(lﬂ)) ;

2

and

2\ Q[ p2 h
2 E ' 2 e ||u|?
lu—up|]® < C < max —) plgsi ||VU/||H‘S@'(K¢) + p2§i—1”“”Hsi+1(Ki) ?
i

R ) :
1=

where = min{s;, p; + 1} and p; = min{s;, p;}.

REMARK 3.2.2 . Note that the error estimates obtained in the above theorem are optimal
in h and suboptimal in p. These estimates are exactly same as in the case of linear elliptic

problems, see [57].

3.3 Numerical experiments

In this section, we discuss some numerical results to illustrate the performance of the LDG

method applied to two different types of nonlinear elliptic problems. Since the scheme deals
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with discontinuous finite element spaces, the global basis functions can have support only
on a single finite element. Hence, the assembly of the local matrices to the corresponding
global matrices is easier than in the case of conforming finite element method.

For both the examples, we take Q = (0, 1) x (0, 1) and g = 0. The finite element
subdivision 7}, is of uniform triangles and the discontinuous finite element spaces of degree
p=1and p=2 (p; = p Vi). Take the stabilizing parameter 5 = 1 and set C1» = (1, 1).
The LDG method (3.18)-(3.20) has three unknowns, namely; uy, q, and . Using (3.18),
we first solve qp, in terms of u, to write the system (3.19)-(3.20) in two unknowns u, and
o;,. Then, we apply the Newton’s method to solve the resulting nonlinear system.

Let N, and N,, be the dimensions of V}, and W},. If p = 1, we choose the basis {(bi}fvz”l for
Vi, as in (2.60)-(2.61) and if p = 2, we then choose the basis as in (2.62)-(2.66). Now, let
{¢l}fiw1 denote bases for Wp,, which is obtained by taking tensor product of the basis of

V. Then, we define the following matrices

A= [aml]lgm,ngw ) B = [blihglgNw, 1<i<Ny D= [dij]lsi,jSNu (3-88)

and the vector

= [li]1§i§N,,,1 )

where
Np,
oy = / R R S RAS TS / ({61} + CraloiD [l ds
=1 er€l'r
=) Cnﬂqﬁz [6;]ds,  and [ = / foidx.
er€l Q
Write
Ny Nu Nu
Uh:Zai¢ia Qh:sz'ﬁbz and C"h:Z%’le, (3.89)
i=1 =1 1=1

where a = [y, a9, ,an,], b = [b1, ba,---,bn,] and v = [y1, Yo, -+, vn,]- Using the

bases for Vj, and Wy, (3.18) can be reduced to the following matrix equation

Ab+ Ba =0, with A, B defined as in (3.88). (3.90)
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Since the basis functions {wl}l]i“’l can be assumed independently in each triangle K € T},

the symmetric positive definite global matrix [A] has the following block diagonal form

4] = [[Ax], s [Axy, ]|

where only the diagonal entries are shown. The other entries in [A] are null matrices. The
element matrices [Ag,| are symmetric and positive definite for s = 1, 2,...., N}, [A]™! has
the block diagonal form

A7 = [[Ar] ™ s Ay, ] 7

From (3.90), it is easy to see that b = —A~'Ba. Substituting b = —A™'Ba in (3.19)-
(3.20), using (3.88)-(3.89) and the bases for V},, and Wy, (3.19)-(3.20) can be reformulated
as : Find [y, a]? such that

Fl(y,0) =0 for 1<i<N,,

1

F’(v,a) =0 for 1 <1< N,,

where
Ny Ny
Fil(’y’ a) = Z f)’m(_bmi) + Zajdji — 1,
m=1 j=1
Ny Ny Ny
) = [ Deser) (3 Bolt ) itz - 3 v
@ j=1 m=1 m=1
Ny
and [-A'Ba],, = — Z(A_IB)m,jaj-
j=1

In order to solve the nonlinear algebraic system, we apply the Newton’s method. The

Jacobian Matrix J of the system takes the form

-BT D
J = ,
-A G

where G = [gi;] = [0F?/0c;] and BT is the transpose of B.

Example 1. In this example, we set the nonlinear term a(u) as 1+ u?, and choose the load
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function f suitably so that the exact solution is u = x(e — e”)y(e — €¥). The initial guess
for the Newton’s iteration is taken to be the solution of the LDG method corresponding
to the linearized problem, i.e., by setting a(u) = 1. For this example, we consider the
approximate solution obtained after 10 iterations. The order of convergence for e, = u—uy
and e, = q — qp is computed for the cases p = 1 and 2. Figures 3.1 and 3.2 show the
computed order of convergences for ||e,|| and ||eq||, respectively, in the log-log scale. These

computed order of convergences match with the theoretical order of convergence derived in

the Theorem 3.2.5.

Figure 3.1: Order of convergence for ||e,|| in Example 1.

— p-1
—*—p=2

Figure 3.2: Order of convergence for ||e,|| in Example 1.

p=1
—k— p=2

e
llegl

Example 2. Set the nonlinear term a(u) as 1 + v and choose the load function f so that
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the exact solution is u = 27/2(1 — )y"/?(1 — y). The initial guess and the number of itera-
tions for the Newton’s method are taken as in Example 1. We then compute the order of

convergence for e, = v — u;, and e, = q — qy, for the cases p =1 and 2.

Figure 3.3: Order of convergence for ||e,|| in Example 2.

p=1
——p=2
2
1
3 i
4

Figure 3.4: Order of convergence for ||e,|| in Example 2.

p=1
—k— p=2 /
1
1
2
1

o 107}

e
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Figures 3.3 and 3.4 show the computed order of convergences for ||e,|| and ||eq]|, respectively,
in the log-log scale. These computed order of convergences match with the theoretical order

of convergence obtained in Theorem 3.2.5.
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Chapter 4

DG Methods for Strongly Nonlinear
Elliptic Problems

4.1 Introduction

In this Chapter, we discuss the hp-discontinuous Galerkin methods for the following strongly

nonlinear elliptic problem:

-V -a(x,u, Vu) + f(x,u, Vu) = 0, x € Q, (4.1)
u = g, x € 01, (4.2)

where 2 is a bounded domain with boundary 0€2. Problems of the type (4.1)-(4.2) arise
in several areas of applications such as the mean curvature, subsonic flow and Bratu’s

problem. In particular, we have the following for examples which fall under this form.

1. In mean curvature flow, we note that

a(x,u,Vu) = [1+ ||Vu||2rl/2 Vu, f(x,u,Vu)= f(z).
2. In subsonic flow of an irrotational, ideal and compressible gas problem, we have

1/(v=1)
] Vu, v>1, f(x,u,Vu)= f(zx).

-1
a(x, u, Vu) = [1 - VTHVUHQ
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3. In Bratu’s problem, we observe that

a(x,u,Vu) =Vu, f(x,u,Vu)= A", A > 0.

The work on the discontinuous Galerkin (DG) methods for the linear elliptic problems can
be found in [61], [58] and [5]. Except for [45], there is hardly any result on the DG methods
for the nonlinear elliptic problems. In [45], the authors have discussed DG methods for a
class of monotone nonlinear elliptic problems. Therefore, in this chapter, an attempt has
been made to study the DG methods for the strongly nonlinear elliptic boundary value
problems (4.1)-(4.2) in which the principal part may not satisfy the strongly monotonicity
and uniformly Lipschitz continuity conditions. Note that principal part in the examples 1
and 2 satisfy one of these conditions only.

We have developed a one parameter of DG methods for the problems (4.1)-(4.2) and have
derived error estimates in broken H'-norm which are optimal in A and mildly suboptimal
in p. These estimates are precisely the same estimates, that is, optimal in A and suboptimal
in p estimates in the case of linear elliptic problems.

The rest of the chapter is organized as follows. Section 4.3 is devoted to the discontin-
uous Galerkin formulations and error estimates. In this section, we have also introduced
a one parameter family of discontinuous formulation which is parametrized by 6 € [—1, 1],
which are exactly same as nonsymmetric when = +1 and symmetric when § = —1 in the
case of a(u, Vu) = Vu and f(u, Vu) = 0, that is, in the case of Laplace equation. We have
discussed the existence of a discrete solution using Brouwer fixed point theorem and have
derived the hp-error estimates in broken H'-norm. In section 4.4, we have derived optimal

h and suboptimal p error estimates in the L?-norm when 6§ = —1.

4.2 Discontinuous Galerkin Methods

In this section, we again recall the following nonlinear elliptic boundary value problem :

2
- Z %(x, u, Vu) + f(x,u, Vu) = 0, x € Q, (4.1)
i=1 "
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where Q is a bounded domain in IR? with smooth boundary 0Q or piecewise smooth as
required by our regularity results. We now make the following assumptions on the coeffi-
cients a;, forcing function and f and the boundary function g. We assume that g can be
extended to 2 to be in H%?(Q) and there exists a unique weak solution u of (4.1)-(4.2)
such that w € H®?(2). The functions f, a; : @ x R x R* = IR, i = 1, 2, are twice

continuously differentiable functions with all the derivatives through the second order are

da;
0z;

A(x,u,z), A(z,u,z) are minimum and maximum eigenvalues of the matrix [a%], then for

all ¢ € R? — {0} and for all (x,u,2z) € Q x R x R?

bounded. Further, assume that the matrix [a” (x,u,z)] = [ ] is symmetric and if
1,j=1,

0 < A(x, u,2)[¢]* < a¥ (x,u, 2)&&; < Az, u, 2)[¢" (4.3)
Finally, assume that if ||ulyz o) < o, then there is a positive constant C, such that
0 < Cy < A(x,u, Vu). (4.4)

Here, onwards we do not specify the dependence of the functions a;, f on x and we set
a = (a1, a2). Note that we define f, (or a,) by the partial derivative of f(u,z)(or a(u,z))
with respect to its second argument.

In our subsequent analysis, we use the following integral form of the Taylor’s formula for

(v,p) € V Xx W in terms of (u,q) € V x W:

f(U,p) - f(u,q) = _fU(u7 q)(u - U) - fq(uvq)(q_ p) + Rf(u —-v,q- P),

= —fulu,@)(u—v) — fq(u,q)(a— p). (4.5)

with v = u +t(v — u), p' = q + t(p — q), the reminder terms in (4.5) are given by

1 1
Fulu,q) = / @t Ot Foluq) = / f (o, Pyt

and

Ri(u—0v,d-P) = fuu(v,p)(w—2)*+(a—p)" faq(v,p)(ad — P)
+2fuq(v,P) - (@ — P)(u —v),
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where
~ 1
ﬂMum=/Uf0MM%ﬂ%
~ 01
Faalv,D) = / (1~ ) faq(v, D),

Fua(v,p) = / (1= ) fug(e', ).

Similarly, we note that (4.5) can be modified for vector valued function a = (a1, as) as

follows :
a(v,p) —a(u,q) = —a,(u,q)(u—v) - aq(u,q)(q = p) + Ra(u — v,q — p)
= —ay(u,q)(u —v) — aq(u, q)(q — p), (4.6)
where
3 (1, q) = /0 Cau(oh, Dt ag(u,q) /0 g (vh, p1)dt
and

Ri(u—v,q—p) = (Ral(u—v,q—p),f%az(u—v,q—p))-

Since a and f are twice continuously differentiable functions with all the derivatives through
the second order are bounded, we note that a,, a4, auu, aqq, auq, Aqu, fu, fq, fuu, qu,

fqu and fuq € L=(2 x IR x IR?). We now denote C, by

Co= max{”anwgo(ﬂxmxm?)a ||f||W§o(QxIRxR2)}' (4.7)

REMARK 4.2.1 For our subsequent analysis, it is sufficient to assume that a and f are
locally bounded. In fact, it is enough to assume that a and f along with its derivatives are
bounded in a ball around u, see Remark 4.2.5.

DG methods. For given w and v € H%(Q, 7), we define the form B(w,v) as

Np Np
B(w,v) = Z/K a(w, Vw) - Vv dz + Z/K f(w, Vw)v dz + J°(w, v)
i=1 /K =1/ Ki

S / {a(w, Vo) v}o] ds+0 3 [ {a,(w, V) Vo - v}[w] ds

e €'y €k er€ly €k
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- Z / a(g, Vw) - vv ds + 6 Z a4 (g, Vw)Vv - v(w — g) ds

ep€ly ¥ €k er€lp ¥ €k
- Z / {fa(w, Vw)v - v}w] ds (4.9)
ekEFI €k

where 6 € [—1,1], v = 0 when 0 € (—1,1], and v = 1 when # = —1. Further, let

We now define the hp-discontinuous Galerkin method for the problem (4.1)-(4.2) as : Find
up, € Vj, such that

B(Uh, Uh) = L(’Uh) \V/’Uh € Vh. (410)

REMARK 4.2.2 Note that in the formulation of B(-,-), there are three special terms that is
fifth, seventh and eight terms appearing on the right-hand side of (4.9). In fact, this weak
formulation boils down to the earlier weak formulations appeared in the literature for the

following cases:

1. Linear case, i.e., a(u, Vu) = Vu and f(u, Vu) = 0, see [61].

Since a,(u, Vu) = Iyyo, where Iyyo is the identity matriz, a,(u, Vu)Vv-v = Vv - .

2. Quasilinear case, i.e., when a(u, Vu) = a(u)Vu and f(u, Vu) =0, see [41]:
we note that a,(u, Vu)Vu - v = a(u)lano Vv - v = a(u)Vu - v.

Further for the linearized problem (4.18) (see, in the next subsection) of (4.10), these special
terms help us to preserve the unconditional stability of the method when 0 = 1, and, on the

other hand, they also preserve the adjoint consistency of the method, when 6 = —1.
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4.2.1 Existence and uniqueness of the Discrete Problem

We note that the solution u € H?(Q2) of the problem (4.1)-(4.2) satisfies [u] = 0 on each
e, € I'r and

Z/K a(u, Vu) - Vv dz + Z/K f(u, Vu)v dx — Z {a(u, Vu) - v}[v] ds

ep€ly ¥ €k

- Z a(g,Vu) -vv ds + J°(u,v) = L(v) Yo € H*(Q,T,). (4.11)

er EF@ €k

With v = v, € V, € H*Q,T;) in (4.11), we subtract (4.10) from (4.11). Then add the

following terms

7 Z / {az(u, Vu)Vu, - v}u — up)ds + 0 Z / a,(g, Vu)Vuy - v(u — up)ds

ep€l'r ¥ Ck er€ly ¥ €k

—y 3 [ {fulu, Vuoy - v}u — w) ds

ekEFI €k

to the both sides of the resulting equation. Hence, we arrive at

> /K (a(u, V) — au, Vi) - Vode + Y /K (7 V) = F(un, Vun)

=Y [ {(a(u, Vu) — a(up, Vup)) - v}oplds = > [ (alg, Vu) — alg, Vup)) - vus ds

er€l'y €k er€ly €k
+0 Z / {az(u, Vu) Vo, - v}u — up)ds + 6 Z / a,(g, Vu) Vo, - v(u — up)ds
exr€l'y €k er€l'y 2
+T°(u — up,vp) — Z {fa(u, Vu)vp, - v}u — up] ds =
ex€ly ¥
60 Z / {az(u, Vu)Vup, - v}u — up)ds + 6 Z / {az(up, Vup) Vo, - v}ug]ds
er€ly €k e €l €k
+0 Z a,(g, Vu)Vuy - v(u — up)ds + 0 Z a,(g, Vup)Vop, - v(up — g)ds
er€lg €k er€lg €k
3 [ A Vo - wl ds =9 Y [ (e, Vuu - vHu ds. (@12
ep€l v €k ep€l v €k
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Using Taylor series expansions (4.5)-(4.6), we rewrite (4.12) as

Np, Np,
Z/ a,(u, Vu)V(u — up) - Vopdz + Z/ a,(u, Vu)(u — up) - Vopdz
i=1 Y Ki i=1 Y Ki

— Z {az(u, Vu)V(u — up) - v} uvp]ds — Z {ay(u, Vu)(u — up) - v}vp]ds

er€l'r €k er€l'r €k

- Z a,(g, Vu)V(u — uy) - vo, ds + 6 Z {az(u, Vu) Vo, - v}u — up)ds

ep€lp ¥ €k e €l ¥ €k
Np,
+0 Z / a,(g, Vu)Vuy, - v(u — up)ds + Z/ fa(u, Vu) - V(u — up)vpdz
er€ly €k i=1 K;
Np,
+ Z fulu, Vu)(u — up)vpde + T (u — up, vp)
i=1 Y Ki
— Z {fa(u, Vu)vp, - v}Hu — up] ds = N (u, up; vp),
6kEF1 €k
where
Np,
N(u,up;vp) = Z/ Ra(u —up, V(u—up)) - Vopdz
=1 i

= Y [ (Rl V(= ) v}l ds

Np,
+ Z /K Ry(u — up, V(u — up))vpde
i=1 7 Ki

- Z V(u— up) s, (9, Vu)V (u — uy) - voy, ds

ep €y ¥ €k
s / {(a (1, V) — g (up, V) Vo - [t — 1] ds
ex€lr ¥ €k
+ 0> [ (a9, Vu) — a,(g, Vun)) Vor, - v(g — up)ds
er€ly v €k
— Y falu, V) — falun, Vug)vn - v} — ug] ds.
epc€l v €k

We now introduce some notations which simplifies the expressions in (4.13). Set

A(u) = az(u, Vu), b(u) =ay(u,Vu), f(u)= f(u,Vu), F(u)= fy(u,Vu).
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For given v, w and v € H%(Q, T), we now define the following forms

a(V;w,v) = Z/}; A(W)Vw - Vodx — Z /{A(w)Vw-l/}[v]ds

er€l'r €k

- Y [ A@)Vw-vods+0 > [ {A@®)Vv-vi{w]ds

ex€lp €k ep€l'r €k
+ 0 Z A(W)Vv - vwds + J (w,v)
er€lg €k

and

b(v;w,v) = Z/ | b(¢)w - Vodx — Z {b(Y)w - v}v]ds

ex€lr ¥ €k

+ Z/Kt f() - Vwvdz + z_:/m F(yY)wvdx — v Z {£()vy, - v}w] ds.

ex€l'r €k

Note that for fixed v, the form a(v;-,-) and the form b(%;-,-) are bilinear. The identity
(4.13) takes the form

a(u;u — up,vp) + b(u;u — up,vp) = N (u, up;vp)  Yop € V. (4.16)
Using interpolant Iu of u, we rewrite (4.16) for all v, € V}, as
a(u; Inu — up, vp) + b(u; Iyu — up, vp) = a(u;n, vg) + b(u;n, v) + N (u, up;vg),  (4.17)

where 7 = I,u — u. Now, for proving the existence of a solution u; to the problem (4.10),
we put the problem in the fixed point formulation and hence, define a map S, : Vj, — V},

as follows. For a given y € V}, find Sy, (y) = u, € V}, such that for all v, € V},
a(u; Inu — uy, vp) + b(u; Inu — uy, vy) = a(u;n,vp) + b(u;n,v) + N (u, y;vp).  (4.18)

Below, in Theorem 4.2.1, we have shown that the map Sj is well-defined. Note that the
existence of a fixed point of the map S; is equivalent to the existence of a solution to
the discrete problem (4.10). The following lemmas are useful for our subsequent analysis.
Using the techniques of [58] and [66], it is easy to prove the following 3 lemmas that is

Lemma 4.2.1, Lemma 4.2.2 and Lemma 4.2.3. Hence, the proofs are omitted.
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LEMMA 4.2.1 (Garding Type Inequality) Let 0 < o¢ < o < 0. Let o9 > C(Cr,C,), in
case B € [—1,1), and 09 > 0, when = 1. Then, there are two positive constants Cy and

Cy such that
a(u; vp, vp) + b(u; vp, vp) > O |[|val]||? — Collvnl|> Von € Vi (4.19)

LEMMA 4.2.2 Let oy, < 0, and w € H*(Q, Ty). Then, there is a positive constant C' such
that

|a(u; w, vp) | + [b(w; w, va)| < Clf[wl[l] [[[oall] - Von € Vi (4.20)

LEMMA 4.2.3 Let oy < o, and ¢ € H%(K;), s; > 2, 1 < i < Np. Then, there is a

positive constant C such that

Np, h%ui—Q 1/2
¢ — Ingll| < C (Z Wllcﬁnzwm)) : (4.21)

=1 2

where p; = min{s;,p; + 1}.

LEMMA 4.2.4 Assume that (f,(u, Vu) —V -a,(u,Vu)) > 0 and 0 < h < hy < 1. Then,
for given & € L*(Q), there is a unique ¢y, € V}, satisfying

a(u; Vn, Bn) + b(us vp, dn) = (&, vn) - (4.22)

Moreover, there is a positive constant C' such that

enlll < ClEll- (4.23)

Proof. An appeal to Lemma 4.2.1 yields

Culllgnlll” = Cellgnll® < Calu; én, $n) + b(u, n, ¢4)

= (6) ¢h)
< Clgll lell-
Therefore, we obtain
[@nl[| < Cillgnll + Coll€]]- (4.24)
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In order to estimate |||, we appeal to the Aubin-Nitsche duality argument. We now

consider the following auxiliary problem :

—V - (A(w)VY +b(u)y) +f(u) -V + F(u)yp = ¢, on Q, (4.25)
¥ = 0 on 0.

Using the form of F' and b, we note that F'(u) > V-b(u). Hence, it follows from [40, Lemma
9.17] that there exists a unique solution 1 € H?*(Q) to the problem (4.25) satisfying the
elliptic regularity

%]l 2() < Cllenll- (4.26)

Note that [)] = 0 on each e;, € . Now, form an L2-inner product between (4.25) and ¢,.

Then, apply integration by parts and use Lemma 4.2.3 to arrive at

I6all> = alu; 9, ¢n) + blu; 9, bn)

a(u; ¥ — Int, én) + b(us 0 — Inth, én) + (&, Int))
< Ol = Lnpl[] el + €N el

< C(hlllnlll + €N 11l 220

A use of the elliptic regularity (4.26) yields
[6nll < Chll[énll] + ClIE] (4.27)

Substituting (4.27) in (4.24), we obtain for sufficiently small & the required estimate (4.23).
Being a finite dimensional problem, existence the solution of ¢y, to the problem (4.22) follows
from the uniqueness. Uniqueness now follows trivially from (4.23) and this completes the

rest of the proof. [ |

THEOREM 4.2.1 Let 0 < h < hg < 1. Then, for given y € V},, there is a unique solution
Uy € Vy, to (4.18), that is Sp(y) = uy.
Proof. Suppose that for given y, there are two distinct solutions u, and . for the problem

(4.18). Then, it is easy to check that
a(u; ugll — uf], vp) + b(u; u; — “Z’ vp) =0 Yo, € V. (4.28)
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We set & = u, — u2 and vy, = u, — uZ in (4.22) to obtain
luy — ugll = alu; uy, — uy, ) + b(u; u, — uy, ¢n). (4.29)

Now, we set v, = ¢, in (4.28) to complete the rest of the proof. [ |
We show that the map S, maps from a ball Os(I,u) C V}, to itself and it is continuous in
the ball. Our choice of ball is

Os(Iyu) ={y € Vi : ||| Inu — y||| < 8}, where 6 = h™¢||n]|], 0 < e < 1/4. (4.30)

Since u € H%2(Q) and p; > 2, 1 <4 < N, we note that

he'?
< Ch™¢ ( max — ) , (4.31)
where
Cu = l[ull oo (4.32)

Further, there exists 0 < hy < 1 such that for 0 < h < hy < 1, § can be made less than 1,
that is 0 < 1.

REMARK 4.2.3 In our subsequent analysis, we only need the bounds of %(x, v, Vy),

az(x,y, Vy) and a,(x,y, Vy) for x € Q, y € Os(lyu), | = 0,1,2. If u € HY?(Q), we
note that asymptotically only the values of y(x) € [my, — 6*, M, + 6%, where 0 < §* < 1,
m, = inf {u(x) : x € Q} and M, = sup {u(x) : x € Q} are considered to derive the
bounds. Similarly, asymptotically the values of %(X) € [ml — 6%, M} + 6*], where m! =
inf {Vu(x) : x € Q} and M} = sup {Vu(x) : x € Q} are considered. To be more precise,
the terms a,(x,y, Vy) and a,,(x,y,Vy), y € Os(Iyu) can be estimated as follows. Since
y € Os(Iyu), where § = h™¢|||u — Ihul||+, 0 < € < 1/4, using the inverse inequality (1.20),

Lemma 1.2.6 and Lemma 1.2.1, we find that

IA
S

ly — Inullwy @) + e — ullwy @7m)

< C(maX&
— 2

ly — ullwy @)
) by = Tntllon + 1T — ullws o
Di
< 0( max h_) 12 = Tul|| + [1nt = wllw, oy
h Itg
e Di
< Ch (max —Z> |||u—fhu|||++||IhU—U||W§o(Q,ﬁ)

1<i<Ny h;
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1/2
h3 Bl/2
Zp2||u||H5/2 Kz) +C—p1/2”U||H5/2(Q)

=1 "1

A
Q
=
~ N
IA
|7\'gB>
5?1
S
~
/"\

1<i<Ny, h; 1<i<N, P,

; p3/? B1/2
S Ch™¢ < max —> max —— ||U||H5/2 Q) + CW”U”HE)M(Q)
S Ch1/2_€ ||u||H5/2(Q)' (4.33)

Therefore, for sufficiently small h, ||yllwy) < 0% + ||ullwy (), where 0 < §* < 1. Now,
since the nonlinear functions a,, a,,, a, and a,, are continuous, they map the compact
set [my, — 0%, M, + 6*] X [m} — 6%, M} + 6*] into a compact set. Hence, the results in the
subsequent Sections remain valid when a(x,y, Vy), a,(x,y, Vy), aw (X, y, Vy), a,(x,y, Vy)
and ag,(x,y, Vy) are bounded for bounded v € WL (Q). Similar arguments can also be

applied to f.

LEMMA 4.2.5 Let y € Os(Ipu) and v, € V. Set ( = u — y. Then, there is a positive
constant C' such that

|Z/ a((, VQ) - Vupdz| < CollCllwaollCllwe@ylvnlwiom)-

Proof. To prove the inequality of the lemma, we first expand it as :
Z / (¢, V) - Vupdr = Z / auu(y, VY)(? - Vopda

+2Z / Ay, (y, Vy)CVC - Vvhda:+z vg 8,.(y, Vy)V( - Vopdz. (4.34)

Now, using Holder s inequality and Lemma 1.2.6, the first term on the right-hand side of
(4.34) is estimated as

Np, Ny,
| Z/ 8y (y, V)¢ - Vundz| < Co > 1ICInacaenlIC Iz I Vonl 2
=1 i =1

< CaollCllzelI€llze@y lvnlwi,m)- (4.35)

Then, for the second term on the right hand side of (4.34), we use Hélder’s inequality and

the inverse inequality to obtain

Np, Np,
Z/ 8us (Y, VY)CVC - Vopdz] < Ca ) (1Kl IV Nz | Vol zacc
_ K;

=1
< CuollClly@ [Clwr,m) vl wia,m)- (4.36)
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Finally, for the third term on the right-hand side of (4.34), we use Holder’s inequality to

obtain

Ny, Np,
2 / V¢ au(y, VYVC - Vonde| < Ca IV a1 VE I 20 |V onll gy
i=1 Y K i=1
< CulClwiomlCllwi@m) vrlwierm)-  (4.37)
Now, we substitute (4.35)-(4.37) in (4.34) to complete the proof. |

LEMMA 4.2.6 Lety € Os(Iyu) and v, € Vi,. Then, there is a positive constant C such that

> | {Ra(u—y, V(u—y)) - v}[va] ds| < CC.CLCQR>6 T (v, vs)/2.  (4.38)
er€lr €k

Proof. Let ( =u—y =n+¢&, where n = u — Iu and £ = Iu — y. Then, we expand the
term on the left hand side of the inequality of (4.38) as

> [ BV vl ds = Y [ {&uly, VY- v{on] ds (4.39)

ep€l’; ¥ %k erel; v ek
+ 2 Z / {auz(y, Vy)CV (- v}ug] ds
er€ly €k
+ 3 [ (V¢ 8wy, VY)VC - v} o] ds.
er€l'r €k

For the first term on the right hand side of (4.39), we use Hdlder’s inequality, the trace
inequality (1.14), the Cauchy-Schwarz inequality and Lemma 1.2.6 to obtain

'Y Ay, V) lexl?) o [ AT AR
wu\Y, Z‘/)C V}[Uh] d8| < CC@Z ||<||L4(ek) |6k‘[vh] ds

ekel"f €k ekGFj pk

/2

Ny, . p2 1/2
CC&Z Z L ||<||%4(ek) (/ |€—:|[1}h]2d8>
ek

i=1 e, COK; D
Np ;1/4
h /

OCu Y = (I Eaacy + PullS sy 1€ o)
=1

IA

=

IA

Di

> ([ fhmra)”

e, COK;

CCR[[C]I[* T (vn, va) 2
CCah1/462 jU(U}L, Uh)1/2
CCaCuhg/Qieé th (?}h, Uh)l/Q. (440)

IN TN

IN
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We now split the second term on the right-hand side of (4.39) as

'y / (a4, VO)CVC - ] ds| = Cy 3 / nVlon)] ds

er€l'y er€ly
ey / Vel |fon)| ds+Co 3 / €V [onl| ds
er€ly er€lr
+Co > / EVE]|[vn]| ds. (4.41)
ep€l'y

For the first term on the right hand side of (4.41), we use Hélder’ inequality, the trace
inequality (1.14), Lemma 1.2.1 and Lemma 1.2.6 to obtain

EARE A
> [ vl < X ||n||L4<ek)||Vn||L4<ek)( —[vh])

er€l'r €k ekEFI €k ‘ek‘

1/4
<oyt — (Il + il I Vo
=1 ekcaK
4 3 2 1/4 2 12
(19l + Bl Tl 1Pnlias) ([ 25
4 3 1/4
cy oyl — (Il + Al IVl
=1 ekcaK
B2 \ B )1/4( p2 )1/2
—||u N+ hi—|ul| b e k ly
(Gl + iy ) ([ o
h1/2 h1/2 .
< Cllulle) ( 7+ p—/) inlll T2 (o on) /2
< CCLhM**e5 T (vh, vp) Y2 (4.42)

For the second term on the right hand side of (4.41), apply Hélder’s inequality, the trace
inequalities (1.14)-(1.19), Lemma 1.2.1 and Lemma 1.2.6 to find that

ex/2 o)
Z |7]V£H[Uh < Z ||n||L4(ek)||V£”L4(ek) ‘6 ‘ [Uh]
ekEFI er EF] pk Ck k

2 1/2
p
< 03 S Taivelie ([ Hwr)
€k

i= lekC{)KZ %

1/4
(M) + Pl sy | Pl 20
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VAN

1/2 2 1/2
DD 1/2||V§||Lz (/ ﬁw)

=1 ekCBK

h6 1/4
(pﬁnunm +h1p5||u||m )

(3

h o 1/2
Clilrey (2+ 5 ) el 7o)

< CCuhs T (vh,vp)Y2. (4.43)

IN

Similarly, use Hélder’s inequality, (1.23), the trace inequality (1.14) and Lemma 1.2.1 to
estimate the third term on the right hand side of (4.41) as

e, |12 2 , 1/2
3 / evilllo) < ¢ Y (‘ el ||Vn||L4ek( p‘m) )

ekEFI ekEI‘] €k ‘ek
4 3 1/4
coyy L (M + el 1V 220 )
1= 1ekEl9Kz
4 3 2 1/4 P} 2 2
(1938 a01cp + Bl 50 P2l 2y ol
ek
e 1/4
SN DD DI CTIMETAT I,
i= lekEBK b
4 3 1/4 Pi 2 2
(Ve + il €)™ ([ Lotan?)
ek
h1/2 h1/2 ;
< Clulme (p—/ + p—/) 1l T2 (0, 00)"
< CCLRY25 T (vh, vp) Y2 (4.44)

Similarly for the fourth term on the right-hand side of (4.41), Holder’s inequality with the
inverse inequality (1.22), the trace inequalities (1.14)-(1.19) and (1.23) yields

1/2 2 1/2
3 / RIS (‘p' ||s||L4<ek>||vg||L4<ek>(ekfg—gw) )

ex€l'r ex€l'y

ek |1/ 2 o\
oy ra l€llzsteo IV €Nz ([ orrlen
€k

ekEFI

IN
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VAN

1/2 pQ 1/2
03 3 Laveliy (| o)
i=1 ex€OK; €k
1/4

(el ey + PillENEsqacp IVl 22
p1/2
C { max P ) l€l® T7 (on, o) 2

1<i<Ny, p1/2
7

IN

IN

1<i< Ny, h1/2

p;/z h3/2
CcCyh ¢ ( max ’1—> ( max ) 5 T (vp, vp) /2
1<i<N, p1/2 1<i<N, p;

< CCoCLh'=6 T (vn,vn) "% (4.45)

1/2
cac, ( max 2 > 52 J”(Uh,vh)1/2

IN

To estimate the third term on the right hand of (4.39), we first split it as

' / (VT aa(y, V) VC - v} ] ds| =20, 3 / Vnl?lon]] ds

er€l's exr€l'r

0 Y [ 190l Vellld s+ Co 3 [ Vel s ()

ep€l'r ep€l'r

For the first term on the right-hand side of (4.46), we use Holder’ inequality, the trace
inequality (1.14), the inverse inequality (1.22) and Lemma 1.2.1 to obtain

/4
/ VP lellds < C D7 IVl Tl ( / [on]*d )
er€l'r ekETI
P 1/2
< 03 3 Bl ([ i)
i=1 e COK;
) 1/4
(19l 4010y + BVl e 22
P 2 2
< 0% Y vl ([ Hor)
i=1 e,COK; P er |7k
h4 h3 1/4
(pf lullry + bl
lex] pi 2 2
<oy iVl ( [ g
i=1 e, COK; P ex lex]
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1/2
hl/2+e lex| i
<= C p3/4 (Z p—k”V"”%z(ek) ||U||H5/2(Q)j (Uhavh)l/Q

er€l'y

< CChY*Y5 T (vp, vp) "2 (4.47)

For the second term on the right hand side of (4.46), apply Hoélder’s inequality, trace
inequality (1.14)-(1.19), Lemma 1.2.1 and Lemma 1.2.6 to find that

Jex]!/2 I 2
> / Vil Vel < Y ( - IVl | VElscen ( /ﬁ[])

ekEF] ekEFI
1/2
< 0% % Vel ( Zol)
= lekCBK
1/4
(19l + Al I 0l )
1/2 1/2
<oy Y aIvel ([ )
= 1€kC8K €k
h h? kS
(Bl + sl
h1/2 h1/2 .
< Cllullusiay (o + e ) el 7o 0)
< CCLRY?S5 T (vp, vp)Y2 (4.48)

Finally, using Holder’s inequality, the inverse inequality (1.22), the trace inequalities (1.14)-
(1.19) and (1.23), the first term on the right hand side of (4.46) is estimated as

> [werioll < X (L 9elimv TR
v o 1 V8lmen V€l ( [ soiylenl

ex€l'r Ck ekEFI
‘ek‘ pi 9 1/2
< CZ Z |V§HL°°K)”V{:”L2(% ( m[%])
1= 16kC6K (3 k
Di 1/2
< CZ Z <#||V§||%2(K¢)( e |[ h]) )
i=1 e, COK; ? ek
£ 2 g0 1/2
< ¢ (max 2 €l? 77
<

cC, ( max —Z) 62 T (vp, vp)/?

1<i<Ny, h;
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- Di h3/2 1/2
< CCyh™¢| max — max § T (vp, vp)

1<i<Np, h; 1<i<N, p;
< CCGC A5 T (vp, vp) Y2 (4.49)
Altogether, we complete the rest of the proof. [ |

LEMMA 4.2.7 Lety € Os(Iyu) and v, € Vi,. Then, there is a positive constant C such that
N (w,y50)] < CCllCllwi@mllClwim lonllw .y + CCaC@Cuh>~6 T (vh, va) /2.
Moreover, there is positive constant C which is independent of h and p such that

IV (u, y;v1)| < CCLC,Coh <5 |||up]|-

Proof. From (4.14), we note using definition of N'(-,-;-) that

N(u,y;vn) = Z/K Ra(u —y, V(u—1y)) - Vuypdz
— > [ {Ra(u=y,V(u—y))-v}{va] ds

er€lr ¥ €k
Np,
+ Z . Ri(u—y,V(u—y))vpde
=1
— Z / V(u—1y)Ta,.(g, Vu)V(u—y) - vuy, ds
er€lg
+ 0 Z / {(az(u, Vu) — a,(y, Vy)) Vo, - v}u — ylds
er€l'r
SR YN R R TR I I
er€l'y
+ 0 Z / a,(g, Vu) — a,(g, Vy))Vup, - v(u — y)ds. (4.50)
er€ly

Using a similar arguments as in Lemma 4.2.5, it is easy to see that

Ny
Z/K Ry(u—y, V(u—y))vndz| < CollCllwpm)ICwi@mllvalls, — (4.51)
and a similar argument of Lemma 4.2.6 yields

5 / (1= 1) g (g, V)V (1= y) - von ds| < CCLCQCuh 5 T7 (vn, vn)/2(4.52)

ex€ly
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Using Taylor’s expansions, we rewrite the fifth term on the right-hand side of (4.50) as

Z / {(az(u, Vu) — a,(y, Vy)) Vo, - v}u — ylds = Z / {824 (y, Vy)(Vup, - v}[(]ds

er€l'y er€l'y

+ /{VC 8.y, Vy)Voy, - v}[(]ds.  (4.53)

e €'y

Then, using repeated arguments as in Lemma 4.2.6, we arrive at

| Z / {(az(u, Vi) — a(y, Vy))Vup - v}u — ylds| < CC,CoChY27¢5 T (vh, vp)/B4.54)
ekEFI

Similarly we obtain

| Z / {(fa(u, Vu) = fuly, Vy))Vop, - v}u — y]ds| < CC.CoChY*76 T (vh, va) (4.55)
ekEFI

and

| Z / a,(g, Vu) — a,(g, Vy)) Vo, - v(u — y)ds| < CC,CoChY* 5 T (vn, va)'/*(4.56)
er€lg

We substitute (4.52)-(4.56) in (4.50). Then use Lemma 4.2.5 and Lemma 4.2.6 to complete

the proof of the first inequality. Now, for the second inequality of the lemma, we use the

inverse inequality (1.20) to find that

N, 1/4
||Uh||w41(n,m = (Z”U’l'r‘l/Vi(Ki))

=1

Ny 1/4
Di
(35 Rt
. N 1/4
1 4
= ¢ <1221}\(fh h_12> Z1 ”vh”W%(Ki)

1/2 N 1/4
max 2 max ||va||/? E lvnll
1<i<N, hy 1<i<N, IR ) | 2 - hllw} (k)
1=

IN

IN
Q

IA
Q
N
A
RE
=z
SRS,
N———
N
INNgE
=
=
=
=
N———
=
™
=
=
2
N———
=
>

i\ V2
z) lvnllwio,7)- (4.57)

IA
Q
P
=
&

"
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Let ( =u—y=n+¢&, where n = u— Iu and £ = I,u—y. Now, a use of triangle inequality
implies that

ICllwremy < IInllwiem) + 1€llwiem)- (4.58)

Then, we obtain using Lemma 1.2.1

1/4 1/4
Np, Np, B4
||77||W41(Q,77L) < C (Z”W”é{@(}@) <C (Z p_:;”“”iﬁ/?(m))
i=1

i=1 ©

N

hi
S C ( max —> ||’U,||H5/2(Q), (459)

and using the inverse inequalities (1.20) and (4.30), we now find that

1/2
Di
el < ©(mm 2) " elwyom
N\ 1/2
< C’( max &> )
1<i<Ny, h;
N\ 1/2 3/2
SC’(max&) (maxh’>
1<i<Ny, h; 1<i<Np P,
< cC i (4.60)
< CCq(,ma s ). -
Now using (4.31), we arrive at
I<lwa,my < Inllwa,m) + IEllwiem) < A6+ 6 < 26. (4.61)

Substitute (4.59)-(4.60) in (4.58) and use (4.57) to find that

I<lwremllvellwien) < C (||77||W41(Q,Th) + ||§||W41(Q,77L)) lvnllwi,7)

IN

1/2
p-
o (e 2) " (I + lelbviom) Ty

1<i<Ny hy

< CCQCHAonllwa,m)- (4.62)

We substitute (4.61)-(4.62) in (4.51) to obtain the required estimate and this completes
the rest of the proof. [ |
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THEOREM 4.2.2 Let 0 < h < hy < 1 and ¢ be given by (4.80). Then, Sy, maps Os(Inu)
wnto itself.

Proof. Let y € Os(I,u) and Sy, (y) = u, be the solution given by (4.18). Set £ = Iyu — u,,.
Then, using Lemma 4.2.1, Lemma 4.2.2 and Lemma 4.2.7, we find that

N

CilllEl]” — Collell* < a(u;€,€) +b(us €, €)

a(u;n, &) + b(u;n, &) + N (u, y; §)
C (|[Inll| + CCaCuChM*~<5) [|[€]]
C (h6 + CC,CuCh*<0) | I¢]]
CCCuCahs [|I€]]].

INIA

IN

Hence, we obtain
[[€1]] < CC.CuCh% 6 + Ci[I€]. (4.63)

Now, we use Lemma 4.2.4 to estimate ||£||. Setting vy, = £ in (4.22), we arrive at

[

a(u; &, én) + b(u; &, dn)

a(u; 0, ¢n) + b(w;n, dn) + N (u,y; )
C (|[Inll] + CCaCuCh'*=<6) ||¢nll|
C (h5 + CC,C,CoRY*6) |I€]|.

IA

IN

Therefore, we obtain
1]l < CCaCLCQR5S. (4.64)

We substitute (4.64) in (4.63). Then, choose h sufficiently small so that CC,C,Coh® < 1,
and hence, S, maps Os(I,u) to itself. This now completes the proof of the theorem. [ |
Below, we discuss the continuity of the map Sy, in the ball Os(Ixu).

THEOREM 4.2.3 Fory:, y2 € Os(Ipu), let uy, = Sh(y1), wy, = Sh(y2) be the corresponding
solutions of (4.18). Then, there is a positive constant C such that for any 0 < h < hy < 1,

1ty — || < CCCuCh ' <|[|y2 — . (4.65)
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Proof. The solutions u,, and u,, of the linearized problem (4.18) satisfy

a(u; Inu — uy,, vp) + b(u; Tpu — uy,, vp) = a(u;n, va) + b(us 1, vp) + N (u, uy,; vp)  (4.66)

and

a(u; Tpu — yy, vp) + b(u; Tnu — ty,, vy) = a(u;n, vp) + b(u;n, vn) + N (U, tyy; vr), (4.67)

respectively, where 1 = Iu — u. We subtract (4.66) from (4.67) to arrive at

a(u; Uy, — Uy, V) + b(W; Uy, — Uy, 0) = (N (U, ty,; vp) — N (U, g5 0n)) - (4.68)

Let ¢; = u—y; and (o = u — yo. We then expand the term on the right-hand side of (4.68)

as follows :

N (w, y2;vn) — N (u, y1; vn)

+ oy

ekEFI €k

.

er€l'y €k

Z/K (Ra(CQa V() — Ra(Cl,VQ)) - Vupdx

i=1 i

Z / {(Ra(gz,VCz) - Ra(Q,VQ)) -v}vp] ds

e],;ifj k ~ ~
) /K (Rf(@, V() = Ryp(¢1, vcl)) vpda
=1 i

Z (vqgézz (g: VU’)VCI — Vgrirézz(ga VU)VCI) - Vup ds

er€ly €k

0> [ {(a(u, Vu) — as(yo, Vi2)) Vo - v}yolds

ep€l * €k

7 Z {(az(u, Vu) — az(y1, Vy1)) Vo, - v}y |ds

ekEFI €k

+ 0 Z (az(g, Vu) — az(g, Vyo))Vup, - v(g — y2)ds

ep€lg ¥ €k

0> | (a9, Vu) — as(g, Vin))Von - v(g — y1)ds

er€lg €k

{(fz(u, Vu) — f2(y2, Vi) vn - v} ya]ds

/ ((Faluts V) — fuln, Va))on - v} [y )ds. (4.69)
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Now, using Taylor’s expansions, we rewrite each term on the right hand side of (4.69) so
that every term contains either y; — yo or V(y; — y2). For example, the first term can be

rewritten as

Ra(G2, VG2) = Ra(G1, V1)
= a(ys, V) — alu, V) + a, (v, Vu) (u — y2) + a,(u, Vi) V(u — ys)
—a(y1, Vyi) + a(u, Vu) — a,(u, Vu)(u — y1) — az(u, Vu)V(u — 1)
= a(y2, Vy2) — a(ys, Vi) + au(ys, Vo) (y1 — ye) + az(y1, Vy1) V(s — v2)
+ (au(u, Vu) —ay(y1, Vi) (51 — y2) + (az(u, Vu) — az(y1, Vi) V(yr — 1)
= a(ys, Vo) — a(yr, Vi) + au(yr, Vyi) (1 — vo) + az(y1, Vy) V(v — v2)
+ (au(u, Vu) = au(y, Vin)) (41 — v2) + (az(u, Vu) — az(y1, Vi) V(y1 — ).

Then, we use Taylor’s expansions (4.5)-(4.6) with integral reminders. Hence, using the
arguments as in Lemma 4.2.5 and Lemma 4.2.6, the term on the right hand side of (4.68)

is estimated as
N (1, g3 00) = N (u, Uy, v8)| < CCCUCQR* < ||ly1 — wall] [I[on]]]- (4.70)
Setting v, = uy, — u,, in (4.68), we obtain
Cl||‘uy2 - uy1\|\2 - 02”“1/2 - “y1||2 < a(u;uy2 T Uy, Uy, — Uyl) + b(u; Uyy — Uyyy Uy, — uy1)
= N(’U,, Uyys Uyy — uyl) - N(’U,, Uy, 5 Uyy — uyl)' (471)

Similarly with vy, = u,, — u,, in (4.70), we use (4.71) to find that

[ty = g, [l < CCCCR <\ llyr = wall] + Colluy, = uy, |l (4.72)
To estimate ||uy, — uy, ||, we set & = u,, — u,, and v, = uy, — u,, in (4.22). We then use
(4.22), (4.68) and (4.70) to obtain
||uy2 — Uy, ||2 = CL(U; Uy, — Uy, ¢h) + b(ua Uyy — Uy, (bh)
= N(u7 Uys; ¢h) - N(’U,, Uy 5 d)h)
< CCCuCQRY* Iy = welll If]enl

< CCLCLON >y — wol[] Nty — - (4.73)
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We now substitute (4.73) in (4.72) to complete the rest of the proof. |
Now using Theorem 4.2.2, Theorem 4.2.3 and Brouwer fixed point theorem, we can conclude
that for all 0 < h < hy < 1, the map Sy, has a fixed point uy in the ball Os(I,u). Theorem
4.2.3 also implies that there is atmost one fixed point of S}, in that ball which is the solution

uy, for the nonlinear system (4.10).

4.2.2 A priori error estimates.
From the estimates (4.63)-(4.64), we note that the following estimate holds for uy,

[ Thu —unl|| < CC.CLCQAS
< CC.OL|[Ihu — ul]. (4.74)

Now, the proof of the following theorem is a consequence of (4.74) and Lemma 4.2.3.

THEOREM 4.2.4 Let 0 < h < hg < 1. Then there is a positive constant C' such that

Ny,

1/2
h?ui—Q
u = wi| < CCLC.Cq (Z Wnunzsm) , (4.75)

i=1 Vi
where p; = min{s;,p; + 1}.

Note that the estimate obtained in Theorem 4.2.4 is optimal in A and mildly suboptimal
in p which leads to the same optimal order of convergence in h and suboptimal in p in case

of linear elliptic boundary value problems.

4.2.3 L’-norm error estimate when 6 = —1

In this section, we estimate the error in the L?-norm. Since the linearized problem (4.18) is
adjoint consistent when § = —1, we expect to obtain optimal order of convergence in the L2-
norm by applying the standard Aubin-Nitsche duality argument. But, when 6§ € (-1, 1],
we note that the linearized problem is not adjoint consistent. Therefore, it may not be
possible to improve the error estimate in the L?-norm. However, if ¢ is either zero or a
piecewise polynomial of degree less than or equal to p on the boundary, then it is possible
to obtain optimal rate of convergence in the L?-norm on regular mesh by imposing the

super-penalty, see [41], [61]. Presently, we restrict ourself only to the case § = —1.
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In order to apply the standard Aubin-Nitsche duality argument, we consider the follow-

ing auxiliary problem. Assume that there is a unique solution v € H?(2) of

-V - (A(u)Vy +f(u)¢) +b(u) - Vo + F(u)yy = u—wup in €, (4.76)
¥ = 0 on 09, (4.77)

which satisfies the following elliptic regularity
[¥ll @) < Cllu — ual]. (4.78)

This would be guaranteed if f,(u, Vu) > V - f,(u, Vu), see [40]. Note that [¢)] = 0 on each
er €. Let e =u—wup, =n+¢§, where n = u — Iyu and § = Iyu — up. Let ny = ¢ — 1y,
where ¢, = I;1. Now, we multiply (4.76) by e, integrate over {2 and apply integration by

parts to obtain

lell* = a(u;e,¥) + b(u; e, )
= a(u;e,my) +b(u;e,ny) + a(u;e, ¢¥n) + b(u; e, Pn)
= a(u;e,nmy) + (s e,my) + N (u, up; Pn). (4.79)

Using Lemma 4.2.3 and (4.74), the first two terms on the right-hand side of (4.79) are

estimated as

|a(u; e,my) + bu; e,ny)| < CCullle]]] [[Iny]]]
h
< CCC g llelll 19l

h
< CCCQCuzzlIll W10 (4.80)

Before proceeding to estimate the other term, we note from Lemma 1.2.1 that the following

stability condition holds for ¢,. For all 1 < i < Ny,

[¥nllwir < CllYlaeuc)- (4.81)

Now, using Lemma 4.2.7, we obtain

N (s, uns n)| < Callellwym) llellwz@m I¥nllwie,m)
+CCCuCollInlll T (vns n)- (4.82)
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We use (4.57) and Theorem 4.2.4 to find that

1/2
p.
I€llwa) < C(max z/2> 1€llwaa,7)

1<i<N;, bt
(2

p1/2 Np, B3 1/2
i i 2
< CCCq| max ~; > ped L PR

=1

1/2 3/2
D; h;
< C’CQCQ max —- max —
u 1<i<N, p1/2 1<i<N, p;
(2

h

< OCaCﬁCQW. (4.83)
An appeal to Lemma 1.2.1 yields
h
Inllwi) < CW”“HHW%Q)' (4.84)
Hence, we obtain
h
||e||W41(Q) < ||77||W41(Q) + ||§||W41(Q) < CcchCam- (4.85)
Since [¢)] = 0 on each e; € I', we use Lemma 4.2.3 to find that
a g h
T (> ¥n) = =T (> ) < lelwllm(m- (4.86)

We combine the estimates (4.79)-(4.86) to prove the following theorem.

THEOREM 4.2.5 Let 0 < h < hy < 1 and fu,(u,Vu) > V - f(u, Vu). then, there is a
positive constant C' which is independent of h and p such that

hu
lu — ]| < CCaCSCQFHU“HS(Q)-

where p = min{s,p + 1}.

Note that the estimate obtained in the Theorem 4.2.5 is optimal in A and suboptimal
in p.
REMARK 4.2.4 When 6 = —1, to estimate ||£|| in the Theorem 4.2.2 and subsequently, one
can directly apply the standard Aubin-Nitsche duality argument instead of using Lemma
4.2.4. Hence, the assumption in the Lemma 4.2.4 that f,(u,Vu) — V - a,(u, Vu) > 0 can

be replaced by the assumption f,(u, Vu) —V - f,(u, Vu) > 0 which is used in the Theorem
4.2.5.

105



4.3 Application to the mean curvature problem.

2 4 and f(x,u,z) =

We note that for mean curvature flow problem a(x,u,z) = (1 + |z|?)
f(z). We verify the conditions stated in Lemma 4.2.4 and in Theorem 4.2.5. First,
we verify the ellipticity condition for this problem. We calculate the matrix a,(u,z) =
[0 (u, z)]1<i,j<2, Where z = (21, 22), as
auluz) =R | T T
—2129 1422

where R(z) = 1/(1 + 22 + 22)3/2. Now, for any £ = (£1,&) € IR* — {0}, we note that

2

Z a’(u,z)6€ = R(z) [(1+2)& — 22122616 + (1 + 27)&5]

i,j=1

= R(2) [(n1& — 2261)* + (67 + &%)

Then, it is easy to check that

R(2)[€]> < ) a¥(u,2)&&; < R(=z)(1 + 4[z) €]

ij=1
For bounded z, R(z) can be made bounded below by a positive constant C,. Further,
R(z) < 1 and each a¥ is bounded for bounded u. Since f,(u,z) = 0, f,(u,z) = 0 and
V -a,(u,z) = 0, the conditions f,(u,z) — V -a,(u,z) > 0 and f,(u,z) — f,(u,z) > 0 are
satisfied which are used in Lemma 4.2.4 and Theorem 4.2.5, respectively. Therefore, we

conclude that the results of this chapter are well applicable to this problem.

4.4 Numerical Experiments

In this section, we present some numerical experiments to illustrate the theoretical order of
convergence obtained in Theorem 4.2.4 and Theorem 4.2.5. We consider mean curvature
flow as a model problem which is given by

\Y .

u = 0 on 09Q, (4.88)
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where Q@ = (0,1) x (0,1). We take the forcing function f in such a way that the exact
solution is u = z(1 — z)y(1 — y).

We compute the approximate solution u;, on a sequence of finite element subdivisions 7y,
of ), where 7, is formed by uniform triangles. We use discrete space V;, with piecewise
polynomials of uniform degree p = 2. Since the discrete space V},, can have piecewise
polynomials which may be discontinuous across the edges of elements, we choose basis

functions as follows. For 1 < i < Np,

Aj o onK;, j=1, 2, 3,

Qi—1)x6+j =
(=)0t 0 elsewhere,

)\1)\2 on Ki,

D 1yx644 =
0 elsewhere,
)\2)\3 on KZ’,

D(i_1yx64+5 =
0 elsewhere,
)\1/\3 on Kia

Qi_1yx6+6 =
0 elsewhere,

where A1, Ay and A3 are barycentric coordinates of K;. We note that each of the basis
functions takes support only on the corresponding finite element K;. Let N = N, %6
denotes the dimension of Vj,. Denote the basis of V}, by {®; : 1 < i < N}. The penalty
parameter o, is chosen as o, = 10, on each e, € I'. We choose § = —1, § = 0 and
0 = 1 which corresponds to the symmetric, incomplete and nonsymmetric interior penalty

methods, respectively. The discrete solution uy is written as

up =Y oy ®;. (4.89)

i=1
In order to derive the nonlinear algebraic system corresponding to (4.10), we set v, = ®;

in (4.10) and obtain for each j

F’J(a) = B(uhaq)j) —L(@]) = 07 1 S]S N:
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where o = [, @z, - -+ , an],

Vuy - V@, Vuy - v
B(un, ®;) = Z < L+ [Vun) 1/2 ; W}[@] ds
Vuy, - v
> /{az (Vun) VD, - v} [un] ds — Z/ T e ds
er€l'r er€lp h
+0) / a,(Vup)V®; - vuy, ds + J° (up, ®;) (4.90)
ex€lg

= II+I2+I3+I4+I5+IG

with
3uh auh 8uh
1 - "
“ (1+ |Vuh|)3/2 _%% 1+ 8uh ’
83:2 8.1'1 6361

and L(®;) = (f, ®;). The resulting nonlinear system is then denoted by
F(a) = [Fi(a), Fx(a), -+, Fy(a)]" =1[0,0,---,0]". (4.91)

We then apply the Newton’s method to find the solution « to (4.91). The Jacobian matrix

of the system F(«) is computed as follows.

J = [@] = [M] _ (4.92)
Oy, 1<j,m<N douy, 1<j;m<N

We substitute (4.89) in (4.92) and then using (4.90), we first compute

N
Z aN(I)l . V@j

o, 0 . =1
da,,  Oap, 21/& Dt/? do

1=

N N
N Zalv<bl-v¢j> (Zalv¢l-vq>m>
S / Ve, Ve <l:1 = e
—~ Jx D1/2 D3/2 ’
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where

(Z ,gi) (Z lgi) . (4.93)

ZalVCI)l
aIZ 0 =1
Oayy, - Oay, Z /{ D1/2 H®s) ds

ex€l'y

Next, we note that

(Zalwbl )(Zalvq>l-v¢m>
-2 / O~ D H@j)ds.

ekEFI

Similarly,

D1/2 D3/2

N N
(Z V- 1/) (Z Vo, - V<I>m>
Z/ VOn v i 1 ®;ds.

ekEFa

It is easy to see that

% = % > / (Z al[cbl]) (@]

r€DL

Z/ o Lk pk (@,.][®;]ds.

For the integral I3, we expand it as as in the following.

L= Y / L Oup\? 0®;  Oup Oup 0B;  Ouy duy O,
t ex€l'r D3/ Oz, 0 e 01 0wy O v O0xy 011 81‘1
+8—x2 2 + (8m1> 8—@7/2) Hunlds
== E1+E2—E3—E4+E5+E6. (494)

First, we compute the derivative of F;

gf; - Z /{D5/2 (Zqu(bl Vo )—V1}Zal[¢l]ds

ekEFI

+ 3 [ (g Bl

e €'y
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Similarly, we compute for Fj

gai:; Z /{D5/2 (ZOJ;V@[ Vo )—I/Q}Zal[q)l]dg

ekEFI

! Z/{D?’/? oy 23 Pl

e €'y

Next, we consider Fy and compute the derivative as

gf:l Z/{D5/2 (ZO@V@[ Vo ) (ngj:) —Ill}Zal[Q)l]dg

ekEF]
N
00\ 9®,, OD,
* ZE; /{D3/2 (Z ’ax2) D7y 011 ”1};‘)"[@1]‘13
epcly =
N
09,
+ ZE; /{D3/2 (Z Ry ) axlyl}[q) m]ds
epclr

Similarly, the derivative of Eg is computed as

8E6 Z/{D5/2 (Z%V@l Vo ) (ngjﬁ) %V2}Zal[(pl]d8

ekEI‘I
N
0, \ 0P, 0P,
d,|d
* ; /{D3/2 (Z ’agﬁ) o, a@”?};al[ s
€ I 1=
N
0P,
+ Z /{D3/2 (Z l(%) 6$2V2}[(I) m]ds
ex€l'r
Now, we consider F3 and compute its derivative as
OF; VO -V, ) (o= 09\ (v 0P
o, O ZE;/ (Z EE )(Zalax1> (Z Nz, —QVQ}[uh]ds
€pcly 1
N
0o, \ 09, 6@
+ ; /{D3/2 Zlalaﬂrl s Vg}Zal[(I)l]ds
epCly =
N
0o, \ 09, 8(I>
+ Z /{D3/2 Zalax2 o, I/Q}ZOQ[(I)I]dS
ep€l'r i=1
N N
09, 09,
+ 26; /{D3/2 Zalaxl (Zal )ax21/2}[¢m]ds
€ I
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Finally, we consider F4 and compute its derivative as

OB,  _ OleCI)l vo,, N %, N 0%,
o 36;1/ ( T) (Zalaxl) (zz: N o, —1V1}[uh]ds
N
0, \ 09, 09,
()
—i—ekezn/{p?,/z ;azaxl Ers 69511/1};%[ ds
N
0®, \ 09,, 8(I>
+Z/{D3/2 25, ) oy ”l}Zaz[fb]ds
exCly i=1
N N
0% 0P, \ 09,
o | a7 o, |d
+e,cezp1/{D3/2 Zalam (; (9:1:2>a 1/1}[ ]S

We use 13 point Gaussian quadrature formula [32] to evaluate the element-wise integrals
and 8 point Gaussian quadrature formula to evaluate the edge-wise integrals.
Now, we use the following algorithm for Newton’s method to solve the system (4.91) : For

given o, find of, for 1 < k < k,,az, such that
ak — O{kil _ Jle(akfl)’

where J is given by (4.92). The intial iterate o is chosen as a® = [0,0,---,0]. We set the
maximum number of iterations as k,q; = 10.

Convergence in the broken H'-norm. On the sequence of triangulations 75, we compute
error u — uy, in the broken H'-norm for three values of , that is, for § = —1, 0 and 1.
The error |||u — uyl|| is plotted against h. We have then computed the numerical order of

convergence which illustrate the theoretical order of convergence, see Fig 4.1.

Table 4.1 Convergence of DG schemes in |||u — up|||

h =1 =0 0=-1

1/10
1/15
1/20
1/25

1.52334651e-003
6.80041075e-004
3.70429508e-004
2.37048656e-004

1.55194889¢-003
6.80905440e-004
3.72832165e-004
2.35671519e-004

1.52579542e-003
6.80139245e-004
3.74638916e-004
2.36096113e-004
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We note that the convergence lines are almost same for each of the method, that is, for
# = —1, 0 and 1. We also have presented in Table 4.1 the convergence of DG schemes in
the broken H'-norm for # = —1, 0 and 1. Note that the computed order of convergence
in broken H'-norm is two which confirms the theoretical order of convergence as has been

stated in Theorem 4.2.4.

Figure 4.1: convergence of NIPG and SIPG with p-refinement

— 0 =1
- = 6=0
—--0=1

Convergence in the L?-norm: We have plotted the L2-norm of the error v — u; against h
for = —1, 0 and 1. The computed order of convergence is three which is illustrating the

theoretical order of convergence obtained in Theorem 4.2.5, when # = —1. But for other

Figure 4.2: convergence of NIPG and SIPG with p-refinement
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two methods, that is, when # = 0 and 6 = 1, we have observed that the convergence lines
deviate from the convergence line for # = —1 and the computed order of convergence is
two in the L2-norm, see Fig 4.2. We remark that when # = 0 and # = 1, the linearized
problem 4.18 is not adjoint consistent and hence the corresponding DG schemes exhibit

the suboptimal order of convergence in the L2-norm.

Numerical FExperiments using piecewise linear polynomials: Although, the theoretical
results obtained in this chapter require the degree of approximation p > 2, we have per-
formed some numerical experiments using piecewise linear polynomials, that is, when p = 1.
The results obtained using piecewise linear polynomials show that there is a sub-optimal

convergence in h in this case, see Fig 4.3.

Figure 4.3: convergence of NIPG and SIPG with p-refinement

—0 =1 Z

— =0 =-1 7
,

10| -—--8=0 ///

However, it is difficult to derive the suboptimal order of convergence using the present

analysis of this paper and hence, it is subject of our future research.
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Chapter 5

LDG Method for Strongly Nonlinear
Elliptic Problems

5.1 Introduction

In this Chapter, we study the LDG method for the strongly nonlinear elliptic problem of
following type :

_Zﬁaz (x,u, Vu) + f(x,u,Vu) = 0, x € (), (5.1)

where 2 is a bounded domain in IR? with boundary 02, Problems of this type arise in many
practical cases such as mean curvature, subsonic flow problems, etc. We assume that g can
be extended to Q so as to be in H*?(Q) and there exists a unique weak solution u to the
problem (5.1)-(5.2) in such a way that u € H>2(Q) N WH®(Q). The functions f, a; : Q x
RxR?* - R, i = 1, 2, are twice continuously differentiable with all the derivatives through
the second order are bounded. Further, assume that the matrix [a¥ (x,u, )] = [g—;‘ﬂ L
is symmetric and if \(x,u,z), A(z,u,z) are minimum and maximum eigenvalues of the

matrix [a”/], then for all ¢ € R” — {0} and for all (x,u,z) € Q x R x R?

2
0 < A(x,u,2) | < ) a(x,u,2)6& < Az, u,2)[¢] (5.3)

ij=1

114



In this Chapter, an hp-LDG method is applied to the problem (5.1) -(5.2) and
error estimates which are optimal in A and slightly suboptimal in p are derived. The
results proved in this Chapter are same as in the linear case, see [57]. Assuming hp-
quasiuniformity condition on the mesh, existence of a solution to the discrete problem is
proved using Brouwer fixed point theorem for small h (mesh size). Moreover, the Lipschitz
continuity of the discrete solution map shows the uniqueness of the discrete problem.

The rest of the Chapter is organized as follows. Section 5.3 is devoted to the LDG
method, and a priori error estimates for the method.

We assume that for given y € L?(§2), there is a unique ¢ € H?(f2) satisfying the following
elliptic problem

¢ = 0 onofd (5.5)

Further, assume that ¢ satisfies the following elliptic regularity

9l 72) < Cllyllz2)- (5.6)
This would be guaranteed if (f,(u,2z) — V - fq(u,2)) > 0, V (u,2) € R x R? and Q is of
the class C1!, see [40].
Since a, f are twice continuously differentiable functions with all the derivatives through
the second order are bounded, the remainder terms in the Taylor series expansions (4.5)-
(4.6) that a,, aq, Ay, 8qq Auq> Aqus fus far fuus faas fau and fuq are in L®(Q x R x R?).

We denote C, by

Co= max{||a||wgo(nxmxm2)a ||f||Wgo(Q><IR><]R2)}- (5.7)
REMARK 5.1.1 For our subsequent analysis, it is sufficient to assume that a and f are

locally bounded. In fact, it is enough to assume that a and f along with its derivatives are

bounded in a ball around u, see Remark 5.2.1.

5.2 Local Discontinuous Galerkin (LDG) method

To define the LDG method, we first rewrite the equation (5.1) as a problem of first order

system of equations. In order to achieve this, we now introduce auxiliary variable q = Vu
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and o = a(u)q and rewrite (5.1) -(5.2) as

= Vu in Q, (5.1)

o = a(u,q) in Q, (5.2)

-V-o+ f(u,q) = 0 in (5.3)
u = g on OS. (5.4)

We multiply the equation (5.1) by w € W, the equation (5.2) by 7 € W and the equation
(5.3) by v € V and then integrate over the element K € T},. Using the integration by parts

formula, we obtain

/q-wd:c—!—/uv-wdx—/ uw - vids = 0, (5.5)
K K oK
/ a(u,q) - Tdr — / o-T1dx =0, (5.6)
K K
and
/ o - Vudr — / o - vivds + / f(u, q)vdz = 0. (5.7)
K oK K

Note that there may be difficulty in defining v and o on 0K. Therefore, this is just an
initial formulation which help us in defining the approximate method given below. The
following approximate solution (up, qn, o) € Zy(K) x Z,(K)? x Z,(K)? is defined using

above weak formulation, that is by imposing that for all K,

/ qy - whdx +/ upV - wpdzr — / dwy, - vgds =0, wy, € Z,(K)?, (5.8)
K K oK
/ a(un, qn) - Th —/ on-Thdz =0, T € Zy(K)?, (5.9)
K K
and
/ o - Vopdr — / o - vgupds + / f(un, qp)vpdz =0, v, € Vj, (5.10)
K K K

where the numerical fluxes & and & have to be suitably chosen in order to ensure the

stability of the method and also to improve the order of convergence. The following choice
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of numerical fluxes are used in solving the linear elliptic problems. If e, € T';, then the

numerical fluxes are defined on ¢ as :

ﬁ(uh, O'h) = {’U,h} + Clg . |[uh]| - CQQI[O’h]I, (511)
&(uh, O'h) = {O'h} - C’11|[uh]| - C12|l0'h]|, (512)

and if e; € I'y, then the numerical fluxes are taken as :

o = g, (5.13)
o = a'h—Cn(uh—g)u, (514)

with C;; € RT on each e, € T, Cp € R" and Ci2 € IR? on ¢, € I';. We set Ci5 = 0 on
ex € I's. The numerical fluxes are conservative since they are single valued on e, € I'y,

that is, on ¢, € I'y,
lu] =0, le]=0. (5.15)
and consistent since the following holds for smooth u and o :

w(u) = wu, (5.16)
o(u, o) = o. (5.17)

We sum (5.8)-(5.10) over all elements K € T},. Then using the conservative property (5.15)

and the definition of numerical fluxes, we obtain

Np,
/ qp - th.’E + Z/ uhV . th.Q? — / ({Uh} + Cu.l[uhll — 022|[0'h]|)|[Wh]|d5
Q — JK; r;
:/ gwy - vds, wj, € Wy, (5.18)
Ts
/ a(up,qp) - Thdx — / on-Trdx =0, T, Wy, (5.19)
Q Q

Np,
S [ on-Vouds ~ [ ({on} - Curlunl = Culowlwalds + [ Flun, anunds
= K r Q

:/ Ciigvpds, vy € Vi (5.20)
To
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Let z € L?(Q) and (¢, p), (v, w) €V x W. Set B; : W x W — IR as
B1(p,W)=/p-Wda:,
Q

By :WxV —1R as

Balpv) = Y [ p-Vode= [ ({p} = CulpDlv] ds

Np,
_ -Z/ UV-pdx—i-/ ({o} + Coy - [o])Ip] ds,
; K; I;
and J1 : VXV >R, Jo:WxW =R as

/anb | ds,  Jo(p,w /022

We also define the following linear functionals L; : W — IR and Ly : V — IR as

Li(w) :/r gw.wds, and  Ls(v) :/F Ci1gv ds.
2] ]

Using the above definitions, we write the LDG method for the problem (5.1)-(5.2) in com-
pact form : Find (up, qp, o) € Vi, x Wy, x Wy, such that

Bi(dn, wr) — Ba(Wp,up) + Jo(oh, Wwi) = Li(wp), Wi € Wy, (5.21)
(a(un, qn), Th) — Bi(oh, Th) =0, Th € Wy, (5.22)
By(oh, vn) + Ji(un, vn) + (f(un, dn), vn) = La(vp), v € Vi (5.23)

Since the numerical fluxes @ and & are consistent, we note that the following identity holds

for all (v, 7, w) € V x W x W.

Bi(q,w) — By(w,u) + Jo(o,w) = Li(w), weW, (5.24)
(a(u,q),7) — Bi(o,7) =0, TEW, (5.25)
By(o,v) + Ji(u,v) + (f(u,q),v) = La(v), veV. (5.26)

In order to derive a priori error estimates and to prove existence of a unique approximate

solution to the problem (5.21)-(5.23), we first note that using (5.21)-(5.26)

Bi(a — qn, wn) — Bo(Wh,u — up) + Jo(o — o, wp) =0, wp, € Wy, (5.27)
/ (a(u,q) —a(up,qn)) - Th — Bi(o —op, ) =0, T € Th, (5.28)
Q

By(o — op,vp) + Ji(u — up, vp) + / (f(u,a) = f(un, an)) va =0, wvp € V3(5.29)

Q
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Using (4.6), we rewrite (5.28) as

ay(u,q)(u—up) - Th +/ aq(u,q)(q—ap) - Th — Bi(o — o1, Th)

Q Q

= / Ra(u — up, g — qp) - Thdz.
Q

Similarly, using (4.5), we obtain from (5.29)

BQ(O' — O'h,’Uh) =+ Jl(u — Uh,Uh) =+ /
Q

Fuloty @) (1 — )+ / falq) - (a— v

= / Ry(u — up, q — qn)vsde.
Q

For notational simplicity, we introduce the following for 7, p € W and ¢, v € V

Au(uaq;d):T) = /au(U,q)¢'Td$,
Q
Aq(u,q;p,7) = /aq(u,q)p-rd:r,

Q
Fu(u,q;¢,v) = qu(u,q)¢v dz

and
Fy(u,q;p,v) = /qu(u, q) - pvdz
Hence, the equations (5.27)-(5.29) take the form
Bi(q — qn, Wp) — Ba(Wp,u — up) + Jo(o — op, wh) =0, wp € Wy, (5.30)
Ay(u, g u — up, T1) + Aq(u, d;a — dp, T1) — Bi(o — oh, Th) (5.31)
= (Ra(u_uh:q_qh)aTh) y Th € Th,
By(o — op,vp) + Ji(u — up, vp) + Fy(u, q; u — up, vp) (5.32)
+Fq(u, d;4 — Qn, vp) = (Rf(u — Up, 4 — Qn), Uh) , U € V.

We state the following lemma without proof. Since, the matrix [a¥ (u, q)] is positive definite,
the proof follows by an appeal to Cauchy-Schwarz inequality and using the assumption on

v and a(u, Q).
LEMMA 5.2.1 There exist positive constants Cy and Cy such that for all (v, w) € VX W,
Ay(u, q;v, W) + Aq(u, q; w, w) + Fy(u, q;v,v) +

Fq(u,q;w,v) > Cl (||W||2 + Jl(va U)) - CZHUHQ‘
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5.2.1 Existence and Uniqueness of the Discrete Problem.

For a given (z,0) € V, x Wy, we define a map Sy, : V,, = Vj, by Sp((2,0)) = (u,q) €
Vi x Wj, and o; € W, satisfying

Bi(q—q;,wpy) — Ba(wp,u— ) + Jo(o — o, wy) =0, w, € Wy,  (5.33)
Ay(u, q;u — uy, 1) + Aq(u, 959 — i, 74) — Bi(o — oy, T1) (5.34)
= (Ra(u —2z,q— 0),Th) , Th € W,
By(o — o, vn) + J1(u — u, vp) + Fy(u, o u — ug, vp) (5.35)
+Fy(u, g4 — qp,vp) = (Rf(u —z,q— 9),vh> , Up € Vh.
We write e, = v — v, = &, — 1y, where & = [lu — u; and n, = Iy — u. Similarly
e,=q-—q=§ —n,and e, =0 -0, =&, —n,, where {§, = Irq—a;, n, = Irq — q,

¢, =Ilo — o, and 1, = llo — 0. With these notations rewrite (5.33)-(5.35) as

B1(&,, Wh) — Ba(wWi, &) + Jo(€,, Wh) = Bi(n,, Wr) — Ba(Wh, 1)

+Jo(n,, wr), W, € Wy, (5.36)

Ay(u, o &u, Th) + Aq(u, a3 €5 Th) — Bi(&y, Th) = Ault, Q5 10, Th) + (5.37)
Aq(u,a;my, Th) — Bi(n,, Ta) + (Ra(u —2,q- e)a"'h) , Th € Wy,

Bs(&,,vn) + Ji(&us vn) + Fulu, a; &, vp) + Fo(u, ; &, vn) = Ba(n,, vp) + (5.38)

J1(Ns Vr) + Fut, &5 0, va) + Folu, o314, vp) + <Rf(u — Up,q — dp), vh) , Uh € Vh
First we show that there is a § such that S, maps Os(ITu, I;,q) into itself, where
OJ(Hualhq) = {(Z, 0) € Vh X Wh : ||(Za 0) - (H’LL, -lhq)||+ < 6}’

where ||(-,-)||; is defined as for given any (v,w) € V. x W, |[(v,w)||; = [|v] + ||w]|]. We

mention here that ¢ is defined as

1 hi’?
0= E [((Jl(nuanU) + J2(Tla’ 77(7))1/2 + ( max ;/2) ‘U’ — Ihu
< D;

1/2
Z/ (o} * + [{ma}?) ds) } (5.39)

e €l k

+lmgll + 7l o) + (
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The following lemma is useful in our subsequent analysis. The proof is an easy consequence

of Lemma 1.2.1 and Lemma 1.2.5.

LEMMA 5.2.2 There is a constant C' which is independent of h and p such that the following

estimates hold :

No_p2u 1 p2mi 1
Ji (s ) + Jo(Mym,) < C (ZW”UH?‘I%(K,-)? + ;2751.||U||§1s14+1(m)> ;
] 7

i=1 Pi
Ny, th,;f‘
u—Ipulip < C (Z zgsi ||u||§{‘9i+1(Ki)) ’
i—1 Pi
Np, h?/‘:"'l
TACRRS vy NUSICAEN p sL MO |
exel ¥ ¢k -1 Pi
and
Ny, hQNle
> [maras < oS5 el
epcl ¥ €k i1 Pi
where p = min{s;, p; + 1} and p} = min{s;, pi} u

Using Lemma 5.2.2, the § which is defined in (5.39) is bounded as follows. If u € H*?(Q)
and o € H?(12), then

1 h?
0 < CCuE (12121)\(1,1 ; ) , where C, = max{||ul|gs/2(q), |ollm2@)2}.  (5.40)

LEMMA 5.2.3 Let vy, € V}, and wy, € Wy,. Then, there is a constant C > 0 such that

1/2
D;
||Uh||L4(Q) S C ( max —) ||Uh||L2(Q)-

1K<, p1/2
1

and

1/2
b
[whllLs@» < C ( max —> [WhllL2@)2-

1K<y, L2
1
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Proof. Using the inverse inequality (1.20), we obtain

Ny 1/4 Np, » 1/4
lonllzae) = (Z||Uh||4L4(Ki)) SC( h_;”vh”i?(Ki))
i=1

=1 !

pz;/z Ny, \ 1/4
< C Egﬁhﬁ (;””h“ﬂ(m))
19;/2 1/4
< ol e ) 2, lonllZ(u, (vahnm Kl)
pif2 NV (S 1/4
= 122% h;/2 1221)\(’;1 (/Kivhdac) (;“U’L“H(&))
pz;/2 Ny, ) /4 /N, 2 1/4
s ¢ 122& hl}/2 (izzl/&vhdx) (;”Uh”m(m))
1/2
< 0| g 15 ) lonlloeo

i
A similar proof yields the second inequality of the lemma. This completes the rest of the

proof. [ |

REMARK 5.2.1 In our subsequent analysis, it is enough to assume that the remainder terms
a,(2,0), ayy(2,0), aq(z,0) and aqq(2,0) in the Taylor series expansions (4.5)-(4.6) of a
and f are bounded for (z,0) € Os(Ilu, I,q). We show, in the following that asymptotically
only the values of z(x) € [m, — 6%, M, + 6*] where m, = inf {u(x) : x € Q} and M, =
sup {u(x) : x € Q} are considered to derive these bounds. Similarly, asymptotically the
values of 0;(x) € [ml — §*, M} + 6*], where m} = inf {Vu(x) : x € Q} and M} =
sup {Vu(x) : x € Q} are considered. To prove this, we use the inverse inequality (1.20),
Lemma 1.2.6 and Lemma 1.2.1 to find for y € Os(Inu) that

[z = ullze@) < Iz = Inullpeoqe) + [[Ihw — ull ()

< C ( max %) |z = Inull 2y + [ Thu — ul| oo (o)

pi hy?
CC, (gg;@ 5) (131335 —) + [[hw — ul| L)
StSNp 1y <iSNp P
h1/2
< CChY + sl

IN
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Similarly, it is easy to show that

16 — q||L°°(Q) < |0- Ihq‘L‘X’(Q) + [Ihgq — q|L°°(Q)
1/2

h
< Ocuhlﬂie + W”U”me

Therefore, for sufficiently small h, ||z|| Lo () < 8" +||u|| o) and ||0]] o) < 8 +||Vul|Leo(0),
where 0 < 6* < 1. Now, since the nonlinear functions a,, a,,, a, and a,, are continuous,
they map the compact set [m, — 6%, My, +6*] x [ml — 6%, M} +6*] into a compact set. Hence,
the results in the subsequent Sections remain valid when a(z, 0), a,(z,0), ay,(z,0), a,(z,0)

and a,,(z, 0) are bounded for bounded v € WL (Q). Similar arguments can be applied to f.

LEMMA 5.2.4 Let the assumption (Q), that is, hp-quasiuniformity hold. Then, for given
any (z,0) € Os(llu, Inq) and (v, T) € Vi, Xx Wy, there exists a positive constant C' such that
for any 0 <e<1/4

| /Q Ralu— 2,q — 0) - 7dz| < CC.CuCoh'/* < § |||
and

| /Q Ry = 2,q — O)vda| < CCLCuCoh?= 5 |[o]|.
Proof. In order to prove the the first inequality, we rewrite using the definition of R,

/QRa(u —2,q—0)-1dxr = /Qéuu(z, 0)(u— 2)* - Tdzx (5.41)
+Aam@ﬂXu—am—emiﬂx£m—ofgaammeoyfm.
For the first term on the right-hand side of (5.41), we bound it as
[ 8= rdsl < Culle =l I

< Ca(llz = Ml + lmalifae) 17l (5.42)
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Then, using Lemma 5.2.3 and the assumption (Q), we obtain

1<i<N, h;

< C(max &>62

1 pi h"
< CC,— ( max _Z> max — 0
he \1<i<N, h; 1<i<Np Py

< CC,Cqh'/* <, (5.44)

and using the identity (5.39), we find that

||77U||%4(Q) < CC,h*6*

hi’?
< CC’ulf(max k )(5

1<i<Ny D;

< CC,h3?es. (5.45)
We substitute (5.44)-(5.45) in (5.42) to obtain
| / Bua(2,0) (1 — 2)° - 7da| < CC,CuCoh*5|7|. (5.46)
Q

Using the inverse inequality (1.20), the second term on the right-hand side of (5.41) is

estimated as follows:

Np,
| /Qéuq(zv 0)(u—2)(a—0) 7dz| < CCL Y |lu—zl|zs,lla — Ol |17 Loy
=1

Np 1/2
b;
< CCaZ N lu — 2|l zaglla — Ol 2oz |7l L2y
i=1

i

1/2

p;
soca(max >||U—Z||L4(n)||q—9|| I7l. (547)

1<i<Ny, p1/2
2
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Then, using Lemma 5.2.3 and the assumption (Q), we obtain

p1/2 p1/2 p1/2
i — < Y L —
(1231}\(7h h%/2> 12 Hu||L4(Q) < C (1221)\(% h}/2> (lgzlgl}\(fh h%/2> Iz — Ilu|
(3 (2 (3

< C < max &> 5 (5.48)
1<i<N, h;
1 ; i

< CC,— ( max &> (max hi )
he \1<i<N, h; 1<i<Np s

S CCUCth/Qfe, (549)

and using the Lemma 1.2.5 and assumption (Q), we find that

pl/2 p1/2 Ni 16 1/4
i i i 4
(m hw) sy <€ (m W) (Z p—gnunm)
1/2 3/2
p; h;
< =t SRR
= ¢ (121121)\(@ h?/Q) (12%21)\(1,1 p{’:/z) 1wl 20
< CC,Cqh. (5.50)
A use of triangle inequality yields
la—0|| < C(lla— Inall + [Ing — 0]]) < C6. (5.51)

We substitute (5.49)-(5.51) in (5.47) to obtain
|/ ayu(2,0)(q— 0)(u— 2) - Tdx| < CC,C,CoRY* 5|7 (5.52)
Q

Finally, using the inverse inequality (1.20), the third term on the right-hand side of (5.41)

is estimated as

Ny,
|/Q(q—0)T5uq(279)(q—9)'Tdﬂﬁ\ < CCY _lla— 0|y lla — Ol T lluax,y
i=1

Np 1/2

p.
CC. Y hﬁ/Q la — 0| caizlla — Ol 2zl Tl L2 (e

=1 "%

IN

1/2
p;
< ca, ( max ) la = Olluor:la - 01l IIK5.53)

1<i<Ny, J1/2
2
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Then, using Lemma 5.2.3, (5.40) and the assumption (Q), we obtain

p1/2 p1/2 p1/2
Pi_ _ < Pi i _
(113331)5;, hW) 1Tha = Bllrse < C (15’13?& h?/2> (1233\(@ h?/2) [1na = 0]
1 (] (3

< C ( max &) 0
1<i<Ny h;

{2

| . 32
CCy— ( max &) (max b )
he \1<i<Ny, h; 1<i<Np s

< CC,Coh'/* e, (5.54)

IN

and from Lemma 1.2.5, we arrive at

p1/2 p1/2 h4 1/4
122‘]}\(%W ||"7q||L4(Q) S C lgzlilN h1/2 Z 4||q||].]3/2(1{z

=1 "1
1/2
b; h;
< -
< © iz ) (s 5) o
< CC,Coh'?. (5.55)
We substitute (5.54)-(5.55) in (5.51) to obtain
| /(q —0)"a,,(2,0)(q— 0) - Tdz| < CC,C,Coh"*~¢65 ||I7|. (5.56)
0

We now combine (5.42), (5.52) and (5.56) to complete the proof of the first inequality of
the lemma. A similar argument yields the second inequality. This completes the rest of

the proof. [ |

LEMMA 5.2.5 Let the assumption (Q) hold. Then, for given (z,0) € Os(Ilu, Inq) and
(v, T) € Vi, x Wy, there exists a positive constant C such that for 0 < e <1/4

~ 1 h;
\/QRa(u —2,q—0)-Tdz| < CCQCUCQE (érzlg%h F) 6 |17l Lece)
and

. 1 .
|/Rf(u— z,q — Q)vdzx| < CCaCuCQE ( max L) 6 |lvllLage
Q

1<i< Ny, p1/2
7
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Proof. For the first inequality, we now consider
/ Ra(u—2,q—0) - Tdz = /Qéuu(z, 0)(u—2)* Tdz (5.57)
Q
+ /Q auq(2,0)(u—2)(q—0) - Tdz + /Q(q —0)Taqq(2,0)(q—0) - Tda
Using Holder’s inequality, the first term on the right-hand side of (5.57) is estimated as
[ (8= 2 el < OOz = ullisole = ulliz s (65:58)

Then we apply the inverse inequality (1.20), Lemma 5.2.3 and the assumption (Q) to obtain

1/2 1/2
z—ul|lrpagy < C| max Pi z—1Iu|| <C maxpi— 0
() Sin,

1<i<Ny, p1/2
1

1/2 3/2
< CCui max max i
he \ 1<i<Ny h;/Q 1<i<N, P
< CC,Cqn h (5.59)
o w9 he 122}1\(@1? ’ :

and using Lemma 1.2.5, we arrive at

My s 2 1/2
C Zp_g:,”“”m(lq)

||u - HUHL4(Q) <
i=1 1t
312
= ¢ (ma% pss—/) lrlle(o
hy?
< CC, (I&:};{ W) . (5.60)
Note that a use triangle inequality yields
|z — ul|| < ||z — Mul| + [|Hu — u|| < 26. (5.61)
We substitute (5.59)-(5.61) in (5.58) to obtain
[ (2, 0) (1 — 2)? - Tdz| < CCLCLCo— hi ) (5.62)
Qauuz, u—2)" Tde| < CCLuCqy 121.12%}1:01/2 : .
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Using (5.59), (5.60) and (5.51), the second term on the right-hand side of (5.57) is estimated

as

| / auq(2,0)(u —2)(q = 0) - Tdz| < Cullu = 2l[paolla = Ol|L2@plI7lloa@p
Q

1 h;
S CCaCuCQE ( max —) (5||T||L4(Q)2.(5.63)

1<i<Np, pl/2
7

Finally for third term on the right-hand side of (5.57), we apply Holder’s inequality to find
that

/Q(q —0)"a,q(2,0)(a— 0) - Tdx < Cylla — 0|2 lla — Ol 2@e | Tllza@y-  (5-64)

Then, using the inverse inequality (1.20), Lemma 5.2.3 and the assumption (Q), we obtain

1/2 1/2
p; Pi
||[hq—0||L4(Q)2 < C ( max —hw) l[Inq — 0]] < C ( max h?/2> %)

1<i<N, 1<i<Np,
| 172 2
< CC,— | max Pi max —
he \ 1<i<n, hz?/2 1<i<N, Pp;
h;
< — .
< CC.Cq (lgllg%h pw) , (5.65)

and from Lemma 1.2.5, we arrive at

VAN

||"7q||L4(Q)

Ni g 1/4
(Z _1”(1“%13/2(K1)2>
p.

=1 "

h:
C ( max —Z> ||u||H5/2(Q)

1<i<Ny P;

IN

< CCy ( max E) : (5.66)
We substitute (5.65)-(5.66) in (5.64). A use of (5.51) yields

1 hi
| /(q - O)Téuu(z, 0) (q — 0) . Td.T| S CCaCuCQE ( max —2> ) ||T||L4(Q)2(567)
Q

1<6<N, !/
1

We now combine (5.58), (5.63) and (5.67) to complete the proof of the first inequality of
the lemma. A similar argument yields the second inequality. This completes the rest of

the proof. m
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LEMMA 5.2.6 There exists a positive constant C' such that

|[Aq(u, &1, Th) + Au(tt, & 1, Th) — Bi(n, Th)| < CCo (gl + Inull) ITall, 7 € W

|Fq(uaq; nq,Uh) + Fu(uaq; 77u;”h)| <CC, (||77q|| + ”nu”) ||Uh||a vp € Vi

and for wp € Wy,

|B1(n4, Wh) — Bo(Wh, 1) + J2(My, Wa)| <
1/2
C (||nq||2 + 3 [ HomadPds + Ji (s 1) + Jz(nmm)) (1wall? + Ja(wn, wy)) 2.

er€l’ €k

Proof. Since i, = Ilo — o, where Ilo is the L? projection of o, an appeal to the Cauchy-
Schwarz inequality yields the proof of the first inequality. Similarly, the second inequality

follows from Cauchy-Schwarz inequality. For the third inequality, we note that

Np,
Bi(ng, Wr) — Ba(Wn, M) + J2(n,, wn) = / M, " Whd + Z/ .V - whdx
Q i=1 Y K

|} iwalds — / Cuz.mllwalds + / —Colm,|lwalds.  (5.68)

F] I‘I

Since V - wy, € V}, using the definition of L?-projection, the second term on the right-hand
side of (5.68) becomes zero. The third term on the right-hand side of (5.68) is estimated

as

1/2
\/F{nu}lwhldSI < C(Z \{nu}\2d8> o (Wi, W) /2. (5.69)

e €T €k

For the first term on the right-hand side of (5.68), a use of Cauchy-Schwarz inequality
yields

| / 0, - wadz| < gl wall (5.70)

We bound the fourth term on the right-hand side of (5.68) as
|/ Coo[nu]lwnlds| < CJy(1,m)"? Jo(wn, wp) /2. (5.71)
I'r
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Finally, the last term on the right-hand side of (5.68) is estimated as
|/ C22'|I770]||[Wh]|d8‘ < C‘IQ(T’U””U)I/Q JQ(Wh’Wh)I/Q' (572)
'y
We combine (5.68)-(5.72) to complete the rest of the proof. |

THEOREM 5.2.1 There is a positive constant C such that
||£a|| < CCa (”eq” -+ ||eu|| + h1/2765) )

Proof. Using (5.34), we write

Aq(u,q;eq,7h) + Au(u, q; ey, Th) — Bi(es, Th) = / R.(u—2z,q—0) Tpdx. (5.73)
Q

Set 7, = &, in (5.73) to obtain

/ ga ) go'dm = Aq(ua q; eqa 60) + Au(ua q; €u, 60’) + Bl(nga Th) - / Ra(u —%,q— 0) ' Thdx-
Q Q
Using Cauchy-Schwartz inequality and Lemma 5.2.4, we complete the proof. [ |

THEOREM 5.2.2 The following error estimate holds for 0 < h < hg <1 :

hi
lle]| < C h'? (Jl(eu, eu)1/2 + Jo(e,, 90)1/2) + Cy,C, (122%,1 E) llegll
1 hy/?
+C’30aCuC’QE max 1/2 0.

L<I<Ny, !
1

Proof. We now appeal to the duality argument. Consider the following auxiliary problem

-V (aq(ua q)v¢ + fq(u: q)¢) + au(ua q) ) V¢ + fu(u: q)¢ = €y in Q:
¢ = 0 on 09,

which satisfies the elliptic regularity

16]lz2() < Clleall- (5.74)

In order to write the mixed weak formulation, we introduce p and % such that

p=Ve inQ, (5.75)
—’l,b = aq(ua q)p + fq(u: q)¢ in Qa (576)
V.Y +a,(u,q) p+ fulu,q)p =€, inf (5.77)
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We multiply (5.77) by ey, (5.76) by e, and (5.75) by e,, then integrate to arrive at
el = / e,V - dx + / a,(u,q)e, - pdr + / fulu,q)e,d + / Y - e dr
Q Q Q Q
+/ aq(u,q)p - e,dz +/ fq(u,q)¢ - e,dr — / p-e,dx + / Vo -e,dr.
Q Q Q Q
Since [¢] =0, [¢p] =0 on ex € T'; and ¢ = 0 on 0S), we write

”61/”2 = Bl(eq7 ¢) - BQ(I(»b,eTA) + JQ(eGa"’b) + Aq(ua q; eqap) + Au(ua q; €y, p)
_Bl(em p) + B2(e07 ¢) + Jl(eu: QS) + F ( u, q; €y, ¢) ( u, q, eqa ¢)

Then, we use (5.33)-(5.35) to obtain

||eu||2 = Bl(eq: T"(/J) - B2(n1/n eu) + J2(e0'a "7¢) + Aq(u: q; eq, T’p) + Au(ua q; €y, np)
—Bi(e;,n,) + Ba(es, np) + Ji(€u;np) + Fu(u, q; €4, mg) + Fo(u, q; €4,74)
- (Ra(u —%,q— o)thp) - (Rf(u —z2,q9— 0)a1h¢> )

where ny = ¢ — [0, n, = p — I,p and n,, = ¥ — lI1p. We now apply integration by parts
for the following term to find that

~Bange) = Y [ eVomdo— [ (e} + Cule)nlds
= —Z/vVeu-nwdac-l-/ (1_012)|[€u]|{77¢}d3

= / (u — IThu) - n¢dx—Z/ V(Ihu —uy) - nydz
+ /F (1= Cua)leal{my }ds. (5.78)

Since Iy is the L? projection of v, the second term on the right hand side of (5.78)
becomes zero. Then, for the first term on the right hand side of (5.78), we use Lemma 1.2.5

to obtain

Ny, ) 1/2

h;
\Z/ V(u—Iyu) - nydz| < C(ZPQIIV( Ihu)Hiz(Ki)) ][ ()
i=1 v K

i—1 Y
h;
< C ( max —) lu —
1<i<Nj, P;
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Similarly, using Lemma 1.2.5, we estimate the third term as

[ ledtniyas| < cz( / Crlea]? ) ( / {W}?ds) .

ep €l
< ChY2Jy(ew, )2 ||| 1 (- (5.80)
Using Lemma 1.2.5, we find that
Ni o 1/2
Biegn,)| = | / g mda| <C (3 leligeyr | Iplmr. (581
=141
We first note that
Np,
Balesne) = [ €0+ Vnudo— [ ({er} = Cusles))lnelds. (5:82)
— JK; r

Then, we use Lemma 1.2.1 to estimate the following term

1/2
|Z/ €y - Vydz| <C(Z 2||ea||L2(KZ ) 91 20 (5.83)

le

and use Lemma 1.2.1 with trace inequality (1.19) to find that

[ ey = Culeclmlds < & 3 ( [ e Himlids+ [ {im. il )

el

1/2
h;
<¢ Bt s+ [ P,y ;
(Z/ (elyas+ [ S ) ol
1/2
Sc(lg}gﬁ —1/2>|I£ I ol 20 (Z/ k{|n(,\}2ds> 16| r2(62)(5-84)

epel
Now, using Cauchy-Schwarz inequality and Lemma 1.2.1, we obtain
1/2

Nh 2
h;
|Bi(eg,m,)| < C (ZE”%”%%KN 1Pl (02, (5.85)
=141
N, B2 1/2
|[Au(u, q; e4,m,)| < CC, (Zp—;lleullizg@ 1Pl 02, (5.86)
=141
h2 1/2
[ Aqg(u, q; e(I’np)| < CGC, sz ||eq||L2(Kl ||p||H1(Q)2a (5.87)
=141
h4 1/2
| Fu(u, a; €0, mg)| < CC, (Zpilleullm )> 91| 202, (5.88)
=141
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and

1/2
h4
[Fa(u, a;eq,mp)| < CC, (Zp4 ||eq||L2 )> [l #2022 (5.89)

=11

Using Lemma 1.2.5, we obtain
1/2
eainy) < Clalenen)”? ( / In¢12ds>
Ty
< ChY'2Jy(er,e0) " |9l a2, (5.90)

and using Lemma 1.2.1, we find that

ean < €3 ([ cuteain) " ([ o)

e €l
h3/2
i 1/2

Finally, from Lemma 5.2.5, |[1;8||4(02 < C||¢||m1) and |[1p||r1p2 < C|pl|a1@)2, we
find that

. 1 h;
| (Ra(u —2,q-— 0),Ihp> | < CCalulqy: (1212% p—) o||pll a1 () (5.92)
\(R (u—zq—O)Iqﬁ)\ < C’C’C’C’l maXh— O|B|| g1 (5.93)
f ’ s Lh = a“u Qh€ 1SNy, p1/2 H(Q)- .

We combine the estimates (5.80)-(5.93) and then use elliptic regularity (5.74) to obtain for

small A

h;
lea]l < Cy b2 (Jl(eu,eu)l/Q + JQ(ea,eJ)1/2) +Cy ( max —) (Callegll + v — Inulip)

1<i<Np p

1/2
+Cy (N 1/2) (Z / {|m|}2d8+||£gll2>
(A4S

1 i
+C5CaCuCar- ( max h—) 5.

1<i< Ny, p1/2
2

Then, from Theorem 5.2.1 and the estimate (5.39), we arrive at

llea]] < C h!/? (Jl(eu,eu)l/2 + Jg(eg,e(,)lﬂ) + Cy,C, < max h—) llegll

1<i<N, p;
1 L2
+C3CaCuCQE max —= | 6.

L<i<N 1/2
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This completes the rest of the proof. [ |
THEOREM 5.2.3 There exists constants C; > 0 and Cy > 0 such that for any 0 < e < 1/4,
||eq||2 + J1 (eu, eu) + JQ(eo—, e,,) S ClCaCuCthdg + C’gCa||eu||2. (594)

Proof. Set v, = &, T7h = §, and w;, = &, in (5.36) -(5.38), respectively. Using Lemma
5.2.1, we obtain

Cy (16,117 + J1(6us &) + J2(€,.€,)) — Calléull” < (€, €,) + Aulu, a; €,,€,)
+Aq(u, q; &0, €,) + Fulu, q; €4, &) + Folu, a; €, &) + J1(6us &u)
= Bi(ny,&,) — B2(&5s M) + J2(M,&5) + Ault, a5mg, &) + Ag(u, a5 70, €y
—Bi(n,,&,) + B2(n,, &) + Fu(u, & 14, &) + Folu, a5 m,, &)
T, &) + (Ra(u = 2,0~ 0),€,) + (Rp(u—2,a-8),6).  (595)

From the definition of By and .J;, we write

B2(nm§u) + Jl(nuafu) = zh: /K'??g : Vgudm - /I:({’l’]a} - ﬁl['r’ull - C12|["70]|)|[§u]d5- (596)

Since Ilo is L? projections of o onto W}, and V&, € W, we note that

Np,
> / n, - VEudz = 0. (5.97)
i=1 v Ki

Next using the trace inequality (1.19), we bound the following term as:

1/2
I/F({na}—Cnlnul—Clzlna])lfu]dSI < C(Z {\na|}2d8> (J1(&u, &)

erel €k

+C (J (M, )P (Ji(Eus &)

An appeal to Lemma 5.2.6 with 74, = §,, vy = &, and wy, = &, yields

[Aq(u, a1, €) + Au(tt; & 10 €g) — Bi(15,€)| < CCulllngll + ImalDlI€gll, (5.98)

and

| Fo(u, &M €u) + Fu(t, 04, &) | < CCalllmgll + 1l lIull- (5.99)
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Using Lemma 5.2.6, we now arrive at

|Bi1(ny,€,) — Ba(&,, M) + J2(n,,€,)| <

1/2
C (II'anI2 + 3 {nPds + i (s ) + o (1, na)) (I 112 + Ja(€,.€,)) "

e €l €k

For the last two terms on the right-hand side of (5.95), we set 7 = £, and v = &, in Lemma

5.2.4 to obtain

alls

| (Rq(u —z,q— 0),§q) | < CC,C.CuRY* 5 ||€
and
| (Rulw— 2,0 6),6,) | < CC.CL.CQI*6 ||Eu]. (5.100)

We now combine the estimates (5.95)-(5.100) with the estimate of ||€]| from Theorem 5.2.1

to obtain for sufficiently small A

||£q||2 + Jl(gua §u) + JQ(EO”EO’) < CIC& (Jl(nua nu) + JQ(TIU’,'?O') + ||77U||2 + ||,'7q||2)
+CQCaCuCQh1_2652 -+ Cgca||€u||2

403 [ (Umely? + () ds

e €l €k

< C1C,CuCq (R + h'7%) 6% + CoCllen]|®.  (5.101)

This completes the rest of the proof. [ |

Now in the following theorem, we examine the range of Sy, for 0 < h < hy < 1.

THEOREM 5.2.4 For all0 < h < hy < 1, the map S, maps Os(Ilu, I,q) into itself, where
d is as in (5.40).
Proof. Using Theorem 5.2.3 and Theorem 5.2.2, we obtain

1€,1l+ 16 €)% + (€, €)% < C(Ch, o, G, Cuy C) (15 + Jleal)
< C(C1,CCyCo) (hm ( max @) ||sq||)

+C3h1/2 (Jl (6’(“ gu)l/Q + JQ (60’7 50’)1/2) )
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For sufficiently small h, we find that
€1l + J1(Eus €)1 + Ja(€,,€,)* < O (Cus Cu, Co) . (5.102)

Using Theorem 5.2.2 and Theorem 5.2.3, we arrive at

||€u|| < C(Ca;cu,CQ) (( max ?—;2) ||£q|| +h1/2 (Jl(fu,fu)lm + J2(£a’§a)1/2 + hed))

L<i<Ny
€ hi 1/2+e€
< C(C,,Cyu,Co) (12;% }F) 8y + C (Cy, Cy, Co) W<

< C(C,,Cy, Cg) hH*Fe. (5.103)

Hence, [|Sk((2,0)) — (Ilu, Inq)|l+ = [|&ul| + [, < 6 and we conclude that S, maps
Os(Mu, Iq) into itself. This completes the proof. [ |

THEOREM 5.2.5 Let (z1,01) and (z9,03) € Os(Ilu, I,q) with 6 as in (5.40). Then for
sufficiently small h and 0 < € < 1/4, there exists a positive constant C such that

[15n((21,61)) — Sn((22, 82)) ||+ < C (Ca, Cu, C) b (21, 01) — (22, 02)|[+- (5.104)

Proof. Let {u;, q;,0:}, i = 1, 2 be two distinct solution of (5.33)-(5.35) when (z,6) is
replaced by (z;,6;), for i =1, 2. From Theorem 5.2.3 and Theorem 5.2.1, it follows that

(us = ul] + [lqi = Inq]| + [los = Ilo|| ) < ChS.
Using (5.33)-(5.35), we note that for any (wy, vy, 7h) € W x V,, X W,
Bi(a1 — g2, wp) — Ba(Wp, 41 — 32) = 0, (5.105)
Aq(u, g5 a1 — do, Th) + Au(u, @ Uy — Up, Th) — Bi(oy — 09, Th) =
/Q (Ra(u — 21,4 = 61) = Ra(u — 2,9 — 02)) - Thdz (5.106)
and

By(o1 — o3, vp) + J(u1 — uz,vn) + Fo(u, @ a1 — @2, vp) — Fu(u, @5 u1 — Uz, va)
= / (ﬁf(u —21,4—0,) — Ry(u— 25,9 — 02)) vpdi. (5.107)
Q
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We rewrite the following term from the right hand side of (5.106) as

Ra(u— 21,94 — 01) — Ra(u — 20,9 — 05)

=a(z1,01) — a(22, 62) + au(u, a) (22 — 21) + aq(u, q) (62 — 61)

= a(z1,01) — a(zo, 02) + ay(22, 02) (20 — 21) + aq(22,02) (02 — 01) — a,(22,02) (22 — 21)
—aq(22,02)(02 — 01) + ay(u, q)(z2 — 21) + aq(u, q) (62 — 61)

= Ra(ZQ — 21, 02 — 01) + + [au(u, (]) — au(ZQ, 02)] (22 — Zl)
+ [aq(u, @) — ag(22, 02)] (62 — 01).

2) +
)

Using Taylor series expansion (4.6), we obtain
Ra(u — 21,4 — 01) — Ra(u — 22,94 — 65)
= Ra(Z2 — 21,05 — 01) + [_éuu(ZZa 02)(“ - 22) - E~luq(z2; 02) (q - 02)] (2’2 - 21)
+ [—aqu(z2, 02) (u — 22) — 8qq(22, 02)(q — 62)] (62 — 61).

We can write similar expressions for Rf(u — 21,9 —0q) — Rf(u — 29,q — 03). Now using

similar arguments as in Theorem 5.2.4, we first obtain

1/2
<||Q1 —qf” + Z Crilur — ug] dS)

erel’ €k
S Clca (CUCQ}LCHZl — ZQH + ||u1 - U2||) (5108)
and
||0'1 — 0'2” S ClcaheH,Zl - ZQH + CQCa||u1 - UQ” (5109)

Then, an application of duality argument as in Theorem 5.2.2 yields

1/2
||U1 — UQ” < CC h¢ (||q1 - (]Q” + Z / 011|[u1 — U,Ql dS) . (5110)

ex€l
We combine the estimates (5.108)-(5.110) to complete the rest of the proof. |
Now, we can conclude from Theorem 5.2.5 that the map S, is well defined, that is, the
linearized problem (5.33)-(5.34) is well-posed and continuous in the ball Os(ITu). Hence,
an appeal to Brouwer fixed point theorem implies that Sy, has a fixed point uy, in Os(ITu).
Then, using Theorem 5.2.5, it is easy to see that uy, is the unique fixed point in O(ITu) for
small h. Moreover, (us, qn, ) is the unique solution for the problem (5.30)-(5.32).
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5.2.2 A priori error estimates

Note that by replacing ITu — u; by IIu — uy, in (5.103) and Theorem 5.2.2, ITu — uy, satisfies
the estimate (5.103). Further replacing I,q — q; by I,q— qn, Inq— qy satisfies the estimate

(5.102). Hence, we easily prove the following theorem.

THEOREM 5.2.6 There exists a constant C' such that for sufficiently small h the following

estimates hold:
Ny, h?uj_l p2uit1
la-aul < CC.CQY | ol oy + “glulneiy
i=1 \ Pi D;
and
Ny, hzujq 2u}+1
lu—u|? < CCL.CQRYY (WIIQII%@V + ;27&-“7‘“?{8#1(}(1)) :
i=1 i 1

where 7 = min{s;, p; + 1} and p; = min{s;, p;}.

REMARK 5.2.2 Note that the error estimates obtained in the above theorem are optimal in
h and suboptimal in p. These estimates are exactly same as in the case of linear elliptic

problems, see [57].

5.3 Numerical Experiments

This section is devoted to some numerical experiments to illustrate the theoretical results
obtained in Theorem 5.2.6. The model problem is a mean curvature flow as in (4.87)-(4.88)

which is governed by

Vu )
-V - (—(1 n |Vu|2)1/2> = f inQ,
u = 0 on 09,

where Q = (0,1) x (0,1). The forcing function f is taken in such a way that the exact
solution is u = z(1 — z)y(1 — y).
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We compute the approximate solutions u; and q; on a sequence of finer subdivisions 7}, of
), where 7}, is formed by uniform triangles. Let N, denote the number of triangles. The
discrete space V}, is constructed by using piecewise polynomials of uniform degree p = 1 and
uniform degree p = 2. Since the discrete space V} can have piecewise polynomials which
may be discontinuous across the edges of elements, we choose basis functions as follows. If
p = 1, then we choose the basis as in (2.60)-(2.61) and if p = 2, we choose the basis as in
(2.62)-(2.66). We note that each basis function takes support only on the corresponding
element K;. The space W/, is constructed by taking the tensor product of elements of V},,
i.e., any element wj, € W, is obtained by taking wj, = (vp, ¢p), for some vy, ¢, € Vj. Let
N = Ny, % W and 2N be the dimensions of V;, and W, respectively. Denote the
basis of V,, by {®, : 1 < j < N} and the basis of W, by {¥, : 1 <1 < 2N}. We choose
the parameters Ci, = [0, 0], C1; = 10 and Cye = 1.

In order to derive the nonlinear system correspending to (5.18)-(5.20), we set w;, = ¥,

7, = ¥y and v, = ®; in (5.18), (5.19) and (5.20), respectively. Then, we arrive at
Np,
/qh-\IIldx—i-Z/ uhV-\Ifld:U—/ ({un} — Conlon[Wilds = 0, 1 <1< 2N, (5.111)
Q i=1 Y K 1

qn
A Wdz— [ op-Udz =0, 1 <k <2N, (5112
/Q(1+\qh|2>1/2 ¢ / ¢ < k<2, (5.112)

Np,
Z/ Oy - V(I)Jd.’b - /({O'h} — Cnﬂuh]])ﬂ@j]]ds = / f(I)de, 1 S j S N. (5113)
i=1 v K r Q

Since the nonlinear term appearing only in one term which is integrated over elements I;,
we apply one-step fixed point iteration method to solve the system (5.111)-(5.113). For

given q) =0, find qf, o and uf, for k¥ > 1, such that

Np,
/q’g-qfldx+2/ u’,jv-\pldx—/ ({uf} — CylatD[¥]ds = 0, 1 <1< 2N, (5.114)
Q i=1 Y Ki 1

k
qp k
- - WUdr — / o; - Vrdr =0, 1 <k <2N, (5.115)
/n(1+\qlfi )L 0 "

Np,
Z/ a'g-v¢jdx—/({a;j}—cnlug])[@,-]dsz/fcp,-dx, 1<j<N.(5.116)
i=1 7 Ki r Q2
We now define the following matrices
A= [ami]icmicon s B = ilicicon, 1<icn s D = [digh<ij<n, S = [sijlhi<ig<en (5.117)
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and the vector

L= [lz’]lgigm,l )

where
aml:/\Ilm-\I!ldx, Z/@v \Pdm—Z/{@}\Ill
Q er€l'y
= [ Cul®|®;lds, sy=>Y_ [ Cnl¥][¥;]ds, and I; :/fcb,-dx.
€k er €k ekeI‘ €k Q
Write
N 2N 2N
Up = Zai@i, qp = Zbl\pl and Oy = Z’yl\pl, (5.118)
i=1 =1 =1

where o« = [al, Qg, - ,aQN], b = [bl, bg,' . ,bQN] and Y = [")/1, Y2, ,’YQN]. We define
the following matrix which is generated from the first term on the left-hand side of (5.115).

R™ = [riili<ij<on,

v -y
g [ Bty
1+ g7

Using the bases for V}, and Wp,, now the system (5.114)-(5.116) reduce to the form : Find
of, b* and +*, for k > 1, such that

where

Ab* 4+ Ba* + SvF = 0, (5.119)
RF1bY — AyF = 0, (5.120)
—-B"* + Do* = I, (5.121)

where B'' is the transpose of B. Since the basis functions {¥;}?%| can be assumed inde-
pendently in each triangle K € T}, the symmetric positive definite global matrix [A] has
the following block diagonal form

(4] = [ [Axi), s [y, ]|
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where only the diagonal entries are shown. The other entries in [A] are null matrices. The
element matrices [Ag,| are symmetric and positive definite for i = 1, 2,...., N}, [A]"! has

the block diagonal form
A1 = [[Ar] ™ s Ay, ] 7

From (5.119), we find that
b* = —A7'(Ba* + SHF). (5.122)

Substituting b* = — A~} (Ba* + S~*) in (5.120)-(5.121), the system (5.119)-(5.121) reduce
to the form : For given b® = 0, find o* and ~*, for k£ > 1, such that

—RF'ATY(Bo* + Sy%) — Ay = 0,
—BT"y* + Do* = L.

We plot the L?-norm of the error e, = q— q;, against mesh size h in Fig 5.1, for each degree
of approximation p = 1 and p = 2. We observe that the convergence lines are straight lines
and converge to 0 as h goes to 0. We compute the order of convergence which is 1.5 when
p = 1, and 2.5 when p = 2. Therefore, the computed order of convergence illustrate the

theoretical order of convergence obtained in Theorem 5.2.6.

Figure 5.1: Order of convergence for ||e,||.

lla-q,l

L
-2 -1 0

10 10 10

We now plot the L?-norm of the error e, = u — u; against mesh size h in Fig 5.2, for each
degree of approximation p = 1 and p = 2. We also observe that the convergence lines are

straight lines and converge to 0 as h goes to 0. We compute the order of convergence which is
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Figure 5.2: Order of convergence for ||e,]|.

2 when p =1, and 3 when p = 2. Therefore, the computed order of convergence illustrate

the theoretical order of convergence obtained in Theorem 5.2.6.
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Chapter 6

Conclusions

In this concluding Chapter, we highlight the main results obtained in the present disserta-
tion. Further, we discuss the possible extensions and the scope for further investigations

in this direction.

6.1 Summary and Critical Assessment of the Results

In this thesis, we have studied hAp-discontinuous Galerkin finite element methods (DGFEM)

in the primal form, namely; Symmetric Interior Penalty Galerkin (SIPG) and Non-symmetric
Interior Penalty Galerkin (NIPG) methods for a class of quasilinear and strongly nonlinear

elliptic problems of nonmonotone-type. We also have analyzed the Local Discontinuous

Galerkin (LDG) method which is in the mixed form for both quasilinear and strongly

nonlinear elliptic problems. The emphasis throughout this study is on the existence and

uniqueness of the DG and LDG approximate solutions and the order of convergence in the

broken energy norm and L?-norm. The error estimates have been illustrated with numerical

experiments for each of these methods.

We have discussed hp-DGFEM (SIPG, NIPG and LDG) to approximate the solution

of the following quasilinear elliptic problem :

-V - (a(u)Vu) = f in Q, (6.1)
u = g on 0%, (6.2)
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where 0 < a < a(u) < M, for some o, M € R*. In this context, we note that it is not
possible for the induced variational form B of the DGFEM for (6.1)-(6.2) to satisfy the

following strong monotone property
B(Uh, Up — wh) — B(wh,vh — wh) > C|||Uh — wh|||2 Vh, W € Vh, (63)
and (or) uniform Lipschitz continuity

|B(vh, ¢n) — B(wp, #n)| < Cl||vn, — wyl| |||dnll| vy why én € Vi (6.4)

which play a crucial role in deriving the error estimates, see [45, 17]. An attempt has been
made in this thesis to discuss DG methods for the nonlinear elliptic problems (6.1)-(6.2)
with non-monotone and (or) nonuniform Lipschitz continuous principal part. The basic
tool used here is to work on a linearized problem in a ball Os([,u) around an interpolant
Iu of u so that the nonlinear operator a can be assumed locally elliptic and (or) locally
bounded in the ball Os(Iu). This has made it possible to allow more general nonlinear
coefficient a in (6.1). As a tool for deriving a priori error estimates, a discrete solution map
is defined via the elements of the discontinuous finite element space V}, to the set of discrete
solutions of a linearized problem which is a non-selfadjoint linear elliptic partial differential
equation. Since the associated operator satisfies the Géarding type inequality, special care
is taken while deriving the error estimates. Specially, a discrete dual problem is introduced
to discuss these estimate. It is also shown that the discrete solution map is Lipschitz
continuous and maps a ball into itself. An appeal to Brouwer fixed point theorem yields
existence of a solution which is also uniquebecause of Lipschitz continuity of the discrete
solution map under an Ap-quasiuniformity condition on the mesh. The derived a prior:
error estimates in the broken H'! norm are optimal in A and suboptimal in p for both NIPG
and SIPG methods. In case of NIPG method, these results lead precisely to the same
h-optimal and slightly p-suboptimal rates of convergence as in the case of linear elliptic
boundary value problems [61], [44]. It is well noted in the literature that the NIPG method
is not adjoint consistent, and hence, it is difficult to expect optimal L? error estimate.
However on a regular mesh using super-penalty, an optimal error estimate in the L?-norm
is established. The numerical experiments are presented to illustrate the performance of

the SIPG and NIPG methods applied to nonlinear elliptic problems (6.1)-(6.2) in Chapter
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2. Further, the numerical experiments show the improved order of convergence in the L?-
norm when NIPG method is applied with super penalty. In Chapter 3, the LDG method
is analyzed for (6.1)-(6.2) and optimal estimates in h and slightly suboptimal estimates in
p are also derived. By and large, the numerical experiments confirm the theoretical results
established in Chapter 2 and 3.

We then extend the results obtained for nonlinear elliptic problems (6.1)-(6.2) to a class

of strongly nonlinear elliptic problems :

2
aai

= 5 (%u, V) + f(x,u, V) = 0, x € Q, (6.5)
=1 !
u = g, x € 011, (6.6)
where the matrix [a” (x, u, z)] = [a—zi(x, u, z)] is symmetric and if \(x, u, z), A(z, u, z)
J §,j=1,2

are minimum and maximum eigenvalues of the matrix [¢%], then for all £ € R* — {0} and

for all (x,u,z) € 2 x R x R?
0 < A(x,u,2)|£)* < d¥(x,u,2)&E < Az, u,2z) €. (6.7)
We have assumed that if ||u|lwz o) < o, then there is a positive constant C, such that
0 < Cy < A(x,u, Vu). (6.8)

We have applied a one parameter family of DG methods to (6.5)-(6.6), which is parametrized
by 6 € [-1,1], where # = —1 corresponds to the symmetric and § = 1 corresponds
to the non-symmetric interior penalty methods when (a;(u, Vu),as(u, Vu)) = Vu and
f(u, Vu) = 0. The induced variational form also includes the cases linear elliptic problem
[61] and quasilinear elliptic problems [41]. To prove the well-posedness of the DGFEM,
we have worked on a corresponding linearized problem which is a non-self adjoint linear
elliptic problem. We then define a discrete solution map Sy : y € Os(Iyu) — Vj,, where
Os(Ipu) is a ball with radius 6 = §(h) and centered at an interpolant I,u of u, and S, (y) is
the solution to the corresponding linearized problem. The map S}, is defined in such a way

that any fixed point of S}, is a solution to the nonlinear system of DGFEM. We then find
[Sh(y) — Inull] < 4, for given y € Os(Inu), (6.9)
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and
Sh(y1) = Su()ll| < CRe|l|y1 — woll|, for y1, ya € Os(Ipu), 0 <e < 1/4.  (6.10)

In order to establish (6.9)-(6.10), we choose  in such a way that if y € Os(I,u), then
[yllwym) < llullwy@) + Chellullgs/2q)- This has made it possible to assume that the
nonlinear terms a; and f along with their derivatives are bounded in a ball around u. Using
(6.9)-(6.10) and Brouwer fixed point theorem, we have shown that the discrete problem
has a unique solution under hp-quasiuniformity assumption on the mesh when the degree
of approximation > 2. The error estimates obtained in broken H'-norm are optimal in
h and suboptimal in p. These results lead precisely to the same h-optimal and mildly p-
suboptimal rate of convergence as in the case of linear elliptic problems, see [61]. Finally, we
have derived a priori estimates in the L? norm which are optimal in A and slightly optimal
in p when # = —1. We have discussed some numerical experiments which confirms the
theoretical results obtained for (6.5)-(6.6) in Chapter 4. It is also noted from the numerical
experiments using piecewise linear elements that is p = 1 that there is a deterioration in
the computed order of convergence. However, we do not have theoretical justification to
this observation.

In Chapter 5, we have discussed the hp-local discontinuous Galerkin method (LDG)
for strongly nonlinear elliptic problems (6.5)-(6.6). We use the results of LDG method for
quasilinear elliptic problems (6.2)-(6.2) and the results of DG methods for the strongly
nonlinear elliptic problems (6.5)-(6.6) to analyze the LDG method for strongly nonlinear
elliptic problems (6.5)-(6.6). In this context, it has been possible to derive error estimates
for the nonlinear operators (ai,as) which are locally elliptic and (or) locally Lipschitz
continuous. Due to the technicalities in using inverse estimates, we add the extra stabilizing
terms containing the jumps of the flux variable which allow us to use the piecewise linear
polynomials. In the absence of these jump terms, we need the degree of approximation
> 2. Using Brouwer fixed point theorem and Lipschitz continuity of the discrete solution
map, it is shown that the discrete problem has a unique solution under hp-quasiuniformity
assumption on the mesh. The error estimates obtained are optimal in A and suboptimal
in p. These results lead precisely to the same h-optimal and slightly p-suboptimal rate of

convergence as in the case of linear elliptic problems, see [17].
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6.2 Possible Extensions and Future Problems

The results of this thesis can be easily extended to the problems in three space-dimensions
by making appropriate changes in the analysis. Moreover, it is not difficult to extend
our analysis to the problem —V - (a(u)Vu) + f(u) = 0, where f(u) € C2(Q x R). With
appropriate modifications in the analysis, it is possible to extend the theoretical results of
this thesis to the problem (2.1)-(2.2) when a(u) is a positive-definite matrix.

In this thesis, we have derived a priori error estimates in the broken H'-norm and in
the L?-norm. Establishing error estimates in the L* (maximum) norm for the nonlinear
elliptic problems is an interesting and more challenging task. In literature, the maximum
norm error estimates are derived for the h-version of the SIPG and LDG methods applied
to linear elliptic problems, [21, 22, 23, 42, 46].

As in the unified frame work of all the existing DG methods for linear elliptic problems
[5], an attempt can be made to derive a unified frame work for the nonlinear elliptic
problems which are studied in the present thesis. As in [5], the concept of lifting operators
and L?-projections may be used to derive the unified frame work. This may make it possible
to study a large class of DG methods such as Oden [55], Brezzi [15], Bassi-Rebay [11], etc.,
and useful to derive a unified a posteriori error estimates. In this context, an attempt has
been made in [19] to discuss unified a posteriori estimates for the unified DG methods when
applied to linear elliptic problems. Given a tolerance € and norm ||| - |||, the objective of
the adaptive DG methods is to compute an approximate solution u, to the exact solution
say u such that

v — unll| <€

is achieved efficiently in minimal computational cost. We expect that the unified a posteriori
estimates proposed in [19] for unified DG methods applied to linear elliptic problems will
be useful in deriving a posteriori error analysis for the nonlinear elliptic problems.

The analysis of this dissertation may be extended to study the DG and LDG methods for
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the following time dependent problems :

ur— V- (a(u)Vu) = f on Qx (0,71,
u(x,t) = ¢1(t) on 90 x[0,T],

u(x,0) = go(x) on Q,
and

u—V-a(u,Vu) = f on Qx(0,T],
u(x,t) = ¢gi1(t) on 09 x [0,T],

u(x,0) = ga(x) on €,

where the nonlinear operator a or a may not be uniformly monotone and (or) uniformly
Lipschitz continuous. Problems of these type occur in variety of applications, for exam-
ple, in nonlinear convection-diffusion, flow of gases in porous media, etc. Therefore, it is
worthwhile to generalize the results of this thesis to such problems. Finally, it is possible
to expand the present analysis to include the coupled systems of equations in either in-
compressible miscible or slightly compressible miscible problems in Oil reservoir studies.
Specially, an application of LDG method may prove effect to the Concentration equation

which is a convection dominated diffusion equation.
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