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Abstract

The main objective of this thesis is to analyze mortar finite element methods for elliptic

and parabolic initial-boundary value problems.

In Chapter 2 of this dissertation, we have discussed a standard mortar finite element

method and a mortar element method with Lagrange multiplier for spatial discretization

of a class of parabolic initial-boundary value problems. The introduction of a modified

elliptic projection helps us to derive optimal error estimates in L∞(L2) and L∞(H1)-norms

for semidiscrete methods. A completely discrete scheme using backward Euler scheme is

also analyzed and optimal error estimates are derived in the framework of mortar element

method. The results of numerical experiments support the theoretical results obtained in

this thesis.

The basic requirement for the stability of the mortar element method is to construct

finite element spaces which satisfy certain criteria known as inf-sup (well known as LBB,

i.e., Ladyzhenskaya-Babuška-Brezzi) condition. Then many natural and convenient choices

of finite element spaces ruled out as these spaces may not satisfy the inf-sup condition.

In order to alleviate this problem stabilized multiplier techniques or Nitsche’s method is

used in Chapter 3 and 4. We have studied both stabilized symmetric and unsymmetric

methods for second order elliptic boundary value problems under some assumptions on

the penalty parameter, and established stability of the schemes with respect to the mesh

dependent norm. The existence and uniqueness result of the discrete problem are discussed

without using the discrete LBB condition. In Chapter 4, we have established optimal order

of estimates with respect to broken H1 and L2-norm for both symmetric and unsymmetric

cases with γ = O(h). We have also analyzed the Nitsche’s mortaring element method for

parabolic initial-boundary value problems using semidiscrete and fully discrete schemes.

Using the elliptic projection, with γ = O(h), we have derived optimal order of estimates

for both semidiscrete and fully discrete cases. Numerical experiments are conducted for

support our theoretical results.
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Chapter 1

Introduction

1.1 Motivation

Domain decomposition methods provide a powerful technique for approximating solutions

of partial differential equations (PDEs). The basic idea behind this method is to split the

computational domain into smaller subdomains with or without overlap and then apply

numerical techniques such as finite difference, finite volume or finite element schemes for

approximately solving the underlying PDE on the subdomains independently. For extensive

literature in this area, we refer to the proceedings of conferences on domain decomposition

methods [27, 49, 59, 63]. In most of these numerical methods, a global mesh is initially

constructed on the whole domain and then the meshes are subdivided into individual sub-

domains preserving the alignment of the nodes on the interior subdomain interfaces. Now

a natural question that arises is whether we can discretize the subdomains independently,

that is, whether we can allow incompatible grids on the interior subdomain interfaces. If

this is possible, it allows us to change grids locally in one subdomain without changing

the grids in other subdomains and this feature is quite useful in adaptive methods. As

we have already pointed out, the approach of discretizing the subdomains independently

may lead to nonmatching grids across the interfaces between adjacent subdomains. Fur-

thermore, it requires transmission conditions to ensure the weak continuity of the traces

on the subdomain interfaces. Now the major problem is “how to achieve the continuity of

the traces of the solution of the PDE across the interfaces of the subdomains”. In order

to achieve continuity, mainly the following two different approaches have been proposed in

the literature:

1



Chapter 1. Introduction 2

• direct procedure: the mortar element method by Bernardi, Maday, and Patera [23,

24], Belgacem [16] and Le Tallec and Sassi [84] with a suitable operator ensuring an

optimal transmission condition across the adjacent subdomains.

• stabilized multiplier methods, or mesh-dependent penalty methods [12, 13, 15, 46, 82]

to improve the stability of the method without compromising the consistency with

the original problem.

So far, there is a great deal of literature devoted to mortar element methods for elliptic

problems [16, 18, 23, 24, 89, 94], but there are only a few papers available for the mortar

element method applied to parabolic problems. In this dissertation, we discuss mortar finite

element methods with and without Lagrange multipliers and stabilized multiplier methods

for parabolic initial and boundary value problems. Moreover, we have analyzed stabilized

mortar element methods for both elliptic and parabolic problems and have derived optimal

error estimates.

1.2 Preliminaries

In this section, we discuss standard Sobolev spaces with some properties which are used

in the sequel. Moreover, we appeal to some results which will be useful in our subsequent

chapters.

Let IR denote the set of all real numbers and IN, the set of non-negative integers. Define

a multi-valued index α = (α1, α2, ..., αd), αi ∈ IN ∪ 0, and |α| = α1 + α2 + ... + αd. Let Ω

denote an open bounded subset of IRd with boundary ∂Ω [36]. Set

Dα =
∂|α|

∂x1
α1∂x2

α2 ...∂xd
αd
.

For 1 ≤ p ≤ ∞, let Lp(Ω) denote the space of real-valued measurable functions v on Ω for

which
∫

Ω
|v(x)|pdx ≤ ∞, associated with the norm

‖v‖Lp(Ω) :=

(
∫

Ω

|v(x)|pdx

)1/p

.
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In addition, let L∞(Ω) denote the space of real-valued measurable functions which are

essential bounded in Ω, associated with the norm

‖v‖L∞(Ω) := ess sup
x∈Ω

|v(x)|.

We denote the inner product and norm on L2(Ω) as (·, ·) and ‖ · ‖ respectively, i.e.,

(v, w) =

∫

Ω

v(x)w(x)dx and ‖v‖ := (v, v)1/2.

Denote the set of all r times continuously differentiable functions in Ω as Cr and the set

of all infinitely differentiable functions in Ω as C∞.

For a non-negative integer ‘s’ and 1 < p <∞, the Sobolev space W s,p(Ω) is defined as

W s,p(Ω) = {v ∈ Lp(Ω) : Dαv ∈ Lp(Ω), for all |α| ≤ s},

where the derivatives are in the sense of distributions, and is equipped with the usual norm

‖v‖W s,p(Ω) =





∑

|α|≤s

∫

Ω

|Dαv|p dx





1/p

.

Sometimes, we also use the following seminorm on W s,p(Ω)

|v|W s,p(Ω) =





∑

|α|=s

∫

Ω

|Dαv|p dx





1/p

.

In particular, when p = 2, we denote W s,2(Ω) = Hs(Ω).

Let

H1
0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}.

Note that v|∂Ω
in the definition of H1

0(Ω) should be understood in the sense of trace, see

[4, 5]. For a given Banach space Y with norm ‖ · ‖Y , the space Hs(0, T ;Y ) consists of all

measurable functions v : (0, T ) → Y such that

s
∑

j=0

∫ T

0

∥

∥

∥

∥

∂jv

∂tj

∥

∥

∥

∥

2

Y

dt <∞

and is equipped with the norm

‖v‖Hs(0,T ;Y ) =

(

s
∑

j=0

∫ T

0

∥

∥

∥

∥

∂jv

∂tj

∥

∥

∥

∥

2

Y

dt

)1/2

.
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In particular, s = 0 corresponds to the space L2(0, T ;Y ).

L∞(0, T ;Y ) consists of all measurable functions v : (0, T ) → Y with

ess sup
0≤t≤T

‖v(t)‖Y <∞

and is equipped with the norm

‖v‖L∞(0,T ;Y ) = ess sup
0≤t≤T

‖v(t)‖Y .

The space H1/2(∂Ω) be the range of H1(Ω) by the trace operator [52]. Note that H1/2(∂Ω)

is equipped with the norm

‖g‖H1/2(∂Ω) = inf
v∈H1(Ω),v|∂Ω

=g
‖v‖H1(Ω).

We denote by H−1/2(∂Ω), the dual space of H1/2(∂Ω) and equip it with the norm

‖ϕ‖H−1/2(∂Ω) = sup
µ∈H1/2(∂Ω),µ6=0

| < ϕ, µ >∂Ω |

‖µ‖H1/2(∂Ω)

,

where < ·, · >∂Ω denotes the duality pairing between H−1/2(∂Ω) and H1/2(∂Ω). With

γ ⊂ ∂Ω, let ṽ be an extension of v ∈ H1/2(γ) by zero to all of ∂Ω. Then we set H
1/2
00 (γ), a

subspace of H1/2(γ) as

H
1/2
00 (γ) = {v ∈ H1/2(γ) : ṽ ∈ H1/2(∂Ω)}.

The norm in H
1/2
00 (γ) is defined by:

‖g‖
H

1/2
00 (γ)

= inf
v∈H1

0,∂Ω\γ
(Ω),v|γ =g

‖v‖H1(Ω).

Note that H
1/2
00 (γ) is strictly contained in H1/2(γ) and also continuously embedded in

H1/2(γ), see [44, 60]. Let H
−1/2
00 (γ) be the dual space of H

1/2
00 (γ). Let < ·, · >00,1/2 denote

the duality pairing between H
−1/2
00 (γ) and H

1/2
00 (γ) and let the norm in H

−1/2
00 (γ) be defined

by

‖ϕ‖
H

−1/2
00 (γ)

= sup
µ∈H

1/2
00 (γ),µ6=0

| < ϕ, µ >00,1/2 |

‖µ‖
H

1/2
00 (γ)

.
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Note that H
1/2
00 (γ) can be characterized as the interpolation space [60] in between H1

0 (γ)

and L2(γ) with index 1
2
, i.e.,

H
1/2
00 (γ) = [H1

0 (γ), L2(γ)]1/2,

while

H1/2(γ) = [H1(γ), L2(γ)]1/2.

Moreover, let s1 < s2 and s = θs1 + (1 − θ)s2, θ ∈ (0, 1), then for v ∈ Hs(γ) the following

interpolation inequality holds:

‖v‖Hs(γ) ≤ ‖v‖θHs1 (γ)‖v‖
1−θ
Hs2 (γ).

Theorem 1.2.1 (Poincaré Inequality)[36]. Let Ω be a bounded open set in IRd. Then

there exists a positive constant C depending on Ω such that

||v||L2(Ω) ≤ C|v|H1(Ω) ∀v ∈ H1
0(Ω).

Theorem 1.2.2 (Trace Theorem)[52]. Let Ω be a bounded open set in IRd of class Cr+1

with boundary ∂Ω. Then there exists a surjective map γ = (γ0, γ1, ..., γr−1)

γ : Hr(Ω) −→
r−1
∏

j=0

Hr−j−1/2(∂Ω)

such that, for v ∈ C∞(Ω̄), γ0(v) = v|∂Ω
, γ1(v) =

∂v

∂n
|∂Ω, · · ·, and γr−1(v) =

∂r−1

∂nr−1
(v)|∂Ω,

where n is the unit exterior normal to the boundary ∂Ω.

Theorem 1.2.3 (Hölder Inequality)[4]. Let 1 < p < ∞ and 1/p + 1/p′ = 1. If

v ∈ Lp(Ω), w ∈ Lp
′
(Ω), then vw ∈ L1(Ω) and

∫

Ω

|v(x)w(x)| dx ≤ ‖v‖Lp(Ω)‖w‖Lp′ (Ω). (1.2.1)

Theorem 1.2.4 (Young’s Inequality)[54]. Let a and b be two positive real numbers,

then the following inequality holds for all ε > 0:

ab ≤
ε

2
a2 +

1

2ε
b2. (1.2.2)
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Theorem 1.2.5 (Hardy’s Inequality)[47]. If p > 1, f(x) ≥ 0, and F (x) =

∫ x

0

f(t)dt.

Then,

∫ ∞

0

(

F (x)

x

)

dx <

(

p

p− 1

)p ∫ ∞

0

(f(x))pdx (1.2.3)

unless f ≡ 0. The constant
(

p
p−1

)p

is the best possible.

Theorem 1.2.6 (Gronwall Inequality)[70, Lemma 1.4.1],[68]. Assume that the func-

tions C(t) ≥ 0 and F (t) are absolutely integrable, and the integrable function y(t) ≥ 0

satisfies the integral inequality for t ≥ 0

y(t) ≤

∫ t

0

C(s)y(s) ds+ F (t),

then

y(t) ≤ F (t) +

∫ t

0

C(τ)F (τ)exp

(∫ t

0

C(s)ds

)

dτ.

Theorem 1.2.7 (Discrete Gronwall Inequality)[70, Lemma 1.4.2],[68]. If wn ≥

0, fn ≥ 0, yn ≥ 0 and

yn ≤ fn +

n−1
∑

j=0

wjyj, for n = 0, 1, 2, ..., then for any N ≥ 1,

yn ≤ fn +
n−1
∑

j=0

exp

(

N−1
∑

j=n+1

wj

)

wnfn,

and

yn ≤ exp

(

N−1
∑

i=0

wi

)

max
0≤n≤N

fn.
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Theorem 1.2.8 (Lax-Milgram lemma)[36]. Let V be a Hilbert space, a(·, ·) : V ×V →

IR be a continuous V -elliptic bilinear form, and let f : V → IR be a continuous linear form.

Then the abstract variational problem: Find an element u ∈ V such that

a(u, v) = f(v) ∀ v ∈ V, (1.2.4)

has one and only one solution.

From time to time, we shall use c and C as generic positive constants which do not

depend on the discretizing parameters.

1.3 Mortar Finite Element Method

In this section, we briefly describe mortar finite element methods [23, 24, 16, 17] in the

context of second order elliptic boundary value problems.

Consider the following second order model problem with homogeneous Dirichlet condi-

tion: Find u such that

−∇ · (a(x)∇u) = f(x) in Ω, (1.3.1)

u = 0 on ∂Ω, (1.3.2)

where Ω is a bounded convex polygon in IR2 with Lipschitz continuous boundary ∂Ω,

∇ ≡ ( ∂
∂x1

, ∂
∂x2

), and f ∈ L2(Ω) is a given function. Assume that the coefficient a(x) is

smooth and satisfies 0 < α0 ≤ a(x) ≤ α1, for some positive constants α0 and α1, and for

all x ∈ Ω. The problem (1.3.1)-(1.3.2) has unique solution u in H2(Ω) by [55].

Mortar finite element methods deal with the decomposition of the domain Ω into K

nonoverlapping convex subdomains Ωl, 1 ≤ l ≤ K such that

Ω =
K
⋃

l=1

Ωl.

Without loss of generality, we assume that each Ωl is a convex polygon. Let ∂Ωi ∩ ∂Ωj =

γij, 1 ≤ i, j ≤ K, and nij be the unit normal oriented from Ωi towards Ωj such that

nij = −nji (See Figure 1.1 (a)). Geometrically, there are two versions of mortar methods;

geometrically conforming and geometrically non-conforming methods. Here, we discuss the
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geometrically conforming version of the mortar method, i.e., the intersection of Ωi and Ωj

for i 6= j is either the empty set, a common edge, or a common vertex; see Figure 1.1 (a).

If it fails to satisfy the above condition then, the mortar method is said to be geometrically

non-conforming, see Figure 1.1 (b).
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Figure 1.1: Two different versions of mortar methods

Let

H1
D(Ωl) = {v ∈ H1(Ωl) : v|∂Ωl∩∂Ω = 0}.

Now, define

X = {v ∈ L2(Ω) : v|Ωl
∈ H1

D(Ωl), ∀1 ≤ l ≤ K},

which is equipped with the norm and seminorm

‖v‖X =

(

K
∑

l=1

‖v‖2
H1(Ωl)

)1/2

and |v|X =

(

K
∑

l=1

‖∇v‖2
L2(Ωl)

)1/2

,

respectively.

The weak formulation corresponding to (1.3.1)-(1.3.2) is to find u ∈ H1
0(Ω) such that

a(u, v) = l(v) ∀v ∈ H1
0 (Ω), (1.3.3)
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where

a(u, v) =
K
∑

l=1

∫

Ωl

a(x)∇ul · ∇vl dx,

and

l(v) =
K
∑

l=1

∫

Ωl

fv dx.

Here, ul and vl are the restrictions of u and v, respectively, to Ωl. From the properties of

the coefficient a(·), it is easy to show that the bilinear form a(·, ·) satisfies the following

boundedness property: for v and w in X,

|a(v, w)| ≤ β|v|X|w|X ≤ β‖v‖X‖w‖X . (1.3.4)

Now, we are in a position to discuss the mortar finite element method to approximate

the solution of (1.3.3). In each subdomain Ωl, associate a triangulation Th(Ωl) consisting

of triangles of different mesh sizes hl, i.e.,

Ω̄l =
⋃

T∈Th(Ωl)

T̄ .

The discretization parameter is defined by h = max1≤l≤K{hl}, where hl = maxT∈Th(Ωl) hT

and hT = supx,y∈T d(x, y) where d(x, y) is the distance between any two points x and y in

T . Assume that the family of triangulations associated with each Ωl is regular in the sense

that for all T ∈ Th(Ωl)

hT /ρT ≤ C (1.3.5)

for some positive constant C, where ρT is the diameter of largest ball contained in T .

The mortar element method first deals with a skeleton of the decomposition, i.e., the

union of all edges (interfaces)

Γ =

K
⋃

l=1

∂Ωl\∂Ω (1.3.6)

and consists of choosing one of the decompositions of Γ that is made up of disjoint open

segments (that are edges of subdomains) denoted by γm, 1 ≤ m ≤ m0 as mortars, i.e.,

Γ =

m0
⋃

m=1

γ̄m γm ∩ γl = ∅ if m 6= l.
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Let γm(i) denote an edge of Ωi that is a mortar (master) and let δm(j) denote an edge of

Ωj that occupies physically the same place, called as nonmortar (slave). Note that on each

mortar edge γm(i), there is a natural triangulation which is generated by the triangula-

tion Th(Ωi). Similarly, there is also a partition on each non-mortar edge δm(j) due to the

triangulation Th(Ωj).

Once a triangulation Th(Ωl) is chosen over each Ωl, the finite element subspaces in the

subdomains and the interfaces can be defined. While it is possible to choose locally the

finite element method that is best suited to the local properties of the solution, for the

present problem, we assume conforming linear finite elements defined on each triangulation

Th(Ωl), 1 ≤ l ≤ K that is, to introduce

Xh(Ωl) = {vl,h ∈ C0(Ω̄l) : vl,h|T ∈ P1(T ) ∀ T ∈ Th(Ωl), vl,h|∂Ω∩∂Ωl
= 0},

where P1(T ) is the set of all linear polynomials over the triangle T in Th(Ωl). The global

finite element approximation space Xh(Ω) consists of square integrable functions whose

restriction over each Ωl belongs to Xh(Ωl), that is,

Xh(Ω) = {vh ∈ L2(Ω) : vh|Ωl
∈ Xh(Ωl) ∀1 ≤ l ≤ K}.

For notational purpose, we write Xh in place of Xh(Ω). In general, a function vh ∈ Xh is

typically discontinuous across the common interfaces of the subdomains.

Let γij = Ωi ∩Ωj and W hj(γij) be the restriction of Xh(Ωj) to γij. Since the triangulations

on two adjacent subdomains are independent, the interface γij = γm(i) = δm(j) is provided

with two different and independent (1D) triangulations and two different spaces W hi(γm(i))

and W hj(δm(j)). Additionally, define an auxiliary test space Mhj (δm(j)) which is a subspace

of the nonmortar space W hj(δm(j)) such that its functions are constants on the elements

which intersect the ends of δm(j), see Figure 1.2.

� � � � � � �

Figure 1.2: Basis functions over a non-mortar
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� � � � � � �

Figure 1.3: Basis functions over a mortar

The dimension of Mhj (δm(j)) is equal to dimension of W hj(δm(j)) minus two. In order

to achieve the continuity across the common interfaces of subdomains, in the non-mortar

side, we impose the following matching condition on each element vh ∈ Xh as

∀δm(j) ⊂ Γ,

∫

δm(j)

(vi,h − vj,h)|δm(j)
ψdτ = 0 ∀ψ ∈Mhj (δm(j)), (1.3.7)

where vi,h and vj,h in the integral are, respectively, the traces of vh onto the common

interface γm(i) and δm(j) of Ωi and Ωj. The integral condition (1.3.7) is well known as the

mortar condition in literature, see [23]. Thus, we define a discrete space Vh as

Vh = {vh ∈ Xh(Ω) : ∀δm(j) ⊂ Γ,

∫

δm(j)

(vi,h − vj,h)|δm(j)
ψdτ = 0,

∀ψ ∈Mhj (δm(j))}. (1.3.8)

From (1.3.7), it follows that the interior nodes of the non-mortar sides are not associated

with genuine degrees of freedom in the finite element space Vh. For notational conve-

nience, we denote the non-mortar side δm(j) by δm. Since Vh is not a subspace of H1
0 (Ω), a

consistency error appears in the error estimate, see (1.3.42).

The mortar finite element formulation for the problem (1.3.3) is to seek uh ∈ Vh such

that

a(uh, vh) = l(vh) ∀ vh ∈ Vh, (1.3.9)

where

a(vh, wh) =

K
∑

l=1

∫

Ωl

a(x)∇vl,h · ∇wl,h dx,

and

l(vh) =

K
∑

l=1

∫

Ωl

fvh dx.
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Here, vl,h and wl,h are, respectively, the restrictions of vh and wh to Ωl. We now recall the

following version of Poincaré inequality on broken Sobolev spaces which will be used in our

subsequent analysis.

Lemma 1.3.1 (Generalized Poincaré Inequality)[23] There exists a positive constant

c such that for vh ∈ Vh the following relation holds true:

K
∑

l=1

‖v|Ωl
‖2

L2(Ωl)
≤ c

K
∑

l=1

|v|Ωl
|2
H1(Ωl)

. (1.3.10)

Using Poincaré inequality for elements in Vh, see [23, Proposition A.3, Page 45], we note

that the seminorm | · |X is indeed a norm on Vh which is equivalent to ‖ · ‖X norm. From

the properties of the coefficient a and Lemma 1.3.1, the Vh-ellipticity of the bilinear form

a(·, ·) follows, i.e. for vh in Vh,

a(vh, vh) ≥ α0|vh|
2
X ≥ α‖vh‖

2
X , (1.3.11)

where α depends on α0 and the constant in the generalized Poincaré inequality. Therefore,

the wellposedness of the problem (1.3.9) follows.

We now recall the following results for our future use. Let Ihi
be the Lagrange interpo-

lation operator defined on Xh(Ωi) for 1 ≤ i ≤ K. Then the following estimate [36] holds

true. For any σ > 1,

∀u ∈ Hσ(Ωi), ‖u− Ihi
u‖H1(Ωi)

≤ Chσ−1‖u‖Hσ(Ωi)
. (1.3.12)

Also we have the following approximation properties for Ihi
for 1 ≤ i ≤ K on the edge of

triangles in Ωl (see Page 57 of [29]).

Lemma 1.3.2 Let u|Ωl
∈ H2(Ωl), 1 ≤ l ≤ K, then there exists positive constant C inde-

pendent of discretization parameter, such that

‖(u− Ihi
u)|Ωl

‖L2(γij)
≤ Ch

3/2
l ‖u‖H2(Ωl)

for l = i or j. (1.3.13)

Now we define the mortar projection which is one of the most important features in the

mortar element method. Assume that the triangulation on γij induced either from the

mortar side (say from Ωi) or from the nonmortar side (say from Ωj) is quasiuniform in the
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sense that each segment e from the triangulation Th(γij) over γij satisfies the following rela-

tion: For all e, e′ ∈ Th(γij), there exists a positive constant c independent of discretization

parameters he and he′, such that

he ≤ che′. (1.3.14)

Now, we define the mortar projection operator

Πhi
: L2(γij) −→W hi(γij) ∩H

1/2
00 (γij)

by

∫

γij

(ϕ− Πhi
ϕ)ψ dτ = 0 ∀ψ ∈Mhj (δm(j)). (1.3.15)

Stability of Πhi
has been shown in [16, 23, 24] for the two dimensional case. Stability

for the three dimensional case is discussed in Belgacem, Maday [17], and Braess, Dahmen

[30]. In the following lemma, we recall from [16, p.181] the stability of Πhi
. For a quick

exposure, we provide a proof. For a proof of the stability result, we need the following

inverse inequality [36, Page 140]:

Lemma 1.3.3 Let the family of triangulation over the finite element space be quasiuniform

(1.3.14), then with l, m ≥ 0 and 1 ≤ r, q ≤ ∞, there exists a constant such that, for all

ϕh ∈ W h(Γ),

|ϕh|Wm,q(e) ≤ C
(hne )

1/q−1/r

hm−l
e

|ϕh|W l,r(e). (1.3.16)

Lemma 1.3.4 The projection operator Πhi
is L2-stable, i.e.,

‖Πhi
ϕ‖L2(γij)

≤ C‖ϕ‖L2(γij)
∀ϕ ∈ L2(γij). (1.3.17)

Moreover, when ϕ ∈ H
1/2
00 (γij),

‖Πhi
ϕ‖

H
1/2
00 (γij )

≤ C‖ϕ‖
H

1/2
00 (γij)

. (1.3.18)
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Further, the following estimate holds for any s(1/2 < s ≤ 2) and for ϕ ∈ H s(γij)∩H
1/2
00 (γij):

‖ϕ− Πhi
ϕ‖

H
1/2
00 (γij )

≤ Ch
s−1/2
i ‖ϕ‖Hs(γij)

. (1.3.19)

Proof. We prove the result (1.3.18) for the reference interval γij = (−1, 1). The tri-

angulation Th(γij) associated with γij is assumed to be quasiuniform. Let (yi)
nk
i=0 form a

quasiuniform partition of γij, i.e.,

γij =

nk−1
⋃

l=0

(yl, yl+1) =

nk−1
⋃

l=0

el (1.3.20)

with y0 = −1 and ynk
= 1.

Let D(γij) be the class of infinitely differentiable functions with compact support on

γij. For ϕ ∈ D(γij), we define the function ψ as below

ψ|e0 =
1 + y1

1 + y
Πhi

ϕ|e0 (1.3.21)

ψ|el
= Πhi

ϕ|el
∀1 ≤ l ≤ nk − 2 (1.3.22)

ψ|enk−1
=

1 − ynk−1

1 − y
Πhi

ϕ|enk−1
. (1.3.23)

The function ψ is continuous on γij and piecewise linear in each interval except in the first

and last intervals e0 and enk−1, where it is a constant, so that ψ is in Mhi(γij). Now from

(1.3.15), we find that

∫

γij

Πhi
ϕψ dy =

∫

γij

ϕψ dy. (1.3.24)

Using the definition of ψ, (1.3.21)-(1.3.23), we write

∫

γij

Πhi
ϕψ dy =

∫

e0

(Πhi
ϕ)2 1 + y1

1 + y
dy +

nk−2
∑

l=1

∫

el

(Πhi
ϕ)2dy

+

∫

enk−1

(Πhi
ϕ)2 1 − ynk−1

1 − y
dy. (1.3.25)

Note that,
1 + y1

1 + y
≥ 1 over e0 and

1 − ynk−1

1 − y
≥ 1 over enk−1. Therefore, we find that

∣

∣

∣

∣

∣

∫

γij

Πhi
ϕψ dy

∣

∣

∣

∣

∣

≥
nk−1
∑

l=0

∫

el

(Πhi
ϕ)2dy = ‖Πhi

ϕ‖2
L2(γij)

. (1.3.26)
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On the other hand from (1.3.24) and the definition of ψ, (1.3.21)-(1.3.23), we derive

∫

γij

Πhi
ϕψ dy =

∫

γij

ϕψ dy =

∫

e0

ϕΠhi
ϕ

1 + y1

1 + y
dy +

nk−2
∑

l=1

∫

el

ϕΠhi
ϕdy

+

∫

enk−1

ϕΠhi
ϕ

1 − ynk−1

1 − y
dy. (1.3.27)

Apply Cauchy Schwarz inequality to obtain
∣

∣

∣

∣

∣

∫

γij

Πhi
ϕψ dy

∣

∣

∣

∣

∣

≤ (1 + y1)‖ϕ‖L2(e0)

∥

∥

∥

∥

Πhi
ϕ

1 + y

∥

∥

∥

∥

L2(e0)

+

nk−2
∑

l=1

‖ϕ‖L2(el)
‖Πhi

ϕ‖L2(el)

+(1 − ynk−1)‖ϕ‖L2(enk−1)

∥

∥

∥

∥

Πhi
ϕ

1 − y

∥

∥

∥

∥

L2(enk−1)

. (1.3.28)

An application of Hardy’s inequality (Lemma 1.2.5) yields
∣

∣

∣

∣

∣

∫

γij

Πhi
ϕψ dy

∣

∣

∣

∣

∣

≤ (1 + y1)‖ϕ‖L2(e0)

∥

∥

∥

∥

d

dy
Πhi

ϕ

∥

∥

∥

∥

L2(e0)

+

nk−2
∑

l=1

‖ϕ‖L2(el)
‖Πhi

ϕ‖L2(el)

+(1 − ynk−1)‖ϕ‖L2(enk−1)

∥

∥

∥

∥

d

dy
Πhi

ϕ

∥

∥

∥

∥

L2(enk−1)

. (1.3.29)

Use the inverse inequality (1.3.16) for the first interval e0 and the last interval enk−1 to

obtain
∣

∣

∣

∣

∣

∫

γij

Πhi
ϕψ dy

∣

∣

∣

∣

∣

≤ C(1 + y1)(1 + y1)
−1‖ϕ‖L2(e0)‖Πhi

ϕ‖L2(e0)

+

nk−2
∑

l=1

‖ϕ‖L2(el)
‖Πhi

ϕ‖L2(el)

+(1 − ynk−1)(1 − ynk−1)
−1‖ϕ‖L2(enk−1)

‖Πhi
ϕ‖L2(enk−1)

, (1.3.30)

and hence, we find that
∣

∣

∣

∣

∣

∫

γij

Πhi
ϕψ dy

∣

∣

∣

∣

∣

≤ C

nk−1
∑

l=0

‖ϕ‖L2(el)
‖Πhi

ϕ‖L2(el)

≤ C‖ϕ‖L2(γij )‖Πhi
ϕ‖L2(γij)

. (1.3.31)
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From (1.3.26), (1.3.31) and the fact that D(γij) is dense in L2(γij), we derive the following

L2-stability of Πhi
:

‖Πhi
ϕ‖L2(γij ) ≤ C‖ϕ‖L2(γij ). (1.3.32)

For H1
0 -stability of Πhi

, apply the inverse inequality (1.3.16) and (1.3.31) to obtain for

ϕ ∈ H1
0 (γij),

‖Πhi
ϕ‖H1(γij)

≤ C‖ϕ− Πhi
ϕ‖H1(γij)

+ ‖ϕ‖H1(γij )

≤ C

(

max
0≤l≤nk−1

|el|

)−1

‖ϕ− Πhi
ϕ‖L2(γij)

+ ‖ϕ‖H1(γij )

≤ C‖ϕ‖H1(γij)
. (1.3.33)

The H
1/2
00 -stability of Πhi

, that is, (1.3.18) can be establish by interpolating (1.3.32) and

(1.3.33). For the estimate (1.3.19), we now proceed in the following way: For all ϕ ∈

Hs(γij) ∩H
1/2
00 (γij),

‖ϕ− Πhi
ϕ‖

H
1/2
00 (γij )

≤ C inf
χ∈Whi(γij )∩H

1/2
00 (γij )

‖ϕ− χ‖
H

1/2
00 (γij )

≤ Ch
s−1/2
i ‖ϕ‖Hs(γij ). (1.3.34)

Hence the lemma follows, and this completes the rest of the proof.

Below, we define a lifting operator Rhi
for the traces of the finite element functions on

γij and discuss its properties. The existence and stability of such an operator is discussed

in [26, Lemma 5.1].

Lemma 1.3.5 There exists a lifting operator Rhi
from W hi(γij)∩H

1
0 (γij) into Xh(Ωi) such

that, for any ϕ ∈ W hi(γij) ∩H
1
0 (γij), Rhi

ϕ is equal to ϕ on γij, vanishes over each side of

Ωi except γij and satisfies

‖Rhi
ϕ‖H1(Ωi)

≤ C‖ϕ‖
H

1/2
00 (γij )

. (1.3.35)

Following [23], define the operator Qh as

Qhv = Ihv +
K
∑

l=1

∑

γlj⊂Γ

rl,jh , (1.3.36)
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where the function Ihv equals Ihl
v on each Ωl, 1 ≤ l ≤ K and rl,jh is equal to zero, if γlj is

a mortar edge otherwise it equals Rhl
(Πhl

(ϕ− Ihl
v)|γlj

) on Ωl in case of γlj is a nonmortar

edge. Here, the mortar function ϕ is equal to the trace of Ihl
v on the mortar side.

The central issue is how to find a good approximation Qhv ∈ Vh such that it satisfies the

desired approximation properties. Here, we state and prove the result from [23, p 43].

Lemma 1.3.6 For any real number σ, 3
2
< σ ≤ 2, there exists a positive constant C,

independent of hl, such that for any function v ∈ H1
0 (Ω) with v|Ωl

∈ Hσ(Ωl)

‖v −Qhv‖X ≤ C

K
∑

l=1

hσ−1
l ‖v|Ωl

‖
Hσ(Ωl)

. (1.3.37)

Proof. From the definition (1.3.36) of Qh, we note that

‖v −Qhv‖H1(Ωl)
= ‖v − Ihv‖H1(Ωl)

+ ‖rl,jh ‖H1(Ωl)

= ‖v − Ihv‖H1(Ωl)
+ ‖Rhl

(Πhl
(ϕ− Ihl

v)|γlj
)‖
H1(Ωl)

. (1.3.38)

Since the estimate for ‖v − Ihv‖H1(Ωl)
is known from (1.3.12), it is enough to find an estimate

for the second term.

For the second term on the right hand side of (1.3.38), use the property (1.3.35) of

lifting operator Rhl
to arrive at

‖Rhl
(Πhl

(ϕ− Ihl
v)|γlj

)‖
H1(Ωl)

≤ C‖Πhl
(ϕ− Ihl

v)|γlj
‖
H

1/2
00 (γlj)

(1.3.39)

Note that, here γlj is a nonmortar side and ϕ matches with trace of Ihv on the opposite side

i.e., on the mortar side of γlj. Since the triangulation on γlj is assumed to be quasiuniform,

we apply here the inverse inequality (1.3.16) to obtain

‖Rhl
(Πhl

(ϕ− Ihl
v)|γlj

)‖
H1(Ωl)

≤ Ch
−1/2
l ‖Πhl

(ϕ− Ihl
v)|γlj

‖
L2(γlj )

. (1.3.40)

Now use the stability property (Lemma 1.3.4) to find

‖Rhl
(Πhl

(ϕ− Ihl
v)|γlj

)‖
H1(Ωl)

≤ Ch
−1/2
l ‖ϕ− Ihl

v|γlj
‖
L2(γlj)

≤ Ch
−1/2
l

(

‖ϕ− v|γlj
‖
L2(γlj)

+ ‖v|γlj
− Ihl

v|γlj
‖
L2(γlj)

)

(1.3.41)
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Since the function ϕ matches with trace of Ihv on the mortar side of γlj , summing up

(1.3.38) over all 1 ≤ l ≤ K, the rest of the proof follows.

Error estimate

For the error estimate, thanks to Strang’s lemma so that we obtain

‖u− uh‖X ≤ C

(

inf
vh∈Vh

‖u− vh‖X + sup
wh∈Vh

m0
∑

m=1

∫

δm
a∂u
∂n

[[wh]]|δmdτ

‖wh‖X

)

. (1.3.42)

where [[v]]|γij
= (v|Ωi

− v|Ωj
) denotes the jump of v across γij. For a proof of (1.3.42), add

and subtract vh ∈ Vh on the error term ‖u− uh‖X so that we obtain

‖u− uh‖X ≤ ‖u− vh‖X + ‖vh − uh‖X . (1.3.43)

Now use coercivity of a(·, ·) to find that

α‖vh − uh‖
2
X ≤ a(vh − uh, vh − uh)

≤ |a(u− uh, vh − uh)| + |a(u− vh, vh − uh)|

≤ C

(

m0
∑

m=1

∫

δm

a
∂u

∂n
[[vh − uh]]|δmdτ + ‖u− vh‖X‖vh − uh‖X

)

.

(1.3.44)

Divide by ‖vh − uh‖X on both sides of (1.3.44) to obtain (1.3.42).

The first term of right hand side of (1.3.42) is the approximation error and the second

term is consistency error due to the non-conformity of the method. Since the estimate of

the first term on the right hand side of (1.3.42) is known from Lemma 1.3.6, we discuss

below the consistency error term, that is, the second term on the right hand side of (1.3.42).

Consistency error

We now define an L2-orthogonal projection πhj
from L2(δm(j)) into Mhj (δm(j)) as below:

πhj
: L2(δm(j)) −→Mhj (δm(j))

by
∫

δm(j)

(ϕ− πhj
ϕ)ψ dτ = 0 ∀ψ ∈Mhj (δm(j)). (1.3.45)
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Note that, we can establish a result similar to Lemma 1.3.4 for the stability of πhj
. More

over, πhj
satisfies following properties ([23, Page 37, Lemma 4.1]).

Lemma 1.3.7 For any real number s, 0 ≤ s ≤ 1, the following estimate holds true for any

function ϕ ∈ Hs(δm(j)) :

‖ϕ− πhj
ϕ‖

L2(δm(j))
+ h

−1/2
j ‖ϕ− πhj

ϕ‖
H−1/2(δm(j))

≤ Chsj‖ϕ‖Hs(δm(j))
. (1.3.46)

Now, a use of the mortar condition (1.3.7) yields
∣

∣

∣

∣

∣

m0
∑

m=1

∫

δm⊂Γ

a
∂u

∂n
[[wh]]dτ

∣

∣

∣

∣

∣

≤
m0
∑

m=1

∣

∣

∣

∣

∫

δm⊂Γ

(

a
∂u

∂n
− πhj

(

a
∂u

∂n

))

[[wh]]dτ

∣

∣

∣

∣

, (1.3.47)

and hence,
∣

∣

∣

∣

∣

m0
∑

m=1

∫

δm⊂Γ

a
∂u

∂n
[[wh]]dτ

∣

∣

∣

∣

∣

≤
m0
∑

m=1

∥

∥

∥

∥

a
∂u

∂n
− πhj

(

a
∂u

∂n

)∥

∥

∥

∥

H−1/2(δm)

‖[[wh]]‖H1/2(δm).

Finally, use Lemma 1.3.7 to arrive at
∣

∣

∣

∣

∣

m0
∑

m=1

∫

δm⊂Γ

a
∂u

∂n
[[wh]]dτ

∣

∣

∣

∣

∣

≤ C

m0
∑

m=1

hj

∥

∥

∥

∥

a
∂u

∂n

∥

∥

∥

∥

H1/2(δm)

‖[[wh]]‖H1/2(δm)

≤ C

K
∑

j=1

hj‖u‖H2(Ωj)
‖wh‖X . (1.3.48)

Hence, from Lemma 1.3.6, (1.3.42) and (1.3.48), we derive the following error estimates,

see also [16, 23].

Theorem 1.3.1 Let u be the solution of (1.3.3). Moreover, assume u|Ωl
∈ Hσ(Ωl),

3
2
<

σ ≤ 2, then there exists a positive constant C, independent of hl, such that

‖u− uh‖X ≤ C

K
∑

l=1

hσ−1
l ‖u|Ωl

‖
Hσ(Ωl)

. (1.3.49)

By an application of the Aubin-Nitsche duality argument to the problem (1.3.9), we can

derive an optimal L2- error estimate [22]:

‖u− uh‖L2(Ω) ≤ C
K
∑

l=1

hσl ‖u|Ωl
‖
Hσ(Ωl)

. (1.3.50)



Chapter 1. Introduction 20

Remark 1.3.1 The estimates here only depend upon the local regularity of the original

solution u in each subdomain and don’t require the global regularity of u on the whole

domain Ω. Therefore, with low regularity one achieves optimal order of estimates which

is an advantage over the standard finite element method. On this basis, we can apply the

method in certain problems where singularities of the solution arise due to to the geometry of

domain. For instance, this method can be applied to the driven cavity problem, a particular

case of the Navier-Stokes equation, where there are singularities in the corners and one

needs to do refinements near the corners. Further, it is possible to apply this method to

elliptic problems with discontinuous coefficients specially if the discontinuity occurs across

the subdomain interfaces.

1.3.1 Mortar finite element method with a Lagrange multiplier

Instead of imposing the constraint (1.3.7) in the finite dimensional space Xh, it is possible

to impose the weak continuity condition across the subdomain interfaces in the variational

formulation. We observe, in this section, that the Lagrange multiplier is a good approxima-

tion to the normal derivative along the interfaces of subdomains. We define the following

spaces for our use in future.

H(div; Ω) = {q ∈ (L2(Ω))n : div q ∈ L2(Ω)}

and

H0(div; Ω) = {q ∈ (L2(Ω))n : div q ∈ L2(Ω), q · n|Γ = 0},

equipped with the norm

‖q‖H(div;Ω) = (‖q‖2
0,Ω + ‖ div q‖2

0,Ω)1/2,

where n is the unit outward normal along ∂Ω.

We define the Lagrange multiplier space M as follows:

M = {ψ ∈
K
∏

l=1

H
−1/2
D (∂Ωl) : there exists a function q ∈ H0(div; Ω) such that ψk = q · nl}
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where q · nl ∈ H
−1/2
D (∂Ωl) is normal component of q and nl is the unit outward normal

along ∂Ωl. Here, H
−1/2
D (∂Ωl) represents the dual space of H

1/2
D (∂Ωl) while H

1/2
D (∂Ωl) is the

range of H1
D(Ω) by the trace operator. The space M is equipped with the norm

‖ψ‖M = inf
q∈H0(div;Ω) : q·nl=ψl∀l

‖q‖H(div;Ω).

Also, we need the auxiliary space

M̃ =

m0
∏

m=1

H
−1/2
00 (δm), (1.3.51)

equipped with the norm

‖ϕ‖M̃ =

(

m0
∑

m=1

‖ϕm‖
2

H
−1/2
00 (δm)

)1/2

. (1.3.52)

Setting the flux a(x)
∂u

∂n
as λ, we obtain the following weak formulation of the problem

(1.3.1)-(1.3.2) : Find (u, λ) ∈ X ×M such that

a(u, v) + b(v, λ) = l(v) ∀ v ∈ X, (1.3.53)

b(u, µ) = 0 ∀µ ∈M, (1.3.54)

where

a(u, v) =

K
∑

l=1

∫

Ωl

a(x)∇ul · ∇vl dx,

b(v, µ) = −
m0
∑

m=1

< µ, [[v]]|δm >δm,

and

l(v) =
K
∑

l=1

∫

Ωl

fv dx.

Now we define the discrete space for the Lagrange multiplier over all nonmortars as follows:

Mh =
m0
∏

m=1

Mhj (δm), (1.3.55)
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where Mhj (δm) is the subspace of W hj(δm) with codimension two. Now, the mortar element

formulation with Lagrange multiplier corresponding to (1.3.53)-(1.3.54) is to seek (uh, λh) ∈

Xh ×Mh such that

a(uh, vh) + b(vh, λh) = l(vh) ∀vh ∈ Xh (1.3.56)

b(uh, µh) = 0 ∀µh ∈Mh. (1.3.57)

Note that

a(uh, vh) =

K
∑

l=1

∫

Ωl

a(x)∇uhl
· ∇vhl

dx,

b(vh, µh) = −
m0
∑

m=1

∫

γm⊂Γ

µh[[vh]]|γm
dτ,

and

l(vh) =

K
∑

l=1

∫

Ωl

fvh dx.

Contrary to the standard classical mortar formulation where the constraint (1.3.57) is im-

posed in the mortar finite element space Vh, the condition (1.3.57) is the weak continuity

constraint which appears in the formulation. Since the problem (1.3.56)-(1.3.57) is equiva-

lent to a system of linear equations with finite dimension, the existence of a pair of solution

(uh, λh) follows from the uniqueness. For uniqueness, take f = 0 in (1.3.56) and with the

help of (1.3.57) and (1.3.11), we find uh = 0. Therefore,

b(vh, λh) = 0 ∀vh ∈ Xh,

and hence, λh = 0 if and only if

{µh ∈Mh : b(vh, µh) = 0 ∀vh ∈ Xh} = {0}. (1.3.58)

Moreover, note that the solution uh of (1.3.56)-(1.3.57) is also the unique solution of (1.3.9)

[16, Page 185] and [73, Page 396]. Now, we state below without proof a theorem on error

estimate. For a proof, we refer to [16, Theorem 2.8].
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Theorem 1.3.2 Let (u, λ) be the solution of the problem (1.3.53)-(1.3.54). Moreover,

assume u|Ωl
∈ Hσ(Ωl) for any real number σ, 3

2
< σ ≤ 2, then there exists a positive

constant C, independent of hl, such that

‖u− uh‖X + ‖λ− λh‖M̃ ≤ C

K
∑

l=1

hσ−1
l ‖u|Ωl

‖
Hσ(Ωl)

. (1.3.59)

By an application of Aubin-Nitsche duality argument, we can derive an optimal L2- error

estimate [22]:

‖u− uh‖L2(Ω) ≤ C
K
∑

l=1

hσl ‖u|Ωl
‖
Hσ(Ωl)

. (1.3.60)

1.4 Literature Survey

The mortar element method firstly introduced by Bernardi, Maday, and Patera [23, 24]

in 1987, which designed for solving 2nd order partial differential equations with very few

restrictions on the domain and grid related to the discretization procedure. Bernardi, Ma-

day and Patera [23, 24] have discussed the standard mortar finite element method without

Lagrange multiplier and also discussed the mortar element method in the framework of spec-

tral elements. Later on Bernardi et al. [22] discussed the coupling of finite elements with

spectral elements. The original computational domain is subdivided into two subdomains;

a finite element approximation is used on the first domain and a spectral discretization is

used in the second domain. In the mortar element method, a good transmission of informa-

tion between the interfaces of adjacent subdomains is achieved by imposing the condition

that the interface jumps are orthogonal to a suitably chosen multiplier space, which is

known in literature as the mortaring condition. This method seems to be an efficient tool

in this framework due to its flexibility of choosing independent discretization parameters

in nonoverlapping subdomains. We refer to Bernardi, Maday, and Patera [23, 24], Ben Bel-

gacem [16], Ben Belgacem and Maday [17] for a general presentation of the mortar element

method applied to elliptic problems. Restoring almost all the advantages of domain de-

composition methods, the mortar finite element method has the following extra advantages

because of its nonconforming property:
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• The triangulations need not align across subdomain interfaces and thereby, inde-

pendent discretization over subdomains employ locally-conforming but globally non-

conforming method.

• Due to non-matching of grids on the inter subdomain interfaces, it is possible to

refine the mesh in one subdomain without affecting the other and this flexibility is

an attractive feature in adaptive procedure.

• It allows to couple different variational schemes such as finite element method and

spectral element method over different subdomains to take advantages of both the

methods.

In order to achieve the interface continuity weakly, two kinds of matching conditions are

discussed and compared by Bernardi et al. [22]. The natural one is the pointwise matching

condition at the subdomain interfaces and this leads to a pointwise matching of the ap-

proximating functions. In this case, there should be one globally defined mesh on the entire

domain. Moreover, the pointwise matching of the approximating functions gives rise to a

non-optimality of the approximation error of the method and hence, is not used in general.

On the other hand, the integral matching condition leads to optimal schemes and is very

much used in practice. In mortar element method, the later one is adopted. The integral

matching condition ensures that the traces of the solutions across the interfaces are made

orthogonal to a suitably chosen multiplier space. To achieve stability of the corresponding

scheme, we need to choose the multiplier space appropriately so that the discrete spaces

for the primal variable and the multiplier satisfy the inf-sup condition, also known as the

Ladyzhenskaya-Babuška-Brezzi (LBB) condition. In literature, mostly two types of multi-

plier spaces are chosen. The first one is subspaces of functions of traces of primal variables

with codimension two, for example, see, Bernardi, Maday and Patera [23, 24], and Bel-

gacem [16, 17]. The second choice is using dual spaces for the multipliers, see, Wohlmuth

[89], Lamichhane and Wohlmuth [58], and Braess, Dahmen and Wieners [29].

In the standard mortar finite element method [23], the continuity at the vertices is

considered and the variational formulation leads to a positive definite system on the con-

strained mortar space. On the other hand, in the second generation of mortar finite element
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methods by Ben Belgacem [16], the continuity is not imposed at the common vertices of

the subdomains. Belgacem analyzed the mortar element method with Lagrange multiplier

by setting under a primal hybrid formulation and generalized the previous work of Raviart

and Thomas [72]. He also emphasized the importance of H
1/2
00 space in the derivation of

error analysis for the mortar finite element method with Lagrange multipliers. The dis-

crete LBB condition for the discretization space for the primal variable and multipliers is

derived by choosing some appropriate spaces. While the Lagrange multiplier is used to

relax the mortaring condition on the finite element spaces, the corresponding discrete for-

mulation gives rise to an indefinite system. He also discussed the parallel implementation

complexity for the mortar element method. Subsequently, Belgacem and Maday [17], and

Braess and Dahmen [30] analyzed the mortar element method in three dimensional cases.

They discussed the stability of mortar projection operator individually in three dimensional

case. Braess and Dahmen [30] used the mesh-dependent norms in their analysis and they

discussed some properties (see, below) of the bilinear form b(·, ·) used in general:

(i) If [[v]]|γij
∈ H1/2(γij) and µ ∈ (H1/2(γij))

′, then

|b(v, µ)| ≤ ‖[[v]]‖H1/2(γij )‖µ‖(H1/2(γij))′
, (1.4.1)

Taking the advantage of the trace theorem, it is easy to prove the following estimate:

‖[[v]]‖H1/2(γij ) ≤ c
(

‖v‖H1(Ωi)
+ ‖v‖H1(Ωj)

)

. (1.4.2)

(ii) Assume the continuity at the corners of the subdomains, then [[v]]|γij
∈ H

1/2
00 (γij) and

µ ∈ (H
1/2
00 (γij))

′. In this case we can not take the advantage of the trace theorem as

the estimate (1.4.2) does not hold in general. Therefore, it was suggested in [30] to

make use of the following mesh-dependent norms:

‖v‖1/2,h,γij
:= h−1/2‖v‖L2(γij)

and ‖µ‖−1/2,h,γij
:= h1/2‖µ‖L2(γij)

.

Then
∣

∣

∣

∣

∣

∫

γij

µ[[v]] dτ

∣

∣

∣

∣

∣

≤ ‖v‖1/2,h,γij
‖µ‖−1/2,h,γij

.
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Using the mesh-dependent norm, they proved the LBB condition in 3D and also discussed

the L2-error estimates.

The mortar element method using dual spaces for the Lagrange multipliers has been

studied in [29, 58, 89]. The Lagrange multiplier space is replaced by a dual space without

losing the optimality of the method. The advantage of this approach is, all the basis

functions are locally supported in a few elements. Compare to the standard mortar method

where a linear system of equations for the mortar projection must be solved; in this case

the matrix associated with mortar projection is represented by a diagonal matrix. For the

construction of such a dual basis function, we refer to [88], [89, Page 993]. Lamichhane,

Stevenson and Wohlmuth in [57] generalized the concept of dual Lagrange multiplier bases

by relaxing the condition that the trace space of the approximation space at the slave

side with zero boundary condition on the interface and the Lagrange multiplier space have

the same dimension. They provided a theoretical framework within this relaxed setting,

which was a simpler way to construct dual Lagrange multiplier bases for higher order finite

element spaces.

A residual based error estimator for the approximation of linear boundary value prob-

lems by nonconforming finite element methods which are based on Crouzeix-Raviart ele-

ments of lowest order was analyzed by Wohlmuth [90] and compared with the error esti-

mator obtained in the more general mortar situation. In [92], Wohlmuth also discussed

hierarchical a posteriori error estimators for mortar finite element methods.

Since mortar element method is nonconforming in most cases, the matrix system arising

from the finite element discretization has a large condition number and hence, the system

becomes ill-conditioned. Efforts have been made in literature for developing algorithms

to solve efficiently the corresponding algebraic systems. Achdou, Maday and Widlund

[1, 3] discussed iterative substructuring algorithms for the algebraic systems arising from

the discretization of symmetric, second-order, elliptic equations in two dimensions. Both

spectral and finite element methods, for geometrically conforming as well as nonconforming

domain decompositions, were studied. In both the cases, they obtained a polylogarithmic

bound on the condition number of the preconditioned matrix.
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Generally, the mortar approach has the disadvantage that even when the boundary

value problem is elliptic, the arising linear system is of saddle point type, usually for which

iterative methods are known to be less efficient than for symmetric positive definite sys-

tems. However, when working with dual Lagrange multiplier bases, the degrees of freedom

associated with the multiplier can be locally eliminated leading to a sparse, positive definite

system, on which, for example, efficient multigrid methods can be applied, see [91, 93]. For

the lowest order finite elements in 3D, dual Lagrange multiplier bases are constructed in

[53, 91]. A multigrid algorithm for the system of equations arising from the mortar finite

element discretization of second order elliptic boundary value problems has been developed

and analyzed by Braess et al. [29]. They have also highlighted the important role of H
1/2
00

space from the numerical analysis point of view. They have revisited the concept of mor-

tar element method by employing suitable mesh-dependent norms and verified the validity

of LBB condition. Further, they have verified the optimal multigrid efficiency based on

a smoother which is applied to the whole coupled system of equations. Later Gopalakr-

ishnan and Pasciak [42] have discussed and analyzed a multigrid technique for uniformly

preconditioning linear systems arising from a mortar finite element discretization of second

order elliptic boundary value problems. These problems are posed on domains partitioned

into subdomains, each of which is independently triangulated in a multilevel fashion. Suit-

able grid transfer operators and smoothers are developed which lead to a variable V-cycle

preconditioner resulting in a uniformly preconditioned algebraic system.

Bjørstad, Dryja and Rahman [25] have designed and analyzed two variants of the ad-

ditive Schwarz method for solving linear systems arising from the mortar finite element

discretization on nonmatching meshes of second order elliptic problems with discontinuous

coefficients. The methods are defined on non-overlapping subdomains, and they have used

special coarse spaces, resulting in algorithms that are well suited for parallel computation.

They have discussed the condition number estimate for the preconditioned systems which is

independent of the discontinuous jumps of the coefficients. Dryja et al. [39] have analyzed

a multilevel preconditioner for mortar finite element method. The analysis is carried out

within the abstract framework of the additive Schwarz methods.
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The finite element tearing and interconnecting (FETI) method is an iterative substruc-

turing method using Lagrange multipliers to enforce the continuity of the finite element

solution across the subdomain interface. Stefanica [79] has presented a numerical study

of FETI algorithms for an elliptic self-adjoint equation discretized by mortar finite ele-

ments. Several preconditioners which have been successful for the case of conforming finite

elements are considered and experiments are carried out for both two and three dimen-

sional problems. He has also included a study of the relative costs of applying different

preconditioners for the mortar elements.

The hp version of mortar finite element methods for elliptic problems has been studied

by Padmanabhan and Suri [75, 76]. They have discussed and analyzed uniform convergence

results for the mortar finite element method in case of h, p and hp discretizations over

general meshes and derived optimal rates of convergence even for highly nonquasiuniform

meshes over the subdomains. They established optimality for the non-quasiuniform h

discretizations that include, among others, radical and geometric meshes needed for the

treatment of the singularities. Also for p version, where the degree p is allowed to increase,

while the mesh is kept fixed is shown to be optimal up to O(p3/4) and the hp version over

geometric meshes, which leads to exponential convergence.

Mixed finite element methods for second order elliptic equations on nonmatching multi-

block grids are discussed and analyzed by Arbogast, Cowsar, Wheeler and Yotov [6]. A

mortar finite element space is introduced on the nonmatching interfaces for approximating

the trace of the solution. A standard mixed finite element method is used within each

block. Optimal order of convergence is obtained for the solution and its flux. Moreover,

at certain discrete points, superconvergence is obtained for the solution and also for the

flux in certain cases. Recently, mortar finite element discretization for the flow in a nonho-

mogeneous porous medium is discussed and analyzed by Bernardi, Hecht and Mghazli in

[21].

Because of the nonconformity and flexible nature of mortar element method, it turns

out to be well adapted to handle mesh adaptivity in finite elements. Mesh adaptivity in

the mortar finite element method has been studied by Bernardi and Hecht [20]. In [19],

they extended the numerical analysis of residual error indicators to mesh adaptive methods
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for a model problem.

Marcinkowski [65] discussed domain decomposition methods for mortar finite element

discretizations of the plate problem. A mortar finite element method for the fourth order

problems in two dimensions with Lagrange multipliers can be found in [64].

In [35] and [94], the authors have applied a finite difference scheme to discretize the

parabolic equation in temporal direction to obtain an elliptic equation at each time step,

and then mortar finite element method is used to discretize the resulting elliptic equa-

tion in spatial direction. In [78], domain decomposition methods for the mortar mixed

finite element method have been applied to parabolic problems in the framework of split-

ting method. The approach adopted in [78] makes use of the parabolic structure and a

non-iterative scheme is proposed to solve the problem once in each subdomain via an op-

erator splitting. An a posteriori error estimate for the mortar finite element method for

parabolic problems has been developed in [18]. In particular, the authors have studied the

residual spatial error indicators at each time step using mortar elements to discretize in

spatial direction. A multigrid method for mortar finite element method has been applied

to parabolic problems in [94]. The error analysis is developed essentially in the framework

of elliptic problems. Note that the cumulative effect of the time discretization is missing

in their analysis. In this thesis, we discussed and analyzed a standard mortar finite ele-

ment method and a mortar element method with Lagrange multiplier which is used for the

spatial discretization. We derive optimal error estimates in L∞(L2) and L∞(H1)-norms

for the semidiscrete methods for both the cases. A mixed finite element discretization on

nonmatching multiblock grids for a degenerate parabolic equation arising in porous media

flow is discussed by Yotov [95].

We have seen that a basic requirement for the mortar element method is to construct

multiplier spaces which satisfy certain criteria known as the inf-sup properties for the

scheme to be stable. Many natural and convenient choices of these spaces are ruled out as

these spaces do not satisfy the inf-sup condition. In order to alleviate this problem, stabi-

lized multiplier techniques or Nitsche’s method [82] is used. This was originally introduced

for solving non-homogeneous Dirichlet problems without enforcing the boundary condition

on the finite element spaces [10, 11, 67]. In this method, the original bilinear forms of
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the problem are modified by adding suitable stabilized terms in order to improve stability

without compromising on the consistency of the method. We refer to [9, 12, 13, 14] for the

various penalty methods applied to elliptic problems and discuss how to circumvent the

inf-sup condition in order to achieve the consistency and stability of the methods.

In [15, 46, 48, 82], the various possible Nitsche’s mortaring methods have been intro-

duced and analyzed for elliptic problems. In [82], Stenberg pointed out the close connec-

tion between Nitsche’s method and stabilized methods and called it as mortaring Nitsche

method. Becker, Hansbo and Stenberg [15] extended the previous work and discussed in

more details the analysis of this technique where independent discretizations were used in

different subdomains. The continuity of the solution along the common interface is imposed

without disturbing the consistency of the resulting scheme with the original problem.

The drawback of most of the stabilized methods is that they use the jump in the

primal variables as one of stabilized term across the subdomain interfaces. This means

that piecewise polynomials on unrelated, unstructured meshes have to be integrated which

is quite expensive to implement, especially in three or higher dimensions. To mitigate this

problem, Hansbo et al. [46] proposed a stabilization method which avoids the cumbersome

integration of products of unrelated mesh functions. While Hansbo et al. discussed H1-

estimate for the elliptic problem, optimal L2-estimate was missing in their analysis. In

Chapter 4, we have proposed and established the error estimates for a stabilized Nitsche

mortar formulation which is consistent with the original problem. We obtain optimal order

estimates in both L2- and H1-norms for the stabilized Nitsche’s mortaring method for

second order elliptic and parabolic problems.

1.5 Outline of the Thesis

The organization of the thesis is as follows. Chapter 1 is introductory in nature. After

recalling some inequalities and results, we have briefly described the mortar finite element

methods with and without Lagrange multipliers for the second order elliptic problems.

Further, we have discussed a literature survey for the mortar finite element method.

In Chapter 2, an effort has been made to apply mortar element methods with and
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without Lagrange multipliers for the parabolic initial and boundary value problems. We

have discussed mortar finite element methods for the second order parabolic problems.

A standard mortar finite element method and a mortar element method with Lagrange

multiplier are used for the spatial discretization. Optimal error estimates in L∞(L2) and

L∞(H1)-norms for semidiscrete methods for both the cases are established. The key feature

that we have adopted here is to introduce a modified elliptic projection. In the standard

mortar element method, a completely discrete scheme using backward Euler scheme is

discussed and optimal error estimates are derived. Finally, numerical experiments that

support the theoretical results are obtained.

In order to alleviate the LBB condition, in Chapter 3, we have proposed a Nitsche’s

mortaring element method for the elliptic and parabolic problems. We added a stabilized

term which contains ε as a parameter which helped us to show the existence and unique-

ness of the resulting discrete scheme without using the discrete LBB condition. We have

obtained a priori error estimates. Since, this proposed scheme is not consistent, we have

obtained only sub-optimal L2 and H1-error estimates.

In Chapter 4, we have proposed and analyzed stabilized Nitsche mortar formulation

which is consistent. Under a mild assumption on the penalty parameter, the method is

shown to be stable. Further, we derive a priori error estimates for the Nitsche’s mortaring

method applied to a second-order parabolic problems with discontinuous coefficients in a

polygonal region Ω with Lipschitz boundary. Moreover, we have analyzed the error esti-

mates in both L2- and H1-norms for the Nitsche’s mortaring method for both semidiscrete

and completely discrete schemes.

Finally, in Chapter 5, we have summarized the results obtained and have done a critical

assessment of the work. Further, we have discussed the possible extensions of the results

derived in this thesis. Also we have discussed the future work in the direction of mortar

finite element method applied to nonlinear problems.
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Mortar Finite Element Methods with

and without Lagrange multipliers

2.1 Introduction

In this chapter, a standard mortar finite element method and a mortar element method

with Lagrange multipliers are applied for the spatial discretization of the following class of

parabolic initial-boundary value problems:

ut −∇ · (a(x)∇u) = f(x, t) in Ω × (0, T ], (2.1.1)

u(x, t) = 0 on ∂Ω × (0, T ], (2.1.2)

u(0) = u0(x) in Ω, (2.1.3)

where Ω is a bounded domain in IR2 with Lipschitz continuous boundary ∂Ω, T is the fixed

final time, ut = ∂u
∂t

, ∇ ≡ ( ∂
∂x1

, ∂
∂x2

), and f ∈ L2(Ω), u0 are given functions. Assume that

the coefficient a(x) is smooth and satisfies 0 < α0 ≤ a(x) ≤ α1, for some positive constants

α0 and α1 and for all x ∈ Ω̄. For u0(x) to be in L2(Ω), the problem (2.1.1)-(2.1.3) has

unique solution in H2(Ω) by [56].

The related work for the parabolic initial-boundary value problem (2.1.1)-(2.1.3) can

be found in [18, 35, 78, 94]. In [35] and [94], finite difference scheme is applied to discretize

the parabolic equation in temporal direction to obtain an elliptic equation at each time

step, and then mortar finite element method is used to discretize the resulting elliptic

equation in spatial direction. In [94], a multigrid method for mortar finite element method

32
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has been applied to parabolic problems. In [78], mortar mixed finite element method have

been analyzed for parabolic problems and a non-iterative scheme is proposed to solve the

problem once in each subdomain via an operator splitting. In [18], the authors have studied

the residual spatial error indicators at each time step using mortar elements to discretize

in spatial direction.

In this chapter, we establish optimal error estimates in L∞(L2) and L∞(H1)-norms for

the semidiscrete scheme for mortar element methods with and without Lagrange multipli-

ers. The key feature that we have adopted here is the introduction of a modified elliptic

projection. Using backward Euler method, a completely discrete scheme is analyzed for

the standard mortar finite element method and error estimates are derived.

A brief outline of this chapter is as follows. In Section 2, we define the problem and

discuss the mortar finite element discretization. In Section 3, some approximation proper-

ties are stated and an auxiliary projection which is used in the subsequent error analysis

is defined. In Section 4, error estimates for both semidiscrete and fully discrete schemes

are developed. In Section 5, the mortar finite element method with a Lagrange multiplier

is discussed. Finally in Section 6, the results of some numerical experiments that support

our theoretical results are presented.

2.2 A Mortar finite element method

The main objective in this section is to provide an approximation to the solution of (2.1.1)-

(2.1.3). The starting point of this method is to use a natural decomposition of the domain

Ω into K nonoverlapping convex subdomains Ωl, 1 ≤ l ≤ K. Denote ∂Ωi ∩ ∂Ωj = γij, 1 ≤

i, j ≤ K. Let nij be the unit normal oriented from Ωi towards Ωj so that nij = −nji. Here,

we discuss the geometrically conforming version of the mortar method, i.e., the intersection

of Ω̄i and Ω̄j for i 6= j is either empty set, a common edge or a common vertex. Let

H1
D(Ωl) = {v ∈ H1(Ωl) : v|∂Ωl∩∂Ω = 0}.

Now, define

X = {v ∈ L2(Ω) : v|Ωl
∈ H1

D(Ωl) ∀1 ≤ l ≤ K},
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which is equipped with a norm and seminorm

‖v‖X =

(

K
∑

l=1

‖v‖2
H1(Ωl)

)1/2

and |v|X =

(

K
∑

l=1

‖∇v‖2
L2(Ωl)

)1/2

,

respectively.

The weak formulation corresponding to (2.1.1)-(2.1.3) is to find u : [0, T ] −→ H 1
0 (Ω)

such that

(ut, v) + a(u, v) = l(v) ∀v ∈ H1
0 (Ω), (2.2.1)

u(0) = u0. (2.2.2)

Here, (·, ·) denotes the inner product in L2(Ω),

a(u, v) =

K
∑

l=1

∫

Ωl

a(x)∇ul · ∇vl dx,

and

l(v) =
K
∑

l=1

∫

Ωl

fv dx,

where ul and vl are restrictions of u and v, respectively, to Ωl. From the properties of

the coefficient a, it is easy to show that the bilinear form a(·, ·) satisfies the following

boundedness property: for v and w in X,

|a(v, w)| ≤ α1|v|X |w|X ≤ α1‖v‖X ‖w‖X, (2.2.3)

Now, we recall from Chapter 1, that the discrete space Vh is defined as

Vh = {vh ∈ Xh(Ω) : ∀δm(j) ⊂ Γ,

∫

δm(j)

(vi,h − vj,h)|δm(j)
ψdτ = 0,

∀ψ ∈Mhj (δm(j))}.

For notational convenience, we denote the non-mortar side δm(j) by δm.

The mortar finite element formulation for the problem (2.2.1)-(2.2.2) is to seek uh : (0, T ] −→

Vh such that

(uht, vh) + a(uh, vh) = l(vh) ∀ vh ∈ Vh, (2.2.4)

uh(0) = u0,h, (2.2.5)
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where u0,h is an approximation of u0 in Vh to be defined later,

a(vh, wh) =

K
∑

l=1

∫

Ωl

a(x)∇vl,h · ∇wl,h dx,

and

l(vh) =
K
∑

l=1

∫

Ωl

fvh dx.

Here, vl,h and wl,h are respectively, the restrictions of vh and wh to Ωl.

Note that, Poincaré inequality holds true on the broken Sobolev spaces, which is stated

as below:

Lemma 2.2.1 (Generalized Poincaré Inequality)[23] There exists a positive constant

c such that for vh ∈ Vh the following relation holds true:

K
∑

l=1

‖v|Ωl
‖2

L2(Ωl)
≤ c

K
∑

l=1

|v|Ωl
|2
H1(Ωl)

. (2.2.6)

Using Poincaré inequality for elements in Vh, ( Lemma 2.2.1), we note that the seminorm

| · |X is indeed a norm on Vh which is equivalent to the ‖ · ‖X norm. From the properties

of the coefficient a, we note that the bilinear form a(·, ·) satisfies the following coercive

property: for vh in Vh

a(vh, vh) ≥ α0|vh|
2
X ≥ α‖vh‖

2
X , (2.2.7)

where α depends on α0 and the constant in the Poincaré inequality. Note that, (2.2.4)

is equivalent to a linear system of ordinary differential equations and the matrix involved

with the bilinear form is positive definite. Therefore Picard’s theorem ensures the existence

of a unique solution uh(t) ∈ Vh for t ∈ [0, T ] of the problem (2.2.4)-(2.2.5).

2.3 A Modified Elliptic Projection

For our error analysis, we now introduce a modified elliptic projection Ph from X onto Vh,

which is defined as follows: For a given u ∈ X, find Phu ∈ Vh such that
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a(u− Phu, χ) −
m0
∑

m=1

∫

δm⊂Γ

a∇u · n[[χ]]dτ = 0 ∀χ ∈ Vh. (2.3.1)

where [[v]] = (vi − vj)|γij
denotes the jump of v over the common interface γij of Ωi and

Ωj, with vi, vj being the restrictions of v to Ωi and Ωj, respectively. Now for a given u,

the problem (2.3.1) has a unique solution Phu ∈ Vh as the bilinear form a(·, ·) satisfies the

coercive property (2.2.7). Observe that (2.3.1) is a modification of the standard elliptic

projection used in the context of parabolic problems, see Thomeé [85]. Below, we discuss

a priori estimates for u− Phu in broken H1-norm and L2-norm.

Lemma 2.3.1 Assume that for t ∈ (0, T ], u(t) ∈ H1
0 (Ω) and u(t)|Ωl

, ut(t)|Ωl
∈ Hσ(Ωl).

For any real number σ, with 3
2
< σ ≤ 2, there exists a positive constant C, independent of

hl, such that

‖u− Phu‖ + h‖u− Phu‖X ≤ Chσ
K
∑

l=1

‖u‖Hσ(Ωl)
. (2.3.2)

Further,

‖ut − Phut‖ + h‖ut − Phut‖X ≤ Chσ
K
∑

l=1

‖ut‖Hσ(Ωl)
. (2.3.3)

Proof. Using the definition of Qh in (1.3.36), we rewrite the equation (2.3.1) as

a(Qhu− Phu, χ) = −a(u−Qhu, χ) +

m0
∑

m=1

∫

δm⊂Γ

a∇u · n[[χ]]dτ ∀χ ∈ Vh. (2.3.4)

Set χ = Qhu − Phu ∈ Vh in (2.3.4). Using the coercivity (2.2.7) and boundedness (2.2.3)

of the bilinear form a(·, ·), we obtain

α‖Qhu− Phu‖
2
X ≤ a(Qhu− Phu,Qhu− Phu)

≤ α1‖u−Qhu‖X ‖Qhu− Phu‖X +

m0
∑

m=1

|

∫

δm⊂Γ

a∇u · n[[Qhu− Phu]] dτ |. (2.3.5)
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Now using the mortar condition (1.3.7) and Lemma 1.3.7 with the trace inequality, we

proceed as in [23], Lemma 3.5 of [29] to obtain

m0
∑

m=1

|

∫

δm⊂Γ

a∇u · n[[Qhu− Phu]]d τ | =

m0
∑

m=1

|

∫

δm⊂Γ

(a∇u · n− λh)[[Qhu− Phu]]d τ |

∀λh ∈Mhj (δm)

≤ C‖a∇u · n− λh‖H−1/2(Γ)‖[[Qhu− Phu]]‖H1/2(Γ)

≤ C

K
∑

j=1

hσ−1
j ‖u‖Hσ(Ωj)

‖Qhu− Phu‖H1(Ωj)
. (2.3.6)

Substituting (2.3.6) in (2.3.5) and using Lemma 1.3.6 , we arrive at

‖Qhu− Phu‖X ≤ C(α, α1)‖u−Qhu‖X +

K
∑

l=1

hσ−1
l ‖u‖Hσ(Ωl)

. (2.3.7)

Since

‖u− Phu‖X ≤ ‖u−Qhu‖X + ‖Qhu− Phu‖X ,

again using Lemma 1.3.6 with (2.3.7), we obtain

‖u− Phu‖X ≤ C
K
∑

l=1

hσ−1
l ‖u‖Hσ(Ωl)

. (2.3.8)

For the L2 error estimate, we appeal to Aubin-Nitsche duality argument. Let ψl = ψ|Ωl
∈

H2(Ωl) ∩H
1
0 (Ω), 1 ≤ l ≤ K, be the solution of the transmission problem :

−∇ · (a(x)∇ψl) = ul − Phul in Ωl, (2.3.9)

ψl = 0 on ∂Ω ∩ ∂Ωl, (2.3.10)

[[ψ]]Γ = 0,

[[

a
∂ψ

∂n

]]

Γ

= 0 along Γ, (2.3.11)

which satisfies following regularity condition

K
∑

l=1

‖ψl‖H2(Ωl)
≤ C‖u− Phu‖. (2.3.12)

We now refer to Theorem 1.1 of [11], Theorem 2.1 of [34] and the references therein for the

proof of the elliptic regularity (2.3.12). Multiplying both sides of (2.3.9) by ul − Phul and
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summing over all l, 1 ≤ l ≤ K, we find that

‖u− Phu‖
2 =

K
∑

l=1

‖ul − Phul‖
2

= a(u− Phu, ψ) −
m0
∑

m=1

∫

δm⊂Γ

a∇ψ · n[[u− Phu]]d τ.

Using (2.3.1), and the mortar condition (1.3.7), we now arrive at

‖u− Phu‖
2 = a(u− Phu, ψ −Qhψ) + a(u− Phu,Qhψ)

−
m0
∑

m=1

∫

δm⊂Γ

(a∇ψ · n− µh)[[u− Phu]]d τ ∀µh ∈ Mhj (δm)

= a(u− Phu, ψ −Qhψ) +

m0
∑

m=1

∫

δm⊂Γ

a∇u · n[[Qhψ]]d τ

−
m0
∑

m=1

∫

δm⊂Γ

(a∇ψ · n− µh)[[u− Phu]]d τ. (2.3.13)

Now boundedness of a(·, ·) with Lemma 1.3.6 yields

|a(u− Phu, ψ −Qhψ)| ≤ α1‖u− Phu‖X‖ψ −Qhψ‖X

≤ C(α1)
K
∑

l=1

hl‖ψ‖H2(Ωl)
‖u− Phu‖X . (2.3.14)

To estimate the second term on the right-hand side of (2.3.13), we use (1.3.7), and [[ψ]] = 0

on Γ. Then, we apply Cauchy-Schwarz inequality and Lemma 1.3.7 to obtain for λh ∈

Mhj (δm)

m0
∑

m=1

|

∫

δm⊂Γ

a∇u · n[[Qhψ]]dτ | =

m0
∑

m=1

|

∫

δm⊂Γ

(a∇u · n− λh)[[ψ −Qhψ]]dτ |

≤
m0
∑

m=1

inf
λh∈M

hj (δm)

‖a∇u · n− λh‖L2(δm)‖[[ψ −Qhψ]]‖L2(δm)

≤ C

m0
∑

m=1

h
1/2
j ‖a∇u · n‖H1/2(δm)‖[[ψ −Qhψ]]‖L2(δm). (2.3.15)

From the definition (1.3.36) of Qh, we note that ‖[[ψ −Qhψ]]‖L2(δm) can be written in terms

of ‖[[ψ − Ihψ]]‖L2(δm). Now using (1.3.13), (2.3.15) leads to

m0
∑

m=1

|

∫

δm⊂Γ

a∇u · n[[Qhψ]]dτ | ≤ C
K
∑

j=1

h2
j‖u‖H2(Ωj)

‖ψ‖H2(Ωj)
. (2.3.16)
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For the last term on the right-hand side of (2.3.13), we proceed similarly as in (2.3.6) to

obtain

m0
∑

m=1

|

∫

δm⊂Γ

(a∇ψ · n− µh)[[u− Phu]]dτ | =

m0
∑

m=1

|

∫

δm⊂Γ

(a∇ψ · n− µh)[[u− Phu]]dτ |

≤ C

K
∑

j=1

hj‖ψ‖H2(Ωj)
‖u− Phu‖H1(Ωj)

. (2.3.17)

Substituting (2.3.14)-(2.3.17) in (2.3.13) and using the elliptic regularity result (2.3.12), we

find that

‖u− Phu‖ ≤ C

K
∑

l=1

hσl ‖u‖Hσ(Ωl)
. (2.3.18)

With h = max
1≤l≤K

hl, the proof of (2.3.2) follows from (2.3.8) and (2.3.18). To prove (2.3.3),

differentiate (2.3.1) with respect to time to obtain

a(ut − Phut, χ) −
m0
∑

m=1

∫

δm⊂Γ

a(x)∇ut · n[[χ]]dτ = 0 ∀χ ∈ Vh. (2.3.19)

Since the equation remains invariant under time differentiation, (Phu)t = Phut, replacing

ut by v, we obtain exactly same equation (2.3.1) for v. Then proceed similarly to derive

estimates for ut − Phut.

2.4 Error estimates for the mortar finite element method

In this section, optimal error estimates in L∞(H1)- and L∞(L2)-norms are discussed.

2.4.1 Error estimates for the semidiscrete method

Note that for v ∈ X and for t ∈ (0, T ], from (2.1.1)-(2.1.3), we obtain

(ut, v) + a(u, v) =

K
∑

l=1

∫

Ωl

fv dx+

m0
∑

m=1

∫

γm⊂Γ

a∇u · n[[v]]dτ ∀v ∈ X (2.4.1)

u(0) = u0. (2.4.2)
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Theorem 2.4.1 Assume that for t ∈ (0, T ], u(t) ∈ H1
0 (Ω) and u(t)|Ωl

, ut(t)|Ωl
∈ H2(Ωl).

Let u and uh be the solutions of (2.4.1)-(2.4.2) and (2.2.4)-(2.2.5), respectively. Further,

let u0,h = Ihu0 or Phu0. Then, there exists a positive constant C, independent of hl, such

that for t ∈ (0, T ], the following estimates hold:

‖(u− uh)(t)‖ ≤ C

K
∑

l=1

h2
l

(

‖u0‖H2(Ωl)
+ ‖ut‖L2(0,T ;H2(Ωl)

)

, (2.4.3)

and

‖(u− uh)(t)‖X ≤ C

K
∑

l=1

hl

(

‖u0‖H2(Ωl)
+ ‖ut‖L2(0,T ;H2(Ωl)

)

. (2.4.4)

Proof. Using the definition of Ph, we now split u− uh as

u− uh = (u− Phu) + (Phu− uh) = ρ+ θ. (2.4.5)

Since the estimates of ρ are known from Lemma 2.3.1, it is enough to estimate θ. From

(2.2.4), (2.3.1) and (2.4.1), we obtain

(θt, χ) + a(θ, χ) = −(ρt, χ) ∀χ ∈ Vh. (2.4.6)

Substituting χ = θ in (2.4.6), applying coercivity of a(·, ·) with coercivity constant α and

using the Young’s inequality (1.2.2), we arrive at

1

2

d

dt
‖θ‖2 + α‖θ‖2

X ≤ ‖ρt‖‖θ‖

≤
1

2α
‖ρt‖

2 +
α

2
‖θ‖2

X .

Hence,
d

dt
‖θ‖2 + α‖θ‖2

X ≤
1

α
‖ρt‖

2.

Integrating from 0 to t, we find that

‖θ(t)‖2 ≤ ‖θ(0)‖2 +
1

α

∫ t

0

‖ρt‖
2ds. (2.4.7)

If u0,h = Phu0, then θ(0) = 0, otherwise with u0,h = Ihu0,

‖θ(0)‖ = ‖Phu0 − u0,h‖ ≤ ‖u0 − Ihu0‖ + ‖Phu0 − u0‖

≤ C

K
∑

l=1

h2
l ‖u0‖H2(Ωl)

. (2.4.8)
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For the second term on the right-hand side of (2.4.7), we apply (2.3.3) to obtain

‖ρt‖ = ‖ut − Phut‖ ≤ C(α)

K
∑

l=1

h2
l ‖ut‖H2(Ωl)

. (2.4.9)

Substituting (2.4.8) and (2.4.9) in (2.4.7), we find that

‖θ(t)‖2 ≤ C(α)

K
∑

l=1

h4
l

(

‖u0‖
2
H2(Ωl)

+

∫ t

0

‖ut‖
2
H2(Ωl)

ds

)

. (2.4.10)

A use of triangle inequality with Lemma 2.3.1 and

ψ(t) = ψ(0) +

∫ t

0

ψt(s) ds (2.4.11)

yields (2.4.3).

For a bound in X-norm, substitute χ = θt in (2.4.6) and apply Cauchy-Schwarz inequality

to obtain

‖θt‖
2 +

1

2

d

dt
a(θ, θ) ≤ ‖ρt‖‖θt‖ ≤

1

2
‖ρt‖

2 +
1

2
‖θt‖

2,

and hence,

‖θt‖
2 +

d

dt
a(θ, θ) ≤ ‖ρt‖

2. (2.4.12)

Integrating both sides of (2.4.12) from 0 to t, using coercivity and boundedness of a(·, ·),

we arrive at

‖θ(t)‖2
X ≤ C(α)

(

‖θ(0)‖2
X +

∫ t

0

‖ρt‖
2ds

)

. (2.4.13)

When u0,h = Phu0, θ(0) = 0, otherwise with u0,h = Ihu0,

‖θ(0)‖X = ‖Phu0 − u0,h‖X ≤ ‖u0 − Ihu0‖X + ‖Phu0 − u0‖X

≤ C
K
∑

l=1

hl‖u0‖H2(Ωl)
. (2.4.14)

Substituting (2.4.9) and (2.4.14) in (2.4.13), we obtain

‖θ(t)‖2
X ≤ C

K
∑

l=1

(

h2
l ‖u0‖

2
H2(Ωl)

+ h4
l

∫ t

0

‖ut‖
2
H2(Ωl)

ds)

)

. (2.4.15)

An application of triangle inequality with Lemma 2.3.1 and (2.4.11) yields (2.4.4). This

completes the rest of the proof.
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Remark 2.4.1 If we choose uh(0) = Phu(0), then θ(0) = 0 in (2.4.13). Therefore, using

Lemma 2.3.1, we derive the following super-convergent result in θ:

‖θ(t)‖2
X ≤ Ch4

K
∑

l=1

∫ t

0

‖ut‖
2
H2(Ωl)

ds. (2.4.16)

2.4.2 Completely discrete scheme

Let k be the time step parameter such that N = T/k and tn = nk. For a continuous

function ϕ ∈ C[0, T ], we set the backward difference quotient as ∂̄tϕ
n =

ϕn − ϕn−1

k
. The

backward Euler approximation is to seek a function Un ∈ Vh so that Un, n ≥ 1, satisfies

(∂̄tU
n, χ) + a(Un, χ) = (f(tn), χ) ∀χ ∈ Vh, (2.4.17)

U0 = u0,h,

where u0,h is chosen either as Ihu0 or Phu0.

Note that at each step t = tn, (2.4.17) leads to a system of linear algebraic equations.

It is easy to check that this system has a unique solution. We discuss below the a priori

error estimates for the solution Un of (2.4.17).

Theorem 2.4.2 Assume that for t ∈ (0, T ], u(t) ∈ H1
0 (Ω), u(t)|Ωl

, ut(t)|Ωl
∈ H2(Ωl) and

utt(t) ∈ L2(Ω). Let u(tn) be the solution of (2.4.1)-(2.4.2) and let Un ∈ Vh be an approxi-

mation of u(t) at t = tn is given by (2.4.17). Then with u0,h = Ihu0 or Phu0, there exists

positive constants C, independent of hl and k, such that

‖u(tn) − Un‖2 ≤ C

(

K
∑

l=1

h4
l

[

‖u0‖
2
H2(Ωl)

+

∫ tn

0

‖ut‖
2
H2(Ωl)

ds

]

+ k2

∫ tn

0

‖utt‖
2ds

)

.

(2.4.18)

and,

‖u(tn) − Un‖2
X ≤ C

(

K
∑

l=1

h2
l

[

‖u0‖
2
H2(Ωl)

+

∫ tn

0

‖ut‖
2
H2(Ωl)

ds

]

+ k2

∫ tn

0

‖utt‖
2ds

)

.

(2.4.19)
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Proof. Set

u(tn) − Un = ρn + θn = (u(tn) − Phu(tn)) + (Phu(tn) − Un). (2.4.20)

Since the estimates of ρn are known from Lemma 2.3.1 at t = tn, it is sufficient to estimate

θn. Using elliptic projection (2.3.1), (2.4.1)- (2.4.2) at t = tn and (2.4.17), we obtain

(∂̄tθ
n, χ) + a(θn, χ) = (wn, χ) ∀χ ∈ Vh, (2.4.21)

where

wn = ∂̄tPhu(tn) − ut(tn) = −∂̄tρ
n + (∂̄tu(tn) − ut(tn))

= wn1 + wn2 . (2.4.22)

Choose χ = θn in (2.4.21). Note that

(∂̄tθ
n, θn) =

1

2
∂̄t‖θ

n‖2 +
k

2
‖∂̄tθ

n‖
2
≥

1

2
∂̄t‖θ

n‖2.

Using the coercivity of a(·, ·), Cauchy-Schwarz inequality and Young’s inequality (1.2.2),

we find that

1

2
∂̄t‖θ

n‖2 + α‖θn‖2
X ≤ ‖wn‖‖θn‖ ≤ C‖wn‖‖θn‖X

≤
1

2α
‖wn‖2 +

α

2
‖θn‖2

X ,

and hence,

∂̄t‖θ
n‖2 + α‖θn‖2

X ≤ C(α)‖wn‖2.

Using the definition of ∂̄t, we arrive at

‖θn‖2 ≤ ‖θn−1‖
2
+ C(α)k‖wn‖2,

and hence, by repeated application, we obtain

‖θn‖2 ≤ ‖θ0‖
2
+ Ck(

n
∑

j=1

‖wj1‖
2
+

n
∑

j=1

‖wj2‖
2
). (2.4.23)

With u0,h = Phu0, θ(0) = 0, otherwise we have with u0,h = Ihu0

‖θ0‖ = ‖Phu0 − U0‖ ≤ ‖u0 − Ihu0‖ + ‖Phu0 − u0‖

≤ C

K
∑

l=1

h2
l ‖u0‖H2(Ωl)

. (2.4.24)
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Since

wj1 = −∂̄tρ
n = −k−1

∫ tj

tj−1

ρt(s) ds,

we use (2.3.3) to arrive at

k

n
∑

j=1

‖wj1‖
2
≤

n
∑

j=1

∫ tj

tj−1

‖ρt(s)‖
2ds ≤ C

K
∑

l=1

h4
l

∫ tn

0

‖ut‖
2
H2(Ωl)

ds. (2.4.25)

To estimate wj
2, we apply Taylor series expansion, to find that

wj2 = ∂̄tu(tj) − ut(tj) = k−1(u(tj) − u(tj−1)) − ut(tj)

= −k−1

∫ tj

tj−1

(s− tj−1)utt(s)ds

and, hence,

k
n
∑

j=1

‖wj2‖
2
≤

n
∑

j=1

(

∫ tj

tj−1

|s− tj−1|‖utt‖ds

)2

≤ Ck2

∫ tn

0

‖utt‖
2ds. (2.4.26)

Substitute (2.4.24)-(2.4.26) in (2.4.23) to obtain

‖θn‖2 ≤ C

(

K
∑

l=1

h4
l

[

‖u0‖
2
H2(Ωl)

+

∫ tn

0

‖ut‖
2
H2(Ωl)

ds

]

+ k2

∫ tn

0

‖utt‖
2ds

)

. (2.4.27)

With an application of triangle inequality, (2.4.27), Lemma 2.3.1 and (2.4.11), the estimate

(2.4.18) follows. In order to obtain (2.4.19), substitute χ = ∂̄tθ
n in (2.4.21) and then pro-

ceed in a similar way to derive an estimate of ‖u(tn) − Un‖X . This completes the proof of

the theorem.

Remark 2.4.2 Higher order schemes like Crank-Nicolson scheme and second order back-

ward difference methods can be applied to discretize in time direction. The corresponding

error analysis follows closely the analysis in Thomeé [85] and hence, we prefer to skip these

results.
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2.5 A Mortar finite element method with a Lagrange

multiplier

In the previous section, we note that the mortar condition (1.3.7) is imposed on the mortar

finite element space which is computationally cumbersome. Instead, in this section, we use

Lagrange multiplier method. By doing so, although we avoid imposing mortar condition on

the mortar element space, but we obtain a larger system of equations. However, by adopting

a Lagrange multiplier method, we also obtain an estimate for the Lagrange multiplier, which

is an approximation to a
∂u

∂n
on the interfaces of the subdomains along with the solution

which is useful for domain decomposition methods.

In this section, we discuss the mortar method with a Lagrange multiplier for the problem

(2.1.1)-(2.1.3).

Now we define Lagrange multiplier space M as follows:

M = {ψ ∈
K
∏

l=1

H
−1/2
D (∂Ωl) : there exists a function q ∈ H0(div; Ω) such that ψk = q · nl},

(2.5.1)

and an auxiliary space is defined as:

M̃ =

m0
∏

m=1

H
−1/2
00 (δm). (2.5.2)

Multiply the equation (2.1.1) by v ∈ X and then integrate by parts over Ωl. An introduction

of the flux λ = a
∂u

∂n
, now yields the following weak formulation of the problem (2.1.1)-(2.1.3)

: Find (u, λ) : (0, T ] −→ X ×M such that for t ∈ (0, T ]

(ut, v) + a(u, v) + b(v, λ) =
K
∑

l=1

∫

Ωl

fv dx ∀ v ∈ X, (2.5.3)

b(u, µ) = 0 ∀µ ∈M, (2.5.4)

u(0) = u0, (2.5.5)

where (·, ·) denotes the inner product in L2(Ω), and

a(u, v) =

K
∑

l=1

∫

Ωl

a(x)∇ul · ∇vl dx,
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and

b(v, µ) = −
m0
∑

m=1

∫

γm⊂Γ

µ[[v]]|γm
dτ.

Here, we follow the same notations and definitions which are defined in the earlier sections.

Define the space

Mh =

m0
∏

m=1

Mhj (δm) (2.5.6)

over all nonmortars. Now, the mortar element formulation with Lagrange multiplier cor-

responding to (2.2.1)-(2.2.2) is to seek (uh, λh) : (0, T ] −→ Xh ×Mh such that

(uh,t, vh) + a(uh, vh) + b(vh, λh) =

K
∑

l=1

∫

Ωl

fvh dx ∀vh ∈ Xh (2.5.7)

b(uh, µh) = 0 ∀µh ∈Mh (2.5.8)

uh(0) = u0,h, (2.5.9)

where u0,h ∈ Xh is a suitable approximation of u0 to be defined later. Note that

a(uh, vh) =

K
∑

l=1

∫

Ωl

a(x)∇uhl
· ∇vhl

dx,

and

b(vh, µh) = −
m0
∑

m=1

∫

γm⊂Γ

µh[vh]|γm
dτ.

For given u and λ, we now define P ∗
hu ∈ Xh and Π∗

hλ ∈Mh by

a(u− P ∗
hu, χ) − b(χ, λ− Π∗

hλ) = 0 ∀χ ∈ Xh, (2.5.10)

and

b(u− P ∗
hu, µh) = 0 ∀µh ∈ Mh. (2.5.11)

Note that for a given u and λ, (2.5.10)-(2.5.11) has a unique solution (P ∗
hu,Π

∗
hλ) ∈ Xh×Mh.

Based on the analysis in Theorem 2.8 of [16], we obtain easily the following optimal error

estimates. We recall the following result from Chapter 1.
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Lemma 2.5.1 For any real number σ, 3
2
< σ ≤ 2, there exists positive constants C,

independent of hl, such that for any function u ∈ H1
0 (Ω) with u|Ωl

and ut|Ωl
∈ Hσ(Ωl),

2
∑

i=0

(∥

∥

∥

∥

∂i

∂ti
(u− P ∗

hu)

∥

∥

∥

∥

+ h

[∥

∥

∥

∥

∂i

∂ti
(u− P ∗

hu)

∥

∥

∥

∥

X

+

∥

∥

∥

∥

∂i

∂ti
(λ− Π∗

hλ)

∥

∥

∥

∥

M

])

≤ Chσ
2
∑

i=0

K
∑

l=1

∥

∥

∥

∥

∂iu

∂ti

∥

∥

∥

∥

Hσ(Ωl)

,(2.5.12)

where h = max
l
hl.

Note that for time derivative we first differentiate (2.5.10)-(2.5.11) with respect to time

and then proceed as in Theorem 2.8 of [16] to complete the proof.

2.6 Error estimates for the semidiscrete method

In this section, we discuss optimal error estimates for the error u− uh and λ− λh.

Theorem 2.6.1 Let u and uh be the solutions of (2.5.3)-(2.5.5) and (2.5.7)-(2.5.9), re-

spectively. Further, let u|Ωi
, ut|Ωi

∈ H2(Ωi) for 1 ≤ i ≤ K. Then with u0,h = Ihu0 or P ∗
hu0

there exists positive constants C, independent of hl, such that for t ∈ (0, T ],

‖(u− uh)(t)‖ ≤ C

K
∑

l=1

h2
l

[

‖u0‖H2(Ωl)
+ ‖ut‖L2(0,T ;H2(Ωl))

]

(2.6.1)

and,

‖(u− uh)(t)‖X ≤ C

K
∑

l=1

hl

[

‖u0‖H2(Ωl)
+ ‖u(t)‖H2(Ωl)

+ ‖ut‖L2(0,T ;H1(Ωl))

]

. (2.6.2)

Proof. Using P ∗
hu and Π∗

hλ, we write

u− uh = (u− P ∗
hu) + (P ∗

hu− uh) = ρ+ θ (2.6.3)

and

λ− λh = (λ− Π∗
hλ) + (Π∗

hλ− λh) = η + ξ. (2.6.4)
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From (2.5.3)-(2.5.4), (2.5.7)-(2.5.8), (2.5.10) and (2.5.11), we obtain

(θt, χ) + a(θ, χ) + b(χ, ξ) = −(ρt, χ) ∀χ ∈ Xh (2.6.5)

b(θ, µh) = 0 ∀µh ∈Mh. (2.6.6)

Substituting χ = θ in (2.6.5), µh = ξ in (2.6.6), using Lemma 2.5.1 and proceeding as

in the proof of Theorem 2.4.1 we derive the L2-error estimate (2.6.1). In order to derive

(2.6.2), we substitute χ = θt in (2.6.5), differentiate (2.6.6) with respect to t and set µh = ξ

to obtain

‖θt‖
2 +

1

2

d

dt
a(θ, θ) = −(ρt, θt).

To complete the rest of the proof, proceed as in the proof of Theorem 2.4.1.

Remark 2.6.1 As a consequence of Theorem 2.6.1, we obtain

‖θt‖
2
L2(0,T ;L2(Ω)) ≤ C

[

‖u0,h − P ∗
hu0‖

2
X +

∫ t

0

K
∑

l=1

h2
l ‖ut‖

2
H1(Ωl)

ds

]

.

(2.6.7)

Further, differentiating (2.6.5), (2.6.6), we find that

(θtt, χ) + a(θt, χ) + b(χ, ξt) = −(ρtt, χ) ∀χ ∈ Xh (2.6.8)

b(θt, µh) = 0 ∀µh ∈Mh. (2.6.9)

Substituting χ = θt in (2.6.8), µh = ξt in (2.6.9) and multiplying both sides of (2.6.8) by t,

we arrive at

t(θtt, θt) + ta(θt, θt) = −t(ρtt, θt),

and hence

1

2

d

dt
(t‖θt‖

2) + ta(θt, θt) = −t(ρtt, θt) +
1

2
‖θt‖

2. (2.6.10)

Integrating (2.6.10) from 0 to t with respect to t, using coercivity of a(·, ·) and Cauchy-

Schwarz inequality, we obtain

t‖θt‖
2 + α

∫ t

0

s‖θt‖
2
X ds ≤ C(α)

(
∫ t

0

s‖ρtt‖
2 ds+

∫ t

0

‖θt‖
2 ds

)

. (2.6.11)
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Using (2.6.7), we now find that

‖θt‖
2 ≤

C(α)

t

K
∑

l=1

h2
l

[

‖u0‖
2
H2(Ωl)

+

∫ t

0

(

‖ut‖
2
H1(Ωl)

ds+ s‖utt‖
2
H1(Ωl)

)

ds

]

.

(2.6.12)

Error estimate for the Lagrange multiplier

For the error bound in Lagrange multiplier, we need the inf-sup (well known as Ladyzhenskaya-

Babuška-Brezzi) condition for the bilinear form b(·, ·). Since it is difficult to prove the

inf-sup condition in X, following [16], we now define an auxiliary space X00 as

X00 = {v ∈ X : [[v]]|δm ∈ H
1/2
00 (δm)∀δm ⊂ Γ} (2.6.13)

with the norm

‖v‖2
X00

= ‖v‖2
X +

∑

δm⊂Γ

‖[[v]]‖2

H
1/2
00 (δm)

.

Now define the new approximation spaces as

X̃h = Xh ∩X00,

and

M̃h = Mh ∩ M̃,

where,

M̃ =

m0
∏

m=1

H
−1/2
00 (δm).

Now, consider the bilinear form b̃(vh, µh) defined over X̃h × M̃h as below:

b̃(vh, µh) = −
m0
∑

m=1

∫

γm⊂Γ

µh[[vh]]|γm
dτ.

With this modification the discrete spaces satisfy the inf-sup condition. Below, we present

a Proposition on inf-sup condition satisfied by b̃(·, ·). For a proof, see (Proposition 2.6,

[16]).
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Proposition 2.6.1 The bilinear form b̃(·, ·) verifies the following uniform inf-sup condition

over X̃h × M̃h : there exists a constant c0 > 0 independent of hl, 1 ≤ l ≤ K such that

sup
vh∈X̃h

b̃(vh, µh)

‖v‖X00

≥ c0‖µh‖M̃ ∀µh ∈ M̃h. (2.6.14)

In the following theorem, we discuss the error estimate for the Lagrange multiplier.

Theorem 2.6.2 Assume that for t ∈ (0, T ], u(t) ∈ H1
0 (Ω), u(t)|Ωl

, ut(t)|Ωl
∈ H2(Ωl) and

utt(t)|Ωl
∈ H1(Ωl). Let u0,h = Ihu0 or P ∗

hu0. Then there exists a positive constant C which

is independent of hl, 1 ≤ l ≤ K, such that for t ∈ (0, T ],

‖(λ− λh)(t)‖
2
M̃ ≤

C(c0, α)

t
h2

K
∑

l=1

(

‖u0‖
2
H2(Ωl)

+

∫ t

0

‖ut‖
2
H1(Ωl)

ds

+

∫ t

0

s‖utt‖
2
H1(Ωl)

ds

)

+ Ch2
K
∑

l=1

‖u‖2
H2(Ωl)

. (2.6.15)

Proof. Since X̃h ⊂ Xh, from the error equation (2.6.5), we can write for all χ ∈ X̃h,

b̃(χ, ξ) = −(ρt, χ) − (θt, χ) − a(θ, χ). (2.6.16)

A use of the inf-sup condition (2.6.14) and Cauchy-Schwarz inequality leads to

c0‖ξ‖M̃ ≤ ‖ρt‖ + ‖θt‖ + ‖θ‖X . (2.6.17)

Now

‖λ− λh‖M̃ ≤ ‖η‖M̃ + ‖ξ‖M̃ . (2.6.18)

Using (2.6.17), we obtain

‖λ− λh‖M̃ ≤ ‖η‖M̃ +
1

c0
{‖ρt‖ + ‖θt‖ + ‖θ‖X}. (2.6.19)

From Lemma 2.5.1, (2.6.12) and Theorem 2.6.1, the rest of the proof follows.

Remark 2.6.2
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1. We can also easily obtain an estimate for ‖λ− λh‖L2(0,T ;M̃) from the equations (2.6.17),

(2.6.18) and (2.6.7). Moreover, choosing uh(0) = P ∗
hu(0), we obtain a super-convergent

result in ‖ξ‖L2(0,T ;M̃). Similarly, we can also obtain a super convergent result for

‖ξ(t)‖M̃ .

2. Note that from Theorem 4.1, Theorem 4.2 and Theorem 6.1 we obtain O(h) estimate

with respect to H1-norm and O(h2) estimate in L2-norm for both the semidiscrete and

fully-discrete cases. These estimates are optimal as in the case of elliptic problems.

Also, Theorem 6.2 yields O(h) estimate for the Lagrange multiplier as in the elliptic

case.

3. The analysis can be carried out in an exactly similar manner for the case when the

coefficient a(x) is replaced by a(x, t) with 0 < α0 ≤ a(x, t) ≤ M ∀ x ∈ Ω̄, t ∈ [0, T ].

Numerical experiments illustrating this has been included in the next section.

4. Parabolic equations with discontinuous coefficients can occur in many physical prob-

lems, such as in material sciences, fluid dynamics, where the original domain of

interest consists of materials with the different conductivities, permeabilities or den-

sities, which lead to discontinuity of the coefficients across the interfaces. Note that,

our analysis is also valid when the coefficient is discontinuous along the subdomain

interface but is piecewise smooth in each subdomain with the condition that the coef-

ficient is bounded below and above by positive constants.

2.7 Numerical Experiments

In this section, we discuss the implementation procedure for the discrete problem (2.4.17)

for the geometrically conforming case. For construction of the nodal basis functions for the

mortar element space we refer to [25], [33], [66]. Here, the implementation is done using

MATLAB. The basis functions are defined with the help of the following sets of nodes:

• the nodes which lie in the interior of the subdomains,

• the nodes which lie in the interior to the mortars, and
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• the nodes of vertices of subdomains except those on ∂Ω.
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Figure 2.1: Degrees of Freedom over the subdomains

Now we construct the canonical basis functions involved with each of the nodal points

defined above. The functions ϕli corresponding to the interior nodes xli, 1 ≤ l ≤ K, 1 ≤ i ≤

Kl are canonical nodal basis functions as in the conforming finite element discretization,

where K is the number of non-overlapping subdomains andKl is the total number of interior

nodes in the subdomain Ωl. Here, we have taken piecewise linear polynomial functions on

each triangle T ∈ Th(Ωl), 1 ≤ l ≤ K.

The basis functions corresponding to the nodes interior to the mortars are defined as

follows. The function ϕmi associated with the node xmi , 1 ≤ m ≤ m0, 1 ≤ i ≤ m1, where

m0 is the total number of mortar edges and m1 is the total number of interior nodal points

in the mortar edge is a continuous piecewise linear function which takes value one at xmi ,

zero at xli, 1 ≤ l ≤ K, 1 ≤ i ≤ Kl and at the nodes of vertices of subdomains. The values of

this function ϕsj at the interiors of the nonmortars are determined by the mortar condition

with zero values at the end points of the non-mortars. From this it follows that the interior

nodes of the nonmortar sides are not associated with the genuine degrees of freedom in the

finite element space. From this point of view, we present, here, the matrix formulation of

the mortar conditions as follows. Let δm be an arbitrary nonmortar side, and let us be the
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vector of the interior nodal values of uh on δm. For the sake of convenience, assume that

the mesh is uniform on δm with mesh size hj. Further, let um be the vector of the values

of uh at the interior nodal points of the other side γm, which is a mortar side. Then us is

uniquely determined by um using the mortar conditions and this can be written in a matrix

form as :

Msus −Mmum = 0, (2.7.1)

where Ms and Mm are given by (ms)ij =
∫

δm
ϕsjψhi

dτ and (mm)ij =
∫

δm
ϕmj ψhi

dτ , respec-

tively. Here, ψhi
are the nodal basis functions for Mhj (δm), ϕsj and ϕmj denote the basis

functions for W h(Γ) associated with the nodes corresponding to nonmortar and mortar

sides, respectively. Since Ms is a tridiagonal, symmetric and positive definite matrix, we

can write us as :

us = M−1
s Mmum. (2.7.2)

Finally, we define the basis functions associated with vertices of subdomains in the

following way. Let S denote the set of vertices of the subdomains which are associated

with degrees of freedom of Vh. Each crosspoint of Γ corresponds to several nodes of S and,

hence, the mortar finite element functions are typically multivalued at the cross points of

the subdomain and contribute one degree of freedom for each of the subregion that coincides

at that point; which are in same physical position, but are assigned to different subregions.

Let Φyν be the basis function associated with a vertex yν ∈ S of Ωi which takes the value

one at yν and zero at all other vertices of S and all vertices interior to all mortars and

nonmortars.

We first assume the vertex yν is a common end of two mortars γν and γm, Φyν restricted

to γν and γm is the standard nodal basis function corresponding to yν, i.e., one at yν and

zero at the remaining nodes of both the mortars. The basis function Φyν is determined by

the mortar conditions (1.3.7) on the nonmortars δν = γν and δm = γm with zero values at

the ends of δν and δm, respectively. If yν is a common end of two nonmortars δp and δq,

then Φyν restricted to the mortars γp = δp and γq = δq is zero and on the nonmortars δp

and δq is determined by the mortar condition with one at yν and zero at the other ends of
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the δp and δq. Finally, suppose yν is a common end of a mortar γr and a nonmortar δs,

then Φyν is defined on the mortar γr as in the first case and on the nonmortar δs as in the

second case. In all cases, Φyν is defined as zero on the remaining mortars and nonmortars.

With these above sets of basis functions, the fully discrete problem (2.4.17) can be

expressed in the matrix form as :

(B + kA)αn = Bαn−1 + kF (tn), n ≥ 1, (2.7.3)

with α = (uli, u
m
i , uν)

T .

Here A, B and F will have the following forms:

A =









Aii Aim Aiν

Ami Amm Amν

Aνi Aνm Aνν









, (2.7.4)

where

Aim = AisM
−1
s Mm + Aim

Amm = AmsM
−1
s Mm + Amm

Anm = AsmM
−1
s Mm + Anm

Aii = {a(ϕ
(l)
i , ϕ

(l)
j )} xli, x

l
j ∈ Th(Ωl), 1 ≤ l ≤ K,

Aim = {a(ϕ
(l)
i , ϕm)} xli ∈ Th(Ωl), xm ∈ γm,

Ais = {a(ϕ
(l)
i , ϕs)} xli ∈ Th(Ωl), xs ∈ δm,

Ain = {a(ϕ
(l)
i ,Φn)} xli ∈ Th(Ωl), xn ∈ ν.

Further,

B =









Bii Bim Bin

Bmi Bmm Bmn

Bni Bnm Bnn









, (2.7.5)
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where

Bim = BisM
−1
s Mm +Bim

Bmm = BmsM
−1
s Mm +Bmm

Bnm = BsmM
−1
s Mm +Bnm

Bii = {(ϕ
(l)
i , ϕ

(l)
j )} xli, x

l
j ∈ Th(Ωl), 1 ≤ l ≤ K,

Bim = {(ϕ
(l)
i , ϕm)} xli ∈ Th(Ωl), xm ∈ γm,

Bis = {B(ϕ
(l)
i , ϕs)} xli ∈ Th(Ωl), xs ∈ δm,

Bin = {(ϕ
(l)
i ,Φn)} xli ∈ Th(Ωl), xn ∈ ν

and

F =
(

Fi Fm Fν

)T

.

where

Fi = FsM
−1
s Mm + Fm

Fi = {(f
(l)
i , ϕ

(l)
j )} xli, x

l
j ∈ Th(Ωl), 1 ≤ l ≤ K,

Fm = {(f
(l)
i , ϕm)} xli ∈ Th(Ωl), xm ∈ γm,

Fs = {(f
(l)
i , ϕs)} xli ∈ Th(Ωl), xs ∈ δm,

Fn = {(f (l)
i ,Φn)} xli ∈ Th(Ωl)xn ∈ ν.

2.7.1 Numerical Result

Choose the following parabolic initial boundary value problem on the square domain

Ω = (0, 1) × (0, 1) with Dirichlet boundary condition:

ut −∇ · (a(x)∇u) = f in Ω × (0, 1],

u(x, t) = 0 on ∂Ω × (0, 1],

u(0) = u0 in Ω.
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Figure 2.2: Independent discretizations over subdomains

We divide Ω into four equal subdomains Ωl, 1 ≤ l ≤ 4 (See Figure 2.2). Each subdomain

is triangulated into triangular elements with different mesh sizes hi. In Figure 2.2, h1 =

1/12, h2 = 1/14, h3 = 1/14, h4 = 1/12 in the four subdomains Ωl, 1 ≤ l ≤ 4, respectively.

In our first example we take u0 = 0, g = 0 with constant coefficient a(x) = 1. We

choose f such that the exact solution is u(x, t) = x(x − 1)y(y − 1)et. Choosing the time

step parameter k = O(h2), we obtain the mortar solution. The mortar and exact solutions

at t = 1 are shown in Figure 2.3(a) and Figure 2.3(b) respectively.

Table 2.1: Order of convergence p w.r.t. space variable h and q w.r.t. time variable k

(h1, h2, h3, h4) h = max
l
hl k Error e p q

(1
6
, 1

8
, 1

8
, 1

6
) 1/6 1/36 0.00150650

(1
8
, 1

10
, 1

10
, 1

8
) 1/8 1/64 0.00090908 1.7558 0.8779

( 1
10
, 1

12
, 1

12
, 1

10
) 1/10 1/100 0.00060966 1.7905 0.8952

( 1
12
, 1

14
, 1

14
, 1

12
) 1/12 1/144 0.00043774 1.8170 0.9085

( 1
14
, 1

16
, 1

16
, 1

14
) 1/14 1/196 0.00032975 1.8377 0.9189

The order of convergence at t = 1 for the error e = (u−uh) in L2 norm ‘p’ with respect

to the space variable h and ‘q’ with respect to the time step k has been computed in Table

2.1. Figure 2.4(a) and 2.4(b) shows the computed order of convergence with respect to h

and k, respectively, for ‖u− uh‖ in the log-log scale. The computed order of convergence
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(a) Mortar Solution
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(b) Exact Solution

Figure 2.3: Solution Figures
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Figure 2.4: Order of Convergence with constant coefficient
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Figure 2.5: Order of Convergence for variable coefficient

matches with the theoretical order of convergence derived in Theorem 2.4.2. In the second

example, we take u0 = 0, g = 0 with variable coefficient a(x, t) = et. In this case also, we

choose f such that the exact solution is u(x, t) = x(x − 1)y(y − 1)et. Figure 2.5(a) and

2.5(b) shows the computed order of convergence with respect to h and k respectively for

‖u− uh‖ in the log-log scale. We conducted the experiment by taking time step parameter

k = O(h2) corresponding to space discretization parameters h = 1/6, 1/8, 1/10, 1/12, 1/14.

In the third example, with u0 = 0, g = 0, we consider discontinuous coefficients along

the common interfaces of subdomain. We take the coefficients (β1, β2, β3, β4) = (1, 10, 10, 1).

We choose f in such a way that the exact solution is u(x, t) = x(x−1)y(y−1)et. The order

of convergence at t = 1 for the error e = (u− uh) in L2 norm ‘p’ with respect to the space

variable parameter h and ‘q’ with respect to the time parameter k has been computed in

Table 2.2. Figure 2.6(a) and 2.6(b) shows the computed order of convergence with respect

to h and k, respectively, for ‖u− uh‖ in the log-log scale. The computed result illustrates

the validity of our result as we stated in Remark 2.6.2 also in the case with discontinuous

coefficients across the interfaces.
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Table 2.2: Order of convergence p w.r.t. space variable h and q w.r.t. time variable k in

case of discontinuous coefficients

(h1, h2, h3, h4) h = max
l
hl k Error e p q

(1
6
, 1

8
, 1

8
, 1

6
) 1/6 1/36 0.0015066

(1
8
, 1

10
, 1

10
, 1

8
) 1/8 1/64 0.00091132 1.7475 0.8381

( 1
10
, 1

12
, 1

12
, 1

10
) 1/10 1/100 0.00060446 1.8399 0.8640

( 1
12
, 1

14
, 1

14
, 1

12
) 1/12 1/144 0.00042524 1.9289 0.8831

( 1
14
, 1

16
, 1

16
, 1

14
) 1/14 1/196 0.00031147 2.0199 0.8975
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Figure 2.6: Order of Convergence with discontinuous coefficients



Chapter 3

Nitsche Mortaring Element Method

3.1 Introduction

In our earlier chapters, we have discussed mortar element methods with and without La-

grange multipliers which fall under the category of direct methods. While in the standard

mortar element method, the mortar condition is imposed on the finite element space, in the

mortar element method with Lagrange multipliers, the constraint on the space is relaxed

by imposing it in the formulation. One of the drawbacks of the method is that the stability

of the method is guaranteed if the discrete spaces corresponding to the primal variable and

the Lagrange multiplier satisfy the “discrete LBB condition.”

In order to alleviate this problem, stabilized multiplier techniques or simply Nitsche’s

method [82] is used in the literature. This was originally introduced for solving Dirichlet

problems without enforcing the boundary condition in the finite element spaces. Nitsche has

introduced penalty term on the boundary to derive optimal error estimates. In [15, 46, 82],

Nitsche’s technique has been extended to mortar element method and a penalty term

involving jump on the subdomain interfaces is added in the original bilinear forms of the

problem to improve stability.

In this chapter, we have proposed stabilized mortar finite element methods containing

a small penalty parameter for both elliptic and parabolic problems and have discussed a

priori error bounds.

A brief outline of this chapter is as follows. In Section 3.2, we formulate the elliptic

interface problem and in Section 3.3, we introduce Nitsche’s mortaring element method

60
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with a perturbation. In Section 3.4, we extend the method to parabolic initial and bound-

ary value problems and analyze the error estimates for both semidiscrete and fully discrete

schemes. Finally, Section 3.5 deals with some numerical experiments to support our theo-

retical results.

3.2 Elliptic Interface Problem

In this section, we introduce an elliptic interface problem. After introducing Lagrange mul-

tiplier space, a saddle point formulation is discussed. Then a continuous perturbed saddle

point problem which forms a basis for the Nitsche mortaring method with perturbation is

proposed and analyzed.

We now consider a second order model problem with discontinuous coefficients. Let

Ω ⊂ R2 be a bounded convex domain with boundary ∂Ω. We consider only the case where

the domain Ω̄ is subdivided into two non-overlapping, convex and polygonal subdomains Ω1

and Ω2, i.e., Ω̄ = Ω̄1∪Ω̄2. Denote the common interface as ∂Ω̄1∩∂Ω̄2 = Γ and Γi = ∂Ωi∩Γ.

Further, let ni be the unit normal oriented from Ωi towards Ωj, 1 ≤ i < j ≤ 2 such that

n := n1 = −n2 (See, Figure 3.1). Now consider the following elliptic interface problem:

Given f ∈ L2(Ω), find ui, i = 1, 2, such that

−∇ · (βi(x)∇ui) = f in Ωi, (3.2.1)

ui = 0 on ∂Ω ∩ ∂Ωi, (3.2.2)

[[u]]Γ = 0,

[[

β
∂u

∂n

]]

Γ

= 0 along Γ, (3.2.3)

where β|Ωi
= βi, is discontinuous along the interface Γ, but is piecewise smooth in each

subdomain Ωi, that is βi is smooth in each subdomain. Further, we assume that β or

each βi is bounded below by a positive constant say α0 and bounded above by a positive

constant α1. The problem (3.2.1)-(3.2.3) has unique solution in H2(Ω) by [55]. Along the

interface, Γ we denote

[[v]]Γ = (v1 − v2)|Γ

for the jump, where vi = v|Ωi
and

{v} =
1

2
v1 +

1

2
v2
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for the average.
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Figure 3.1: Ω̄ = Ω̄1 ∪ Ω̄2, n1 and n2 represents the outward normal components.

With the notations described above, we note that

{

∂v

∂n

}

=
1

2

∂v1

∂n
+

1

2

∂v2

∂n
=

1

2

∂v1

∂n1

−
1

2

∂v2

∂n2

and hence from (3.2.3),
{

β
∂u

∂n

}

= β1
∂u1

∂n1

= −β2
∂u2

∂n2

.

Now, let

M = H
−1/2
00 (Γ),

and

X = {v ∈ L2(Ω) : v|Ωl
∈ H1

D(Ωl), l = 1, 2}.

Introducing the Lagrange multiplier λ = β1
∂u1

∂n1

= −β2
∂u2

∂n2

, the saddle point formulation

for the problem (3.2.1)-(3.2.3) is to find (u, λ) ∈ X ×M such that

a(u, v) + b(v, λ) = l(v) ∀v ∈ X, (3.2.4)

b(u, µ) = 0 ∀µ ∈ M, (3.2.5)



Chapter 3. Nitsche Mortaring Element Method 63

where

a(u, v) =

2
∑

i=1

∫

Ωi

βi∇ui · ∇vidx, (3.2.6)

and

b(v, λ) = < λ, [[v]] >Γ, l(v) =

2
∑

i=1

∫

Ωi

fvdx. (3.2.7)

Here < ·, · >Γ denotes the duality pairing between H−1/2(Γ) and H1/2(Γ). For the existence

of a unique solution (u, λ) ∈ X ×M of (3.2.4)-(3.2.5), we refer to [16, 31, 73].

3.3 Nitsche’s Mortaring method

In each subdomain Ωi, we associate a regular triangulation Th(Ωi) consisting of elements

of different mesh sizes hi, i.e.,

Ω̄i =
⋃

T∈Th(Ωi)

T̄ .

Here, the discretization parameter is (h1, h2) over Ω1 and Ω2, where hi = maxTh(Ωi) hT and

hT = diam T . Once the triangulation Th(Ωi) is chosen over each Ωi, the finite element sub-

spaces in the subdomains and on the interface can be defined. We choose locally the finite

element method that is best suited to the local properties of the solution. Let us assume

that we work with the simple generic case of linear finite elements. We now introduce the

space for i = 1, 2

Xh(Ωi) = {vi,h ∈ C(Ω̄i) : vi,h|∂Ω∩∂Ωi
= 0, vi,h|T ∈ P1(T ) ∀ T ∈ Th(Ωi)},

where P1(T ) is the set of all linear polynomials over the triangle T in Th(Ωi). The global

finite element approximation Xh(Ω) consists of functions whose restriction over each Ωi

belongs to Xh(Ωi) and is defined as

Xh(Ω) = {vh ∈ L2(Ω) : vh|∂Ω
= 0, vh|Ωi

∈ Xh(Ωi) i = 1, 2}.

Let W h(Γi) be the restriction of Xh(Ωi) to Γi = ∂Ωi ∩ Γ. Since the triangulations on

two adjacent subdomains are independent, the interfaces Γ1 and Γ2 are provided with
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two different and independent (1D) triangulations Th(Γ1), Th(Γ2) and correspondingly two

different spaces W h(Γ1) and W h(Γ2). The natural choice for the multiplier space over the

common interface Γ for our purpose is either W h(Γ1) or W h(Γ2) with the mesh parameter

he1 and he2 . For our convenience, let us choose W h(Γ) to be W h(Γ2). For the analysis

purpose, we also define

h = max{hT , he : T ∈ Th(Ωi), e ∈ Th(Γi), i = 1, 2}.

The Nitsche’s mortar finite element method is to find (uh, λh) ∈ Xh×W h(Γ) such that

2
∑

i=1

∫

Ωi

βi∇uh · ∇vh dx+

∫

Γ

λh[[vh]] dτ =

2
∑

i=1

∫

Ωi

fvh dx ∀vh ∈ Xh, (3.3.1)

∫

Γ

[[uh]]µh dτ − ε

∫

Γ

λhµh dτ = 0 ∀µh ∈ W h(Γ), (3.3.2)

where, ε is a suitably chosen penalty parameter. Now using the Gelfand triplet H 1/2(Γ) ⊂

L2(Γ) ⊂ H−1/2(Γ) i.e. for µ ∈ L2(Γ) and [[v]] ∈ H1/2(Γ), we have

b(v, µ) =

∫

Γ

[[v]]µdτ. (3.3.3)

Equivalently, (3.3.1)-(3.3.2) can be written as: Find (uh, λh) ∈ Xh ×W h(Γ) such that

A(uh, λh; vh, µh) = F(vh) ∀vh ∈ Xh, µh ∈ W h(Γ) (3.3.4)

where

A(v, µ;w, ν) =
2
∑

i=1

∫

Ωi

βi∇v · ∇w dx +

∫

Γ

µ[[w]] dτ

−

∫

Γ

[[v]]ν dτ + ε

∫

Γ

µν dτ, (3.3.5)

for all (v, µ), (w, ν) ∈ X × L2(Γ), and

F(vh) =
2
∑

i=1

∫

Ωi

fvh dx. (3.3.6)

Subtracting (3.3.1)-(3.3.2) from (3.2.4)-(3.2.5), we obtain

a(u− uh, vh) + b(vh, λ− λh) − b(u− uh, µh) = −ε

∫

Γ

λhµhdτ ∀vh ∈ Xh, µh ∈ W h(Γ),

(3.3.7)
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which can be written as

A(u− uh, λ− λh; vh, µh) = ε

∫

Γ

λµhdτ ∀vh ∈ Xh, µh ∈ W h(Γ). (3.3.8)

Note that, the interface Γ here can be chosen either Γ1 or Γ2. For our convenience, we

choose Γ to be Γ2. For the existence and uniqueness of the solution (uh, λh) ∈ Xh×W h(Γ)

of (3.3.1)-(3.3.2), the discrete spaces may not satisfy the inf-sup condition.

Lemma 3.3.1 There exists a unique solution (uh, λh) ∈ Xh×W
h(Γ) to the problem (3.3.1)-

(3.3.2).

Proof. Since (3.3.1)-(3.3.2) gives rise to a system of linear algebraic equations, uniqueness

implies existence of the solution. With f = 0 in (3.3.1)-(3.3.2), we claim that uh ≡ 0 in

each Ωi, i = 1, 2 and λh ≡ 0 on Γ. Substitute vh = uh and µh = λh in (3.3.1) and (3.3.2)

respectively, and then subtract (3.3.2) from (3.3.1) to obtain

2
∑

i=1

‖β
1/2
i ∇uh‖

2

L2(Ωi)
+ ‖ε1/2λh‖

2

L2(Γ) = 0. (3.3.9)

Since uh vanishes on ∂Ω, uh = 0 in each Ωi, i = 1, 2 and λh = 0 on Γ, and hence, uniqueness

follows. This completes the rest of the proof.

For the stability of the scheme (3.3.4), we define here the mesh-dependent norm as below.

‖|(vh, µh)‖|
2 =

2
∑

i=1

‖∇vh‖
2
L2(Ωi)

+ ‖ε1/2µh‖
2

L2(Γ). (3.3.10)

Below, we prove the coercivity of A(·, ·; ·, ·).

Lemma 3.3.2 For all vh ∈ Xh and µh ∈ W h(Γ), A satisfies the following coercivity

property:

A(vh, µh; vh, µh) ≥ α‖|(vh, µh)‖|
2, (3.3.11)

for positive α, where α = min(α0, 1), with α0 being the lower bound for the coefficients

βi, i = 1, 2.



Chapter 3. Nitsche Mortaring Element Method 66

Proof. From (3.3.5),

A(vh, µh; vh, µh) =
2
∑

i=1

∫

Ωi

βi∇vh · ∇vh dx+

∫

Γ

µh[[vh]] dτ

−

∫

Γ

[[vh]]µh dτ + ε

∫

Γ

µhµhdτ

=

2
∑

i=1

‖β
1/2
i ∇vh‖

2

L2(Ωi)
+ ‖ε1/2µh‖

2

L2(Γ). (3.3.12)

Hence, using the lower bound of the coefficients βi, i = 1, 2, we derive the desired coercivity

property (3.3.11).

Now we prove the boundedness property for A.

Lemma 3.3.3 Let (v, µ) ∈ X × L2(Γ) and (wh, µh) ∈ Xh × Mh. Then the following

inequality holds true:

A(v, µ;wh, µh) ≤ C
(

‖|(v, µ)‖|+ ‖µ‖H−1/2(Γ) + ‖ε−1/2[[v]]‖L2(Γ)

)

‖|(wh, µh)‖|.

(3.3.13)

Proof. Applying Cauchy Schwarz inequality, the duality between H−1/2 and H1/2, we

obtain

A(v, µ;wh, µh) =
2
∑

i=1

∫

Ωi

βi∇v · ∇wh dx+

∫

Γ

[[wh]]µdτ −

∫

Γ

[[v]]µhdτ + ε

∫

Γ

µµhdτ

≤ C

(

2
∑

i=1

‖∇v‖L2(Ωi)
‖∇wh‖L2(Ωi)

+ ‖µ‖H−1/2(Γ)‖[[wh]]‖H1/2(Γ)

+‖ε−1/2[[v]]‖L2(Γ)‖ε
1/2µh‖L2(Γ) + ‖ε1/2µ‖L2(Γ)‖ε

1/2µh‖L2(Γ)

)

.(3.3.14)

Therefore, we obtain

A(v, µ;wh, µh) ≤ C
(

‖|(v, µ)‖|2 + ‖µ‖2
H−1/2(Γ) + ‖ε−1/2[[v]]‖

2

L2(Γ)

)1/2

(

2
∑

i=1

‖∇wh‖
2
L2(Ωi)

+ ‖[[wh]]‖
2
H1/2(Γ) + ‖ε1/2µh‖

2

L2(Γ)

)1/2

.(3.3.15)

Using the trace inequality (Theorem 1.2.2), we obtain an estimate as below

A(v, µ;wh, µh) ≤ C
(

‖|(v, µ)‖|+ ‖µ‖H−1/2(Γ) + ‖ε−1/2[[v]]‖L2(Γ)

)

(

2
∑

i=1

‖∇wh‖
2
L2(Ωi)

+ ‖ε1/2µh‖
2

L2(Γ)

)1/2

, (3.3.16)
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and, hence, the boundedness (3.3.13) of A follows from (3.3.10).

Let us recall here from Chapter 1 that Ihui ∈ Xh(Ωi) is the nodal interpolant of ui in

Ωi for i = 1, 2 which satisfies the following approximation property :

‖ui − Ihui‖H1(Ωi)
≤ Ch‖ui‖H2(Ωi)

for ui ∈ H2(Ωi). (3.3.17)

We also define the L2 projection Π̃h from M to W h(Γ) as follows:
∫

Γ

(ϕ− Π̃hϕ)ψh = 0 ∀ψh ∈ W h(Γ). (3.3.18)

Moreover, the operator Π̃h satisfies the property [23, Lemma 2.4]: For λ ∈ H1/2(Γ),

‖λ− Π̃hλ‖L2(Γ) + h−1/2‖λ− Π̃hλ‖H−1/2(Γ) ≤ Ch1/2‖λ‖H1/2(Γ). (3.3.19)

Theorem 3.3.1 Let (u, λ) ∈ X × M be the solution of (3.2.4)-(3.2.5) and (uh, λh) ∈

Xh ×Mh be the solution of (3.3.1)-(3.3.2). Moreover, assume u|Ωi
∈ H2(Ωi) for i = 1, 2.

Then for ε = O(h) the following estimates hold true:

‖|(u− uh, λ− λh)‖| ≤ Ch1/2
2
∑

i=1

‖u‖H2(Ωi)
, (3.3.20)

and

‖u− uh‖L2(Ω) ≤ Ch

2
∑

i=1

‖u‖H2(Ωi)
. (3.3.21)

Proof. Using Ihu and Π̃hλ, split the error term and then apply the triangle inequality to

obtain

‖|(u− uh, λ− λh)‖| ≤ ‖|(u− Ihu, λ− Π̃hλ)‖| + ‖|(Ihu− uh, Π̃hλ− λh)‖|. (3.3.22)

Since the estimates for the first term on the right hand side of (3.3.22) are known from the

standard approximation properties (3.3.17) and(3.3.19), it is enough to derive an estimate

for the second term on the right hand side of (3.3.22). Now using Lemma 3.3.2, we obtain

‖|(Ihu− uh, Π̃hλ− λh)‖|
2

=
1

α
A(Ihu− uh, Π̃hλ− λh; Ihu− uh, Π̃hλ− λh)

≤
1

α

(

A(u− uh, λ− λh; Ihu− uh, Π̃hλ− λh)

−A(u− Ihu, λ− Π̃hλ; Ihu− uh, Π̃hλ− λh)
)

(3.3.23)
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From (3.3.8), we arrive at

‖|(Ihu− uh, Π̃hλ− λh)‖|
2

≤
1

α
ε

∣

∣

∣

∣

∫

Γ

λ(Π̃hλ− λh)dτ

∣

∣

∣

∣

+
1

α

∣

∣

∣
A(u− Ihu, λ− Π̃hλ; Ihu− uh, Π̃hλ− λh)

∣

∣

∣
.(3.3.24)

Here, we note that for u|Ωi
∈ H2(Ωi), λ is in H1/2(Γ). Now, use Cauchy Schwarz inequality

for the first term on right hand side of (3.3.24). To estimate the second term on the right

hand side of (3.3.24), we apply Lemma 3.3.3 and the trace inequality. Now altogether we

obtain

‖|(Ihu− uh, Π̃hλ− λh)‖|
2

≤ C(α)
(

‖ε1/2λ‖L2(Γ) + ‖|(u− Ihu, Π̃hλ− λ)‖|

+ ‖ε−1/2[[u− Ihu]]‖L2(Γ) + ‖Π̃hλ− λ‖H−1/2(Γ)

)

(

‖|(Ihu− uh, Π̃hλ− λh)‖|
)

, (3.3.25)

and hence, we arrive at

‖|(Ihu− uh, Π̃hλ− λh)‖| ≤ C
(

‖|(u− Ihu, Π̃hλ− λ)‖| + ‖ε−1/2[[u− Ihu]]‖L2(Γ)

+ ‖Π̃hλ− λ‖H−1/2(Γ) + ‖ε1/2λ‖L2(Γ)

)

. (3.3.26)

By taking ε = O(h), and then using the standard approximation properties (3.3.17) and

(3.3.19), we find an estimate for the first term on the right hand side of (3.3.26) as

‖|(u− Ihu, Π̃hλ− λ)‖| ≤ Ch

(

2
∑

i=1

‖ui‖H2(Ωi)
+ ‖λ‖L2(Γ)

)

. (3.3.27)

For the second term on the right hand side of (3.3.26), use Lemma 1.3.2 to obtain an

estimate

‖ε−1/2[[u− Ihu]]‖L2(Γ) ≤ ‖ε−1/2(u1 − Ihu1)‖L2(Γ) + ‖ε−1/2(u2 − Ihu2)‖L2(Γ)

≤ Cε−1/2h3/2
2
∑

i=1

‖ui‖H2(Ωi)
for ui ∈ H2(Ωi)

= Ch
2
∑

i=1

‖ui‖H2(Ωi)
if ε = O(h). (3.3.28)
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For the third term on the right hand side of (3.3.26), use (3.3.19) to find

‖Π̃hλ− λ‖H−1/2(Γ) ≤ Ch‖λ‖H1/2(Γ). (3.3.29)

For the last term on the right hand side of (3.3.26), we only obtain h1/2 by taking ε = O(h)

‖ε1/2λ‖L2(Γ) ≤ Ch1/2‖λ‖L2(Γ). (3.3.30)

Note that,

‖λ‖L2(Γ) ≤ ‖λ‖H1/2(Γ) ≤ C

2
∑

i=1

‖ui‖H2(Ωi)
. (3.3.31)

Substituting (3.3.27)-(3.3.31) in (3.3.26), we find that

‖|(Ihu− uh, Π̃hλ− λh)‖| ≤ Ch1/2
2
∑

i=1

‖ui‖H2(Ωi)
. (3.3.32)

Hence, from (3.3.22), we arrive at

‖|(u− uh, λ− λh)‖| ≤ Ch1/2
2
∑

i=1

‖ui‖H2(Ωi)
. (3.3.33)

Observe that here, we only obtain ‖λ− λh‖L2(Γ) ≤ C.

Now we appeal to Aubin-Nitsche duality argument for the L2 error estimate. Let

ψi = ψ|Ωi
∈ H2(Ωi) ∩H

1
0 (Ω), i = 1, 2 be the solution of the interface problem

−∇ · (βi(x)∇ψi) = ui − uhi in Ωi, (3.3.34)

ψi = 0 on ∂Ω ∩ ∂Ωi, (3.3.35)

[[ψ]]Γ = 0,

[[

β
∂ψ

∂n

]]

Γ

= 0 along Γ, (3.3.36)

which satisfies the following regularity condition [11, Theorem 1.1], [34, Theorem 2.1]

2
∑

i=1

‖ψi‖H2(Ωi)
≤ c‖u− uh‖L2(Ω), (3.3.37)

where

‖u− uh‖
2
L2(Ω) =

2
∑

i=1

‖ui − uhi‖
2
L2(Ωi)

.
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With ei = ui − uhi, we multiply both the sides of (3.3.34) by ei and sum over i = 1, 2 to

obtain

‖e‖2 =
2
∑

i=1

‖ei‖
2
L2(Ωi)

=
2
∑

i=1

∫

Ωi

βi∇ei · ∇ψi dx−

∫

Γ

β
∂ψ

∂n
[[e]] dτ. (3.3.38)

Note that by (3.3.8),

ε

∫

Γ

λΠ̃h

(

β
∂ψ

∂n

)

dτ = A

(

u− uh, λ− λh; Ihψ, Π̃h

(

β
∂ψ

∂n

))

=
2
∑

i=1

∫

Ωi

βi∇ei · ∇Ihψi dx+

∫

Γ

(λ− λh)[[Ihψ]]dτ

−

∫

Γ

[[e]]Πh

(

β
∂ψ

∂n

)

dτ + ε

∫

Γ

(λ− λh)Π̃h

(

β
∂ψ

∂n

)

dτ

(3.3.39)

Since [[ψ]] = 0 along Γ, from (3.3.38) and (3.3.39), we arrive at

‖e‖2 =
2
∑

i=1

∫

Ωi

βi∇ei · ∇(ψi − Ihψi) dx+

∫

Γ

(λ− λh)[[ψ − Ihψ]] dτ

−

∫

Γ

[[e]]

(

β
∂ψ

∂n
− Πh

(

β
∂ψ

∂n

))

dτ + ε

∫

Γ

(λ− λh)Π̃h

(

β
∂ψ

∂n

)

dτ

+ε

∫

Γ

λΠ̃h

(

β
∂ψ

∂n

)

dτ (3.3.40)

For the first term on the right hand side of (3.3.40), apply Cauchy Schwarz inequality, trace

inequality, (3.3.33) and (3.3.17), to find the estimate given below:

2
∑

i=1

∫

Ωi

βi∇ei · ∇(ψi − Ihψi) dx ≤ Ch3/2

(

2
∑

i=1

‖u‖H2(Ωi)

)(

2
∑

i=1

‖ψi‖H2(Ωi)

)

. (3.3.41)

From (3.3.33), Lemma 1.3.2 and ε = O(h), we obtain an estimate for second term of (3.3.40)

as

∫

Γ

(λ− λh)[[ψ − Ihψ]] dτ ≤ C‖ε1/2(λ− λh)‖L2(Γ)‖ε
−1/2[[ψ − Ihψ]]‖L2(Γ)

≤ Ch3/2

(

2
∑

i=1

‖u‖H2(Ωi)

)(

2
∑

i=1

‖ψi‖H2(Ωi)

)

. (3.3.42)
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For the third term on the right hand side of (3.3.40), use Cauchy-Schwarz inequality and

apply the trace inequality. Then from (3.3.33) and (3.3.19), we obtain

∫

Γ

[[e]]

(

β
∂ψ

∂n
− Π̃h

(

β
∂ψ

∂n

))

dτ ≤ Ch3/2

(

2
∑

i=1

‖u‖H2(Ωi)

)(

2
∑

i=1

‖ψi‖H2(Ωi)

)

(3.3.43)

For the fourth term on the right hand side of (3.3.40), apply Cauchy Schwarz inequality,

use (3.3.19), (3.3.33) to obtain

ε

∫

Γ

(λ− λh)Π̃h

(

β
∂ψ

∂n

)

dτ = ε

∫

Γ

(λ− λh)

(

β
∂ψ

∂n
− Π̃h

(

β
∂ψ

∂n

))

dτ − ε

∫

Γ

(λ− λh)β
∂ψ

∂n
dτ

≤ ‖ε1/2(λ− λh)‖L2(Γ)

∥

∥

∥

∥

ε1/2
(

β
∂ψ

∂n
− Π̃h

(

β
∂ψ

∂n

))∥

∥

∥

∥

L2(Γ)

+‖ε1/2(λ− λh)‖L2(Γ)

∥

∥

∥

∥

ε1/2
(

β
∂ψ

∂n

)∥

∥

∥

∥

L2(Γ)

≤ Ch

2
∑

i=1

‖u‖H2(Ωi)

2
∑

i=1

‖ψi‖H2(Ωi)
(3.3.44)

Finally, for the last term on the right hand side of (3.3.40), we proceed in the similar way

as in (3.3.44) to arrive at

ε

∫

Γ

λΠ̃h

(

β
∂ψ

∂n

)

dτ ≤ Ch

(

2
∑

i=1

‖u‖H2(Ωi)

)(

2
∑

i=1

‖ψi‖H2(Ωi)

)

. (3.3.45)

Now using the regularity condition (3.3.37), from (3.3.40)-(3.3.45), we obtain the estimate:

‖u− uh‖L2(Ω) ≤ Ch

2
∑

i=1

‖u‖H2(Ωi)
, (3.3.46)

and this completes the proof.

Remark 3.3.1 Note that, here we have not been able to improve the order of convergence

in (3.3.32) even if we choose ε = O(hm) for m > 1 with ui ∈ H2(Ωi), i = 1, 2.

3.4 Nitsche’s method for parabolic problem

Here, we extend the method to parabolic initial and boundary value problems with discon-

tinuous coefficients and observe the effect of inconsistency of the method which we have

discussed earlier. We follow the same assumptions and notations as in the last section.
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Let Ω ⊂ R2 be a bounded domain with boundary ∂Ω. Now consider the following

parabolic initial-boundary value problem: Given f ∈ L2(Ω), find ui = ui(x, t) satisfying

uit −∇ · (β(x)∇ui) = f in Ωi × (0, T ], (3.4.1)

ui(x, t) = 0 on (∂Ωi ∩ ∂Ω) × [0, T ], (3.4.2)

ui(x, 0) = u0(x) in Ω (3.4.3)

[[u]]Γ = 0,

[[

β
∂u

∂n

]]

Γ

= 0 along Γ. (3.4.4)

The problem (3.4.1)-(3.4.3) has unique solution in H2(Ω) by [56].

3.4.1 Semidiscrete method

Integrating by parts, and introducing the flux λ = β1
∂u1

∂n1
= −β2

∂u2

∂n2
, we derive the follow-

ing Lagrange multiplier method for the interface problem (3.4.1)-(3.4.4): Find (u(t), λ(t)) ∈

X ×M such that for t ∈ (0, T ],

(ut, v) + a(u, v) + b(v, λ) =

2
∑

i=1

∫

Ωi

fv dx ∀ v ∈ X, (3.4.5)

b(u, µ) = 0 ∀µ ∈M, (3.4.6)

(u(0), v) = (u0, v), (3.4.7)

where (·, ·) denotes the inner product in L2(Ω) and a(·, ·), b(·, ·) are defined in (3.2.6) and

(3.2.7) respectively.

Nitsche’s Mortaring method

We propose the Nitsche’s Mortaring method for the parabolic problem (3.4.5)-(3.4.7)

as follows: Find (uh(t), λh(t)) ∈ Xh ×W h(Γ) such that for t ∈ (0, T ] and for all (vh, µh) ∈

Xh ×W h(Γ),

2
∑

i=1

∫

Ωi

uh,tvdx+
2
∑

i=1

∫

Ωi

βi∇uh · ∇vhdx+

∫

Γ

λh[[vh]] dτ =
2
∑

i=1

∫

Ωi

fvhdx, (3.4.8)

∫

Γ

[[uh]]µh dτ − ε

∫

Γ

λhµh dτ = 0, (3.4.9)

uh(0) = uh0. (3.4.10)
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Equivalently (3.4.8)-(3.4.10) can be written as: Find (uh(t), λh(t)) ∈ Xh×W
h(Γ) such that

for t ∈ (0, T ],

(uh,t, v) + A(uh, λh; vh, µh) = F(vh) ∀vh ∈ Xh, µh ∈ W h(Γ) (3.4.11)

uh(0) = uh0, (3.4.12)

where

A(v, µ;w, ν) =

2
∑

i=1

∫

Ωi

βi∇v · ∇w dx +

∫

Γ

µ[[w]] dτ

−

∫

Γ

[[v]]ν dτ + ε

∫

Γ

µν dτ,

for all (v, µ), (w, ν) ∈ X × L2(Γ), and

F(vh) =
2
∑

i=1

∫

Ωi

fvh dx.

Since (3.4.12) forms a system of linear ordinary differential equations, Picard’s existence

theorem ensures the existence of a unique solution (uh, λh) ∈ Xh ×W h(Γ).

We discuss below the error estimates for (3.4.11)-(3.4.12).

Theorem 3.4.1 Let (u, λ) and (uh, λh) be the solutions of (3.4.5)-(3.4.7) and (3.4.8)-

(3.4.10), respectively. Further, let u|Ωi
, ut|Ωi

∈ H2(Ωi). Then there exists a positive constant

C, independent of h, such that for t ∈ (0, T ] and ε = O(h)

‖u(t) − uh(t)‖ ≤ Ch

(

2
∑

i=1

[

‖u0‖
2
H2(Ωi)

+

∫ t

0

‖ut‖
2
H2(Ωi)

ds

]

)1/2

. (3.4.13)

and

‖|((u− uh, λ− λh)(t))‖|
2 ≤

C

t
h

2
∑

i=1

[

‖u0‖
2
H2(Ωi)

+

∫ t

0

(

s‖ut‖
2
H2(Ωi)

+ ‖ut‖
2
H2(Ωi)

)

ds
]

. (3.4.14)

Proof. Subtracting (3.4.8)-(3.4.9) from (3.4.5)-(3.4.6), we obtain the error equation

(ut − uh,t, vh) + a(u− uh, vh) + b(vh, λ− λh) = 0, ∀vh ∈ Xh, (3.4.15)

b(u− uh, µh) + ε

∫

Γ

λhµhdτ = 0 ∀µh ∈ W h(Γ). (3.4.16)
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We now define mixed elliptic projection as follows. For given u and λ set (ûh, λ̂h) as the

solution of the corresponding elliptic part of (3.4.15)-(3.4.16).

A(u− ûh, λ− λ̂h; vh, µh) = ε

∫

Γ

λµhdτ ∀vh ∈ Xh, µh ∈ W h(Γ). (3.4.17)

Set

u− uh = (u− ûh) + (ûh − uh) = ρ+ θ (3.4.18)

and

λ− λh = (λ− λ̂h) + (λ̂h − λh) = η + ξ. (3.4.19)

Since estimates of ρ and η are known from Theorem 3.3.1, we need to bound θ and ξ. From

the equations (3.4.15)-(3.4.19) and using the elliptic projection (3.4.17), we find

(θt, vh) + a(θ, vh) + b(vh, ξ) = −(ρt, vh) ∀vh ∈ Xh, (3.4.20)

b(θ, µh) − ε

∫

Γ

ξµhdτ = 0 ∀µh ∈ W h(Γ). (3.4.21)

Set vh = θ in (3.4.20), µh = ξ in (3.4.21) and then apply coercivity of A(·, ·; ·, ·). Then,

using Young’s inequality (1.2.2), we arrive at

1

2

d

dt
‖θ‖2 + α‖|(θ, ξ)‖|2 ≤ ‖ρt‖‖θ‖

≤
1

2α
‖ρt‖

2 +
α

2
‖θ‖2

X ,

and hence,

d

dt
‖θ‖2 + α‖|(θ, ξ)‖|2 ≤ C(α)‖ρt‖

2 (3.4.22)

Integrating (3.4.22) from 0 to t, we find

‖θ(t)‖2 + α

∫ t

0

‖|(θ, ξ)‖|2dτ ≤ C(α)

(

‖θ(0)‖2 +

∫ t

0

‖ρt‖
2dτ

)

. (3.4.23)

Now choose u0,h = ûh(0), then θ(0) = 0, otherwise with u0,h = Ihu0

‖θ(0)‖ = ‖ûh(0) − u0,h‖ ≤ ‖u0 − Ihu0‖ + ‖ûh(0) − u0‖

≤ Ch
2
∑

i=1

‖u0‖H2(Ωi)
, (3.4.24)



Chapter 3. Nitsche Mortaring Element Method 75

provided ε = O(h). From (3.3.21), we obtain

‖ρt‖ = ‖ut − ût‖ ≤ Ch
2
∑

i=1

‖ut‖H2(Ωi)
. (3.4.25)

Substituting (3.4.24) and (3.4.25) in (3.4.23), we find that

‖θ(t)‖2 + α

∫ t

0

‖|(θ, ξ)‖|2dτ ≤ Ch2
2
∑

i=1

(

‖u0‖
2
H2(Ωi)

+

∫ t

0

‖ut‖
2
H2(Ωi)

ds

)

. (3.4.26)

Using triangle inequality and (3.3.21) with ε = O(h), we derive

‖u(t) − uh(t)‖
2 ≤ Ch2

2
∑

i=1

(

‖u0‖
2
H2(Ωi)

+

∫ t

0

‖ut‖
2
H2(Ωi)

ds

)

. (3.4.27)

with ε = O(h).

For a bound in ‖|(·, ·)‖|-norm, substitute vh = θt in (3.4.20), differentiate the equation

(3.4.21), put µh = ξ in (3.4.21) and apply Cauchy-Schwarz inequality, Young’s inequality

(1.2.2) to obtain

‖θt‖
2 +

α

2

d

dt
‖|(θ, ξ)‖|2 ≤ ‖ρt‖‖θt‖ ≤

1

2α
‖ρt‖

2 +
α

2
‖θt‖

2,

and hence,

‖θt‖
2 +

d

dt
‖|(θ, ξ)‖|2 ≤ C(α)‖ρt‖

2. (3.4.28)

Multiply both sides of (3.4.28) by t. Since

d

dt
(t‖|(θ, ξ)‖|2) = ‖|(θ, ξ)‖|2 + t

d

dt
‖|(θ, ξ)‖|2, (3.4.29)

the equation (3.4.28) can be written as

t‖θt‖
2 +

d

dt
(t‖|(θ, ξ)‖|2) ≤ Ct‖ρt‖

2 + ‖|(θ, ξ)‖|2. (3.4.30)

Integrating both sides of (3.4.30) from 0 to t, using (3.4.23), we arrive at

t‖|(θ(t), ξ(t))‖|2 ≤ C

(

‖θ(0)‖2 +

∫ t

0

τ‖ρt‖
2dτ +

∫ t

0

‖ρt‖
2dτ

)

. (3.4.31)
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From (3.4.24) and (3.4.25), we obtain the estimate

‖|(θ(t), ξ(t))‖|2 ≤
C

t
h2

2
∑

i=1

(

‖u0‖
2
H2(Ωi)

+

∫ t

0

(

τ‖ut‖
2
H2(Ωi)

+ ‖ut‖
2
H2(Ωi)

)

dτ

)

. (3.4.32)

An application of triangle inequality yields

‖|((u− uh, λ− λh)(t))‖|
2 ≤

C

t
h

2
∑

i=1

[

‖u0‖
2
H2(Ωi)

+

∫ t

0

(

τ‖ut‖
2
H2(Ωi)

+ ‖ut‖
2
H2(Ωi)

)

dτ
]

. (3.4.33)

and hence rest of the proof follows.

Remark 3.4.1 Due to the inconsistency of the method (3.3.1)-(3.3.2), we loose h1/2 order

for ‖|(·, ·)‖|-norm in case of elliptic problem. And hence we also observe a loss of order

one in case of L2-order estimate.

In the next section, we discuss a completely discrete scheme which is based on backward

Euler method.

3.4.2 Fully discrete method

Let k be the time step parameter T = Nk and tn = nk. For a continuous function

ϕ ∈ C[0, T ], we set the backward difference quotient as ∂̄tϕ
n =

ϕn − ϕn−1

k
. The backward

Euler approximation of (u, λ) is to seek a pair of functions (Un,Λn) ∈ Xh×W h(Γ) so that

the pair (Un,Λn), n ≥ 1, satisfies

(∂̄tU
n, vh) +

2
∑

i=1

∫

Ωi

βi∇U
n · ∇vhdx+

∫

Γ

Λn[[vh]] dτ =
2
∑

i=1

∫

Ωi

fvhdx ∀vh ∈ Xh,

(3.4.34)
∫

Γ

[[Un]]µh dτ − ε

∫

Γ

Λnµh dτ = 0 ∀µh ∈ W h(Γ). (3.4.35)

U0(0) = uh0, (3.4.36)

where uh0 is an approximation to u(0) in Xh to be chosen later.

Equivalently (3.4.34)-(3.4.35) can be written as: For n ≥ 1, find (Un,Λn) ∈ Xh ×W h(Γ)
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such that

(∂̄tU
n, vh) + A(Un,Λn; vh, µh) = F(vh) ∀vh ∈ Xh, µh ∈ W h(Γ) (3.4.37)

For the error estimate we decompose the error terms as follows:

u(tn) − Un = (u(tn) − ûh(tn)) + (ûh(tn) − Un) = ρn + θn. (3.4.38)

and

λ(tn) − Λn = (λ(tn) − λ̂h(tn)) + (λ̂h(tn) − Λn) = ηn + ξn. (3.4.39)

Since the estimates of ρn and ηn are known, it is sufficient to estimate θn and ξn. Using

the elliptic projection (3.4.17), (3.4.38)-(3.4.39) at t = tn and (3.4.34)-(3.4.35), we obtain

(∂̄tθ
n, vh) + a(θn, vh) + b(vh, ξ

n) = (wn, vh) ∀vh ∈ Xh (3.4.40)

b(θn, µh) − ε

∫

Γ

ξnµh dτ = 0 ∀µh ∈ W h(Γ) (3.4.41)

where

wn = ∂̄tûh(tn) − ut(tn) = (∂̄tûh(tn) − ∂̄tu(tn)) + (∂̄tu(tn) − ut(tn))

= wn1 + wn2 . (3.4.42)

Choose vh = θn in (3.4.40) and µh = ξn in (3.4.41). Note that

(∂̄tθ
n, θn) =

1

2
∂̄t‖θ

n‖2 +
k

2
‖∂̄tθ

n‖
2
≥

1

2
∂̄t‖θ

n‖2.

Using the Cauchy-Schwarz inequality and Young’s inequality (1.2.2), we find that

1

2
∂̄t‖θ

n‖2 + α‖|(θn, ξn)‖|2 ≤ ‖wn‖‖θn‖ ≤ ‖wn‖‖θn‖

≤
1

2α
‖wn‖2 +

α

2
‖θn‖2

≤
1

2α
‖wn‖2 +

α

2
‖|(θn, ξn)‖|2

and hence,

∂̄t‖θ
n‖2 + α‖|(θn, ξn)‖|2 ≤ C(α)‖wn‖2.
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Using the definition of ∂t, we arrive at

‖θn‖2 ≤ ‖θn−1‖
2
+ C(α)k‖wn‖2, (3.4.43)

and hence, by repeated application, we obtain

‖θn‖2 ≤ ‖θ0‖
2
+ Ck(

n
∑

j=1

‖wj1‖
2
+

n
∑

j=1

‖wj2‖
2
). (3.4.44)

Choose u0h
= ûh(0), then θ0 = 0, otherwise with u0h

= Ihu0,

‖θ0‖ = ‖ûh(0) − uh‖ ≤ ‖u0 − Ihu0‖ + ‖ûh(0) − u0‖

≤ Ch

2
∑

i=1

‖u0‖H2(Ωi)
. (3.4.45)

Since

wj1 = ∂̄tûh(tj) − ∂̄tu(tj) = k−1

∫ tj

tj−1

(ûht − ut)ds,

we now find that

k
n
∑

j=1

‖wj1‖
2
≤

n
∑

j=1

∫ tj

tj−1

‖(ûht − ut)‖
2ds ≤ C

K
∑

i=1

h2

∫ tn

t=0

‖ut‖
2
H2(Ωi)

ds (3.4.46)

To estimate wj
2, we note using Taylor series expansion that

wj2 = ∂̄tu(tj) − ut(tj) = k−1(u(tj) − u(tj−1)) − ut(tj)

= −k−1

∫ tj

tj−1

(s− tj−1)utt(s)ds

k

n
∑

j=1

‖wj2‖
2
≤

n
∑

j=1

(

∫ tj

tj−1

|s− tj−1|‖utt‖ds

)2

≤ Ck2

∫ tn

t=0

‖utt‖
2ds. (3.4.47)

Substituting (3.4.45)-(3.4.47) in (3.4.44), we obtain

‖θn‖2 ≤ C(α)

(

h2

(

2
∑

i=1

‖u0‖
2
H2(Ωi)

+

∫ tn

t=0

‖ut‖
2
H2(Ωi)

)

+ k2

∫ tn

t=0

‖utt‖
2ds

)

. (3.4.48)

With an application of triangle inequality with (3.4.48), we derive the estimate:

‖u(tn) − Un‖2 ≤ C

(

h2
2
∑

i=1

(

‖u0‖
2
H2(Ωi)

+

∫ tn

t=0

‖ut‖
2
H2(Ωi)

)

+ k2

∫ tn

t=0

‖utt‖
2ds

)

.(3.4.49)
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In order to estimate in ‖ · ‖X-norm, substitute vh = ∂̄tθ
n in (3.4.40), and then use

(3.4.41) to obtain

k‖∂̄tθ
n‖

2
+ ‖|(θn, ξn)‖|2 − a(θn, θn−1) − b(θn−1, ξn) = k(wn, ∂̄tθ

n)

Using the equation (3.4.40) for vh = θn−1, Cauchy Schwarz inequality, we arrive at

k‖∂̄tθ
n‖

2
+ ‖|(θn, ξn)‖|2 = (wn, θn−1) − (∂̄tθ

n, θn−1) + k(wn, ∂̄tθ
n) (3.4.50)

Now an application of Cauchy Schwarz inequality, Young’s inequality (1.2.2) gives,

‖|(θn, ξn)‖|2 ≤ C‖θn−1‖
2
+ k‖wn‖2. (3.4.51)

Since from (3.4.43)

‖θn‖2 ≤ ‖θn−1‖
2
+ Ck‖wn‖2,

by repeated application

‖|(θn, ξn)‖|2 ≤ ‖θ0‖
2
+ Ck(

n
∑

j=1

‖wj1‖
2
+

n
∑

j=1

‖wj2‖
2
) (3.4.52)

Now proceed similar way as in (3.4.46)-(3.4.49), to obtain

‖u(tn) − Un‖2
X + ‖ε1/2(λ(tn) − Λn)‖

2

L2(Γ) ≤ C

(

h

2
∑

i=1

(

‖u0‖
2
H2(Ωi)

+

∫ tn

t=0

‖ut‖
2
H2(Ωi)

)

+k2

∫ tn

t=0

‖utt‖
2ds

)

. (3.4.53)

The result we proved can be stated as:

Theorem 3.4.2 Let (u(tn), λ(tn)) be the solution of (3.4.34)-(3.4.36) and let (Un,Λn) ∈

Xh × W h(Γ) be an approximation of (u(t), λ(t)) at t = tn is given by (3.4.37). Further,

assume that for t ∈ (0, T ], u(t) ∈ H1
0(Ω), u(t)|Ωl

, ut(t)|Ωl
∈ H2(Ωl) and utt(t) ∈ L2(Ω).

Then with u0,h = û0, there exist positive constants C, independent of h and k, such that

for ε = O(h),

‖u(tn) − Un‖2 ≤ C

(

h2
2
∑

i=1

(

‖u0‖
2
H2(Ωi)

+

∫ tn

t=0

‖ut‖
2
H2(Ωi)

ds

)

+ k2

∫ tn

t=0

‖utt‖
2ds

)

.

(3.4.54)
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and

‖u(tn) − Un‖2
X + ‖ε1/2(λ(tn) − Λn)‖

2

L2(Γ) ≤ C

(

h

2
∑

i=1

(

‖u0‖
2
H2(Ωi)

+

∫ tn

t=0

‖ut‖
2
H2(Ωi)

ds

)

+k2

∫ tn

t=0

‖utt‖
2ds

)

. (3.4.55)

Remark 3.4.2 Note that, here we obtain suboptimal order of convergence in the case of

H1 and L2 for ε = O(h) and this is the effect of the inconsistency of the method (3.4.34)-

(3.4.36). In Chapter 4, we have modified the method in such way that the resulting method

is consistent and we achieve optimal order of estimates in both the cases.

3.5 Matrix Formulation

In this section, we discuss the algebraic formulation arising from the discrete formulation

(3.3.1)-(3.3.2). Construction of basis functions are similar to that in Section 2.7 of Chapter

2, with a slight modification for the Lagrange multiplier space. As in Chapter 2, in order

to find a matrix formulation for (3.3.1)-(3.3.2), we need to provide a matrix form of (3.3.2).

We can write the matrix form associated with (3.3.2) as:

Msus −Mmum = εMmmλm, (3.5.1)

where Ms, Mm and Mmm are given by (ms)ij =
∫

Γ1
ϕsjψhi

dτ , (mm)ij =
∫

Γ2
ϕmj ψhi

dτ and

(m̃m)ij =
∫

Γ2
ψhi

ψhj
dτ respectively. Here, ψhi

are the nodal basis functions for W h(Γ2), ϕ
s
j

and ϕmj denote the basis functions for W h(Γ1) and W h(Γ2), respectively.

Now, the matrix representation of (3.3.1)-(3.3.2) can be given as:

Aα = F, (3.5.2)

where α = (u1
i , u

1
s, u

2
i , u

2
m, λm)T . Note that here u1

i and u2
i represent the unknowns associ-

ated with all the internal nodal points in Ω1 and Ω2, respectively. Further, u1
s and u2

m are

unknowns associated with Γ1 and Γ2 and λm is the unknown for the Lagrange multipliers
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associated with W h(Γ). Note that

A =





















A1
ii A1

is 0 0 0

A1
si A1

ss 0 0 Ms

0 0 A2
ii A2

im 0

0 0 A2
mi A2

mm −(Mm)T

0 Ms 0 −Mm −εMmm





















, (3.5.3)

with

Alii = {a(ϕ
(l)
i , ϕ

(l)
j )} xli, x

l
j ∈ Th(Ωl), 1 ≤ l ≤ 2,

Alis = {a(ϕ
(l)
i , ϕs)} xli ∈ Th(Ωl), xs ∈ Γ1.

A1
ss = {a(ϕs, ϕs)} xs ∈ Γ1.

Alim = {a(ϕ
(l)
i , ϕm)} xli ∈ Th(Ωl), xm ∈ Γ2,

A2
mm = {a(ϕm, ϕm)} xm ∈ Γ2,

and

F =
(

F 1
i F 1

s F 2
i F 2

m 0
)T

, (3.5.4)

where

F l
i = {(f (l)

i , ϕ
(l)
j )} xli, x

l
j ∈ Th(Ωl), 1 ≤ l ≤ 2,

F l
s = {(f

(l)
i , ϕs)} xli ∈ Th(Ωl), xs ∈ Γ1,

F l
m = {(f

(l)
i , ϕm)} xli ∈ Th(Ωl), xm ∈ Γ2,

Now, for fully discrete formulation (3.4.34)-(3.4.35), the associated matrix formulation

can be given as:

(B + kA)αn = Bαn−1 + kF (tn), n ≥ 1, (3.5.5)

with α = (u1
i , u

1
s, u

2
i , u

2
m, λm)T , where A and F are same as in (3.5.3) and (3.5.4), respectively
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and B has the following form:

B =





















B1
ii B1

is 0 0 0

B1
si B1

ss 0 0 Ms

0 0 B2
ii B2

im 0

0 0 B2
mi B2

mm −(Mm)T

0 Ms 0 −Mm −εMmm





















, (3.5.6)

where

Bl
ii = {(ϕ

(l)
i , ϕ

(l)
j )} xli, x

l
j ∈ Th(Ωl), 1 ≤ l ≤ 2,

Bl
is = {B(ϕ

(l)
i , ϕs)} xli ∈ Th(Ωl), xs ∈ Γ1,

B1
ss = {B(ϕs, ϕs)} xs ∈ Γ1,

Bl
im = {(ϕ

(l)
i , ϕm)} xli ∈ Th(Ωl), xm ∈ Γ2.

B2
mm = {(ϕm, ϕm)} xm ∈ Γ2.

3.5.1 Numerical Experiments

We choose the following second order elliptic problem on the unit square domain Ω =

(0, 1) × (0, 1) with Dirichlet boundary condition and homogeneous jump conditions as

follows:

−∇ · (βi(x)∇ui) = f in Ωi,

ui = 0 on ∂Ω ∩ ∂Ωi,

[[u]]Γ = 0,

[[

β
∂u

∂n

]]

Γ

= 0 along Γ.

The computational domain Ω is subdivided into two equal subdomain Ωi, i = 1, 2. In each

subdomains Ωi, we decompose it into a family of linear triangular elements of different

mesh sizes hi. Here, we take h1 = 1/14 and h2 = 1/16. With the penalty parameter

ε = O(h), we choose discontinuous coefficients with β1 = 1 and β2 = 10 in two subdomains.

We choose f such that the exact solution is u(x, y) = x(x− 1)y(y − 1).

The order of convergence for the error e = (u−uh) in L2-norm with respect to the space

variable parameter h has been computed in Table 3.1 in the log-log scale. The computed
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Figure 3.2: Order of Convergence w.r.t. h

Table 3.1: L2 Order of Convergence

(h1, h2) h = max
i
hi ‖u− uh‖L2(Ω) Order

(1
6
, 1

8
) 1/6 0.0015099

(1
8
, 1

10
) 1/8 0.0008971 1.80974559675578

( 1
10
, 1

12
) 1/10 0.0005967 1.82731188795612

( 1
12
, 1

14
) 1/12 0.00042635 1.84374176729892

( 1
14
, 1

16
) 1/14 0.00032016 1.85818015641332

order of convergence is better than the theoretical order of convergence derived in Theorem

3.3.1.

For the second order parabolic initial and boundary value problem, we consider again the

unit square domain Ω = (0, 1)× (0, 1) with Dirichlet boundary condition and homogeneous

jump conditions: Find ui = ui(x, t) satisfying

uit −∇ · (β(x)∇ui) = f in Ωi × (0, 1], (3.5.7)

ui(x, t) = 0 on (∂Ωi ∩ ∂Ω) × [0, 1], (3.5.8)

ui(x, 0) = u0(x) in Ω (3.5.9)

[[u]]Γ = 0,

[[

β
∂u

∂n

]]

Γ

= 0 along Γ. (3.5.10)

The computational domain Ω is subdivided into two equal subdomains Ωi, i = 1, 2. In

each subdomains Ωi, we decomposed into a family of linear triangular elements of different
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mesh sizes hi. With u0 = 0, we consider the discontinuous coefficients along the common

interface Γ of subdomain. We take the coefficients (β1, β2) = (1, 10) and choose f in such

a way that the exact solution is u(x, t) = x(x − 1)y(y − 1)et. By choosing the penalty

parameter ε = O(h), the order of convergence at t = 1 for the error e = (u − uh) in

L2-norm ‘p’ with respect to the space variable parameter h and ‘q’ with respect to the

time parameter k has been computed in Table 3.2. Figure 3.3(a) and 3.3(b) show that the

computed order of convergence with respect to h and k, respectively, in the log-log scale.

The computed result illustrates an improved order of convergence in comparison to our

theoretical result (See, Theorem 3.4.2).

Table 3.2: Order of convergence p w.r.t. space variable h and q w.r.t. time variable k

(h1, h2) h = max
l
hl k Error e p q

(1
6
, 1

8
) 1/6 1/36 0.0038965

(1
8
, 1

10
) 1/8 1/64 0.0022893 1.8487 0.9029

( 1
10
, 1

12
) 1/10 1/100 0.0014986 1.8988 0.9164

( 1
12
, 1

14
) 1/12 1/144 0.0010499 1.9517 0.9287

( 1
14
, 1

16
) 1/14 1/196 0.0007706 2.0064 0.9394

In the next chapter, we would like to modify the scheme so that it is possible to derive

optimal order of convergence.
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Figure 3.3: Order of Convergence with discontinuous coefficients



Chapter 4

Stabilized Mortaring Element

Method

4.1 Introduction

In Chapter 3, we have proposed and analyzed Nitsche’s mortaring method with a parameter

for both elliptic and parabolic problems with discontinuous coefficients. Since this method

is not consistent, we could only derive suboptimal error estimates that are of order O(h1/2)

in the broken H1-norm and O(h) in the case of L2-norm under the assumption that the

perturbation parameter ε is of O(h). In literature, mortar finite element has been studied by

[15, 46, 82] in case of elliptic problems. The close connection between Nitsche’s method and

mortaring method has been shown in [82]. In [15], a priori and a posteriori error estimates

have been derived for second order elliptic problems. In their analysis, the formulation

contains a penalty term which involves an integral term of products of piecewise polynomials

on unrelated meshes. This is very expensive to implement in higher dimension cases. The

interface Lagrange multiplier [46] is chosen with the purpose of avoiding the cumbersome

integration of products of functions on unrelated meshes (for example, global polynomials

as multipliers).

In this chapter, we introduce a stabilized Nitsche’s mortaring method which is consistent

with the original problem and derive optimal error bounds in both the norms when ε is of

O(h). In the first part of this chapter, we deal with the elliptic boundary value problems

with discontinuous coefficients and in second part, we extend the method to parabolic

initial and boundary value problems with discontinuous coefficients.

86
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A brief outline of this chapter is as follows. In Section 2, we formulate the interface

problem with discontinuous coefficients. In Section 3, we describe the stabilized Nitsche’s

mortaring method and discuss the error analysis for second order elliptic problems. In

Section 4, we apply the method to parabolic initial and boundary value problems and

analyze the error estimates for both semidiscrete and fully discrete schemes. In Section 5,

we present the result of some numerical experiments.

4.2 Elliptic Boundary Value Problem with Discontin-

uous Coefficients

Let Ω ⊂ R2 be a bounded domain with boundary ∂Ω. We consider the case when the

domain Ω̄ is subdivided into two non-overlapping, convex and polygonal subdomains Ω1

and Ω2, i.e., Ω̄ = Ω̄1∪Ω̄2. Let the common interface be denoted by ∂Ω̄1∩∂Ω̄2 = Γ and let ni

be the unit normal oriented from Ωi towards Ωj for 1 ≤ i < j ≤ 2 such that n := n1 = −n2.

Now recall the following interface problem defined in Chapter 3: for i = 1, 2

−∇ · (βi(x)∇ui) = f in Ωi, (4.2.1)

ui = 0 on ∂Ω ∩ ∂Ωi, (4.2.2)

[[u]]Γ = 0,

[[

β
∂u

∂n

]]

Γ

= 0 along Γ, (4.2.3)

where β|Ωi
= βi is discontinuous along the interface Γ, but is piecewise smooth in each sub-

domain Ωi. Further, we assume that β or each βi is bounded below by a positive constant

say α0 and bounded above by a positive constant α1.

With

M = H
−1/2
00 (Γ)

and

X = {v ∈ L2(Ω) : v|Ωl
∈ H1

D(Ωl), l = 1, 2},
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Figure 4.1: Ω̄ = Ω̄1 ∪ Ω̄2, n1 and n2 represent the outward normal components

we now introduce the Lagrange multiplier λ = β1
∂u1

∂n1
= −β2

∂u2

∂n2
and write the weak

formulation for the problem (4.2.1)-(4.2.3) as: Find (u, λ) ∈ X ×M such that

a(u, v) + b(v, λ) = l(v) ∀v ∈ X, (4.2.4)

b(u, µ) = 0 ∀µ ∈M, (4.2.5)

where

a(u, v) =
2
∑

i=1

∫

Ωi

βi∇ui · ∇vidx, (4.2.6)

b(v, λ) = < λ, [[v]] >Γ, l(v) =
2
∑

i=1

∫

Ωi

fv dx, (4.2.7)

and < ·, · >Γ denotes the duality pairing between H−1/2 and H1/2.

4.3 Stabilized Nitsche’s Mortaring method

Let us recall the mortar finite element spaces which we defined in Chapter 3. Let

Xh(Ωi) = {vi,h ∈ C(Ω̄i) : vi,h|∂Ω∩∂Ωi
= 0, vi,h|T ∈ P1(T ) ∀ T ∈ Th(Ωi)}

be defined on each Ωi and let the global finite element space Xh be given by

Xh(Ω) = {vh ∈ L2(Ω) : vh|∂Ω
= 0, vh|Ωi

∈ Xh(Ωi) i = 1, 2}.
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Let W h(Γi) be the restriction of Xh(Ωi) to Γi. Note that, the choice of the multiplier space

over the common interface Γ for our purpose is either W h(Γ1) or W h(Γ2) with the mesh

parameter he1 and he2 , respectively. For convenience, let us choose W h(Γ) as W h(Γ2).

Further, we assume that there exist positive constants c1, c2 such that

c1he1 ≤ he2 ≤ c2he1 (4.3.1)

holds for all pairs (e1, e2) ∈ (Th(Γ1), Th(Γ2)), with e1 ∩ e2 6= φ. For the analysis purpose,

we also define

h = max{hT , he : T ∈ Th(Ωi), e ∈ Th(Γi), i = 1, 2}.

Nitsche’s Method: The stabilized Nitsche’s mortaring approximation is to find (uh, λh) ∈

Xh ×W h(Γ) such that for all vh ∈ Xh and µh ∈ W h(Γ),

2
∑

i=1

∫

Ωi

βi∇uh · ∇vh dx +

∫

Γ

λh[[vh]] dτ + σ

∫

Γ

γλh

{

β
∂vh
∂n

}

dτ

− σ

∫

Γ

γ

{

β
∂uh
∂n

}{

β
∂vh
∂n

}

dτ =

2
∑

i=1

∫

Ωi

fvh dx, (4.3.2)

∫

Γ

[[uh]]µh dτ +

∫

Γ

γ

{

β
∂uh
∂n

}

µh dτ −

∫

Γ

γλhµhdτ = 0. (4.3.3)

When σ = 0, this method is unsymmetric and for σ = 1, this method is symmetric. Here,

γ is at our disposal and will be chosen later.

Equivalently, (4.3.2)-(4.3.3) can be written as: Find (uh, λh) ∈ Xh ×W h(Γ) such that

A(uh, λh; vh, µh) = F(vh) ∀vh ∈ Xh, µh ∈ W h(Γ) (4.3.4)

where

A(v, µ;w, ν) =
2
∑

i=1

∫

Ωi

βi∇v · ∇w dx +

∫

Γ

µ[[w]] dτ

−

∫

Γ

[[v]]ν dτ + σ

∫

Γ

γµ

{

β
∂v

∂n

}

dτ

−σ

∫

Γ

γ

{

β
∂v

∂n

}{

β
∂w

∂n

}

dτ −

∫

Γ

[[v]]ν dτ

−

∫

Γ

γ

{

β
∂v

∂n

}

ν dτ +

∫

Γ

γµνdτ, (4.3.5)
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for all (v, µ), (w, ν) ∈ X × L2(Γ), and

F(vh) =
2
∑

i=1

∫

Ωi

fvh dx. (4.3.6)

For both the cases, i.e., σ = 0 and σ = 1, this method is consistent with the original

problem (4.2.4)-(4.2.5). In order to verify the consistency, substitute (u, λ) in place of

(uh, λh) in (4.3.2)-(4.3.3). Since λ = β1
∂u1

∂n1
= −β2

∂u2

∂n2
and

{

∂u

∂n

}

=
∂u

∂n
=
∂u1

∂n1

= −
∂u2

∂n2

,

we have
∫

Γ

γλ

{

β
∂vh
∂n

}

dτ −

∫

Γ

γ

{

β
∂u

∂n

}{

β
∂vh
∂n

}

dτ = 0

and

−

∫

Γ

γ

{

β
∂u

∂n

}

µh dτ +

∫

Γ

γλµh dτ = 0

We state this in the form of a lemma as follows.

Lemma 4.3.1 The problem (4.3.4) is consistent with the original problem (4.2.4)-(4.2.5).

Moreover, if (u, λ) is a solution of (4.2.4)-(4.2.5) and (uh, λh) is a solution of (4.3.4), then

A(u− uh, λ− λh; vh, µh) = 0 ∀vh ∈ Xh, µh ∈ W h(Γ). (4.3.7)

In order to verify stability of (4.3.4), we define here the following weighted norm: for

(v, µ) ∈ X × L2(Γ)

‖|(v, µ)‖|2 =

2
∑

i=1

‖∇v‖2
L2(Ωi)

+ ‖γ1/2µ‖
2

L2(Γ). (4.3.8)

We also need the following result (See, [15, Lemma 2.4], [82, Lemma 2]) for our subsequent

analysis.

Lemma 4.3.2 Consider A(·, ·; ·, ·) as given in 4.3.4. There exists a positive constant CI

such that
∥

∥

∥

∥

h
1/2
i

∂vi
∂ni

∥

∥

∥

∥

L2(Γi)

≤ CI‖∇vi‖L2(Ωi)
∀vi ∈ Xh(Ωi). (4.3.9)

Below, we prove the stability of the method (4.3.4).
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Lemma 4.3.3 There exists a positive constant α independent of h such that

A(vh, µh; vh, µh) ≥ α‖|(vh, µh)‖|
2 ∀vh ∈ Xh, µh ∈ W h(Γ); (4.3.10)

for γ = γ0h with γ0 <
4α0

CIα2
1

; α0, α1, CI being positive constants.

Proof. From (4.3.5) and the Cauchy Schwarz’s inequality, we obtain

A(vh, µh; vh, µh) =

2
∑

i=1

‖β
1/2
i ∇vh‖

2

L2(Ωi)
+ (σ − 1)

∫

Γ

γ

{

β
∂vh
∂n

}

µh dτ

− σ

∥

∥

∥

∥

γ1/2

{

β
∂vh
∂n

}∥

∥

∥

∥

2

L2(Γ)

+ ‖γ1/2µh‖
2

L2(Γ). (4.3.11)

Now another application of Cauchy Schwarz’s inequality, Young’s inequality together with

Lemma 4.3.2 yield a bound for the second term on the right hand side of (4.3.11) as
∣

∣

∣

∣

∫

Γ

γ

{

β
∂vh
∂n

}

µh dτ

∣

∣

∣

∣

≤

∥

∥

∥

∥

γ1/2

{

β
∂vh
∂n

}∥

∥

∥

∥

L2(Γ)

‖γ1/2µh‖L2(Γ)

≤
1

2ε

∥

∥

∥

∥

γ1/2

{

β
∂vh
∂n

}∥

∥

∥

∥

2

L2(Γ)

+
ε

2
‖γ1/2µh‖

2

L2(Γ)

≤
CIγ0α

2
1

2ε

2
∑

i=1

‖∇vi‖
2
L2(Ωi)

+
ε

2
‖γ1/2µh‖

2

L2(Γ)
. (4.3.12)

Since (4.3.1) holds, we choose γ = γ0h, where γ0 > 0 is independent of h . Now substitute

(4.3.12) in (4.3.11), use the bounds of the coefficients β to derive

A(vh, µh; vh, µh) ≥ α0

2
∑

i=1

‖∇vh‖
2
L2(Ωi)

+ ‖γ1/2µh‖
2

L2(Γ)

+(σ − 1)

(

CIγ0α
2
1

2ε

2
∑

i=1

‖∇vi‖
2
L2(Ωi)

+
ε

2
‖γ1/2µh‖

2

L2(Γ)

)

−σCIγ0α
2
1

2
∑

i=1

‖∇vi‖
2
L2(Ωi)

. (4.3.13)

Note that here α0 and α1 are the lower and upper bound for the coefficient β. Now for

σ = 0, choose α0 −
CIα

2
1γ0

2ε
> 0 and ε < 2. And hence for γ0 <

4α0

CIα2
1

, there exists some

positive constant α such that (4.3.10) holds.

For σ = 1, choose α0−CIα
2
1γ0 > 0. Therefore, for γ0 <

α0

CIα2
1

, there exists some positive

constant α such that the stability (4.3.10) holds. This completes the proof.

We need also the boundedness of A(·, ·; ·, ·) with respect to ‖|(·, ·)‖|-norm.
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Lemma 4.3.4 For all (v, µ) ∈ X × L2(Γ) and (wh, µh) ∈ Xh × W h(Γ), the following

relation holds true for γ = O(h):

A(v, µ, wh, µh) ≤ C
(

‖|(v, µ)‖|+ ‖γ−1/2[[v]]‖L2(Γ) + ‖µ‖H−1/2(Γ)

)

‖|(wh, µh)‖| (4.3.14)

Proof. Apply Cauchy Schwarz’s inequality and the duality between H−1/2 and H1/2 to

derive

A(v, µ;wh, µh) =
2
∑

i=1

∫

Ωi

βi∇v · ∇wh dx+

∫

Γ

µ[[wh]] dτ + σ

∫

Γ

γµ

{

β
∂wh
∂n

}

dτ

−σ

∫

Γ

γ

{

β
∂v

∂n

}{

β
∂wh
∂n

}

dτ −

∫

Γ

[[v]]µh dτ

−

∫

Γ

γ

{

β
∂v

∂n

}

µh dτ +

∫

Γ

γµµhdτ

≤ C

(

2
∑

i=1

‖∇v‖L2(Ωi)
‖∇wh‖L2(Ωi)

+ ‖µ‖H−1/2(Γ)‖[[wh]]‖H1/2(Γ)

+σ‖γ1/2µ‖L2(Γ)

∥

∥

∥

∥

γ1/2

{

β
∂wh
∂n

}∥

∥

∥

∥

L2(Γ)

+σ

∥

∥

∥

∥

γ1/2

{

β
∂v

∂n

}∥

∥

∥

∥

L2(Γ)

∥

∥

∥

∥

γ1/2

{

β
∂wh
∂n

}∥

∥

∥

∥

L2(Γ)

+‖γ−1/2[[v]]‖L2(Γ)‖γ
1/2µh‖L2(Γ)

+

∥

∥

∥

∥

γ1/2

{

β
∂v

∂n

}∥

∥

∥

∥

L2(Γ)

‖γ1/2µh‖L2(Γ) + ‖γ1/2µ‖L2(Γ)‖γ
1/2µh‖L2(Γ)

)

(4.3.15)

Using Lemma 4.3.2, we obtain for γ = O(h)

A(v, µ;wh, µh) ≤ C
(

‖|(v, µ)‖|2 + ‖µ‖2
H−1/2(Γ) + ‖γ−1/2[[v]]‖

2

L2(Γ)

)1/2

(

2
∑

i=1

‖∇wh‖
2
L2(Ωi)

+ ‖[[wh]]‖
2
H1/2(Γ) + ‖γ1/2µh‖

2

L2(Γ)

)1/2

.(4.3.16)

Using the trace inequality (Theorem 1.2.2) and Poincaré inequality (Theorem 1.2.1), we

arrive at

A(v, µ;wh, µh) ≤ C
(

‖|(v, µ)‖|+ ‖µ‖H−1/2(Γ) + ‖γ−1/2[[v]]‖L2(Γ)

)

(

2
∑

i=1

‖∇wh‖
2
L2(Ωi)

+ ‖γ1/2µh‖
2

L2(Γ)

)1/2

. (4.3.17)
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The boundedness (4.3.14) of A follows from (4.3.8) and this completes the rest of the proof.

The coercive property (4.3.10) and the boundedness (Lemma 4.3.14) of A(·, ·; ·, ·) ensure

the validity of Lax-Milgram lemma (Theorem 1.2.8) and hence, there exists a unique pair

of solution (uh, λh) ∈ Xh ×W h(Γ) to the problem (4.3.4).

4.3.1 Error Analysis

In this section, we derive a priori error estimates for the elliptic problem (4.2.4)-(4.2.5).

Theorem 4.3.1 Let (u, λ) be the solution of (4.2.4)-(4.2.5) and (uh, λh) be the solution of

(4.3.4). Then, there exists a positive constant C independent of h and γ such that

‖|(u− uh, λ− λh)‖| ≤ C inf
wh∈Xh,µh∈Wh(Γ)

(‖|(u− wh, λ− µh)‖|

+ ‖γ−1/2[[u− wh]]‖L2(Γ) + ‖λ− µh‖H−1/2(Γ)

)

. (4.3.18)

Proof. By adding and subtracting wh and µh in the error term, we obtain as a consequence

of triangle inequality:

‖|(u− uh, λ− λh)‖| ≤ ‖|(u− wh, λ− µh)‖| + ‖|(wh − uh, µh − λh)‖|. (4.3.19)

Now using (4.3.10), orthogonality (4.3.7) and boundedness (4.3.14) of A we obtain

‖|(wh − uh, µh − λh)‖|
2 ≤

1

α
A(wh − uh, µh − λh;wh − uh, µh − λh)

≤
1

α
A(u− uh, λ− λh;wh − uh, µh − λh)

−
1

α
A(u− wh, λ− µh;wh − uh, µh − λh)

≤ C (‖|(u− wh, λ− µh)‖|

+ ‖γ−1/2[[u− wh]]‖L2(Γ) + ‖λ− µh‖H−1/2(Γ)

)

(‖|(wh − uh, µh − λh)‖|) . (4.3.20)

From (4.3.19) and (4.3.20), (4.3.18) follows and this completes the proof.
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Theorem 4.3.2 Let (u, λ) be the solution of (4.2.4)- (4.2.5) and (uh, λh) be the solution of

(4.3.4). Further, assume u ∈ H2(Ωi), then with γ = O(h) there exists a positive constant

C such that

‖|(u− uh, λ− λh)‖| ≤ Ch

2
∑

i=1

‖ui‖H2(Ωi)
(4.3.21)

and

‖u− uh‖L2(Ω) ≤ Ch2
2
∑

i=1

‖ui‖H2(Ωi)
. (4.3.22)

Proof. From Theorem 4.3.1, using the nodal interpolant Ii of ui in Ωi and the L2-

orthogonal projection Π̃h on W h(Γ) defined by (3.3.17) and (3.3.19) in Chapter 3, we

obtain

‖|(u− uh, λ− λh)‖| ≤ C
(

‖|(u− Ihu, λ− Π̃hλ)‖|

+ ‖γ−1/2[[u− Ihu]]‖L2(Γ) + ‖λ− Π̃hλ‖H−1/2(Γ)

)

. (4.3.23)

For the first term on right hand side of (4.3.23), we use the standard interpolation estimate

and L2(Γ) estimates

‖ui − Ihui‖H1(Ωi)
≤ Ch‖ui‖H2(Ωi)

for ui ∈ H2(Ωi), (4.3.24)

and

‖λ− Π̃hλ‖L2(Γ) ≤ Ch1/2‖λ‖H1/2(Γ)for λ ∈ H1/2(Γ). (4.3.25)

Hence, we obtain

‖|(u− Ihu, λ− Π̃hλ)‖| ≤ C(h+ γ1/2h1/2)
2
∑

i=1

‖ui‖H2(Ωi)
. (4.3.26)

For the second term on the right hand side of (4.3.23), we use Lemma 1.3.2 to derive

‖γ−1/2[[u− Ihu]]‖L2(Γ) ≤ ‖γ−1/2(u1 − Ihu1)‖L2(Γ) + ‖γ−1/2(u2 − Ihu2)‖L2(Γ)

≤ Cγ−1/2h3/2
2
∑

i=1

‖ui‖H2(Ωi)
for ui ∈ H2(Ωi). (4.3.27)
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For the last term on the right hand side of (4.3.23), we use (3.3.19) to arrive at

‖λ− Π̃hλ‖H−1/2(Γ) ≤ Ch‖λ‖H1/2(Γ) ≤ Ch
2
∑

i=1

‖ui‖H2(Ωi)
. (4.3.28)

Substituting (4.3.26)-(4.3.28) in (4.3.23), and choosing γ ∼= O(h), the estimate (4.3.21)

follows.

For the L2-error estimate, we appeal to Aubin-Nitsche duality argument. Let ψi =

ψ|Ωi
∈ H2(Ωi) ∩H

1
0 (Ω), i = 1, 2 be the solution of the interface problem

−∇ · (βi(x)∇ψi) = ui − uhi
in Ωi, (4.3.29)

ψi = 0 on ∂Ω ∩ ∂Ωi, (4.3.30)

[[ψ]]Γ = 0,

[[

β
∂ψ

∂n

]]

Γ

= 0 along Γ, (4.3.31)

which satisfies the regularity condition[11, Theorem 1.1], [34, Theorem 2.1]

2
∑

i=1

‖ψi‖H2(Ωi)
≤ c‖u− uh‖L2(Ω). (4.3.32)

Setting ei = ui−uhi
and multiplying both the sides of (4.3.29) by ei, and summing up over

i = 1, 2, we obtain

‖e‖2 =

2
∑

i=1

‖ei‖
2
L2(Ωi)

=

2
∑

i=1

∫

Ωi

βi∇ei · ∇ψi dx−

∫

Γ

β
∂ψ

∂n
[[e]] dτ. (4.3.33)

With the help of (4.3.7), we find that

0 = A

(

u− uh, λ− λh; Ihψ, Π̃h

(

β
∂ψ

∂n

))

=
2
∑

i=1

∫

Ωi

βi∇ei · ∇Ihψi dx+

∫

Γ

(λ− λh)[[Ihψ]] dτ

+σ

∫

Γ

γ(λ− λh)

{

β
∂Ihψ

∂n

}

dτ − σ

∫

Γ

γ

{

β
∂e

∂n

}{

β
∂Ihψ

∂n

}

dτ

−

∫

Γ

[[e]]Π̃h

(

β
∂ψ

∂n

)

dτ −

∫

Γ

γ

{

β
∂e

∂n

}

Π̃h

(

β
∂ψ

∂n

)

dτ

+

∫

Γ

γ(λ− λh)Π̃h

(

β
∂ψ

∂n

)

dτ. (4.3.34)
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Subtracting (4.3.34) from (4.3.33), and making use of [[ψ]] = 0 along Γ, we obtain

‖e‖2 =
2
∑

i=1

∫

Ωi

βi∇ei · ∇(ψi − Ihψi) dx−

∫

Γ

γ1/2(λ− λh)γ
−1/2[[ψ − Ihψ]] dτ

−σ

∫

Γ

γ(λ− λh)

{

β
∂Ihψ

∂n

}

dτ + σ

∫

Γ

γ

{

β
∂e

∂n

}{

β
∂Ihψ

∂n

}

dτ

−

∫

Γ

[[e]]

(

β
∂ψ

∂n
− Π̃h

(

β
∂ψ

∂n

))

dτ +

∫

Γ

γ

{

β
∂e

∂n

}

Π̃h

(

β
∂ψ

∂n

)

dτ

−

∫

Γ

γ(λ− λh)Π̃h

(

β
∂ψ

∂n

)

dτ. (4.3.35)

Note that, using trace inequality (Theorem 1.2.2), we find that

∥

∥

∥

∥

{

β
∂e

∂n

}∥

∥

∥

∥

L2(Γ)

≤
1

2

∥

∥

∥

∥

β1
∂e1
∂n

∥

∥

∥

∥

L2(Γ)

+
1

2

∥

∥

∥

∥

β2
∂e2
∂n

∥

∥

∥

∥

L2(Γ)

≤ C
2
∑

i=1

‖∇ei‖L2(Ωi)
≤ Ch

2
∑

i=1

‖u‖H2(Ωi)
. (4.3.36)

For the first term on the right-hand side of (4.3.35), use the Cauchy Schwarz inequality,

(4.3.21) and then the approximation property (3.3.17) to obtain

∣

∣

∣

∣

∣

2
∑

i=1

∫

Ωi

βi∇ei · ∇(ψi − Ihψi) dx

∣

∣

∣

∣

∣

≤ Ch2
2
∑

i=1

‖u‖H2(Ωi)
‖ψ‖H2(Ωi)

. (4.3.37)

For the second term on right hand-side of (4.3.35), use Cauchy Schwarz’s inequality, (4.3.21)

and then Lemma 1.3.2 to derive
∣

∣

∣

∣

∫

Γ

γ1/2(λ− λh)γ
−1/2[[ψ − Ihψ]] dτ

∣

∣

∣

∣

≤ ‖γ1/2(λ− λh)‖L2(Γ)‖γ
−1/2[[ψ − Ihψ]]‖L2(Γ)

≤ Ch2

2
∑

i=1

‖u‖H2(Ωi)
‖ψ‖H2(Ωi)

, (4.3.38)

when γ = O(h).

For the fourth term on right-hand side of (4.3.35), an application of Cauchy Schwarz’s
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inequality, the trace inequality (4.3.35) yields

∣

∣

∣

∣

∫

Γ

γ

{

β
∂e

∂n

}{

β
∂Ihψ

∂n

}

dτ

∣

∣

∣

∣

≤ C

∣

∣

∣

∣

∫

Γ

γ

{

β
∂e

∂n

}{

β
∂

∂n
(Ihψ − ψ)

}

dτ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Γ

γ

{

β
∂e

∂n

}{

β
∂ψ

∂n

}

dτ

∣

∣

∣

∣

≤ Cγ

∥

∥

∥

∥

{

β
∂e

∂n

}∥

∥

∥

∥

L2(Γ)
(

∥

∥

∥

∥

{

β
∂

∂n
(Ihψ − ψ)

}∥

∥

∥

∥

L2(Γ)

+

∥

∥

∥

∥

{

β
∂ψ

∂n

}∥

∥

∥

∥

L2(Γ)

)

≤ Cγ
2
∑

i=1

‖e‖H1(Ωi)
‖ψ‖H2(Ωi)

≤ Ch2

2
∑

i=1

‖u‖H2(Ωi)
‖ψ‖H2(Ωi)

. (4.3.39)

For the fifth term on right-hand side of (4.3.35), use the duality pairing between H1/2 and

H−1/2, the trace inequality, (4.3.21) and the approximation property (3.3.19) to obtain

∣

∣

∣

∣

∫

Γ

[[e]]

(

β
∂ψ

∂n
− Π̃h

(

β
∂ψ

∂n

))

dτ

∣

∣

∣

∣

≤ C‖[[e]]‖H1/2(Γ)

∥

∥

∥

∥

(

β
∂ψ

∂n
− Π̃h

(

β
∂ψ

∂n

))∥

∥

∥

∥

H−1/2(Γ)

≤ C

2
∑

i=1

‖e‖H1(Ωi)

∥

∥

∥

∥

(

β
∂ψ

∂n
− Π̃h

(

β
∂ψ

∂n

))∥

∥

∥

∥

H−1/2(Γ)

≤ Ch2

2
∑

i=1

‖u‖H2(Ωi)
‖ψ‖H2(Ωi)

. (4.3.40)

An application of Cauchy Schwarz’s inequality together with the trace inequality and γ =

O(h) yields an estimate for the sixth term on the right hand side of (4.3.35) as

∣

∣

∣

∣

∫

Γ

γ

{

β
∂e

∂n

}

Π̃h

(

β
∂ψ

∂n

)

dτ

∥

∥

∥

∥

≤ Cγ

∥

∥

∥

∥

{

β
∂e

∂n

}∥

∥

∥

∥

L2(Γ)

∥

∥

∥

∥

Π̃h

(

β
∂ψ

∂n

)∥

∥

∥

∥

L2(Γ)

≤ Cγ

2
∑

i=1

‖e‖H1(Ωi)

∥

∥

∥

∥

(

β
∂ψ

∂n

)∥

∥

∥

∥

L2(Γ)

≤ Ch2
2
∑

i=1

‖u‖H2(Ωi)
‖ψ‖H2(Ωi)

. (4.3.41)

Finally, for the third and last term on the right-hand side of (4.3.35), we proceed in the
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following way. From (4.2.4)-(4.2.5) and (4.3.2)-(4.3.3), we arrive at

2
∑

i=1

∫

Ωi

βi∇(u− uh) · ∇vh dx+

∫

Γ

(λ− λh)[[vh]] dτ + σ

∫

Γ

γ(λ− λh)

{

β
∂vh
∂n

}

dτ

−σ

∫

Γ

γ

{

β
∂

∂n
(u− uh)

}{

β
∂vh
∂n

}

dτ = 0,(4.3.42)

∫

Γ

[[u− uh]]µh dτ +

∫

Γ

γ

{

β
∂

∂n
(u− uh)

}

µh dτ −

∫

Γ

γ(λ− λh)µh = 0.(4.3.43)

With vh = (vh1 , 0), we derive from (4.3.42)

∫

Ω1

β1∇(Phu− uh) · ∇vh1 dx +

∫

Γ

(Π̃hλ− λh)vh1 dτ + σ

∫

Γ

γ(Π̃hλ− λh)

{

β
∂vh1

∂n

}

dτ

− σ

∫

Γ

γ

{

β
∂

∂n
(u− uh)

}{

β
∂vh1

∂n

}

dτ

=

∫

Ω1

β1∇(Phu− u) · ∇vh1 dx +

∫

Γ

(Π̃hλ− λ)vh1 dτ + σ

∫

Γ

γ(Π̃hλ− λ)

{

β
∂vh1

∂n

}

dτ,

(4.3.44)

and hence,
∫

Γ

(Π̃hλ− λh)vh1 dτ =

∫

Ω1

β1∇(uh − Phu) · ∇vh1 dx+ σ

∫

Γ

γ(λh − Π̃hλ)

{

β
∂vh1

∂n

}

dτ

+

∫

Ω1

β1∇(Phu− u) · ∇vh1 dx+

∫

Γ

(Π̃hλ− λ)vh1 dτ

+ σ

∫

Γ

γ(Π̃hλ− λ)

{

β
∂vh1

∂n

}

dτ

+ σ

∫

Γ

γ

{

β
∂

∂n
(u− uh)

}{

β
∂vh1

∂n

}

dτ. (4.3.45)

Note that by using Lemma 4.3.2, we obtain an estimate for the second term on the right

hand side of (4.3.45) as

∣

∣

∣

∣

∫

Γ

γ(λh − Π̃hλ)

{

β
∂vh1

∂n

}

dτ

∣

∣

∣

∣

≤ C‖γ1/2(λh − Π̃hλ)‖L2(Γ)

∥

∥

∥

∥

γ1/2

(

β
∂vh1

∂n

)∥

∥

∥

∥

L2(Γ)

≤ Ch
2
∑

i=1

‖ui‖H2(Ωi)
‖∇vh1‖L2(Ω1). (4.3.46)

Now for the rest of the terms on the right-hand side of (4.3.45) we use Cauchy Schwarz

inequality, duality pairing between H−1/2 and H1/2, the trace inequality (Theorem 1.2.2)
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along with the standard approximation properties (3.3.17), (3.3.19), (4.3.21), and similarly

as in (4.3.46) we arrive at

∫

Γ

(Π̃hλ− λh)vh1dτ ≤ Ch

2
∑

i=1

‖ui‖H2(Ωi)
‖vh1‖H1(Ω1). (4.3.47)

Applying (4.3.47), for the third term on the right-hand side of (4.3.35), with vh = (vh1, 0) ∈

Xh and vh1 = Rh

(

β
∂Ihψ

∂n

)

, where Rh is the continuous lifting operator defined in Lemma

1.3.5, we obtain for γ = O(h)

γ

∫

Γ

(λ− λh)

(

β
∂Ihψ

∂n

)

dτ ≤ Cγh
2
∑

i=1

‖u‖H2(Ωi)

∥

∥

∥

∥

(

β
∂Ihψ

∂n

)∥

∥

∥

∥

H1/2(Γ)

≤ Cγh
2
∑

i=1

‖u‖H2(Ωi)
‖Ihψi‖H1(Ωi)

≤ Ch2

2
∑

i=1

‖u‖H2(Ωi)
‖ψi‖H2(Ωi)

. (4.3.48)

Similarly for the last term on the right-hand side of (4.3.35), vh1 = Rh

(

Π̃h

(

β
∂ψ

∂n

))

, we

arrive at the estimate for γ = O(h)

γ

∫

Γ

(λ− λh)Π̃h

(

β
∂ψ

∂n

)

dτ ≤ Cγh
2
∑

i=1

‖u‖H2(Ωi)

∥

∥

∥

∥

Π̃h

(

β
∂ψ

∂n

)∥

∥

∥

∥

H1/2(Γ)

≤ Ch2
2
∑

i=1

‖u‖H2(Ωi)
‖ψi‖H2(Ωi)

. (4.3.49)

From (4.3.35)-(4.3.41), (4.3.48) and using the regularity condition (4.3.32), we obtain L2-

error estimate (4.3.22). This completes the proof.

4.4 Parabolic Initial and Boundary Value Problems

In this section, we study both the semidiscrete and fully discrete methods for the parabolic

initial and boundary value problem with discontinuous coefficients. We follow the same

assumptions and notations as in the last sections.
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Consider the following parabolic initial-boundary value problem with discontinuous co-

efficients: Given f ∈ L2(Ω), find ui = ui(x, t) satisfying

uit −∇ · (β(x)∇ui) = f in Ωi × (0, T ], (4.4.1)

ui(x, t) = 0 on (∂Ωi ∩ ∂Ω) × [0, T ], (4.4.2)

ui(x, 0) = ui0(x) in Ω (4.4.3)

[[u]]Γ = 0,

[[

β
∂u

∂n

]]

Γ

= 0 along Γ. (4.4.4)

4.4.1 Semidiscrete method

By integrating by parts, introducing the flux λ = −β1
∂u1

∂n1
= β2

∂u2

∂n2
, we can derive the

Lagrange multiplier method for the interface problem (4.4.1)-(4.4.4) as follows. Find

(u(·, t), λ(·, t)) ∈ X ×M such that for t ∈ (0, T ]

(ut, v) + a(u, v) + b(v, λ) =
2
∑

i=1

∫

Ωi

fv dx ∀ v ∈ X, (4.4.5)

b(u, µ) = 0 ∀µ ∈M, (4.4.6)

(u(0), v) = (u0, v). (4.4.7)

Now we propose the stabilized Nitsche’s Mortaring method for the parabolic problem

(4.4.5)-(4.4.7): Find (uh(t), λh(t)) ∈ Xh ×W h(Γ) such that for t ∈ (0, T ]

(uht, vh) +

2
∑

i=1

∫

Ωi

βi∇uh · ∇vh dx+

∫

Γ

λh[[vh]] dτ +

∫

Γ

γλh

{

β
∂vh
∂n

}

dτ

−

∫

Γ

γ

{

β
∂uh
∂n

}{

β
∂vh
∂n

}

dτ =
2
∑

i=1

∫

Ωi

fvh dx ∀vh ∈ Xh, (4.4.8)

∫

Γ

[[uh]]µh dτ +

∫

Γ

γ

{

β
∂uh
∂n

}

µh dτ −

∫

Γ

γλhµhdτ = 0. ∀µh ∈ W h(Γ) (4.4.9)

uh(0) = uh0, (4.4.10)

where uh0 is an approximation of u in Xh to be defined later. Equivalently, (4.4.8)-(4.4.9)

can be written as: Find (uh(t), λh(t)) ∈ Xh ×W h(Γ) such that such that for t ∈ (0, T ]

(uht, vh) + A(uh, λh; vh, µh) = F(vh) ∀vh ∈ Xh, µh ∈ W h(Γ). (4.4.11)
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where

A(wh, νh; vh, µh) =

2
∑

i=1

∫

Ωi

βi∇wh · ∇vh dx +

∫

Γ

νh[[vh]] dτ +

∫

Γ

γνh

{

β
∂vh
∂n

}

dτ

−

∫

Γ

γ

{

β
∂wh
∂n

}{

β
∂vh
∂n

}

dτ −

∫

Γ

[[wh]]µh dτ

−

∫

Γ

γ

{

β
∂wh
∂n

}

µh dτ +

∫

Γ

γνhµhdτ, (4.4.12)

and

F(vh) =
2
∑

i=1

∫

Ωi

fvh dx. (4.4.13)

(4.4.11) leads to a system of linear ordinary equations and an application of Picard’s exis-

tence theorem yields the existence and uniqueness of solution on [0, T ].

4.4.2 Error Analysis

In this section, we discuss the error estimates for the scheme (4.4.11). Subtracting (4.4.8)-

(4.4.9) from (4.4.5)-(4.4.6), we obtain the error equation such that for all (vh, µh) ∈ Xh ×

W h(Γ),

(ut − uht, vh) +
2
∑

i=1

∫

Ωi

βi∇(u− uh) · ∇vh dx+

∫

Γ

(λ− λh)[[vh]] dτ

+

∫

Γ

γ(λ− λh)

{

β
∂vh
∂n

}

dτ −

∫

Γ

γ

{

β
∂(u− uh)

∂n

}{

β
∂vh
∂n

}

dτ = 0, (4.4.14)

∫

Γ

[[(u− uh)]]µh dτ +

∫

Γ

γ

{

β
∂(u− uh)

∂n

}

µh dτ −

∫

Γ

γ(λ− λh)µh dτ = 0. (4.4.15)

Equivalently (4.4.14)-(4.4.15) can be written as

(ut − uh,t, vh) + A(u− uh, λ− λh; vh, µh) = 0 ∀vh ∈ Xh, µh ∈ W h(Γ). (4.4.16)

For the error estimates, we now define mixed elliptic projection as follows. For given u and

λ, set (ûh, λ̂h) as solution of elliptic part of (4.4.11), i.e.,

A(u− ûh, λ− λ̂h; vh, µh) = 0 ∀vh ∈ Xh, µh ∈ W h(Γ). (4.4.17)
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Set

u− uh = (u− ûh) + (ûh − uh) = ρ+ θ (4.4.18)

and

λ− λh = (λ− λ̂h) + (λ̂h − λh) = η + ξ. (4.4.19)

Since estimates of ρ and η are known from Theorem 4.3.2, it is enough to estimate θ and

ξ. From the equations (4.4.18), (4.4.19), (4.4.16) and using the elliptic projection (4.4.17),

we obtain

(θt, vh) +

2
∑

i=1

∫

Ωi

βi∇θ · ∇vh dx+

∫

Γ

ξ[[vh]] dτ +

∫

Γ

γξ

{

β
∂vh
∂n

}

dτ

−

∫

Γ

γ

{

β
∂θ

∂n

}{

β
∂vh
∂n

}

dτ = −(ρt, vh), (4.4.20)

∫

Γ

[[θ]]µh dτ +

∫

Γ

γ

{

β
∂θ

∂n

}

µh dτ −

∫

Γ

γξµh dτ = 0. (4.4.21)

Substitute vh = θ in (4.4.20), µh = ξ in (4.4.21). Then subtract (4.4.21) from (4.4.20)

and apply coercivity of A(·, ·; ·, ·). Then using Young’s inequality (1.2.2) and Poincaré

inequality (Theorem 1.2.1), we now arrive at

1

2

d

dt
‖θ‖2 + α‖|(θ, ξ)‖|2 ≤ ‖ρt‖‖θ‖

≤ C(α)‖ρt‖
2 +

α

2
‖|(θ, ξ)‖|2,

and hence,

d

dt
‖θ‖2 + α‖|(θ, ξ)‖|2 ≤ C(α)‖ρt‖

2. (4.4.22)

Integrating (4.4.22) from 0 to t, we find

‖θ(t)‖2 + α

∫ t

0

‖|(θ, ξ)‖|2dτ ≤ C(α)

(

‖θ(0)‖2 +

∫ t

0

‖ρt‖
2dτ

)

. (4.4.23)

Now choose u0,h = ûh(0), then θ(0) = 0, otherwise with u0,h = Ihu0

‖θ(0)‖ = ‖ûh(0) − u0,h‖ ≤ ‖u0 − Ihu0‖ + ‖ûh(0) − u0‖

≤ Ch2
2
∑

i=1

‖u0‖H2(Ωi)
. (4.4.24)
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From Theorem 4.3.2, we obtain

‖ρt‖ = ‖ut − ût‖ ≤ Ch2

2
∑

i=1

‖ut‖H2(Ωi)
. (4.4.25)

Substituting (4.4.24) and (4.4.25) in (4.4.23), we find that

‖θ(t)‖2 + α

∫ t

0

‖|(θ, ξ)‖|2dτ ≤ Ch4

2
∑

i=1

(

‖u0‖
2
H2(Ωi)

+

∫ t

0

‖ut‖
2
H2(Ωi)

ds

)

. (4.4.26)

Using triangle inequality and Theorem 4.3.2, we arrive at

‖u(t) − uh(t)‖
2 ≤ Ch4

2
∑

i=1

(

‖u0‖
2
H2(Ωi)

+

∫ t

0

‖ut‖
2
H2(Ωi)

ds

)

, (4.4.27)

For a bound in ‖|(·, ·)‖|-norm, substitute vh = θt in (4.4.20), differentiate the equation

(4.4.21), put µh = ξ in (4.4.21) and proceed in similar way as in the proof of Theorem 3.4.2

to arrive at

‖|(θ(t), ξ(t))‖|2 ≤
C

t
h4

2
∑

i=1

(

‖u0‖
2
H2(Ωi)

+

∫ t

0

(

τ‖ut‖
2
H2(Ωi)

+ ‖ut‖
2
H2(Ωi)

)

dτ

)

. (4.4.28)

Finally, we apply triangle inequality. The result obtained is stated as a theorem below.

Theorem 4.4.1 Let (u, λ) and (uh, λh) be the solutions of (4.4.5)-(4.4.7) and (4.4.8)-

(4.4.10), respectively. Further, let u|Ωi
, ut|Ωi

∈ H2(Ωi). Then with u0,h = û0 or Ihu0, there

exists a positive constant C, independent of h, such that for t ∈ (0, T ],

‖u(t) − uh(t)‖
2 ≤ Ch4

2
∑

i=1

(

‖u0‖
2
H2(Ωi)

+

∫ t

0

‖ut‖
2
H2(Ωi)

ds

)

, (4.4.29)

and,

‖|((u− uh, λ− λh)(t))‖|
2 ≤

C

t
h2

2
∑

i=1

(

‖u0‖
2
H2(Ωi)

+

∫ t

0

(

τ‖ut‖
2
H2(Ωi)

+ ‖ut‖
2
H2(Ωi)

)

dτ
)

. (4.4.30)
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4.4.3 Fully discrete method

Let k be the time step parameter k =
T

N
and tn = nk. For a continuous functions

ϕ ∈ C[0, T ], we set the backward difference quotient as ∂̄tϕ
n =

ϕn − ϕn−1

k
. The backward

Euler approximation of (u, λ) is to seek a pair of functions (Un,Λn) ∈ Xh×W h(Γ) so that

(Un,Λn), n ≥ 1, satisfies

(∂̄tU
n, vh) +

2
∑

i=1

∫

Ωi

βi∇U
n · ∇vh dx +

∫

Γ

Λn[[vh]] dτ +

∫

Γ

γΛn

{

β
∂vh
∂n

}

dτ

−

∫

Γ

γ

{

β
∂Un

∂n

}{

β
∂vh
∂n

}

dτ =
2
∑

i=1

∫

Ωi

fvh dx ∀vh ∈ Xh (4.4.31)

∫

Γ

[[Un]]µh dτ +

∫

Γ

γ

{

β
∂Un

∂n

}

µh dτ −

∫

Γ

γΛnµh = 0. ∀µh ∈ W h(Γ) (4.4.32)

U0 = uh0 (4.4.33)

Equivalently, (4.4.31)-(4.4.32) can be written as: for n ≥ 1, find (Un,Λn) ∈ Xh ×W h(Γ)

such that

(∂̄tU
n, vh) + A(Un,Λn; vh, µh) = F(vh) ∀vh ∈ Xh, µh ∈ W h(Γ). (4.4.34)

Theorem 4.4.2 Let (u(tn), λ(tn)) be the solution of (4.4.5)-(4.4.7) and let (Un,Λn) ∈

Xh ×W h(Γ) be an approximation of (u(t), λ(t)) at t = tn as given by (4.4.34). Further,

assume that for t ∈ (0, T ], u(t) ∈ H1
0(Ω), u(t)|Ωl

, ut(t)|Ωl
∈ H2(Ωl) and utt(t) ∈ L2(Ω).

Then with u0,h = ûh0 or Ihu0, there exists a positive constants C, independent of h and k,

such that

‖u(tn) − Un‖2 ≤ C

(

h4
2
∑

i=1

(

‖u0‖
2
H2(Ωi)

+

∫ tn

0

‖ut‖
2
H2(Ωi)

)

+ k2

∫ tn

t=0

‖utt‖
2ds

)

(4.4.35)

and,

‖|(u(tn) − Un, λ(tn) − Λn)‖|2 ≤ C

(

h2
2
∑

i=1

(

‖u0‖
2
H2(Ωi)

+

∫ tn

0

‖ut‖
2
H2(Ωi)

)

+ k2

∫ tn

t=0

‖utt‖
2ds

)

.(4.4.36)
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Proof. For the error estimate we split the error terms as follows:

u(tn) − Un = (u(tn) − ûh(tn)) + (ûh(tn) − Un) = ρn + θn. (4.4.37)

and

λ(tn) − Λn = (λ(tn) − λ̂h(tn)) + (λ̂h(tn) − Λn) = ηn + ξn. (4.4.38)

Since the estimates of ρn and ηn are known from Theorem 4.3.2, it is sufficient to estimate

θn and ξn. Using (4.4.37)-(4.4.38) in (4.4.31)-(4.4.32), elliptic projection (4.4.16), we arrive

at

(∂̄tθ
n, vh) +

2
∑

i=1

∫

Ωi

βi∇θ
n · ∇vh dx +

∫

Γ

ξn[[vh]] dτ +

∫

Γ

γξn
{

β
∂vh
∂n

}

dτ

−

∫

Γ

γ

{

β
∂θn

∂n

}{

β
∂vh
∂n

}

dτ = (wn, vh) ∀vh ∈ Xh (4.4.39)

∫

Γ

[[θn]]µh dτ +

∫

Γ

γ

{

β
∂θn

∂n

}

µh dτ −

∫

Γ

γξnµh = 0. ∀µhW
h(Γ) (4.4.40)

where,

wn = ∂̄tûh(tn) − ut(tn) = (∂̄tûh(tn) − ∂̄tu(tn)) + (∂̄tu(tn) − ut(tn))

= wn1 + wn2 . (4.4.41)

Choose vh = θn in (4.4.39), µh = ξn in (4.4.40) and subtract the resulting equation. Note

that

(∂̄tθ
n, θn) =

1

2
∂̄t‖θ

n‖2 +
k

2
‖∂̄tθ

n‖
2
≥

1

2
∂̄t‖θ

n‖2.

Using the Cauchy-Schwarz inequality, ellipticity (4.3.10) and Young’s inequality (1.2.2), we

find that

1

2
∂̄t‖θ

n‖2 + ‖|(θn, ξn)‖|2 ≤ C‖wn‖‖θn‖ ≤ ‖wn‖‖θn‖X

≤ C(α)‖wn‖2 +
α

2
‖|(θn, ξn)‖|2,

and hence,

∂̄t‖θ
n‖2 + α‖|(θn, ξn)‖|2 ≤ C(α)‖wn‖2.
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Using the definition of ∂̄t, we arrive at

‖θn‖2 ≤ ‖θn−1‖
2
+ Ck‖wn‖2, (4.4.42)

and hence, by repeated application, we obtain

‖θn‖2 ≤ ‖θ0‖
2
+ Ck(

n
∑

j=1

‖wj1‖
2
+

n
∑

j=1

‖wj2‖
2
). (4.4.43)

Choose u0,h = ûh(0), then θ0 = 0, otherwise with u0,h = Ihu0

‖θ0‖ = ‖ûh(0) − u0,h‖ ≤ ‖u0 − Ihu0‖ + ‖ûh(0) − u0‖

≤ Ch2
2
∑

i=1

‖u0‖H2(Ωi)
. (4.4.44)

Since

wj1 = ∂̄tûh(tj) − ∂̄tu(tj) = k−1

∫ tj

tj−1

(ûht − ut)ds,

we now find that

k

n
∑

j=1

‖wj1‖
2
≤

n
∑

j=1

∫ tj

tj−1

‖(ûht − ut)‖
2ds ≤ C

K
∑

l=1

h4

∫ tn

0

‖ut‖
2
H2(Ωi)

ds. (4.4.45)

To estimate wj
2, we note using Taylor series expansion that

wj2 = ∂̄tu(tj) − ut(tj) = k−1(u(tj) − u(tj−1)) − ut(tj)

= −k−1

∫ tj

tj−1

(s− tj−1)utt(s)ds,

and hence,

k
n
∑

j=1

‖wj2‖
2
≤

n
∑

j=1

(

∫ tj

tj−1

|s− tj−1|‖utt‖ds

)2

≤ Ck2

∫ tn

0

‖utt‖
2ds. (4.4.46)

Substituting (4.4.44)-(4.4.46) in (4.4.43), we obtain

‖θn‖2 ≤ C

(

h4
2
∑

i=1

‖u0‖
2
H2(Ωi)

+

∫ tn

0

‖ut‖
2
H2(Ωi)

+ k2

∫ tn

t=0

‖utt‖
2ds

)

. (4.4.47)



Chapter 4. Stabilized Mortaring Element Method 107

An application of triangle inequality with (4.4.47) yields

‖u(tn) − Un‖2 ≤ C

(

h4
2
∑

i=1

(

‖u0‖
2
H2(Ωi)

+

∫ tn

0

‖ut‖
2
H2(Ωi)

)

+ k2

∫ tn

t=0

‖utt‖
2ds

)

.(4.4.48)

In order to estimate in ‖|(·, ·)‖|-norm, substitute vh = ∂̄tθ
n in (4.4.39), then proceed similar

way as in Theorem 3.4.2 to obtain (4.4.36).

Remark 4.4.1 Since our scheme is exactly consistent with the original problem, we derive

the optimal estimates in L2-norm as well as in ‖|(·, ·)‖|-norm when γ = O(h).

4.5 Matrix Formulation

In this section, we discuss the algebraic formulation arising from the discrete formulation

(4.3.2)-(4.3.3). Here in this case also, construction of basis functions are similar to that in

Section 2.7 of Chapter 2, with a slight modification for the Lagrange multiplier space. The

matrix representation for (4.3.3) can be given by:

Msus +
γ

2
N sus +

γ

2
Nmum −Mmum = εMmmλm. (4.5.1)

Here, Ms, Mm and Mmm are given by (ms)ij =
∫

Γ1
ϕsjψhi

dτ , (mm)ij =
∫

Γ2
ϕmj ψhi

dτ and

(m̃m)ij =
∫

Γ2
ψhi

ψhj
dτ respectively. Here, ψhi

are the nodal basis functions for W h(Γ2),

ϕsj and ϕmj denote the basis functions for W h(Γ1) and W h(Γ2), respectively. Moreover,

let N s, Nm, N s
n and Nm

n are defined by N s
ij =

∫

Γ1
ϕsj · n1ψhi

dτ , Nm
ij =

∫

Γ2
ϕmj · n2ψhi

dτ ,

N s
nij

=
∫

Γ1
ϕsi · n1ϕ

s
j · n1, and Nm

nij
=
∫

Γ2
ϕmi · n2ϕ

m
j · n2, respectively.

Now, the matrix representation of (4.3.2)-(4.3.3) can be given as:

Aα = F, (4.5.2)

where α = (u1
i , u

1
s, u

2
i , u

2
m, λm)T . Note that here u1

i and u2
i represents the unknowns as-

sociated with all the internal nodal points in Ω1 and Ω2, respectively. Further, u1
s and

u2
m are the unknowns associated with Γ1 and Γ2 and λ′ms are the unknowns for Lagrange
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multipliers associated with W h(Γ).

A =





















A1
ii A1

is 0 0 0

A1
si A1

ss 0 0 Ms + γσ
2

(N s) + γσ
2
N s
n

0 0 A2
ii A2

im 0

0 0 A2
mi A2

mm −(Mm)T + γσ
2

(Nm)T + γσ
2

(Nm
n )T

0 Ms + γ
2
N s 0 −Mm + γ

2
Nm −γMmm





















,(4.5.3)

with

Alii = {a(ϕ
(l)
i , ϕ

(l)
j )} xli, x

l
j ∈ Th(Ωl), 1 ≤ l ≤ 2,

Alis = {a(ϕ
(l)
i , ϕs)} xli ∈ Th(Ωl), xs ∈ Γ1.

A1
ss = {a(ϕs, ϕs)} xs ∈ Γ1.

Alim = {a(ϕ
(l)
i , ϕm)} xli ∈ Th(Ωl), xm ∈ Γ2,

A2
mm = {a(ϕm, ϕm)} xm ∈ Γ2,

and

F =
(

F 1
i F 1

s F 2
i F 2

m 0
)T

, (4.5.4)

where

F l
i = {(f (l)

i , ϕ
(l)
j )} xli, x

l
j ∈ Th(Ωl), 1 ≤ l ≤ 2,

F l
s = {(f

(l)
i , ϕs)} xli ∈ Th(Ωl), xs ∈ Γ1,

F l
m = {(f

(l)
i , ϕm)} xli ∈ Th(Ωl), xm ∈ Γ2,

For fully discrete formulation (4.4.31)-(4.4.32), the matrix formulation associated can

be given as:

(B + kA)αn = Bαn−1 + kF (tn), n ≥ 1, (4.5.5)

with α = (u1
i , u

1
s, u

2
i , u

2
m, λm)T .



Chapter 4. Stabilized Mortaring Element Method 109

Here A and F are same as in (4.5.3) and (4.5.4), respectively and B has the following form:

B =





















B1
ii B1

is 0 0 0

B1
si B1

ss 0 0 Ms + γσ
2

(N s) + γσ
2
N s
n

0 0 B2
ii B2

im 0

0 0 B2
mi B2

mm −(Mm)T + γσ
2

(Nm)T + γσ
2

(Nm
n )T

0 Ms + γ
2
N s 0 −Mm + γ

2
Nm −γMmm





















,(4.5.6)

where

Bl
ii = {(ϕ

(l)
i , ϕ

(l)
j )} xli, x

l
j ∈ Th(Ωl), 1 ≤ l ≤ 2,

Bl
is = {B(ϕ

(l)
i , ϕs)} xli ∈ Th(Ωl), xs ∈ Γ1,

B1
ss = {B(ϕs, ϕs)} xs ∈ Γ1,

Bl
im = {(ϕ

(l)
i , ϕm)} xli ∈ Th(Ωl), xm ∈ Γ2.

B2
mm = {(ϕm, ϕm)} xm ∈ Γ2.

4.5.1 Numerical Experiments

We choose the following second order elliptic problem on the unit square domain Ω =

(0, 1) × (0, 1) with Dirichlet boundary condition and homogeneous jump conditions as

follows:

−∇ · (βi(x)∇ui) = f in Ωi,

ui = 0 on ∂Ω ∩ ∂Ωi,

[[u]]Γ = 0,

[[

β
∂u

∂n

]]

Γ

= 0 along Γ.

The computational domain Ω is subdivided into two equal subdomains Ωi, i = 1, 2. Each

subdomain is subdivided into linear triangular elements of different mesh sizes hi. Here,

we take h1 = 1/14 and h2 = 1/16. With the penalty parameter ε = O(h), we choose

discontinuous coefficients with β1 = 1 and β2 = 10 in two subdomains. We choose f such

that the exact solution is u(x, y) = sin πx sin πy.

The order of convergence for the error e = (u− uh) in L2 norm ‘p’ with respect to the

space variable parameter h has been computed in Table 4.1. Figure 4.2 shows the computed
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Figure 4.2: Order of Convergence w.r.t. h

Table 4.1: L2 Order of Convergence

(h1, h2) h = max
i
hi ‖u− uh‖L2(Ω) Order

(1
4
, 1

6
) 1/4 0.047767

(1
8
, 1

12
) 1/8 0.011946 1.99948664449448

( 1
16
, 1

24
) 1/16 0.0029445 2.02043304825433

( 1
32
, 1

48
) 1/32 0.00072768 2.01664660906980

( 1
64
, 1

96
) 1/64 0.00018066 2.01002704544642

order of convergence with respect to h for ‖u − uh‖ in the log-log scale. The computed

order of convergence ‘p’ matches with the theoretical result (See, Theorem 4.3.2).

For the second order parabolic initial and boundary value problem, consider the unit

square domain Ω = (0, 1) × (0, 1) with Dirichlet boundary condition and homogeneous

jump conditions. Consider the following parabolic initial-boundary value problem with

discontinuous coefficients: Find ui = ui(x, t) satisfying

uit −∇ · (β(x)∇ui) = f in Ωi × (0, 1], (4.5.7)

ui(x, t) = 0 on (∂Ωi ∩ ∂Ω) × [0, 1], (4.5.8)

ui(x, 0) = u0(x) in Ω (4.5.9)

[[u]]Γ = 0,

[[

β
∂u

∂n

]]

Γ

= 0 along Γ. (4.5.10)

The computational domain Ω is subdivided into two equal subdomains Ωi, i = 1, 2. Each
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Figure 4.3: Order of Convergence with discontinuous coefficients

subdomain is subdivided into linear triangular elements of different mesh sizes hi. With

u0 = 0, we consider the discontinuous coefficients along the common interfaces of subdo-

main. We take the coefficients (β1, β2) = (1, 10). We choose f in such a way that the exact

solution is u(x, t) = et sin πx sin πy. Figure 4.3(a) and 4.3(b) shows the computed order of

convergence with respect to h and k, respectively, for ‖u− uh‖ in the log-log scale, when

the penalty parameter ε is taken as O(h). The computed result matches our theoretical

result (See, Theorem 4.4.2).
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Conclusions

5.1 Summary and Some Remarks

In this thesis, we have discussed mortar finite element methods for second order elliptic

and parabolic problems. Since mortar finite element methods deal with the independent

discretization over each subdomain of the original domain, this process of discretization

leads to non-matching grids across the common interfaces of the inter subdomains. In this

regard, the mortar finite element method is a locally conforming but globally nonconforming

one. In Chapter 1, we have briefly reviewed mortar finite element methods for second

order elliptic boundary value problems. Here, we have discussed an approximation Qhu

of the solution defined in (1.3.36) and studied the error estimates (Lemma 1.3.6) for the

approximation. With the help of this result and the L2-orthogonal projection πhj
defined

in (1.3.45), we deduce the error estimates (Theorem 1.3.1) for the method (1.3.9). The

error estimates in X-norm (broken H1-norm) and L2-norm is optimal as in the case of

standard finite element method. Next, instead of imposing the constraint (1.3.7) in the

finite dimensional space Xh, we impose the weak continuity condition across the subdomain

interfaces in the variational formulation by means of a Lagrange multiplier. Then optimal

error estimates are derived in Theorem 1.3.2. The main contribution of the thesis starts

from Chapter 2.

In Chapter 2, we have discussed a standard mortar finite element method and a mor-

tar element method with Lagrange multipliers for the spatial discretization of a class of

parabolic initial-boundary value problems (2.1.1)-(2.1.3). A basic approach in deriving er-

ror estimates in Chapter 2 is the introduction of a modified elliptic operator Ph from X

112
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onto Vh, which is defined as :

a(u− Phu, χ) −
m0
∑

m=1

∫

δm⊂Γ

a∇u · n[[χ]]dτ = 0 ∀χ ∈ Vh (5.1.1)

where,

a(v, w) =
K
∑

l=1

∫

Ωl

a(x)∇vl · ∇wl dx.

After discussing a priori estimates for u − Phu in broken H1-norm and L2-norm (see,

Lemma 2.3.1), optimal order of estimates in L∞(L2) and L∞(H1)-norms for the semidis-

crete method is derived for the parabolic problem. Based on backward Euler method, a

completely discrete scheme is analyzed. Further, we have discussed a mortar finite element

method with Lagrange multipliers for parabolic problems. In order to find an estimate for

the Lagrange multiplier, we have chosen some auxiliary discrete spaces for primal variables

and Lagrange multipliers in such a way that they satisfy the LBB condition (See, Propo-

sition 2.6.1). Using the LBB condition, we have derived optimal error estimates (Theorem

2.6.2) in the later part of Chapter 2. The analysis can be easily extended to parabolic

problems with discontinuous coefficients and some numerical experiments are conducted to

substantiate the theoretical findings.

In order to alleviate the discrete LBB condition, which is crucial for finding the esti-

mates for the Lagrange multipliers discussed in Chapter 2, we have introduced a Nitsche

mortaring method in Chapter 3. In Nitsche mortaring method, we have added a penalty

term to the discrete formulation in order to establish the stability of the proposed method.

We have analyzed the following stabilized problem for elliptic problem with discontinuous

coefficients: find (uh, λh) ∈ Xh ×W h(Γ) such that

2
∑

i=1

∫

Ωi

βi∇uh · ∇vh dx+

∫

Γ

λh[[vh]] dτ =
2
∑

i=1

∫

Ωi

fvh dx ∀vh ∈ Xh, (5.1.2)

∫

Γ

[[uh]]µh dτ − ε

∫

Γ

λhµh dτ = 0 ∀µh ∈ W h(Γ), (5.1.3)

where ε is a suitably chosen penalty parameter.

We have proved the existence of a unique solution (uh, λh) ∈ Xh×W
h(Γ) for the problem

(5.1.2)-(5.1.3) and derived a priori estimates in broken H1 and L2-norms provided ε = O(h)
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and ui ∈ H2(Ωi), i = 1, 2. Moreover, we have extended this mortaring method to parabolic

initial-boundary value problems with discontinuous coefficients. Both semidiscrete and

fully discrete schemes have been discussed and error estimates have been derived when

ε = O(h). Since the method (5.1.2)-(5.1.3) is inconsistent, in Chapter 3, we have obtained

only sub-optimal order of estimates in H1 and L2-norm. This chapter concludes with some

computational results.

Finally in Chapter 4, we have proposed a stabilized Nitsche’s mortaring element method,

which is consistent with the original problem. We have discussed the following discrete

scheme: find (uh, λh) ∈ Xh ×W h(Γ) such that for all vh ∈ Xh and µh ∈ W h(Γ),

2
∑

i=1

∫

Ωi

βi∇uh · ∇vh dx +

∫

Γ

λh[[vh]] dτ + σ

∫

Γ

γλh

{

β
∂vh
∂n

}

dτ

− σ

∫

Γ

γ

{

β
∂uh
∂n

}{

β
∂vh
∂n

}

dτ =
2
∑

i=1

∫

Ωi

fvh dx, (5.1.4)

∫

Γ

[[uh]]µh dτ +

∫

Γ

γ

{

β
∂uh
∂n

}

µh dτ −

∫

Γ

γλhµhdτ = 0, (5.1.5)

where the penalty parameter γ is at our disposal. When σ = 0, the method (5.1.4)-(5.1.5)

is unsymmetric and for σ = 1, this method is symmetric. We have studied both the

symmetric and unsymmetric methods.

Under the assumption on the penalty parameter γ, that is, γ = O(h) (See, Lemma

4.3.3), the method is shown to be stable with respect to the ‖|(·, ·)‖|-norm defined in (4.3.8).

Note that, we have used a natural choice for the discrete space of Lagrange multipliers

that is, W h(Γ), the trace space of primal variables Xh. After proving the existence of

a unique solution to the discrete problem, we have established in this chapter optimal

order of estimates with respect to ‖|(·, ·)‖|-norm and L2-norm for both symmetric and

unsymmetric cases (See, Theorem 4.3.1) when γ = O(h). We have also analyzed the

Nitsche’s mortaring element method for the parabolic initial-boundary value problems with

discontinuous coefficients. Using the elliptic projection (4.3.7), with γ = O(h), we have

derived optimal order of estimates for both semidiscrete case, (see, Theorem 4.4.1) and

fully discrete case (see, Theorem 4.4.2). Moreover, we have derived error estimates for the

Lagrange multiplier. This plays a crucial role when we apply domain decomposition method

combined with mortar method. Note that, for the parabolic problems, we have only studied
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the case σ = 1, that is, when the method (5.1.4)-(5.1.5) is symmetric. For the unsymmetric

case, there are certain difficulties in deriving the error estimates. Computational results

are discussed at the end of Chapter 4. Compared to Chapter 3, in Chapter 4, we have

derived optimal order of convergence for ‖u− uh‖L2(Ω), that is of order O(h2) if the penalty

parameter is of order h.

5.2 Extensions and Future Problems

In this thesis, we have studied mortar element methods for second order elliptic boundary

value problems and parabolic initial boundary value problems in two dimensional cases.

The results, however, can be extended to problems in three space-dimensions by making

appropriate modifications. Mortar element methods for three dimensional problems have

been discussed and analyzed in [17, 30]. We can also extend it to non-selfadjoint elliptic

boundary value problems. In this thesis, we limit ourselves to h-version of finite element

methods. For p and hp-version of mortar finite element methods it may be of interest to

extend our results by following the analysis of [75, 76]. This may be taken up in future.

Since the mortar finite element method deals with the decomposition of computational

domain into a finite number subdomains, the matrix system arising from the discretization

(2.7.4)-(2.7.5) is a block matrix and is sparse locally, but the global matrix leads to a full

matrix. Therefore, it may be possible that the global matrix has a large condition number.

Our future plan is to construct suitable preconditioners for the linear system arising from

the mortar finite element method.

Except for [66] and references cited there, there is hardly any literature in the direction

of mortar finite element method for nonlinear problems. Marcinkowski [66] has analyzed the

mortar element method for the following quasilinear strongly monotone elliptic boundary

value problems:

−
2
∑

i=1

∂

∂xi
ai(x, u,∇u) + a0(x, u,∇u) = f in Ω, (5.2.1)

u = 0 on Γ, (5.2.2)

where Ω ⊂ IR2 is a bounded polygonal region with Lipschitz continuous boundary ∂Ω.
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Denoting ai(x, p0, p1, p2) = ai(x, u,
∂u
∂x1
, ∂v
∂x2

) and p = (p0, p1, p2), we assume that ai : Ω ×

IR3 → IR, i = 0, 1, 2 satisfy the following conditions: For some positive constants L, µ0,

ai ∈ C1(Ω × IR3), (5.2.3)

max{|ai(x, 0, 0, 0)|, |
∂ai
∂xk

(x, p)|, |
∂ai
∂pj

(x, p)|} ≤ L, for i, j = 0, 1, 2; k = 1, 2; (5.2.4)

2
∑

i,j=0

∂

∂pj
ai(x, p)ξiξj ≥ µ0

2
∑

i=1

|ξi|
2 (Uniform ellipticity). (5.2.5)

For the error analysis of mortar finite element method applied to (5.2.1)-(5.2.2), Marcinkowski

in [66] has used in a crucial way the strongly monotoneness and boundedness property of

the bilinear form associated with the elliptic operator.

To the best of our knowledge, there is hardly any result available in mortar element

methods for the following quasilinear elliptic boundary value problems of non-monotone

type:

−∇ · (a(u)∇u) = f in Ω, (5.2.6)

u = 0 on ∂Ω, (5.2.7)

where a : Ω×IR → IR is a smooth function bounded above and below by positive constants.

Here, a(u) = a(x, u(x)).

The mortar formulation for the problem (5.2.6)-(5.2.7) is given as: Find uh ∈ Vh such

that

a(uh; uh, vh) = l(vh) ∀ vh ∈ Vh, (5.2.8)

where

a(uh; vh, wh) =

K
∑

l=1

∫

Ωl

a(uhl
)∇vl,h · ∇wl,h dx,

and

l(vh) =

K
∑

l=1

∫

Ωl

fvh dx.
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It is, therefore, natural to discuss the wellposedness of the discrete problem (5.2.8) and also

to derive a priori error estimates.

Instead of imposing the mortar condition on the space, it is possible as in case of linear

problems to formulate a problem with Lagrange multiplier. The mortar finite element

method with Lagrange multiplier for the nonlinear problem is to seek (uh, λh) ∈ Xh ×Mh

such that

a(uh; uh, vh) + b(vh, λh) = l(vh) ∀vh ∈ Xh (5.2.9)

b(uh, µh) = 0 ∀µh ∈Mh, (5.2.10)

where

b(vh, µh) =
m0
∑

m=1

∫

γm⊂Γ

µh[[vh]]|γm
dτ,

and

l(vh) =

K
∑

l=1

∫

Ωl

fvh dx.

The main concern is how to prove the wellposedness of the problem (5.2.9)-(5.2.10).

Based on the idea of linearization, see [45], it may be possible to use fixed point arguments

to prove existence of a discrete solution and we shall take this up in future.

With the help of Taylor series expansion, from (5.2.6)-(5.2.7) and (5.2.8), we obtain

A(u; u− uh, vh) =

K
∑

l=1

∫

Ωl

[ãu(uh)(u− uh)∇(u− uh) · ∇vh

+ãuu(uh)(u− uh)
2∇u · ∇vh

]

dx +

m0
∑

m=1

∫

γm

a(u)
∂u

∂n
[[vh]]dτ ∀ vh ∈ Vh,

(5.2.11)

where

A(u; v, w) =

K
∑

l=1

∫

Ωl

[a(ul)∇vl · ∇wl + au(ul)∇ulv · ∇wl] dx,

a(v) − a(vh) = ãv(vh)(v − vh) = av(v)(v − vh) − ãvv(vh)(v − vh)
2,
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and

ãv(vh) =

∫ 1

0

av[v + t(vh − v)]dt, ãvv(vh) =

∫ 1

0

(1 − t)avv [v + t(vh − v)]dt.

Using (5.2.6)-(5.2.7) and (5.2.9)-(5.2.10), we rewrite

A(u; u− uh, vh) + b(vh, λ− λh) =

K
∑

l=1

∫

Ωl

[ãu(uh)(u− uh)∇(u− uh) · ∇vh

+ ãuu(uh)(u− uh)
2∇u · ∇vh]dx ∀vh ∈ Xh,

(5.2.12)

b(u− uh, µh) = 0 ∀ µh ∈Mh, (5.2.13)

where

b(vh, µh) = −
m0
∑

m=1

∫

γm

µh[[vh]]dτ.

With appropriate approximation ũh of u in Xh, the problem (5.2.12)-(5.2.13) can be written

as

A(u; ũh − uh, vh) + b(vh, λ− λh) = A(uh; ũh − u, vh)

+
K
∑

l=1

∫

Ωl

[ãu(uh)(u− uh)∇(u− uh) · ∇vh

+ ãuu(uh)(u− uh)
2∇u · ∇vh]dx ∀vh ∈ Xh,

(5.2.14)

b(ũh − uh, µh) = b(ũh − u, µh) ∀ µh ∈Mh. (5.2.15)

Now consider a map

Φ: Xh → Xh

defined by Φ(w) = z, where (z, ζ) is the (unique) solution of the system

A(u; ũh − z, vh) + b(vh, λ− ζ) = A(uh; ũh − u, vh)

+
K
∑

l=1

∫

Ωl

[ãu(w)(u− w)∇(u− w) · ∇vh

+ ãuu(w)(u− w)2∇u · ∇vh]dx ∀vh ∈ Xh,

(5.2.16)

b(ũh − w, µh) = b(ũh − u, µh) ∀ µh ∈Mh. (5.2.17)
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For given w ∈ Xh, the problem (5.2.16)-(5.2.17) is linear in z, the existence and uniqueness

of which follows for small h. Note that, here the existence of (uh, λh) ∈ Xh×Mh satisfying

(5.2.9)-(5.2.10) follows, if we can show that Φ has a fixed point in Xh. This can be ensured

by applying Brouwer fixed point theorem; that is, by proving that Φ is continuous and it

maps a closed bounded ball of Xh into itself. In future, we would like to pursue this theory

and discuss optimal error estimates in broken H1 and L2-norm. Extension of this analysis

to parabolic problem is left as a future problem.

In, this thesis, we have not discussed mixed methods combined with mortar element

method with and without Lagrange multipliers. Therefore, it may be desirable to explore

it further for nonlinear elliptic and parabolic problems.
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