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Abstract

In this dissertation, we have focused on nonoverlapping non-conforming domain decompo-

sition (DD) methods for second order elliptic and parabolic problems using both iterative

and non-iterative schemes. We have also analyzed iterative nonoverlapping DD methods for

elliptic problems using mixed finite element technique with a scope to apply it to parabolic

problems. In Chapter 2 of this thesis, we have discussed a DD method with Lagrange

multipliers for elliptic and parabolic problems. The key feature that we have adopted here

is the nonconforming Crouzeix-Raviart space for the discretization of the primal variable.

The emphasis throughout this study is on the existence and uniqueness of the approximate

solutions, and optimal order of estimates in the broken H1-norm and L2-norm. Further, we

have extended the DD method with Lagrange multipliers to parabolic problems. Optimal

error estimates for both semidiscrete and fully discrete schemes are proved. The results

of numerical experiments support the theoretical results which are derived in this chap-

ter. Chapter 3 deals with a nonoverlapping iterative DD method for elliptic and parabolic

problems. The iterative method has been defined with the help of Robin-type boundary

conditions on the artificial interfaces (inter-subdomain boundaries). A convergence analysis

is carried out and the convergence of the iterative algorithm is proved for the elliptic prob-

lems. In discrete case, the convergence of the iterative scheme is obtained by proving that

the spectral radius of the matrix associated with the fixed point iterations is less than one.

We have also derived the convergence rate which is shown to be of 1 - O(h1/2H−1/2), when

the winding number N is not large, H is the maximum diameter of the subdomains and

the transmission parameter is of O(h−1/2H−1/2). This is the best rate of convergence that

can be expected using this iterative procedure. Moreover, we have extended this iterative

method to parabolic initial-boundary value problems and demonstrated the convergence

of the iteration at each time step. Numerical experiments confirm the theoretical results

established in Chapter 3. In Chapter 4, we have analyzed an iterative scheme based on

mixed finite element methods using Robin-type boundary condition as transmission data

on the artificial interfaces (inter-subdomain boundaries) for nonoverlapping DD method



applied to second order elliptic problems. In this chapter, we have shown the convergence

of the iterative scheme for the discrete problem. In the convergence analysis, we have shown

that the spectral radius of the matrix associated with the fixed point iterations is less than

one. Further, it is shown that the spectral radius has a bound of the form 1 − C
√
hH? for

quasi-uniform partitions when the coefficients of the lower order term that is b in the elliptic

problem −∆u+ b u = f with non-homogeneous boundary condition is positive, where h is

the mesh size for triangulations and H? is the minimum diameter of the subdomains with

appropriate transmission parameter O(
√
h). Finally, the possible extensions with scope for

future investigations are discussed in the concluding Chapter.
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Chapter 1

Introduction

1.1 Motivation

With the widespread acceptance of distributed memory multiprocessing as a cost-

effective means of solving very large-scale problems in computational fluid dynamics (CFD)

and computational structural mechanics (CSM), many engineers and scientists are encour-

aged with their initial ports of CFD or CSM codes for parallel execution, and are interested

in learning whether applied mathematicians and computer scientists have anything to offer

as a next step. While parallelization at the level of large linear system of algebraic equa-

tions is one option, the Domain decomposition (DD) seems to be a more natural way of

parallelizing the algorithms and in this thesis, we explore some of the important roles that

remain to be played by DD methods.

DD is a class of methods for solving large linear or nonlinear systems of equations

arising from the discretization of partial differential equations by using numerical methods

such as finite element methods or finite difference schemes or finite volume methods to

obtain fast solutions. These methods are based on decomposing the physical domain into

regions, where a problem is modeled by separate partial differential equations (PDEs) with

suitable interface conditions between the sub-domains or by the same PDEs with natural

transmission conditions on the subdomain interfaces and then obtaining solution by solving

smaller problems on these subdomains. Due to the advancement in the high performance

computer architectures, these subproblems can be solved in parallel and, thereby, the so-

lution process has a considerable speed-up over traditional methods. Now-a-days, these

methods are becoming natural tools for solving problems in parallel specially in CSM and

1



Chapter 1. Domain Decomposition Methods 2

CFD. Therefore, DD methods turn out to be a subject of intense interest in scientific and

engineering computing, see DD Conference Proceedings [29, 73].

The domain can be decomposed into overlapping or nonoverlapping subregions. Some

of the attractive features of these methods include their efficient way of handling compli-

cated geometries in a simple manner, to deal with different type of equations in different

parts of the physical domain, and even to take advantage of the parallel processors in com-

putations. After decomposition, the elemental or subdomain problems can be decoupled

and solved in each sub-domain independently (to a great extent) except for a matching

step, which is necessary for obtaining a smooth global solution from different subdomain

solutions. The matching procedure requires communication between the sub-domains. The

local interaction is through the exchange of information between neighbouring subregions.

DD methods are becoming increasingly popular for solving elliptic and parabolic prob-

lems and these methods have been discussed at some length in the existing literature

[29, 30, 73, 110, 119, 125]. DD methods can often be viewed as preconditioners for iter-

ative methods like the conjugate gradient (CG) method and generalized minimal residual

(GMRES) method.

In this thesis, we first discuss non-iterative, nonoverlapping DD methods and non-

conforming finite element methods with Lagrange multipliers for elliptic and parabolic

problems. Then, we propose and analyze iterative nonoverlapping DD methods with Robin

type transmission conditions on the artificial interfaces between the subdomains.

1.2 Preliminaries

In this section, we discuss the standard Sobolev spaces with some properties which are used

in the sequel. Moreover, we appeal to some results which will be useful in the subsequent

chapters.

Let IR denote the set of all real numbers and IN denote the set of non-negative integers.

Define a multi-valued index α = (α1, α2, · · ·αd), αi ≥ 0, αi ∈ IN with |α| = α1+α2+· · ·+αd.

Let Ω denote an open bounded convex polygon or polyhedron in IRd, with d = 2 or 3, having

boundary ∂Ω. For 1 ≤ p <∞, let Lp(Ω) denote the real valued measurable functions v on
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Ω for which

∫

Ω

|v(x)|pdx ≤ ∞. The norm on Lp(Ω) is given by

‖v‖Lp(Ω) :=

(∫

Ω

|v(x)|pdx
)1/p

for 1 ≤ p <∞.

In addition, let L∞(Ω) denote the real valued measurable functions which are essentially

bounded in Ω and let its norm be given by

‖v‖L∞(Ω) := ess sup
x∈Ω

|v(x)|.

With H0(Ω) = L2(Ω) and for natural numbers m ≥ 1, let Hm(Ω) denote the standard

Hilbert Sobolev space of order m which is defined by

Hm(Ω) =
{
v ∈ L2(Ω) : ∂αv ∈ L2(Ω), |α| ≤ m

}
. (1.2.1)

Hm(Ω) is equipped with the seminorm and norm, respectively, defined by

|v|m,Ω =




∑

|α|=m

||∂αv||20,Ω





1/2

for all m ≥ 1, (1.2.2)

||v||m,Ω =




∑

|α|≤m

||∂αv||20,Ω





1/2

for all m ≥ 1, (1.2.3)

where ||v||0,Ω =

(∫

Ω

v2(x) dx

)1/2

denotes the norm in L2(Ω). For d ∈ IN the product

space (Hm(Ω) )d =
{
q = (qi)1≤i≤d : qi ∈ Hm(Ω) for all i = 1, . . . , d

}
is equipped with the

seminorm and norm, respectively, defined by

|q|m,Ω =

(
d∑

i=1

|qi|2m,Ω

)1/2

and ||q||m,Ω =

(
d∑

i=1

||qi||2m,Ω

)1/2

. (1.2.4)

For our subsequent use, we resort to the following notations. Let (a, b) be an interval with

−∞ < a ≤ b < ∞, and let X be a Banach space with norms ‖.‖X . For 1 ≤ p ≤ ∞, we

denote by Lp(a, b;X ) the space

Lp(a, b;X ) := {φ : (a, b) 7→ X | φ(t) is measurable in (a, b) and

∫ b

a

‖φ(t)‖p
X <∞}.
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It is equipped with the following norm for 1 ≤ p <∞

||φ||Lp(a,b;X ) =

(∫ b

a

||φ(t)||pX dt
)1/p

and for p = ∞,

‖φ‖L∞(a,b,X ) := ess sup
t∈(a,b)

‖φ(t)‖X .

When −∞ < a ≤ b <∞, the space

C([a, b];X ) := {φ : [a, b] 7→ X | φ is continuous in [a, b]}

is a Banach space equipped with the norm

‖φ‖C([a,b];X ) := max
t∈[a,b]

‖φ(t)‖X .

When the interval [a, b] is the time interval [0, T ], T > 0 fixed, we may conveniently use

Lp(X ) for Lp(a, b;X ) and C(X ) for C(0, T ;X ).

For our future use, we recall the following results.

Theorem 1.2.1 [22, Theorem 1.6.6, pp. 37] Let Ω be a bounded domain with Lipschitz

boundary ∂Ω. Then for 1 ≤ p ≤ ∞, there exists a constant C depending on Ω such that

||v||Lp(∂Ω) ≤ C ||v||1−1/p
Lp(Ω) ||v||

1/p

W 1,p(Ω) ∀ v ∈ W 1,p(Ω). (1.2.5)

We need Sobolev spaces on ∂Ω, or an open subspace of ∂Ω. We have an obvious definition

of boundary values, or trace, on ∂Ω, for functions in C∞(Ω̄). These maps can be generalized

to functions in H1(Ω) for a bounded Lipschitz region Ω; see Nečas [103].

Lemma 1.2.1 [103] (Trace and Extension theorem) Let Ω be a bounded domain with

Lipschitz boundary ∂Ω. The trace map Υ0 : v → v|∂Ω
, defined for C∞(Ω̄), has a unique

continuous extension from H1(Ω) onto H1/2(∂Ω). This operator has a right continuous

inverse.

As a consequence, we can easily show that the kernel Υ0 is H1
0 (Ω), i.e.,

H1
0 (Ω) =

{
v ∈ H1(Ω) : Υ0 v = 0 on ∂Ω

}
.



Chapter 1. Domain Decomposition Methods 5

We define the seminorm for the space H1/2(∂Ω) by

|µ|H1/2(∂Ω) = inf
v∈H1(Ω), Υ0 v=µ

|v|H1(Ω), (1.2.6)

and norm for the space H1/2(∂Ω) by

‖µ‖2
H1/2(∂Ω) = |µ|2H1/2(∂Ω) +

1

H
||µ||2L2(∂Ω), (1.2.7)

where H is the diameter of Ω. We now introduce spaces that will be used in the mixed

formulation of elliptic problems. We denote by H−1/2(∂Ω), the dual space of H1/2(∂Ω)

which is equipped with the norm

‖ϕ‖H−1/2(∂Ω) = sup
µ∈H1/2(∂Ω),µ6=0

| < ϕ, µ >∂Ω |
‖µ‖H1/2(∂Ω)

, (1.2.8)

where < ·, · >∂Ω denotes the duality pairing between H−1/2(∂Ω) and H1/2(∂Ω). With

Γ0 ⊂ ∂Ω, let ṽ be an extension of v ∈ H1/2(Γ0) by zero to all of ∂Ω. Then we set H
1/2
00 (Γ0),

a subspace of H1/2(Γ0) as

H
1/2
00 (Γ0) = {v ∈ H1/2(Γ0) : ṽ ∈ H1/2(∂Ω)}.

The norm in H
1/2
00 (Γ0) is defined by

‖g‖
H

1/2

00
(Γ0)

= inf
v∈H1

0
(Γ0),v|Γ0

=g
‖v‖H1(Ω). (1.2.9)

Note that H
1/2
00 (Γ0) is strictly contained in H1/2(Γ0) and also continuously embedded in

H1/2(Γ0). For a more detailed discussion of trace spaces; cf. Grisvard [75] or Lions and

Magenes [93]. The space H(div; Ω) is defined by

H(div; Ω) =

{

q = (qi)1≤i≤d ∈ (L2(Ω))d : divq =
d∑

i=1

∂qi
∂xi

∈ L2(Ω)

}

, (1.2.10)

and is a Hilbert space with norm

||q||H(div;Ω) =
{
||q||20,Ω + ||divq||20,Ω

}1/2
. (1.2.11)
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Lemma 1.2.2 [114, Theorem 1.2, pp. 1.05] (Trace and Extension theorems for

H(div; Ω)) The mapping q → q · ν defined from (H1(Ω))d into L2(∂Ω) can be extended

to a continuous, linear mapping from H(div; Ω) onto H−1/2(∂Ω). Further, we have the

following characterization of the norm on H−1/2(∂Ω) :

||µ||H−1/2(∂Ω) = inf
q∈H(div;Ω);q·ν=µ

||q||H(div;Ω). (1.2.12)

We also define the space

H(div; Ω) =
{
q ∈ H(div; Ω) : q · ν ∈ L2(∂Ω)

}
(1.2.13)

which is a Hilbert space with norm

||q||H(div;Ω) =
{
||q||2H(div;Ω) + ||q · ν||20,∂Ω

}1/2
. (1.2.14)

We shall make use of the following version of the Green’s formula : For v ∈ H 1(Ω) and q ∈
H(div; Ω)

∫

Ω

(v divq + grad v · q) dx =

∫

∂Ω

v q · ν ds. (1.2.15)

Lemma 1.2.3 [105] (Friedrich’s’ inequality) Let Ω be a bounded domain in IRd. Then

there exists a positive constant C depending on Ω such that for v ∈ H 1
0 (Ω)

||v||H1(Ω) ≤ C |v|H1(Ω). (1.2.16)

Lemma 1.2.4 [64, 103, 105] (Poincaré’s inequality) Let Ω be a bounded domain in IRd.

Then there exists a positive constant C depending on Ω such that for v ∈ H 1(Ω)

||v||2H1(Ω) ≤ C

{

|v|2H1(Ω) +
1

H2+d

(∫

Ω

v dx

)2
}

. (1.2.17)

where H is the diameter of Ω.

Lemma 1.2.5 [103] (Poincaré-Friedrich’s inequality) Let Γ0 be an open subset of ∂Ω

with positive measure. Then there exists a positive constant C depending on Ω and Γ0 such

that

||v||2H1(Ω) ≤ C

{

|v|2H1(Ω) +
1

H

∫

Γ0

v2 ds

}

∀ v ∈ H1(Ω), (1.2.18)

where H is the diameter of Ω.
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1.2.1 Triangulation and its properties

Let Ω be a bounded convex polygon or polyhedron in IRd, d = 2 or 3, with boundary ∂Ω.

Let Th be a regular triangulation of Ω̄ [34] into triangles for d = 2, tetrahedrons for d = 3

satisfying

T ⊂ Ω̄, ∀T ∈ Th, Ω̄ =
⋃

T∈Th

T.

The boundary of T will be denoted by ∂T , T ′ will be an edge of T when d = 2, a triangular

face when d = 3. We also use the following notations :

|T | = meas (T ), that is, the Euclidean measure of T in IRd

(geometric area if d = 2, geometric volume if d = 3),

hT = the diameter of T,

ρT = the radius of the circle inscribed in T if d = 2, of the

sphere inscribed in T if d = 3,

(1.2.19)

and

h = max
T∈Th

hT .

Definition 1.2.1 [62] (Shape-regularity) A family of meshes {Th}h>0 is said to be shape

regular if there exists σ0 such that

σT =
hT

ρT

≤ σ0 ∀ h, ∀T ∈ Th.

Definition 1.2.2 [62] (Quasi-uniformity) A family of meshes {Th}h>0 is said to be quasi

uniform if and only if it is shape-regular and there exists σ1 such that

hT ≥ σ1 h ∀ h, ∀T ∈ Th.

Remark 1.2.1 (i) Let T be a triangle and denote by θT the smallest of its angles. One

readily sees that

hT

ρT

≤ 2

sin θT

.
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Therefore, in a shape-regular family of triangulations, the triangles cannot become too flat

as h→ 0.

(ii) In dimension 1, hT = ρT , hence, any mesh family is shape-regular.

(iii) A necessary and sufficient condition for quasi-uniformity is that there exists τ0 such

that ρT ≥ τ0 h for all h and T ∈ Th. Indeed, if {Th}h>0 satisfies the above property, then
hT

ρT
≤ τ0

−1hT

h
≤ τ0

−1 for all h and T ∈ Th, thus showing that the family {Th}h>0 is shape-

regular. Furthermore, hT ≥ ρT ≥ τ0 h implies hT ≥ σ1 h. Conversely, if {Th}h>0 is a

quasi-uniform mesh family, ρT ≥ 1

σ0
hT ≥ σ1

ρT
h for all h > 0 and T ∈ Th.

Lemma 1.2.6 [114, Theorem 1.3, pp. 1.06] Let Th be such a decomposition of Ω̄ with

Ω̄ =
⋃

T∈Th

T . A function v ∈ L2(Ω), whose restriction v|T may be identified with a function

vT ∈ H1(T ) for each T ∈ Th, belongs to H1(Ω) if and only if for each interface T ′ = T1∩T2

with T1, T2 ∈ Th, the traces of vT1
and of vT2

on T ′ coincide:

vT1 |T ′
= vT2 |T ′

for all T ′ = T1 ∩ T2 with T1, T2 ∈ Th. (1.2.20)

Similarly a function q ∈ (L2(Ω))d, whose restriction q
|T

may be identified with a function

q ∈ H(div;T ) for T ∈ Th, belongs to H(div; Ω) if and only if for each interface T ′ = T1∩T2

with T1, T2 ∈ Th, the normal trace of q
|T1

coincides with the negative of that of q
|T2

:

q
|T1

· νT1

|T ′

+ q
|T2

· νT2

|T ′

= 0 for all T ′ = T1 ∩ T2 with T1, T2 ∈ Th, (1.2.21)

where νT is the unit exterior normal vector to ∂T .

Lemma 1.2.7 [62, Lemma 3.32, pp. 128] Let {Th}h>0 be a shape-regular family of ge-

ometrically conformal affine meshes. Let m ≥ 1 be a fixed integer. For T ∈ Th, let

ψ ∈ (H1(T ))m, and for a face T ′ ∈ ∂T , set ψ =
1

meas(T ′)

∫

T ′

ψ dx. Then, there exists C

independent of hT such that for vh ∈ X̄h and T ′ ∈ ∂T with T ∈ Th

||ψ − ψ||0,T ′ ≤ C h
1/2
T |ψ|1,T , (1.2.22)

where X̄h is the nonconforming Crouzeix-Raviart space (cf. [39]).
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1.2.2 Some results from functional analysis

We need some well known results from functional analysis, which we state without proof

in this subsection.

Definition 1.2.3 Let û be the finite element solution and uk be the solution at the kth

iterative step respectively. If

||uk − û|| ≤ CLk||u0 − û||, (1.2.23)

L ∈ [0, 1), and C is independent of k, then uk is said to converge to u with the convergence

rate L.

Lemma 1.2.8 (Hölder Inequality) Let 1 < p < ∞ and q satisfy 1/p + 1/q = 1. If

v ∈ Lp(Ω), w ∈ Lq(Ω), then vw ∈ L1(Ω) and
∫

Ω

|v(x)w(x)| dx ≤ ‖v‖Lp(Ω)‖w‖Lq(Ω). (1.2.24)

Lemma 1.2.9 (Young’s Inequality) Let a and b be two positive real numbers, then the

following inequality holds for all ε > 0

a b ≤ ε

2
a2 +

1

2ε
b2. (1.2.25)

Lemma 1.2.10 (Cauchy-Schwarz Inequality) Let 1 ≤ p, q < ∞ and 1/p + 1/q = 1.

Suppose that {ai} and {bi} are two sequences of N positive real numbers. Then

(
N∑

i=1

ai bi

)

≤
(

N∑

i=1

ap
i

)1/p( N∑

i=1

bqi

)1/q

. (1.2.26)

Now we introduce the spectral radius formula, the complexification of real linear space as

well as real linear operators.

Let η1, η2, · · · , ηs be the (real or complex) eigenvalues of a matrix A. Then its spectral

radius ρ(A) is defined as:

ρ(A) := max
1≤i≤s

(|ηi|). (1.2.27)

Below, we state a lemma without proof which provides a useful upper bound for the spectral

radius of a matrix.
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Lemma 1.2.11 Let A ∈ Cn×n be a complex-valued matrix and ρ(A) be its spectral radius.

For a consistent matrix norm || · || and for k ∈ N,

ρ(A) ≤ ‖Ak‖1/k ∀ k ∈ N. (1.2.28)

Theorem 1.2.2 [35] Let A ∈ C
n×n be a complex-valued matrix and ρ(A) be its spectral

radius. Then

lim
k→∞

Ak = 0 if and only if ρ(A) < 1. (1.2.29)

Moreover, if ρ(A) > 1, ‖Ak‖ is not bounded for increasing k values.

Theorem 1.2.3 [89, Theorem 12.8, pp. 209] (Spectral radius formula) Let V be a

Banach space over C and A be a complex linear bounded operator on V to itself. Then

ρ(A) = inf
k=1,2,···

||Ak||1/k = lim
k→∞

||Ak||1/k. (1.2.30)

Now, we are in a position to construct the complexification of a real linear space. The

construction is based on the construction of a complex number field by a real number field.

Definition 1.2.4 Suppose V is a real n dimensional linear space; we call the tensor prod-

uct space C ⊗ V the complexification of V , where C is the complex number field or one

dimensional complex linear space. In other words, C⊗V is a complex n dimensional space

such that

C ⊗ V =
{

x +
√

(−1) y | x, y ∈ V
}

.

Note that C⊗V is equipped with the following addition and scalar multiplication properties:

(x1 +
√

(−1)y1) + (x2 +
√

(−1)y2) = (x1 + x2) +
√

(−1)(y1 + y2),

(a+
√

(−1)b)(x +
√

(−1)y) = (ax− by) +
√

(−1)(bx + ay), a+
√

(−1)b ∈ C.

Lemma 1.2.12 Suppose V is a real linear space equipped with inner product 〈·, ·〉; then we

can define an inner product on C ⊗ V as

〈x1 +
√

(−1)y1, x2 +
√

(−1)y2〉 = 〈x1, x2〉 + 〈y1, y2〉 −
√

(−1)〈x1, y2〉 +
√

(−1)〈y1, x2〉.

Moreover, if || · || is the norm induced by the inner product, then

||x+
√

(−1)y||2 = ||x||2 + ||y||2. (1.2.31)
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Definition 1.2.5 If V is a real linear space and A is a real linear operator of V , we define

a complex linear operator 1 ⊗ A of C ⊗ V by

1 ⊗ A(x +
√

(−1)y) = Ax+
√

(−1)Ay.

We call 1 ⊗ A the complexification of A. For convenience, we also denote 1 ⊗ A by Ā.

Lemma 1.2.13 [109] If V is a real linear space and A1, A2 are real linear operators of V ,

then

(1 ⊗ A1)(1 ⊗ A2) = 1 ⊗ (A1A2). (1.2.32)

In particular,

1 ⊗ (Ak) = (1 ⊗ A)k, (1.2.33)

we denote 1 ⊗ (Ak) or (1 ⊗ A)k by Āk.

Proof. Using definition, we observe that

(1 ⊗ A1)(1 ⊗ A2)(x+
√

(−1)y) = (1 ⊗ A1)(A2x +
√

(−1)A2y)

= A1A2x+
√

(−1)A1A2y

= 1 ⊗ (A1A2)(x +
√

(−1)y).

This completes the rest of the proof.

Lemma 1.2.14 [109] Let V be a finite dimensional real linear space equipped with an

inner-product, and A be a real linear operator on V into itself. Then

||Ā|| = ||A||. (1.2.34)

From time to time, we shall use c and C as generic positive constants which do not depend

on the discretizing parameters.

1.3 Literature review

Due to the advancement of high speed computers, more attention has been paid to

the development of parallel algorithms on massively parallel machines in the last two to
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three decades. Since DD algorithms help to solve many large scale problems efficiently,

which otherwise would be difficult to solve numerically, in the recent past, a large num-

ber of articles are devoted to this area. In an early survey article by Chan and Mathew

[30], a systematic survey on various DD methods applied to different problems has been

presented. In a review article, Xu [128] has discussed the motivation in developing the

iterative methods by using the notions of sub-space decomposition and sub-space correc-

tions. Subsequently, a detailed survey article has been written by Xu and Zou [129] on

nonoverlapping DD methods which are based on the substructuring-type schemes and the

Neumann-Neumann-type methods.

In recent years, DD methods have attracted much attention due to their successful

application to many elliptic and parabolic problems. In DD methods, the PDE or its

approximation is split into coupled problems on smaller overlapping or non-overlapping

sub-domains which form a partition of the original domain. In this thesis, we consider

only the case of non-overlapping sub-domains. However, there is a good deal of literature

available on overlapping DD methods and we refer the reader to the survey articles [30]

and the references, therein.

When the original domain is decomposed into subdomains, the transmission conditions

come into picture on the inter-subdomain boundaries. The matching conditions of the

solution or the normal derivatives of the solution on the artificial boundary are expressed

in terms of Lagrange multipliers. Once the values of the solution or its normal derivatives

on the subdomain interfaces are available, then the problem can be solved in parallel in

each subdomain. Depending on how we achieve an approximation of the solution or its

normal derivatives on the interfaces, the DD methods can be categorized under iterative

and non-iterative schemes.
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1.3.1 Non-iterative non-overlapping domain decomposition meth-

ods

In order to define non-iterative non-overlapping DD methods, we consider the following

model problem:






−∆u + b(x) u = f ∀ x ∈ Ω,

u = 0 ∀ x ∈ ∂Ω,
(1.3.1)

where Ω is in bounded domain in IRd (d = 2, 3), with sufficiently smooth boundary ∂Ω, f

is a given function in L2(Ω) and b(x) ≥ 0. For the multi-domain formulation, let us assume

that Ω is divided into two non-overlapping subdomains Ω1 and Ω2 with Ω = Ω1 ∪Ω2 and

interface Γ = ∂Ω1 ∩ ∂Ω2. Now we split the original problem (1.3.1) to a problem in the

multi-domain framework. Find u1, u2 such that:






−∆ui + b ui = f in Ωi

ui = 0 on ∂Ωi ∩ ∂Ω
u1 = u2 on Γ

∂u1

∂ν
=
∂u2

∂ν
on Γ.

(1.3.2)

Here ui, i = 1, 2 are the restrictions of the solution u of original the problem to Ωi, i = 1, 2

(that is ui = u|Ωi
, i = 1, 2) and νi is the unit outward normal to ∂Ωi∩Γ (oriented outward)

and ν = ν1. The equations (1.3.2)3 and (1.3.2)4 are the transmission conditions for u1 and

u2 on Γ.

The variational formulation (see, [110, Sect. 1.2]) for the multi-domain problem (1.3.2)

is: find u1 ∈ V1, u2 ∈ V2 such that






ai(ui, vi) + (b ui, vi) = (f, vi) ∀ vi ∈ V 0
i

u1 = u2 on Γ

a2(u2, R2µ) + (b u2, R2µ)Ω2
= (f, R2µ)Ω2

+ (f, R1µ)Ω1

−a1(u1, R1µ) − (b u1, R1µ)Ω1
∀ µ ∈ Ξ,

(1.3.3)

where (wi, vi)Ωi
=

∫

Ωi

wivi dx, ai(wi, vi) =

∫

Ωi

∇wi·∇vi dx, Vi = {vi ∈ H1(Ωi) | vi|∂Ω = 0},

V 0
i = H1

0 (Ω), Ξ = {η ∈ H1/2(Γ) | η = v|Γ for a suitable v ∈ V } and Ri (i = 1, 2) denotes

any possible extension operator from Ξ to Vi.
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We now introduce the following multi-domain finite element approximation of (1.3.2).

Let Vh denote a finite dimensional subspace of H1
0 (Ω) defined by

Vh =
{
vh | vh ∈ C0(Ω̄), vh|T ∈ Pr(T ) ∀T ∈ Th, r ≥ 1

}
.

Set Vi,h = {vh|Ωi
: vh ∈ Vh}, V 0

i,h = {vh ∈ Vi,h : vh|Γ
= 0} and Ξh = {vh|Γ

: vh ∈ Vh}.
The multi-domain finite element approximation to (1.3.3) is to seek ui,h ∈ Vi,h, i = 1, 2

such that

ai(ui,h, vi,h) + (b ui,h, vi,h)Ωi
= (f, vi,h)Ωi

∀ vi,h ∈ V 0
i,h, i = 1, 2, (1.3.4)

u1,h = u2,h on Γ, (1.3.5)

a2(u2,h, R2,hµh) + (b u2,h, R2,hµh)Ω2
= (f, R1,hµh)Ω1

+ (f, R2,hµh)Ω2

−a1(u1,h, R1,hµh) − (b u1,h, R1,hµh)Ω1
∀ µh ∈ Ξh, (1.3.6)

where

Ri,hµh =







µh on Γ

0 at other nodes of Ωi.

To write (1.3.4)-(1.3.6) in vector matrix form, let {φi}N1

i=1 and {χi}N2

i=1, respectively,

be bases for V 0
1,h and V 0

2,h. Further, let {φi}N1

i=1 ∪ {ψi}NΓ

i=1 and {χi}N2

i=1 ∪ {ψi}NΓ

i=1 be bases

for V1,h and V2,h, respectively. Here N1, N2 and NΓ are the dimensions of the spaces

V 0
1,h, V

0
2,h and Ξh, respectively. Setting

u1,h =

N1∑

i=1

αi φi +

NΓ∑

j=1

λj ψj, u2,h =

N2∑

m=1

βm χm +

NΓ∑

j=1

λj ψj,

in ( 1.3.4), ( 1.3.5), ( 1.3.6), we arrive at

(A11)N1×N1
(U1)N1×1 + (A1Γ)N1×NΓ

(UΓ)NΓ×1 = (f1)N1×1, (1.3.7)

(A22)N2×N2
(U2)N2×1 + (A2Γ)N2×NΓ

(UΓ)NΓ×1 = (f2)N2×1, (1.3.8)

(AΓ1)NΓ×N1
(U1)N1×1 + (AΓ2)NΓ×N2

(U2)N2×1 + (AΓΓ)NΓ×NΓ
(UΓ)NΓ×1 = (fΓ)NΓ×1,

(1.3.9)

where (A11)N1×N1
= (a1(φi, φj) + (b φi, φj)), 1 ≤ i, j ≤ N1, (A22)N2×N2

= (a2(χi, χj) +

(b χi, χj)), 1 ≤ i, j ≤ N2, (AΓΓ)NΓ×NΓ
= (a1(ψi, ψj)+(b ψi, ψj))+(a2(ψi, ψj)+(b ψi, ψj)), 1 ≤
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i, j ≤ NΓ, (A1Γ)N1×NΓ
= (a1(ψi, φj) + (b ψi, φj)), 1 ≤ i ≤ NΓ, 1 ≤ j ≤ N1, (A2Γ)N2×NΓ

=

(a2(ψi, χj) + (b ψi, χj)), 1 ≤ i ≤ NΓ, 1 ≤ j ≤ N2, while (AΓi) denotes the transpose

of (AiΓ), i = 1, 2, ai(·, ·) is the restriction of the bilinear form a(·, ·) to Ωi, (f1)N1×1 =

(f, φi), 1 ≤ i ≤ N1, (f2)N2×1 = (f, χi), 1 ≤ i ≤ N2, (fΓ)NΓ×1 = (f, ψi), 1 ≤ i ≤ NΓ. Also,






(AΓΓ)NΓ×NΓ
= (A

(1)
ΓΓ)NΓ×NΓ

+ (A
(2)
ΓΓ)NΓ×NΓ

,

(fΓ)NΓ×1 = (f
(1)
Γ )NΓ×1 + (f

(2)
Γ )NΓ×1, (UΓ)NΓ×1 = (U

(1)
Γ )NΓ×1 + (U

(2)
Γ )NΓ×1,

where A
(i)
ΓΓ, U

(i)
Γ and f

(i)
Γ denotes the contribution from the sub-domains Ωi, i = 1, 2.

From (1.3.7) and (1.3.8),

A11U1 + A1ΓUΓ = f1 ⇒ U1 = A−1
11 ( f1 − A1ΓUΓ) (1.3.10)

and

A22U2 + A2ΓUΓ = f2 ⇒ U2 = A−1
22 ( f2 − A2ΓUΓ). (1.3.11)

Substituting U1 and U2 from (1.3.10) and (1.3.11) in (1.3.9), we obtain

Σh UΓ = χΓ, (1.3.12)

where

χΓ = fΓ − AΓ1A
−1
11 f1 − AΓ2A

−1
22 f2 (1.3.13)

and

Σh = AΓΓ − AΓ1A
−1
11 A1Γ − AΓ2A

−1
22 A2Γ. (1.3.14)

The system (1.3.12) is called the Schur complement system and the matrix Σh is called

the Schur complement matrix. However, the matrix Σh is a full matrix and is ill-

conditioned. Its spectral condition number is of order 1/h for triangulations of characteristic

mesh size h, see [110, Eqn. 2.3.13, pp. 51]. Compared to the the finite element stiffness

matrix A for a second order problem, the condition number of matrix Σh is of order 1/h

where the condition number of the matrix A is of order 1/h2. For more detailed analysis

and references, we refer to [110, 125]. Therefore, it is a common practice to solve the Schur

complement system (1.3.12) iteratively via preconditioned CG methods.
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In the next subsection, we are going to introduce iterative substructuring methods

for the the elliptic problem (1.3.1). For finding the preconditioner for the matrix Σh in

the system (1.3.12), we need to define Steklov-Poincaré operator, which may also be

obtained directly from the interface relationship (1.3.2)4. DD methods depend on the

interface equation which is associated with the given problem. This interface problem can

be defined in terms of Steklov-Poincaré operator that we are going to introduce below. Let

ϑ be the unknown value of u on Γ and we consider the following two Dirichlet problems:

For i = 1, 2, find wi such that







−∆wi + b wi = f in Ωi

wi = 0 on ∂Ωi ∩ ∂Ω
wi = ϑ on Γ.

(1.3.15)

Since ∆ operator is linear, we can split the above problem into two problems as follows.

Find uo
i (i = 1, 2) such that







−∆uo
i + b uo

i = 0 in Ωi

uo
i = 0 on ∂Ωi ∩ ∂Ω
uo

i = ϑ on Γ

(1.3.16)

and find u∗i (i = 1, 2) such that







−∆u?
i + b u?

i = f in Ωi

u?
i = 0 on ∂Ωi ∩ ∂Ω
u?

i = 0 on Γ

(1.3.17)

Then wi = uo
i + u?

i (i = 1, 2). For each i = 1, 2, uo
i is the harmonic extension of ϑ

into Ωi and is denoted by Hiϑ. Since (−∆ + b I) is invertible, we set u?
i = Gif , where

Gi = (−∆+ b I)−1. Now comparing (1.3.2) and (1.3.15), we obtain wi = ui, i = 1, 2, if and

only if
∂w1

∂ν
=
∂w2

∂ν
on Γ. Since

∂w1

∂ν
=
∂w2

∂ν
on Γ, using the definition of wi, we find that

∂uo
1

∂ν
− ∂uo

2

∂ν
=
∂u?

2

∂ν
− ∂u?

1

∂ν
on Γ. As uo

i is the harmonic extension of ϑ into Ωi, we obtain

∂(H1ϑ)

∂ν
− ∂(H2ϑ)

∂ν
=
∂(G2f)

∂ν
− ∂(G1f)

∂ν
on Γ.
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Setting the Steklov-Poincaré operator as

Sη =
∂(H1ϑ)

∂ν
− ∂(H2ϑ)

∂ν
=

2∑

i=1

∂(Hiη)

∂νi
,

we now arrive at

Sϑ = χ on Γ, (1.3.18)

where

χ =
∂(G2f)

∂ν
− ∂(G1f)

∂ν
= −

2∑

i=1

∂(Gif)

∂νi
.

The equation ( 1.3.18) is the Steklov-Poincaré interface equation. In particular, we

split S as

S = S1 + S2, where Siη =
∂(Hiη)

∂νi
, i = 1, 2.

The variational formulation corresponding to (1.3.18) is given as follows: Find ϑ ∈ Ξ such

that

〈Sϑ, µ〉 = 〈χ, µ〉 ∀µ ∈ Ξ. (1.3.19)

The functions uo
i = Hiϑ (i = 1, 2) and u∗i = Gif (i = 1, 2) introduced in (1.3.16) and

(1.3.17) are, respectively, the solutions to the following variational problems:






Find Hiϑ ∈ Vi such that

ai(Hiϑ, vi) + (bHiϑ, vi)Ωi
= 0 ∀vi ∈ V 0

i ,

Hiϑ = ϑ on Γ

(1.3.20)

and






find Gif ∈ V 0
i such that

ai(Gif, vi) + (bGif, vi)Ωi
= (f, vi)Ωi

∀vi ∈ V 0
i .

(1.3.21)

Note that the variational form of the Steklov-Poincaré equation can be obtained directly

from the interface relation (1.3.3)3. The corresponding finite element approximation of the

the Steklov-Poincaré operator can be stated as follows:






Find Hi,hηh ∈ Vi,h such that

ai(Hi,hηh, vi,h) + (Hi,hηh, vi,h) = 0 ∀ vi,h ∈ V 0
i,h,

Hi,hηh|Γ
= ηh on Γ

(1.3.22)
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and






find Gi,hf ∈ V 0
i,h such that

ai(Gi,hf, vi,h) + (Gi,hf, vi,h) = (f, vi,h) ∀ vi,h ∈ V 0
i,h.

(1.3.23)

Then find ϑh ∈ Ξh an approximation of ϑ such that

Shϑh = χh on Γ, (1.3.24)

where

χh = −
2∑

i=1

∂(Gi,hf)

∂νi
, Shηh =

2∑

i=1

Si,hηh, Si,hηh =
∂(Hi,hηh)

∂νi
∀ ηh ∈ Ξh. (1.3.25)

In variational form, we rewrite (1.3.24) as

〈Shηh, µh〉 = 〈χh, µh〉 ∀ µh ∈ Ξh, (1.3.26)

where

〈Shηh, µh〉 =

2∑

i=1

{ai(Hi,hηh, Ri,hµh) + (bHi,hηh, Ri,hµh)}

=

2∑

i=1

{ai(Hi,hηh, Hi,hµh) + (bHi,hηh, Hi,hµh)} =

2∑

i=1

〈Si,hηh, µh〉

and

〈χhηh, µh〉 =

2∑

i=1

[(f, Ri,hµh) − {ai(Gi,hf, Ri,hµh) + (bGi,hf, Ri,hµh)}] ∀ ηh, µh ∈ Ξh.

Here Ri,h, i = 1, 2, is any extension operator from Ξh into Vi,h. Similarly, we obtain a

matrix Σh which is precisely the algebraic counterpart of the discrete Steklov-Poincaré

operator Sh as

[ Σhηh, µh ] = 〈Shηh, µh〉 ∀ηh, µh ∈ Ξh, (1.3.27)

where [·, ·] is the Euclidean scalar product in <NΓ and for each µh ∈ Ξh, µh denotes the set

of its values at the nodes on Γ. For i = 1, 2, we define Σi,h as

[ Σi,hηh, µh ] = 〈Si,hηh, µh〉 ∀ηh, µh ∈ Ξh. (1.3.28)
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The above results are discussed in [110].

Another approach called Lagrange multiplier based approach is also used in the liter-

ature [48, 123]. In Lagrange multiplier approach, we obtain solution as well as its normal

derivate on the subdomain interfaces. Through this approach it is possible to relax the con-

tinuity conditions at the interfaces of the subdomains. Lagrange multiplier based framework

can be defined in terms of Steklov-Poincaré operator that we are going to introduce below.

Let γi be the trace operator mapping functions in H1
Γ(Ωi) = Vi, i = 1, 2 to their traces in

Γ. Let H
1/2
00 (Γ) be the fractional order Sobolev space on Γ consisting of traces of functions

in H1
Γ(Ωi) and let (H

1/2
00 (Γ))′ denote its dual. Using the continuity of fluxes, we will split

the problem into two subproblems for i = 1, 2 such that






−∆ui + b ui = f in Ωi

ui = 0 on ∂Ωi ∩ ∂Ωi

∇ui · ν = (−1)i+1λ on Γ.

(1.3.29)

The vector ν is the outward normal to Γ oriented, from Ω1 to Ω2. The weak formulation

corresponding to the problems (1.3.29) is to find ui ∈ H1
Γ(Ωi), i = 1, 2 such that

ai(ui, vi) + (b ui, vi)Ωi
= 〈λ, vi〉Γ + (fi, vi)Ωi

, ∀ vi ∈ H1
Γ(Ωi). (1.3.30)

Here, we first reduce the problem to a problem on the subdomain interface using Steklov-

Poincaré operators. For the unknown Neumann data λ on Γ, we define the Steklov-Poincaré

operators S?
i : (H

1/2
00 (Γ))′ → H

1/2
00 (Γ), i = 1, 2 by

S?
i λ = γiui, (1.3.31)

where λ ∈ (H
1/2
00 (Γ))′ and ui is the solution of (1.3.30) with fi = 0. Here ui is the harmonic

function satisfying the Neumann condition given by λ. In other words, the Steklov-Poincaré

operator maps the Neumann boundary condition into the corresponding Dirichlet boundary

condition as :

S?
i :

∂ui

∂ν
→ γiui. (1.3.32)

Furthermore, we define G?
i : (H1

Γ(Ωi))
′ → H

1/2
00 (Γ), i = 1, 2 by the equation

G?
i fi = γiui, (1.3.33)
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where fi ∈ L2(Ωi), ui is the solution of (1.3.30) with λ = 0. In terms of the Steklov-Poincaré

operators, the problem is to find the solution λ such that

(S?
1 + S?

2)λ = G?
2f2 −G?

1f1, (1.3.34)

that is to find the Neumann data λ on Γ such that the traces of the solutions ui, i = 1, 2

of (1.3.30) coincide on Γ.

The standard finite element method with Lagrange multipliers was first introduced by

Babuška in [6] for second order elliptic problems with Dirichlet boundary conditions. He

further showed that an application of Lagrange multipliers would avoid the difficulty in

fulfilling essential boundary conditions on the finite element spaces. In the primal hybrid

finite element method of Raviart and Thomas [112] the usefulness of Lagrange multipliers

which approximate normal derivatives on the boundary of each finite element is shown.

Subsequently, Bramble [17] has reformulated the Lagrange multiplier method of Babuška

[6], and discussed estimates for the solution and the boundary flux.

The Lagrange multiplier approach to enforce the continuity of the solution is linked to

interface formulation using Poincaré-Steklov operators in the DD context by Dorr [48]. This

Lagrange multiplier technique consists in relaxing the continuity conditions at the corners of

the subdomains and gives a saddle-point problem without Lagrange multipliers associated

with vertices, where the normal derivative may not be well defined as the normal vector field

is discontinuous at these points. He has used the Lagrange formulation to introduce finite

element spaces of smaller dimension on the interfaces for regular meshes. This can reduce

the size of the problem substantially, but it is restricted to regular meshes. Swann [123] has

used cell discretization method in his analysis. In his approach, the domain of a problem

is partitioned into cells; approximations are made on each cell, and the approximations

are forced to be weakly continuous across the boundaries of each cell by using Lagrange

multipliers. The only requirement for convergence of this method, which is referred to as

moment collocation is that the basis functions on each cell constitute a Schauder basis in

an appropriate space. The finite element tearing and interconnecting (FETI) method is an

iterative substructuring method using Lagrange multipliers to enforce the continuity of the

finite element solution across the subdomain interface, see [63, 96]. Exploiting the structure

of the Lagrange multipliers, Belgacem [11] has analyzed the mortar element method with
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Lagrange multiplier by setting it under the frame work of a primal hybrid formulation.

A basic requirement for the Lagrange multiplier method is to construct multiplier spaces

which satisfy certain criteria known as the inf-sup properties for the scheme to be stable.

To achieve stability of the corresponding Lagrange multiplier scheme, we need to choose

the multiplier space appropriately so that the discrete spaces for the primal variable and

the multiplier satisfy the inf-sup condition, also known as the Ladyzhenskaya-Babus̆ka-

Brezzi (LBB) condition. When the Lagrange multiplier is used to relax the mortaring

condition on the finite element spaces, the corresponding discrete formulation gives rise

to an indefinite system. The mortar element method using dual spaces for the Lagrange

multipliers has been studied in [126]. The Lagrange multiplier space is replaced by a dual

space without losing the optimality of the method. The advantage of this approach is that

all the basis functions are locally supported. Compared to the standard mortar method

where a linear system of equations for the mortar projection must be solved; in this case

the matrix associated with mortar is represented by a diagonal matrix. In [88], Lamichhane

and Wohlmuth extended the mortar finite elements with Lagrange multipliers to elliptic

interface problems. Many natural and convenient choices of these spaces are ruled out

as these spaces do not satisfy the inf-sup condition. In order to alleviate this problem,

stabilized multiplier techniques or Nitsche’s method [120] is used. In this method, the

original bilinear forms of the problem are modified by adding suitable stabilized terms in

order to improve stability without compromising on the consistency of the method. We

refer to [7, 9, 10] for the various penalty methods applied to elliptic problems and discuss

how to circumvent the inf-sup condition in order to achieve the consistency and stability

of the methods. The drawback of most of the stabilized methods is that they use jump in

the primal variables as one of stabilized term across the subdomain interfaces. To mitigate

this problem, Hansbo et al. [80] have proposed a stabilization method which avoids the

cumbersome integration of products of unrelated mesh functions.

Another approach based on the balancing DD algorithm uses solution of local problems

on the subdomains in each iteration coupled with a coarse problem that is used to propagate

the error globally and to guarantee that the possibly singular local problems are consistent.

The abstract theory introduced in [94] is used to develop bound on the condition numbers
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for conforming linear elements in two and three dimensions. It is to be observed that the

balancing DD algorithm is known as the Neumann-Neumann algorithm for non-overlapping

DD methods. For related results on the balancing DD algorithms, we refer to [95, 97, 98].

From an engineering point of view, the mixed finite element methods for approximating

flux for elliptic problems with discontinuous and rapidly varying coefficients provide effi-

cient and accurate solutions. Glowinski and Wheeler [74] have proposed and analyzed DD

techniques combined with mixed finite element methods for elliptic problems. However,

their approach requires that the resulting discrete systems should be solved exactly by a

fast direct method on the subdomains. Other DD methods with nonoverlapping parti-

tions for mixed finite element methods are discussed by Cowsar and Wheeler [37], Rusten

and Winther [116], and Cowsar, Mandel, and Wheeler [38]. In [116], Rusten and Winther

have derived DD preconditioners for the linear systems arising from mixed finite element

discretizations of second-order elliptic boundary value problems. The preconditioners are

based on subproblems with either Neumann or Dirichlet boundary conditions on the inte-

rior boundary. In [32], Chen has shown that the mixed finite element formulation can be

algebraically condensed to a symmetric and positive definite system for Lagrange multi-

pliers using the features of the existing mixed finite element spaces for elliptic problems.

Subsequently, Chen et al. [33] have discussed the DD algorithms for mixed finite element

methods based on the approach described in [32] for second order elliptic problems.

Most of the above methods are designed for elliptic partial differential equations (PDEs).

In principle, DD methods can be applied to the resulting elliptic problem at each time level

when implicit time discretization applied to parabolic problems. In the context of parabolic

problems, explicit schemes are parallel and also easy to implement, but they usually require

small time steps because of stability constraints. On the other hand, implicit schemes are

necessary for finding the steady state solutions or computing slowly unsteady problems

where one needs to march with large time steps. However, the implicit schemes are not

inherently parallel because at each time step essentially an elliptic type of problem needs

to be solved.

DD methods for time dependent problems have been discussed in [40, 41, 42, 58, 59,

60, 87, 110, 130] and the references, therein. In [40, 60, 87], the authors have discussed



Chapter 1. Domain Decomposition Methods 23

the DD method in the frame work of finite difference schemes. Kuznetsov [87] has pro-

posed an explicit-implicit scheme to solve parabolic problems based on a partition of Ω into

non-overlapping regions. The boundary value of un+1 on the interface Γ is first computed

using an explicit method (or even an implicit scheme) in a small neighborhood of Γ. Using

these boundary values, Dirichlet problems can be solved on each sub-domain to provide

the solution un+1 on the whole domain Ω. This idea is particularly appealing on the grids

containing regions of refinement, see [87]. Another alternate direct approach was proposed

by Dawson, Du and Dupont [40] by finite difference methods in the context of finite dif-

ference methods. In this procedure, interface values between subdomains are found by an

explicit difference formula. Dawson and Du [41] has extended earlier work by Dawson et

al. [40] based on finite element methods. In this procedure, subdomain interface data are

updated using an explicit procedure in one dimension, and an ”implicit in y, explicit in

x” procedure in two dimensions. Dawson and Dupont [42] has discussed explicit/implicit

conservative Galerkin domain decomposition procedures for parabolic problems. In this

procedure, the domain is partitioned into many non-overlapping sub-domains with inter-

face Γ and special basis functions are constructed having support in a small ’tube’ of width

O(H) containing the interface Γ. In the first step approximate flux using explicit procedure

on Γ using these special basis functions. Finally, using these boundary values, the solution

un+1 is determined at the interior of the sub-domains, see [42]. The explicit nature of the

flux calculation induces a time step limitation necessary to preserve stability, although this

constraint is not necessary sharp which comes with a fully explicit method.

In contrast, a second approach based on the discretization of the parabolic problems

which leads to a DD algorithm as a direct method as given by Dryja [58] and corre-

sponds to a domain decomposed matrix splitting (fractional step method) involving two

non-overlapping subregions. The resulting scheme can be shown to be unconditionally sta-

ble. Unfortunately, the discretization error of splitting scheme becomes the square root

of the discretization error of the original scheme. In the two-dimensional finite element

case Dryja [58] has proved Σ̂2,h is the preconditioner for Σ̂h, where the condition number,

κ(Σ̂−1
2,hΣ̂h) is bounded by C(1 + logH

h
)2, C > 0 is a constant independent of h, H and

∆t, Σ̂h being the Schur complement matrix and H being the diameter of the sub-domain.
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Dryja [59] used Crank-Nicolson scheme for time discretization of parabolic problems, but

this algorithm is stable and convergent with an error bound O(∆t + h) in an appropriate

norm. The error bound obtained for the method is same as for the backward Euler scheme.

Zheng et al. [132] have discussed nonoverlapping DD method for parabolic problems based

on stabilized explicit Lagrange multipliers. First they formulate the problem into a differ-

ential algebraic equations and then solve them using Runge-Kutta-Chebyshev projection

method [131]. To develop a stabilized explicit DD finite element method, they use the mass

lumping technique [127]. In [106], Pradhan et al. have discussed the application of DD

methods to a parabolic integro-differential equations.

Another approach was proposed by Girault, Glowinski and Lopez [72], in which the do-

main is partitioned into many non-overlapping sub-domains, where the sub-domain meshes

need not be quasi-uniform. They are composed of triangles or quadrilaterals that do not

match at interfaces. For the case of computation, this lack of continuity is compensated

by a mortar technique based on piecewise constant (discontinuous) multipliers on the in-

terfaces, thus making the implementation simpler. But the price to pay is asymptotically

a half-order loss in accuracy compared with mortar methods, see [72].

1.3.2 Iterative non-overlapping domain decomposition methods

In this subsection, we discuss iterative procedures to solve the multi-domain problem

(1.3.2). Under the iterative schemes assuming either the value of the solution or its normal

derivative or a combination of both the solution and its normal derivative on the intersub-

domain interfaces, the problem can be solved in parallel in each subdomain and then an

iterative technique is invoked to update the values of the solution or its normal derivative

on the interfaces. To motivate the iterative schemes, we now introduce a sequence of sub-

problems in Ω1 and Ω2 for which the conditions (1.3.2)3 and (1.3.2)4 provide the Dirichlet

and Neumann data, respectively, on the interface Γ. In general, we expect that the two

sequences of functions {uk
1} and {uk

2} starting from initial guesses u0
1, u

0
2 will converge to

u1 and u2 respectively.

Dirichlet-Neumann iterative scheme. Given ϑ0, find uk+1
1 , uk+1

2 and ϑk+1 for each
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k ≥ 0 such that






−∆uk+1
1 + b uk+1

1 = f in Ω1,

uk+1
1 = 0 on ∂Ω1 ∩ ∂Ω,
uk+1

1 = ϑk on Γ,

(1.3.35)







−∆uk+1
2 + b uk+1

1 = f in Ω2,

uk+1
2 = 0 on ∂Ω2 ∩ ∂Ω,
∂uk+1

2

∂ν
=
∂uk+1

1

∂ν
on Γ,

(1.3.36)

and

ϑk+1 = θ uk+1
2 |Γ

+ (1 − θ)ϑk, (1.3.37)

where θ is an acceleration parameter with 0 ≤ θ < 1. This method was considered by

Bjorstad and Widlund [13], Funaro et al. [65] and Marini and Quarteroni [99]. It is

shown in [110] that the Dirichlet-Neumann iterative scheme is convergent and the rate of

convergence is independent of h, where h is the mesh size for triangulations. It is to be

noted that the Dirichlet-Neumann iterative scheme is algorithmically sequential. Next, we

define Neumann-Neumann iterative procedures to solve the multi-domain problem (1.3.2).

Neumann-Neumann iterative scheme. Given ϑ0, find uk+1
i , ψk+1

i ∈ Vi, i = 1, 2 for

each k ≥ 0 such that






−4uk+1
i + b uk+1

i = f on Ωi,

uk+1
i = 0 on ∂Ωi ∩ ∂Ω,
uk+1

i = ϑk on Γ

(1.3.38)

and then






−4ψk+1
i + b ψk+1

i = 0 on Ωi,

ψk+1
i = 0 on ∂Ωi ∩ ∂Ω,
∂ψk+1

i

∂ν
=

∂uk+1
1

∂n
− ∂uk+1

2

∂ν
on Γ,

(1.3.39)

with ϑk+1 = ϑk − θ
(

σ1 ψ
k+1
1 |Γ − σ2 ψ

k+1
2 |Γ

)

, θ > 0 and σ1 and σ2 are two positive

averaging coefficients. It is observed that in [14] that the Neumann-Neumann iterative
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scheme is convergence and the rate of convergence is shown to be independent of the grid-

size h. Further, we note that the Neumann-Neumann iterative scheme is algorithmically

parallel.

Now, we define Robin iterative procedures to solve the multi-domain problem (1.3.2).

Robin iterative scheme. Given u0
2, find uk+1

1 and uk+1
2 for each k ≥ 0 such that







−∆uk+1
1 + b uk+1

1 = f in Ω1,

uk+1
1 = 0 on ∂Ω1 ∩ ∂Ω,
∂uk+1

1

∂ν
+ γ1 u

k+1
1 =

∂uk
2

∂ν
+ γ1 u

k
2 on Γ,

(1.3.40)







−∆uk+1
2 + b uk+1

1 = f in Ω2,

uk+1
2 = 0 on ∂Ω2 ∩ ∂Ω,
∂uk+1

2

∂ν
− γ2 u

k+1
2 =

∂uk+1
1

∂ν
− γ2 u

k+1
1 on Γ,

(1.3.41)

where γ1 and γ2 are non-negative acceleration parameters satisfying γ1 + γ2 > 0. For the

sake of parallelisation, in (1.3.41) we could also consider uk
1 instead of uk+1

1 and assigning

in that case also u0
1. The Robin-type boundary conditions as interface conditions was

proposed by Lions in [92] as a tool for the domain decomposition iterative methods. This

method is now referred to as Lions nonoverlapping DD method (Lions method). In [92]

only the convergence of the Lions method in the multi-domain case has been proved when

b(x) ≥ 0, that is, there are no estimates of error reduction factor at each iteration, nor any

information about the rate of convergence. We refer the reader to Agoshkov [1] for a similar

formulation at the algebraic level. Later on, Despres [45, 46] has applied Lions idea to the

Helmholtz problems. In 1993, Douglas et al. [49] have discussed parallel iterative procedure

to approximate the solution of (1.3.1) by using mixed finite element methods and obtained

the rate of convergence through a spectral radius estimation of the iterative solution. Note

that each triangle is considered as a subdomain. Further, it is shown that the spectral radius

has a bound of the form 1 − Ch for quasiregular partitions when b(x) ≥ b0 > 0, where

h is the mesh size for triangulations. Subsequently, Douglas et al. [52] have established

the convergence rate as 1 − Ch for nonconforming finite element methods by again using

the spectral radius estimation of the iterative solution for the elliptic problems (1.3.1) on
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quasiregular partitions when b(x) ≥ b0 > 0.

Later, Deng [43, 44] has developed and analyzed another non-overlapping DD iterative

procedure for elliptic problems (1.3.1), which are based on the following subproblems: Given

g0
ij, 1 ≤ j 6= i ≤ 2 arbitrarily, find uk

i , i = 1, 2 for each k ≥ 0 such that







−∆uk
i + b uk

i = f in Ωi,

uk
i = 0 on ∂Ωi ∩ ∂Ω,

∂uk
i

∂νi
+ β uk

i = gk
ij on Γ, ∀1 ≤ j ≤ 2, j 6= i,

(1.3.42)

and then update the Robin data of the transmission condition as

gk+1
ij = 2β uk

j − gk
ji on Γ, ∀1 ≤ j ≤ 2, j 6= i, (1.3.43)

where β > 0 is the transmission coefficient. Note that the updation technique of Robin

data g in (1.3.43) is different from Lions method [92]. Deng has analyzed the convergence

when b(x) = 0 in [44] for (1.3.1) and obtained the convergence rate by a spectral radius

estimation of the iterative solution when b(x) ≥ b0 > 0. He has shown that the spectral

radius has a bound of the form 1−Ch for quasiregular partitions, provided b(x) ≥ b0 > 0.

In [44, 49, 52], the iterative method is shown to be convergent but the rate of convergence is

not established, when b(x) = 0. Recently, Gou and Hou [79] have analyzed a one-parameter

generalization of Lions nonoverlapping method [92] for solutions of (1.3.1). They have

established the convergence and acceleration properties of the finite element versions of the

proposed method, when b(x) = 0. But there are no estimates of the error reduction factor at

each iteration, nor any information about the rate of convergence of the proposed method.

Due to lack of coercivity of the associated bilinear form in the inner-subdomains, particular

attention is needed when b(x) = 0 to achieve the convergence rate of the iterative method.

Based on the method proposed in [44], Qin and Xu [109] have derived the convergence

rate, in general, when the lower term vanishes, i.e., b(x) = 0 and the convergence rate is

shown to be of order 1 - O(h1/2H−1/2), when the winding number N (see, the definition

3.2.1 given in chapter 3) is not large and H is the maximum diameter of the subdomains.

In [84], Kim et al. have discussed iterative DD method to approximate the solution of a

nonlinear parabolic problems based on fully discrete mixed finite element method. In this
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paper, they have used Robin type boundary conditions for inter-subdomains boundaries

and demonstrated the convergence of the iteration at each time step.

1.3.3 Various other domain decomposition methods

There are other classes of direct and iterative methods, which are quite popular amongst

the DD community. Since in this dissertation, we have not touched upon these classes of

methods, we only briefly present some earlier results. In the earliest 19th century, Schwarz

[118] proposed an iterative method for the solution of classical boundary value problems

for harmonic functions. It consists of solving successively a similar problem in subdomains,

going alternatively from one to other. The convergence of this process was proved using

of the maximum principle. This is called as iterative Schwarz alternating procedure for

overlapping DD method. In 1953, Kron [86] introduced the set of principles and a sys-

tematic procedure to establish the exact solutions of very large and complicated physical

systems, without solving a large number of simultaneous equations. The procedure con-

sists of dividing the system into several smaller sub-systems. To obtain a solution of the

original system, Kron has interconnected sub-system solutions through a set of transfor-

mations and this method is subsequently known as fast direct DD solvers (substructuring

or tearing methods) in literature. Subsequently, in 1963, Przemieniecki [108] discussed a

matrix method of linear structural analysis for the calculation of stresses and deflections in

an aircraft structure divided into a number of structural components. This direct matrix

method is called substructuring. In 1982, Dryja [53] has described algorithms for the solu-

tion of the system of linear equations arising from the application of finite element method

to the Dirichlet problem on a polygonal region based on the capacitance matrix technique.

Exploiting the capacitance matrix technique, Dryja [54] has applied it to the symmetric

elliptic problem with the Dirichlet condition on an arbitrary region. In 1984, Dryja [55] has

again employed the same method to a general elliptic problems. In DD terminology, this is

a ”Schur complement matrix” system, see [29, 36, 73, 110, 119, 125]. A good approximation

to the Schur complement of a linear system can be constructed algebraically by investigat-

ing its numerical structure. This idea is introduced by Dryja [53] and further developed in

a paper by Golub and Mayers [77] that refered to the symmetric two dimensional case. The
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subdomain structuring of the Schur complement matrix or capacitance matrix can lead to

block direct methods. It can lead to block iterative methods via preconditioners, see [36].

Gropp and Keyes [76], Langer et al. [82] have discussed preconditioners for DD methods.

The Schur complement system can be extended by iterative coupling of the subregions.

There are two approaches widely followed for the construction of DD preconditioner. One

is a (modified) Schur complement preconditioner that has been studied by the DD com-

munity very intensively, see [18, 19, 53]. Another is a preconditioner for the local problems

with homogeneous Dirichlet boundary conditions arising in each sub-domain. The most

sensitive part is the transformation operator transforming the nodal finite element basis on

the interfaces into the approximate discrete harmonic basis. However, we provide here the

results from some articles which play crucial role in developing DD methods, see [110]. See

[13, 18, 65] for the Dirichlet-Neumann algorithm for non-overlapping DD methods. Often,

as in preconditioner conjugate gradient (PCG), the objective is to produce an iterative

method in which the matrix is symmetric positive definite. Meyer [102] has proposed a

parallelization and preconditioning of the conjugate gradient (CG) method on the basis of

a non-overlapping DD approach. A survey of preconditioners for DD is given by Chan and

Resasco [28]; see also Meurant [101].

In [61], Ehrlich has discussed the iterative Schwarz alternating procedure for overlap-

ping DD method. For Schwarz alternating algorithm in a variational framework, see Dryja

and Widlund [56], Matsokin and Nepomnyaschikh [100] and Lions [90]. The original two-

subdomain Schwarz method is now called the multiplicative Schwarz method, see [12].

First one subdomain is solved with pseudo-boundary conditions, then the information is

transfered to the pseudo-boundary conditions for the other subdomain. This method is

algorithmically effective. Subsequently, Haase and Langer [81] have discussed a multiplica-

tive Schwarz method for non-overlapping DD procedure. Although the Schwarz alternating

method is straightforward and intuitive, it is, in fact, a very effective procedure, see the

reference [90, 91]. We now conclude this section with a quotation of P . L. Lions [91] ”In

some sense, even if many interesting and important variants have been introduced recently,

the Schwarz algorithm remains the prototype of such methods and also presents some prop-

erties (like robustness, or indifference to the type of equations considered...) which do not
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seem to be enjoyed by other methods”.

1.4 Outline of the Thesis

The organization of thesis is as follows. Chapter 1, which is introductory in nature con-

sists of some definitions, inequalities and some results to be used in subsequent chapters.

Further, it deals with a brief survey on DD methods.

In Chapter 2, an effort has been made to apply non-iterative non-overlapping DD meth-

ods combined with non-conforming finite element methods with Lagrange multipliers for

elliptic problems. When the original domain is decomposed into subdomains, the trans-

mission conditions come into picture on the inter-subdomain boundaries. The matching

conditions are expressed in terms of Lagrange multipliers for the Neumann boundary condi-

tion on the artificial boundary, which produce good approximation of the normal derivatives

of the exact solution across the interfaces. The key feature that we have adopted here is

the nonconforming Crouzeix-Raviart space for the discretization of the primal variable.

For parabolic equations a completely discrete scheme based on backward Euler scheme

is discussed. Optimal error estimates in L2 and H1-norms are demonstrated. The results

of numerical experiments support the theoretical results which are derived in this chapter.

Chapter 3 is concerned with the analysis of an iterative non-overlapping DD method

with Robin-type boundary conditions on the artificial interfaces, that is, on the inter sub-

domain boundaries of the elliptic problems. The rate of convergence is derived to be of

1 − O(h1/2H−1/2), where h is the finite element mesh parameter and H is the maximum

diameter of the subdomains. This chapter is concluded with an application to parabolic

equations. Finally, some numerical experiments are conducted to illustrate the theoretical

results.

In Chapter 4, we propose and analyze an iterative non-overlapping DD method for

elliptic problems based on mixed finite element methods. We have used Robin-type bound-

ary conditions to obtain the transmission data on the inter-subdomain boundaries. The

convergence analysis of the parallel iterative procedure is discussed in details. The rate of

convergence is estimated as 1 − O(h1/2H?), where h is the finite element mesh parameter
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and H? is the minimum diameter of the subdomains.

Finally, we present, in Chapter 5, we first present a summary of the results with some

observations. Further, we conclude this Chapter with a discussion of some possible exten-

sions and future problems.



Chapter 2

A Non-Conforming Finite Element

Method with Lagrange Multipliers

2.1 Introduction

In this chapter, we discuss a non-overlapping domain decomposition procedure for

approximating the solution of second order elliptic and parabolic equations using non-

conforming finite element methods. When the original domain is decomposed into sub-

domains, the transmission conditions come into play on the inter-subdomain boundaries.

The matching conditions are expressed in terms of the Lagrange multiplier for the Neu-

mann boundary condition on the artificial boundary, which produces good approximation

of the normal derivatives of the exact solution across the interfaces. Lagrange multiplier

technique helps in relaxing the continuity conditions at the interfaces of the subdomains.

A basic requirement for the Lagrange multiplier method is to construct multiplier spaces

which satisfy certain criteria known as the inf-sup properties for the scheme to be stable.

To achieve stability of the corresponding Lagrange multiplier scheme, we need to choose the

multiplier space appropriately so that the discrete spaces for the primal variable and the

multiplier satisfy the inf-sup condition, also known as the Ladyzhenskaya-Babus̆ka-Brezzi

(LBB) condition.

Earlier, a finite element method with Lagrange multipliers was first introduced by

Babuška in [6] for second order elliptic problems with Dirichlet boundary condition. In his

paper, he showed that an application of Lagrange multipliers would avoid the difficulty in

fulfilling essential boundary conditions on the finite element spaces. Subsequently, Bramble

32
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[17] reformulated the Lagrange multiplier method of Babuška [6], and discussed estimates

for the solution and the boundary flux. The Lagrange multiplier approach to enforcing

solution continuity is related to interface formulations using Poincaré-Steklov operators on

the regular mesh by Dorr [48]. Exploiting the structure of the Lagrange multipliers, Bel-

gacem [11] has applied it to the mortar finite element method. Further, he has discussed

the construction of the discrete Lagrange multiplier space, which is compatible to the dis-

crete trace space, so that the Babuška-Brezzi condition (inf-sup condition) is satisfied. In

[126], Wohlmuth has analyzed the mortar finite element method with Lagrange multipliers

using dual Lagrange multiplier spaces. In [88], Lamichhane and Wohlmuth have extended

the mortar finite elements with Lagrange multipliers to elliptic interface problems. Sub-

sequently, Hansbo et al. [80] has analyzed the Lagrange multiplier method for the finite

element solution of the multi-domain elliptic PDEs using non-matching meshes. Moreover,

they introduced a penalty term as a stabilizer and derived a priori error bounds.

DD methods for time dependent problems have been discussed in [40, 41, 42, 58, 59,

60, 87, 110, 130] and the references, therein. In [40, 60, 87], the authors have discussed the

DD method in the frame work of finite difference schemes. Kuznetsov [87] has proposed a

modified approximation scheme of mixed type, where the standard second order implicit

scheme is used inside each subdomain, while the explicit Euler scheme is applied to update

the interface values on the new time level. Once the interface values are available, the global

problem is fully decoupled and can, thus, be computed in parallel. A similar scheme was

proposed in [40, 41, 42], where instead of using the same spacing h as for the interior points

where the implicit scheme is applied, a larger spacing H is used at each interface point

where the explicit scheme is applied. Due to stability and accuracy requirements, both

methods do not lead to satisfactory computational results. In the two-dimensional finite

element case Dryja [58] has proved Σ̂2,h is the preconditioner for Σ̂h, where the condition

number, κ(Σ̂−1
2,hΣ̂h) is bounded by C(1 + logH

h
)2, C > 0 is a constant independent of h, H

and ∆t, Σ̂h being the Schur complement matrix and H being the diameter of the sub-

domain. Dryja [59] used Crank-Nicolson scheme for the time discretization of parabolic

problems, and this algorithm is stable and convergent with an error bound O(∆t + h) in

an appropriate norm. But the error bound obtained for the method is same as for the
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backward Euler scheme. Zheng et al. [132] have discussed nonoverlapping DD method for

parabolic problems based on stabilized explicit Lagrange multipliers. First they formulate

the problem into a differential algebraic equations and then solve them using Runge-Kutta-

Chebyshev projection method [131]. To develop a stabilized explicit DD finite element

method, they use the mass lumping technique [127].

A brief outline of this chapter is as follows. In Section 2.2, we formulate the elliptic

multidomain problem and we introduce Lagrange multipliers on inter-element subdomain

boundaries. The key feature that we have adopted here is nonconforming Crouzeix-Raviart

space for the discretization of the primal variable. In Section 2.3, we have discussed both

L2 and H1 error estimates. In Section 2.5-2.7, we extend the method to parabolic initial

and boundary value problems and analyze the error estimates for both semidiscrete and

fully discrete schemes. Finally, Section 2.4 and Section 2.8 deals with some numerical

experiments to support our theoretical results.

2.2 The elliptic problem

We consider the following second order problem:







−∆u = f ∀x ∈ Ω,

u = 0 ∀x ∈ ∂Ω,
(2.2.1)

where Ω is a bounded convex polygon or polyhedron in IRd, d = 2 or 3 and f ∈ L2(Ω).

The weak formulation of (2.2.1) is to find ū ∈ H1
0 (Ω) such that

aΩ(ū, v) = (f, v) ∀v ∈ H1
0 (Ω), (2.2.2)

where

aΩ(v, w) =

∫

Ω

∇v · ∇w dx. (2.2.3)

To describe finite element approximations for (2.2.2), we begin with a regular triangulation

of Ω̄. Let Th be a regular triangulation of Ω̄ into triangles for d = 2, tetrahedrons for d = 3.

Let the boundary of T be denoted by ∂T and let T ′ denote an edge of T when d = 2,
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Figure 2.1: Nonconforming finite elements

a triangular face when d = 3 (see details in Chapter 1). Let Pr(T ) denote the space of

polynomials of degree less than or equal to r in two variables defined on the triangle T .

Now, we define the nonconforming Crouzeix-Raviart space (cf. [39]) associated with the

triangulation Th. Let

X̄h =
{
v ∈ L2(Ω) | v|T ∈ P1(T ), T ∈ Th, v is continuous at p ∈ Nh

and vanishes at p ∈ Γh} , (2.2.4)

where Nh is the set of all face barycenters of elements of Th in the interior of Ω and Γh

is the set of all face barycenters of elements of Th on the boundary of ∂Ω. A function

in X̄h is completely determined by its values at centers of the sides of the triangle (d =

2) or tetrahedron (d = 3) in Th (cf. Figure 2.1). Then, the nonconforming Galerkin

approximation of (2.2.2) is defined as the solution ūh ∈ X̄h of

ah
Ω(ūh, vh) = (f, vh) ∀vh ∈ X̄h, (2.2.5)

where

ah
Ω(vh, wh) =

∫

Ω

∇vh · ∇wh dx. (2.2.6)

Lemma 2.2.1 The problem (2.2.5) has a unique solution.

Proof: Since (2.2.5) leads to a system of linear algebraic equations, it is enough to prove

uniqueness. Setting f = 0 and vh = uh in (2.2.5), we obtain ah
Ω(ūh, uh) = 0. Hence on each
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T ∈ Th,
∂ūh

∂xi

= 0, where i = 1, 2, when d = 2 or i = 1, 2, 3, when d = 3. Thus, ūh is

constant on each element T ∈ Th. Since ūh ∈ Xh, ūh is continuous at p ∈ Nh∩Γh and ūh(p)

vanishes at p ∈ ∂Ω. Therefore, ūh vanishes for all elements T if at least one face belongs

to ∂Ω. We can continue the argument for elements T in the interior of Ω not necessarily

having boundary ∂T a part of ∂Ω and obtain ūh = 0. Hence, the problem (2.2.5) has a

unique solution and this completes the proof.

Lemma 2.2.2 [62, Lemma 3.31, pp. 127] (Extended Poincaré inequality). There exists

C(Ω) depending only on Ω such that, for all h ≤ 1,

||vh||0,Ω ≤ C(Ω)

(
∑

T∈Th

||∇vh||20,T

)1/2

∀ vh ∈ X̄h. (2.2.7)

The next theorem follows from [15, Theorem 1.5, pp. 106].

Theorem 2.2.1 Suppose Ω is a convex and bounded domain. Then, there exists a constant

C > 0 independent of h such that

||ū− ūh||0,Ω + h

(
∑

T∈Th

||∇(ū− ūh)||20,T

)1/2

≤ C h2

(
∑

T∈Th

||ū||22,T

)1/2

, (2.2.8)

where ū and ūh are the solution of (2.2.2) and (2.2.5), respectively.

Lemma 2.2.3 [107, Lemma A.3, pp. 39] Let T be a triangle or a quadrilateral in a shape

regular triangulation Th. Then, there exists a constant C > 0 such that for v ∈ H1(T )

||v||20,∂T ≤ C

(
1

hT

||v||20,T + ||v||0,T ||∇v||0,T

)

. (2.2.9)

2.2.1 Lagrange multiplier on inter subdomain interfaces

In this subsection, we discuss the variational formulation for the multi-domain problem

and introduce Lagrange multipliers on inter-element subdomain interfaces.

For the domain decomposition method, let the domain Ω be partitioned into a finite

number of non-overlapping sub-domains Ωi (i = 1, 2, · · · ,M) with Ω̄ =
M⋃

i=1

Ωi, and let
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Figure 2.2: Normal vector νij outward to Ωi

Γij = ∂Ωi ∩ ∂Ωj = Γji with |Γij| as the measure of Γij. Further let Γ =

M⋃

i=1, i<j∈N(i)

Γij and

Γi = ∂Ωi\∂Ω denote the interior interfaces, where N(i) = {j 6= i | |Γij| > 0}. Now we are

in a position to write the multi-domain problems. Find ui, i = 1, 2, · · · ,M satisfying the

following subproblems:







−∆ui = fi in Ωi,

ui = 0 on ∂Ωi ∩ ∂Ω,
ui = uj on Γij, j ∈ N(i),
∂ui

∂ν
=

∂uj

∂ν
on Γij, j ∈ N(i),

(2.2.10)

where ui = u|Ωi
, fi = f|Ωi

, i = 1, 2, · · · ,M , and ν = νij = −νji on Γij and νij and

νji are unit outward normals to ∂Ωi and ∂Ωj , respectively. Note that last two conditions

(2.2.10)2-(2.2.10)3 are called the transmission conditions on the artificial interface Γ.

Let Xi = {v ∈ H1(Ωi) | v|∂Ωi∩∂Ω
= 0}, i = 1, 2, · · · ,M and X =

M∏

i=1

Xi. The space X

endowed with the norm

||v||2X =

M∑

i=1

||vi||21,Ωi
(2.2.11)

is a Hilbert space. Note that |v|2X =

M∑

i=1

|vi|21,Ωi
is a semi norm.

Now we are looking for the variational formulation of the multi-domain problem. Multiply
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both sides of (2.2.10)1 by a test function vi ∈ Xi and integrate over Ωi to obtain

∫

Ωi

∇ui · ∇vi dx−
∑

j∈N(i)

〈
∂ui

∂νij
, vi

〉

=

∫

Ωi

fivi dx,

where 〈·, ·〉 represents the duality pairing between H− 1

2 (Γ) and H
1

2 (Γ) and νij is unit

outward normal to Ωi. Finally, sum over 1 ≤ i ≤M to find that

M∑

i=1



aΩi
(ui, vi) −

∑

j∈N(i)

〈
∂ui

∂νij
, vi

〉


 =

M∑

i=1

(fi, vi)Ωi
∀vi ∈ X, (2.2.12)

where

aΩi
(v, w) =

∫

Ωi

∇v · ∇w dx, (v, w)Ωi
=

∫

Ωi

v w dx. (2.2.13)

Define the space Yij = H− 1

2 (Γij) and Y =
M∏

i=1

∏

i<j∈N(i)

Yij. Define

||µ||Y = sup
v∈H

1
2 (Γ)\{0}

〈v, µ〉
||v|| 1

2
,Γ

. (2.2.14)

We are in a position to introduce Lagrange multipliers on interface. Set the Lagrange

multipliers as

λij = ∇ui · νij = −∇uj · νji on Γij and λij = −λji on Γij, (2.2.15)

where νij is the normal vector oriented from Ωi to Ωj (see Figure 2.2). Using (2.2.15) in

(2.2.12) at the interface, we derive the following equations: Find u = (u1, u2, · · · , uM) ∈

X =
M∏

i=1

Xi and λ ∈ Y =
M∏

i=1

∏

i<j∈N(i)

Yij such that

a(u, v) − b(v, λ) = (f, v) ∀v ∈ X, (2.2.16)

b(u, µ) = 0 ∀µ ∈ Y, (2.2.17)

where the bilinear form a : X ×X → IR is given by

a(w, v) =
M∑

i=1

aΩi
(wi, vi), (2.2.18)
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the bilinear form b : X × Y → IR is defined by

b(v, µ) =
M∑

i=1

∑

i<j∈N(i)

〈

vi − vj, µ|Γij

〉

, (2.2.19)

and (f, v) =
M∑

i=1

(fi, vi)Ωi
. We now define a space Z by

Z = {v ∈ X : b(v, µ) = 0 ∀µ ∈ Y } . (2.2.20)

The space Z may be identified with H1
0 (Ω) (see, [112, pp. 394]).

Lemma 2.2.4 The variational formulation of a single domain problem (2.2.2) and multi-

domain problem (2.2.16)-(2.2.17) are equivalent under the following conditions: the test

function (v1, v2, · · · , vM) ∈ X =
M∏

i=1

Xi belongs to H1
0 (Ω) and λij = ∇ui · νij = −∇uj ·

νji on Γij, 1 ≤ i ≤M, j ∈ N(i).

Proof. Let ū ∈ H1
0 (Ω) is a solution of a single domain problem (2.2.2). Setting ui = ū|Ωi

,

we obtain (2.2.16)-(2.2.17). Let (u, λ) ∈ X × Y be a solution of problem (2.2.16)-(2.2.17).

Then u ∈ Z and hence u ∈ H1
0 (Ω). Choosing v ∈ H1

0 (Ω) in (2.2.16), we arrive at

M∑

i=1

aΩi
(ui, vi) =

M∑

i=1

(f, vi), (2.2.21)

where ū|Ωi
= ui and v̄|Ωi

= vi. Therefore, (2.2.21) can be written as

aΩ(ū, v) = (f, v) ∀v ∈ H1
0 (Ω). (2.2.22)

This completes the rest of the proof.

Theorem 2.2.2 [112, Theorem 1, pp. 395] Problem (2.2.16)-(2.2.17) has a unique so-

lution (u, λ) ∈ X × Y . Moreover if ū ∈ H1
0 (Ω) is a solution of the problem (2.2.2) with

ui = ū|Ωi
and we have λij = ∇ui · νij = −∇uj · νji on Γij, 1 ≤ i ≤M, j ∈ N(i).

Below, we state a Lemma on the inf-sup condition satisfied by b(·, ·) without proof. For a

proof, see [8, Lemma 3.1(c), pp. 614]. We need Lemma 2.2.5 in our future analysis.
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Lemma 2.2.5 There exists a constant K0 > 0 such that

inf
06=µ∈Y

sup
06=v∈X

b(v, µ)

||v||X||µ||Y
≥ K0. (2.2.23)

Discrete multidomain formulation. Now we focus our attention on the discretization of

the problem (2.2.16)-(2.2.17) based on the Crouzeix-Raviart element. For the triangulation

Th, we now assume that the triangles (resp. rectangles) T should not cross the interface

Γij, and thus, each element is either contained in Ω̄i or in Ω̄j and they share the same

edges of Γij. For multi-domain problem, let Xi,h = X̄h|Ωi
, where X̄h is defined in (2.2.4).

Define X0
i,h = {vh|vh ∈ Xi,h and vh(p) = 0 at p ∈ ∂Ωi,h}. We now define two discrete

spaces Yi,h and Yij,h on ∂Ωi and Γji, respectively, as follows. Let Yi,h consist of piecewise

constant elements on triangulation Th,i|∂Ωi
, where Th,i|∂Ωi

is the triangulation of ∂Ωi \ ∂Ω
inherited from Th, i.e., Th,i|∂Ωi

= Th|∂Ωi\∂Ω
. Furthermore, let Yij,h = Yi,h|Γij

. The spaces

are nonconforming, since Xi,h is not subspace of Xi. For v ∈ Xi,h, set the discrete H1

semi-norm as

|v|21,h,Ωi
=
∑

T∈Th,i

∫

T

|∇v|2dx, (2.2.24)

and defines the H1 norm by

||v||21,h,Ωi
= |v|21,h,Ωi

+ ||v||20,Ωi
. (2.2.25)

Note that

||v||21,h =
M∑

i=1

||v||21,h,Ωi
(2.2.26)

defines a norm on Xh. Given the finite dimensional spaces Xi,h, Yi,h and Yij,h, we now

introduce linear operators:

πi : Xi,h → Yi,h and πij : Xi,h → Yij,h, (2.2.27)

respectively, as

πivi|e ≡ vi(p) ∀e ∈ Th,i|∂Ωi
and πijvi = πivi|Γij

, (2.2.28)
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where e ∈ ∂T ∩ ∂Ωi is edge of the triangle T ∈ Th,i|∂Ωi
and p is the face barycenter of T .

Similarly, we define the linear operators

Si : Yi,h → Xi,h and Sij : Yij,h → Xi,h (2.2.29)

as

Siwi =







wi freedom on ∂Ωi,

0 other freedom,
and Sijwij =







wij freedom on Γij,

0 other freedom.
(2.2.30)

From (2.2.29) and (2.2.30), we note that in general πivi 6= vi|∂Ωi
and Siwi|∂Ωi

6= wi. Further,

we observe that

vi − Siπivi ∈ X0
i,h, (2.2.31)

and

πiSi = Idi, πijSij = Idij, (2.2.32)

where Idi and Idij are identity operators on Yi,h and Yij,h, respectively.

Lemma 2.2.6 [109, Lemma 2.1, pp. 2542] There exists a positive constant C independent

of h such that

||πijvi||0,Γij
≤ C ||vi|Γij

||0,Γij
, ∀ v ∈ Xi,h. (2.2.33)

Also, for wij ∈ Yij,h,

||Sijwij||0,Ωi
≤ Ch1/2||wij||0,Γij

, (2.2.34)

and

|Sijwij|1,h,Ωi
≤ Ch−1/2||wij||0,Γij

. (2.2.35)

Now we are in a position to state the nonconforming multidomain approximation of (2.2.16)-

(2.2.17). Given f ∈ L2(Ω), find uh = (u1,h, · · · , uM,h) ∈ Xh =
M∏

i=1

Xi,h and λh ∈ Yh =
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M∏

i=1

∏

i<j∈N(i)

Yij,h such that

ah(uh, vh) −
M∑

i=1

∑

i<j∈N(i)

∫

Γij

λij,h [π vh] ds =

M∑

i=1

(f, vh)Ωi
∀vh ∈ Xh, (2.2.36)

M∑

i=1

∑

i<j∈N(i)

∫

Γij

[π uh]µh ds = 0 ∀µh ∈ Yh, (2.2.37)

where

ah(vh, wh) =
M∑

i=1

ah
Ωi

(vi,h, wi,h) =
M∑

i=1

∫

Ωi

∇vi,h · ∇wi,h dx (2.2.38)

and

[π vh] = πij vi,h − πji vj,h on Γij. (2.2.39)

Since µh ∈ Yh and πijvh ∈ Yh are constants on Γij, using mid-point rule we obtain
∫

Γij

πijvh µh ds =
∑

p∈Γij∩Nh

vh(p)µh(p)|sp| ∀ vh ∈ Xh, µh ∈ Yh, (2.2.40)

where sp is the element face with p as its barycenter and |sp| is the measure of sp.

Lemma 2.2.7 Let uh = (u1,h, · · · , uM,h) ∈ Xh =
M∏

i=1

Xi,h. Then ūh ∈ X̄h if and only if

M∑

i=1

∑

i<j∈N(i)

∫

Γij

[π uh]µh = 0 ∀µh ∈ Yh, (2.2.41)

where uh = (u1,h, · · · , uM,h) and ūh are the discrete solutions of (2.2.36)-(2.2.37) and

(2.2.5), respectively.

Proof. Here Xi,h = X̄h|Ωi
, i = 1, 2, · · · ,M , i.e., localize the nonconforming Galerkin space

X̄h by removing the midpoint continuity constraints on the interfaces between two adjacent

subdomains. Let us consider first ūh ∈ X̄h, i.e., ūi,h(p)− ūj,h(p) = 0 on Γij, where p denotes

the midpoints of the triangle edges. Hence, (2.2.41) is satisfied, where ui,h(p) = ūh(p)|Ωi
.

Similarly, from (2.2.41), we obtain ui,h(p) − uj,h(p) = 0 on Γij, that is, the midpoint

continuity condition on the interfaces between two adjacent subdomains is satisfied. Thus,

ūh ∈ X̄h and this completes the proof.
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Lemma 2.2.8 Let (uh, λh) be the solution of (2.2.36)-(2.2.37). Then there is a positive

constant C independent of h such that

||λij,h||0,Γij
≤ C

(
h−1/2|ui,h|1,h,Ωi

+ h1/2||f ||0,Ωi

)
, i = 1, 2, · · · ,M, ∀j ∈ N(i), (2.2.42)

where M is the number of subdomains.

Proof. Choose vh = (0, 0, · · · , Sijλij,h, · · · , 0) in (2.2.36). Using Lemma 2.2.6, we obtain

||λij,h||20,Γij
= ah

Ωi
(ui,h, Sijλij,h) − (f, Sijλij,h)

≤ |ui,h|1,h,Ωi
|Sijλij,h|1,h,Ωi

+ ||f ||0,Ωi
||Sijλij,h||0,Ωi

≤ Ch−1/2|ui,h|1,h,Ωi
||λij,h||0,Γij

+ Ch1/2||f ||0,Ωi
||λij,h||0,Γij

.

This completes the rest of the proof.

Theorem 2.2.3 Problem (2.2.36)-(2.2.37) has a unique solution.

Proof. Since the problem problem (2.2.36)-(2.2.37) leads to a square system of linear alge-

braic equations, it is enough to prove uniqueness. Setting f = 0, vh = (0, 0, · · · , ui,h, · · · , 0)

in (2.2.36) and µh = (0, 0, · · · , λij,h, · · · , 0) in (2.2.37), we obtain

M∑

i=1

ah
Ωi

(ui,h, ui,h) = 0. (2.2.43)

From (2.2.43), we can conclude that ui,h is constant on each Ωi. Now, we consider the

subdomains Ωi, having at least one face belonging to ∂Ω. We know that ui,h(p) = 0 on

∂Ωi ∩ ∂Ω, where p is the face barycenters of the triangulation on ∂Ωi ∩ ∂Ω inherited from

Th. Hence, we obtain ui,h = 0 in Ωi, where Ωi belongs to boundary subdomain. In the

next step, we consider the subdomains Ωj adjacent to Ωi. Then the continuity of ui,h at

the midpoint of Γij shows the uj,h = 0 in Ωj. Similarly, we continue the analysis further

and obtain ui,h = 0 for all subdomains. Next we wish to show that λij,h = 0 for each Γij.

Setting f = 0 in (2.2.36), using Lemma 2.2.8, we obtain λij,h = 0 for each Γij and this

completes the rest of the proof.

2.3 Convergence analysis

In this section, we derive the error estimate of the discrete multidomain problem.

Below we discuss an interpolation operator for our future use. Given φ ∈ H2(Ω) ∩H1
0(Ω),
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let Ihφ ∈ X̄h ∩ C0(Ω̄) be the continuous piecewise linear function which interpolates φ at

the vertices of the triangulation. Define Ih : H2(Ω) ∩H1
0 (Ω) → X̄h ∩ C0(Ω̄) with

(Ihφ) (p) =
1

2
(φ(v1) + φ(v2)) ∀φ ∈ H2(Ω) ∩H1

0 (Ω), (2.3.1)

where p denotes the midpoints of the triangle edges, and v1 and v2 being the endpoints of

the edge. Note that the interpolation operator Ihψ ∈ Xh (Ihψ ∈ X̄h) satisfies

||ψ − Ihψ||0,Ω + h ||ψ − Ihψ||1,h ≤ C h2
M∑

i=1

||ψi||2,Ωi
. (2.3.2)

2.3.1 Consistency error

Since Xh is not a subspace of X, we, therefore, consider the consistency error for the

proposed nonconforming finite element discretization using Strang’s second lemma [34,

121, 122]. Furthermore, we prove below that the discretization error is bounded by the

best approximation error and the consistency error [15].

Lemma 2.3.1 Let (uh, λh) ∈ Xh × Yh be the solution of (2.2.36)-(2.2.37) and let (u, λ) ∈
X × Y be the solution of (2.2.16)-(2.2.17). Then there exists a constant C independent of

h such that

||u− uh||1,h ≤ C

{

inf
vh∈Xh

||u− vh||1,h

+ sup
wh∈Xh

∣
∣ F (wh) +

M∑

i=1

∑

i<j∈N(i)

∫

Γij

λij,h [πwh] ds− ah(u, wh)
∣
∣

||wh||1,h







, (2.3.3)

where F (wh) =
M∑

i=1

(f, wi,h)Ωi
and ah(v, wh) =

M∑

i=1

ah
Ωi

(vi, wi,h).

Proof. Using Lemma 2.2.2 we find that for all vh ∈ Xh,

ah(vh, vh) ≥ α||vh||21,h. (2.3.4)
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For zh ∈ Xh,

α||uh − zh||21,h ≤
M∑

i=1

ah
Ωi

(ui,h − zi,h, ui,h − zi,h)

=

M∑

i=1

[
ah

Ωi
(ui − zi,h, ui,h − zi,h) + ah

Ωi
(ui,h − ui, ui,h − zi,h)

]

≤ C
M∑

i=1

||u− zh||1,h||uh − zh||1,h +
M∑

i=1

ah
Ωi

(ui,h − ui, ui,h − zi,h). (2.3.5)

To estimate the last term on the right hand side of (2.3.5), we note from (2.2.36) with

wh ∈ Xh that

ah(uh − u, wh) =
M∑

i=1

ah
Ωi

(ui,h − ui, wi,h) =
M∑

i=1

(f, wi,h)Ωi

+
M∑

i=1




∑

i<j∈N(i)

∫

Γij

λij,h [π wh] ds− ah
Ωi

(ui, wi,h)



 . (2.3.6)

The proof of the lemma follows from (2.3.6) with wi,h = ui,h − zi,h, (2.3.5) and the triangle

inequality and this completes the rest of the proof.

For finding the consistency error, we need to introduce a projection operatorQh : L2(Γij) →
Yij,h, which is defined as

∫

Γij

(Qhµ) πijvh ds =

∫

Γij

µ (πijvh) ds ∀ vh ∈ Xi,h. (2.3.7)

The operator Qh given by (2.3.7) is well-defined and continuous. It is easy to see that Qh

is identity

Qhµ = µ ∀µ ∈ Yij,h. (2.3.8)

Furthermore, the operator Qh is L2-stable in the sense that

||Qhµ||0,Γij
≤ C ||µ||0,Γij

. (2.3.9)

Using (2.3.8) and (2.3.9), it is easy to establish the following approximation result.
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Lemma 2.3.2 There exists a positive constant C independent of h such that for µ ∈
H1/2(Γij)

||µ−Qhµ||0,Γij
≤ C h1/2||µ||1/2,Γij

. (2.3.10)

Proof. For T ∈ Th,i, µ ∈ L2(Γij), and each edge T ′ ∈ ∂T ∩Γij, we define the average value

µ̄ on T ′ as

µ̄ =
1

meas(T ′)

∫

T ′

µ ds. (2.3.11)

From (2.3.8), we note that Qhµ̄ = µ̄. Hence, using the triangle inequality, (2.3.9) and

Lemma 1.2.7, we find that

||µ−Qhµ||0,T ′ ≤ ||µ− µ̄||0,T ′ + ||Qh(µ− µ̄)||0,T ′

≤ C ||µ− µ̄||0,T ′ ≤ C h1/2||µ||1/2,T ′. (2.3.12)

The global estimate (2.3.10) is obtained by summing over all local contributions and this

completes the rest of the proof.

Lemma 2.3.3 (Asymptotic consistency) Given f ∈ L2(Ω), let (u, λ) ∈ X × Y be the

solution of (2.2.16)-(2.2.17). Assume that u = (u1, · · · , uM) ∈
M∏

i=1

H2(Ωi). Then, there

exists a constant C independent of h such that

∣
∣F (wh) +

M∑

i=1

∑

i<j∈N(i)

∫

Γij

λij,h [πwh] ds− ah(u, wh)
∣
∣

||wh||1,h
≤ C h

M∑

i=1

||ui||2,Ωi
∀wh ∈ Xh. (2.3.13)

Proof. Since f|Ωi
= −∆ui and wh ∈ Xh, using integration by parts we obtain

ah(u, wh) −
M∑

i=1

∑

i<j∈N(i)

∫

Γij

λij,h [πwh] ds− F (wh)

=

M∑

i=1

∑

T∈Th,i





∫

T

∇ui · ∇wi,h dx−
∑

i<j∈N(i)

∑

∂T∩Γij 6=φ

∫

∂T

λij,h [πwh] ds−
∫

T

f|Ωi
wi,h dx




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=

M∑

i=1

∑

T∈Th,i

∫

∂Tint

∂ui

∂νT
wi,h ds

+
M∑

i=1

∑

T∈Th,i




∑

i<j∈N(i)

∑

∂T∩Γij 6=φ

(∫

∂T

λij [wh] ds−
∫

∂T

λij,h [πwh] ds

)




= I1 + I2, (2.3.14)

where

∂T =







∂Tint, each edge/face of an element T ∈ Th,i located inside Ωi

and neither in ∂T ∩ Γij nor in ∂T ∩ ∂Ω,
∂Text, other freedom, that is, T ∈ Th,i, j ∈ N(i) and ∂T ∩ Γij 6= φ.

(2.3.15)

We now estimate each term of the right hand side of (2.3.14). For the first term of (2.3.14),

we obtain

I1 =
M∑

i=1

∑

T∈Th,i

∫

∂Tint

∂ui

∂νT
wi,h ds =

M∑

i=1

∑

T∈Th,i

∑

e∈∂Tint

∫

e

∇ui · νT wi,h ds. (2.3.16)

Since each face e of an element T located inside Ωi appears twice in the above sum (2.3.16),

we can subtract from wi,h its mean-value wi,h on the face e. If e is on ∂Ω, it is clear that

wi,h = 0. Therefore, the equation (2.3.16) can be written as

I1 =

M∑

i=1

∑

T∈Th,i

∑

e∈∂Tint

∫

e

∇ui · νT (wi,h − wi,h) ds. (2.3.17)

It follows from the definition of wi,h that

∫

e

(wi,h −wi,h) ds = 0. The values of the integrals

also do not change if we subtract a constant multiple of ∇ui · νT on each face e. We can

also subtract from ∇ui its mean-value ∇ui on e and obtain

I1 =

M∑

i=1

∑

T∈Th,i

∑

e∈∂Tint

∫

e

(∇ui −∇ui) · νT (wi,h − wi,h) ds. (2.3.18)

An application of Cauchy-Schwarz inequality with Lemma 1.2.7 yields

I1 ≤
M∑

i=1

∑

T∈Th,i

∑

e∈∂Tint

||∇ui −∇ui)||0,e ||wi,h − wi,h||0,e

≤ C
M∑

i=1

∑

T∈Th,i

h
1/2
T |ui|2,T h

1/2
T |wi,h|1,T
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≤ C h
M∑

i=1




∑

T∈Th,i

|ui|22,T





1/2


∑

T∈Th,i

|wi,h|21,T





1/2

≤ C h

M∑

i=1

|ui|2,Ωi
||wi,h||1,h,Ωi

. (2.3.19)

For the second term on the right hand side of (2.3.14), we note that

I2 =

M∑

i=1

∑

i<j∈N(i)




∑

T∈Th,i

∑

∂T∩Γij 6=φ

(∫

∂T

λij [wh] ds−
∫

∂T

λij,h [πwh] ds

)


 (2.3.20)

=
M∑

i=1

∑

i<j∈N(i)




∑

T∈Th,i

∑

e∈∂T∩Γij 6=φ

(∫

e

λij [wh] ds−
∫

e

Qhλij [πwh] ds

)




+

M∑

i=1

∑

i<j∈N(i)




∑

T∈Th,i

∑

e∈∂T∩Γij 6=φ

(∫

e

Qhλij [πwh] ds−
∫

e

λij,h [πwh] ds

)




= I2,1 + I2,2, (2.3.21)

Next, we need to estimate I2,1 and I2,2. Observe that

∑

T∈Th,i

∑

e∈∂T∩Γij 6=φ

∫

e

[wh] ds =
∑

p∈Nh,i∩Γij

[wh(p)] |e|

=
∑

T∈Th,i

∑

e∈∂T∩Γij 6=φ

∫

e

[πwh] ds, (2.3.22)

where e is the element face with p as its barycenter, |e| is the measure of e and Nh,i is the

set of all barycenters of Th,i. Using (2.3.22), we obtain

I2,1 =

M∑

i=1

∑

i<j∈N(i)




∑

T∈Th,i

∑

e∈∂T∩Γij 6=φ

∫

e

(λij −Qhλij) [wh] ds





≤
M∑

i=1

∑

i<j∈N(i)




∑

T∈Th,i

∑

e∈∂T∩Γij 6=φ

||λij −Qhλij||0,e

(

||wi,h|Γij
||0,e + ||wj,h|Γij

||0,e

)





≤ C
M∑

i=1

∑

i<j∈N(i)

[

||λij −Qhλij||0,Γij

(

||wi,h|Γij
||0,Γij

+ ||wj,h|Γij
||0,Γij

)]

. (2.3.23)
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For the midpoint rule, it is easy to see that

∫

Γij

w2
hds ≤ C h

∫

Ωi

|∇wh|2dx. (2.3.24)

Using Lemma 2.3.2 and (2.3.24) in (2.3.23), we arrive at

I2,1 ≤ C h1/2

M∑

i=1




∑

i<j∈N(i)

||λij −Qhλij||0,Γij



 |wi,h|1,h,Ωi

≤ C h

M∑

i=1




∑

i<j∈N(i)

||λij||H1/2(Γij)



 |wi,h|1,h,Ωi

≤ C h
M∑

i=1

||u||2,Ωi
||wh||1,h,Ωi

. (2.3.25)

Using Lemma 2.2.6, Lemma 2.3.4, (2.3.24) and (2.3.31), we estimate I2,2 as

I2,2 ≤
M∑

i=1

∑

i<j∈N(i)




∑

T∈Th,i

∑

e∈∂T∩Γij 6=φ

||λij,h −Qhλij||0,e (||πijwi,h||0,e + ||πjiwj,h||0,e)





≤ C

M∑

i=1

∑

i<j∈N(i)

[
||λij,h −Qhλij||0,Γij

(
||πijwi,h||0,Γij

+ ||πjiwj,h||0,Γij

) ]

≤ C

M∑

i=1

∑

i<j∈N(i)

[

||λij,h −Qhλij||0,Γij

(

||wi,h|Γij
||0,Γij

+ ||wj,h|Γij
||0,Γij

) ]

≤ C h1/2
M∑

i=1




∑

i<j∈N(i)

||λij,h −Qhλij||0,Γij



 |wi,h|1,h,Ωi

≤ C h

M∑

i=1

||u||2,Ωi
||wh||1,h,Ωi

. (2.3.26)

Employing (2.3.19), (2.3.21), (2.3.25) and (2.3.26) in (2.3.14), we arrive at (2.3.13) and this

completes the rest of the proof.

Lemma 2.3.4 Let (uh, λh) ∈ Xh × Yh be the solution of (2.2.36)-(2.2.37) and let (u, λ) ∈
X × Y be the solution of (2.2.16)-(2.2.17) with given data f ∈ L2(Ω). Assume that u =
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(u1, · · · , uM) ∈
M∏

i=1

H2(Ωi). Then, there exists a constant C independent of h such that

||λ− λh||0,Γ ≤ C h1/2
M∑

i=1

||ui||2,Ωi
. (2.3.27)

Proof. From (2.2.36), we obtain using interpolant Ih in (2.3.1)

M∑

i=1

∑

i<j∈N(i)

∫

Γij

λij,h [π vh] ds =
M∑

i=1

[
ah

Ωi
(ui,h, vi,h) − (f, vi,h)Ωi

]

=
M∑

i=1

[
ah

Ωi
(Ihui − ui, vi,h) + ah

Ωi
(ui,h − Ihui, vi,h)

]
+

M∑

i=1

[
ah

Ωi
(ui, vi,h) − (f, vi,h)Ωi

]

=
M∑

i=1

[
ah

Ωi
(Ihui − ui, vi,h) + ah

Ωi
(ui,h − Ihui, vi,h)

]
+

M∑

i=1

∑

T∈Th,i

∫

∂T

∂ui

∂νT
vi,h ds. (2.3.28)

Using the operator Qh in (2.3.28), we can rewrite it as

M∑

i=1

∑

i<j∈N(i)

∫

Γij

(λij,h −Qhλij) [π vh] ds =
M∑

i=1

[
ah

Ωi
(Ihui − ui, vh) + ah

Ωi
(ui,h − Ihui, vi,h)

]

+
M∑

i=1

∑

T∈Th,i

∫

∂T

∂ui

∂νT
vi,h ds−

M∑

i=1

∑

i<j∈N(i)

∫

Γij

Qhλij [π vh] ds

=
M∑

i=1

ah
Ωi

(Ihui − ui, vi,h) +
M∑

i=1

ah
Ωi

(ui,h − Ihui, vi,h) +
M∑

i=1

∑

T∈Th,i

∫

∂Tint

∂ui

∂νT
vi,h ds

+

M∑

i=1

∑

T∈Th,i




∑

i<j∈N(i)

∑

∂T∩Γij 6=φ

(∫

∂T

λij [vh] ds−
∫

∂T

Qhλij [πvh] ds

)


 . (2.3.29)

Using Cauchy-Schwarz inequality for the first and second terms, (2.3.19) for the third term,

and (2.3.25) for the fourth term on the right hand side of (2.3.29), we arrive at

M∑

i=1

∑

i<j∈N(i)

∫

Γij

(λij,h −Qhλij) [π vh] ds ≤ C h
M∑

i=1

||ui||2,Ωi
|vh|1,h,Ωi

. (2.3.30)

Choose vh = Sij(λij,h −Qhλij) in (2.3.30) and using Lemma 2.2.6, we obtain

M∑

i=1

∑

i<j∈N(i)

||λij,h −Qhλij||0,Γij
≤ C h1/2

M∑

i=1

||ui||2,Ωi
. (2.3.31)
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Using triangle inequality, we arrive at (2.3.27) and this completes the rest of the proof.

Combining the Lemma 2.3.1, Lemma 2.3.3 and Lemma 2.3.4, we obtain the following

estimates.

Theorem 2.3.1 Let (uh, λh) ∈ Xh×Yh be the solution of (2.2.36)-(2.2.37) and let (u, λ) ∈
X × Y be the solution of (2.2.16)-(2.2.17). Then, there exists a positive constant C inde-

pendent of h such that

||u− uh||1,h + h1/2 ||λ− λh||0,Γ ≤ C h

M∑

i=1

||ui||2,Ωi
. (2.3.32)

2.3.2 A priori estimates in L2-norm

For L2-error estimates, we appeal to Aubin and Nitsche duality argument (see, [4, 22, 34,

15]).

Theorem 2.3.2 Let (uh, λh) ∈ Xh×Yh be the solution of (2.2.36)-(2.2.37) and let (u, λ) ∈

X × Y be the solution of (2.2.16)-(2.2.17). Assume that u = (u1, · · · , uM) ∈
M∏

i=1

H2(Ωi).

Then, there exists a positive constant C independent of h such that

||u− uh||0,Ω ≤ C h2
M∑

i=1

||ui||2,Ωi
. (2.3.33)

Proof. For i = 1, 2, · · · ,M , let ζi = ui − ui,h, ζ = (ζ1, · · · , ζM) and let ψi = ψ|Ωi
∈

H2(Ωi) ∩H1
0 (Ω) be a solution of the transmission problem :







−∆ψi = ζi in Ωi,

ψi = 0 on ∂Ωi ∩ ∂Ω,
ψi = ψj on Γij, j ∈ N(i),
∂ψi

∂ν
=

∂ψj

∂ν
on Γij, j ∈ N(i),

(2.3.34)

which satisfies the regularity condition

M∑

i=1

||ψ||2,Ωi
≤ C ||ζ||0,Ω. (2.3.35)
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Since ζ = (ζ1, · · · , ζM) ∈ Xh, we multiply both the sides of (2.3.34) by ζi and integrate

over Ωi. Now integration by parts yields

||ζ||20,Ω =

M∑

i=1

||ζi||20,Ωi
=

M∑

i=1

(−∆ψi, ζi) =

M∑

i=1

∑

T∈Th,i

(∫

T

∇ψi · ∇ζi dx−
∫

∂T

∂ψi

∂νT
ζi ds

)

=
M∑

i=1

ah
Ωi

(ψi, ζi) −
M∑

i=1

∑

T∈Th,i

∫

∂Tint

∂ψi

∂νT
ζi ds

−
M∑

i=1

∑

T∈Th,i




∑

i<j∈N(i)

∑

∂T∩Γij 6=φ

∫

∂T

∂ψ

∂ν
[ζ] ds



 .

Moreover,

||ζ||20,Ω =
M∑

i=1

ah
Ωi

(ζi, ψi − Ihψi) +
M∑

i=1

ah
Ωi

(ζi, Ihψi) −
M∑

i=1

∑

T∈Th,i

∫

∂Tint

∂ψi

∂νT
ζi ds

−
M∑

i=1

∑

T∈Th,i




∑

i<j∈N(i)

∑

∂T∩Γij 6=φ

∫

∂T

∂ψ

∂ν
[ζ] ds



 . (2.3.36)

Since Ihψi ∈ Xh, and using (2.3.6) and (2.3.14), we obtain

M∑

i=1

ah
Ωi

(ζi, Ihψi) =
M∑

i=1




∑

T∈Th,i

∫

∂T

∂ui

∂νT
Ihψi ds −

∑

i<j∈N(i)

∫

Γij

λij,h [πIhψ] ds



 . (2.3.37)

Substituting (2.3.37) in (2.3.36), we find that

||ζ||20,Ω =

M∑

i=1

ah
Ωi

(ζi, ψi − Ihψi) −
M∑

i=1

∑

T∈Th,i

∫

∂Tint

∂ψi

∂νT
ζi ds

−
M∑

i=1

∑

T∈Th,i




∑

i<j∈N(i)

∑

∂T∩Γij 6=φ

∫

∂T

∂ψ

∂ν
[ζ] ds



+

M∑

i=1

∑

T∈Th,i

(∫

∂Tint

∂ui

∂νT
Ihψi ds

)

+
M∑

i=1

∑

i<j∈N(i)

[
∫

Γij

λij [Ihψ] ds−
∫

Γij

λij,h [πIhψ] ds

]

= I3 + I4 + I5 + I6 + I7. (2.3.38)
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Now, we have to estimate each of the term on the right-hand side of (2.3.38). For I3, using

Cauchy-Schwartz inequality, (2.3.32) and (2.3.2), we arrive at

I3 ≤
M∑

i=1

||ζi||1,h,Ωi
||ψi − Ihψi||1,h,Ωi

≤ C h2
M∑

i=1

||ui||2,Ωi
||ψi||2,Ωi

≤ C h2

M∑

i=1

||ui||2,Ωi
||ζi||0,Ω. (2.3.39)

For obtaining the estimates of I4 and I5, we proceed similarly as in the estimate of I1 in

the previous subsection and obtain

|I4| ≤ C h

M∑

i=1

||ψi||2,Ωi
||ζi||1,h,Ωi

≤ C h2

M∑

i=1

||ui||2,Ωi
||ζi||0,Ωi

, (2.3.40)

and

|I5| ≤ C h
M∑

i=1

||ψi||2,Ωi
||ζi||1,h,Ωi

≤ C h2
M∑

i=1

||ui||2,Ωi
||ζi||0,Ωi

. (2.3.41)

Since ψi = ψ|T ′ = ψj, ψi = ψ|T1
and ψj = ψ|T2

, where T1 and T2 are two triangles in Th,i

with T ′ as the common edge, we find that

∫

T ′∈∂T1∩∂T2

∂ui

∂νT1

ψi ds+

∫

T ′∈∂T1∩∂T2

∂uj

∂νT2

ψj ds = 0. (2.3.42)

Using (2.3.42) in I6, we obtain

I6 =

M∑

i=1

∑

T∈Th,i

∫

∂Tint

∂ui

∂νT
(Ihψi − ψi) ds =

M∑

i=1

∑

T∈Th,i

∑

e∈∂Tint

∫

e

∂u

∂νe
[Ihψ − ψ] ds, (2.3.43)

where [vh] = vh|T1

− vh|T2

, and let e denote the common face of two triangles. Note that

∫

e

[vh] ds = 0, (2.3.44)

since [vh] is linear and vanishes at the midpoint of e. Using (2.3.44) in (2.3.43), we obtain

I6 =
M∑

i=1

∑

T∈Th,i

∑

e∈∂Tint

∫

e

(∇u−∇u) · νe [Ihψ − ψ] ds, (2.3.45)
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where ∇u is the mean value of ∇u on e. An application of Cauchy-Schwarz inequality with

Lemma 1.2.7, Lemma 2.2.3, and (2.3.2) yields

I6 ≤ Ch1/2
M∑

i=1

||ui||2,Ωi

∑

T∈Th,i

(

h−1/2||ψi − Ihψi||0,T + ||ψi − Ihψi||1/2
0,T |ψi − Ihψi|1/2

1,h,T

)

≤ Ch1/2
M∑

i=1

||ui||2,Ωi







∑

T∈Th,i

h−1/2||ψi − Ihψi||0,T +




∑

T∈Th,i

||ψi − Ihψi||0,T





1/2

×




∑

T∈Th,i

||ψi − Ihψi||1,h,T





1/2






≤ C h1/2
M∑

i=1

||ui||2,Ωi

{

h3/2 ||ψi||2,Ωi
+
(
h2 ||ψi||2,Ωi

h ||ψi||2,Ωi

)1/2
}

≤ C h2
M∑

i=1

||ui||2,Ωi
||ψi||2,Ωi

≤ C h2
M∑

i=1

||ui||2,Ωi
||ζi||0,Ωi

. (2.3.46)

For I7, we rewrite it as

I7 =

M∑

i=1

∑

i<j∈N(i)

{[
∫

Γij

λij [Ihψ] −
∫

Γij

Qhλij [πIhψ] ds

]

+

∫

Γij

(Qhλij − λij,h) [πIhψ] ds

}

. (2.3.47)

Using (2.3.22) in (2.3.47), we obtain

I7 =

M∑

i=1

∑

i<j∈N(i)




∑

T∈Th,i

∑

e∈∂T∩Γij 6=φ

∫

e

(λij −Qhλij) [Ihψ] ds





+

M∑

i=1

∑

i<j∈N(i)




∑

T∈Th,i

∑

e∈∂T∩Γij 6=φ

∫

e

(Qhλij − λij,h) [Ihψ] ds



 . (2.3.48)

Since ψi = ψj on Γij, we therefore, arrive at

I7 =
M∑

i=1

∑

i<j∈N(i)




∑

T∈Th,i

∑

e∈∂T∩Γij 6=φ

∫

e

(λij −Qhλij) [Ihψ − ψ] ds





+
M∑

i=1

∑

i<j∈N(i)




∑

T∈Th,i

∑

e∈∂T∩Γij 6=φ

∫

e

(Qhλij − λij,h) [Ihψ − ψ] ds



 . (2.3.49)
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We proceed similarly as in the estimates of I2,1 and I2,2 in the previous subsection and

using (2.3.2), we find that

|I7| ≤ C h2
M∑

i=1

||ui||2,Ωi
||ζi||0,Ωi

. (2.3.50)

Substituting (2.3.39), (2.3.41), (2.3.46) and (2.3.50) into (2.3.38) and using the triangle

inequality, we obtain (2.3.33). This completes the proof of the theorem.

2.4 Numerical experiments

In this section, we have applied the discrete scheme to a model problem.

The numerical implementation scheme has been performed in a sequential machine

using MATLAB.

Consider the problem (2.2.1) with f = 2[x(1 − x) + y(1 − y)]. The exact solution of

the problem (2.2.1) is given by u = x(1 − x)y(1 − y). Here we consider Ω = (0, 1) × (0, 1).

We decompose the square into [0, 3/4] × [0, 1] and [3/4, 1] × [0, 1], with interface Γ =

{3/4} × (0, 1).

h D.O.F. in Ω1 D.O.F. in Ω2 eh = ‖u− uh‖0,Ω Rate

1/8 138 46 2.13638547 ×10−4 -

1/16 564 188 5.55749496×10−5 1.9427

1/24 1278 426 2.48861646×10−5 1.9818

1/32 2280 760 1.40354724×10−5 1.9908

1/40 3570 1190 8.99370414×10−6 1.9945

1/48 5148 1716 6.24978544×10−6 1.9964

Table 2.1: L2 error and order of convergence for the 2-domain case

In Figure 2.3, the graph of the L2 error ‖u − uh‖ is plotted as a function of the dis-

cretization step ′h′ in the log − log scale. The slope of the graph gives the computed

order of convergence as approximately 2.0. These results match with the theoretical results

obtained in Theorem 2.3.2.
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Figure 2.3: The order of convergence

In Table 2.1, the L2 error eh = ‖u − uh‖ for h = 1/8, h = 1/16, h = 1/24, h = 1/32,

h = 1/40 and h = 1/48 are given.

2.5 The parabolic problem

In the remaining part of this chapter, we consider the following parabolic initial and bound-

ary value problem. Given f ∈ L2(Ω) and u0(x) ∈ L2(Ω), find u = u(x, t) such that







ut − ∆u = f(x, t) in QT = (0, T ] × Ω,

u(x, t) = 0 on ∂Ω, t ∈ (0, T ],

u(x, 0) = u0(x) in Ω,

(2.5.1)

where Ω is a bounded convex polygon or polyhedron in IRd, d = 2 or 3 with a Lipschitz

continuous, piecewise C1 boundary ∂Ω.

The weak formulation corresponding to the problem (2.5.1) may be stated as follows:
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given f ∈ L2(QT ) and u0 ∈ L2(Ω), find ū : (0, T ] → H1
0 (Ω) such that







(ūt, v) + aΩ(ū, v) = (f, v) ∀ v ∈ H1
0 (Ω),

u(0) = u0,
(2.5.2)

where

aΩ(v, w) =

∫

Ω

∇v · ∇w dx, and (v, w) =

∫

Ω

v w dx. (2.5.3)

Theorem 2.5.1 Assume that the bilinear form a(·, ·) is both continuous and coercive in

H1
0 (Ω) × H1

0 (Ω). Then, given f ∈ L2(QT ) and u0 ∈ L2(Ω), there exits a unique solution

ū : [0, T ] → H1
0 (Ω) to (2.5.2). Moreover, ū depends continuously on the data; i.e., there

exists a constant C such that

max
t∈[0,T ]

||ū||20,Ω +

∫ T

0

||ū||21,Ω ≤ C

(

||u0||20,Ω +

∫ T

0

||f ||20,Ω

)

. (2.5.4)

For a proof of this theorem, we refer to [93].

Now we are in a position to write the multi-domain problems. Find ui, i = 1, 2, · · · ,M
satisfying the following subproblems:







uit − ∆ui = fi(x, t) in Ωi, t ∈ (0, T ],

ui = 0 on ∂Ωi ∩ ∂Ω, t ∈ (0, T ],

ui = uj on Γij, j ∈ N(i), t ∈ (0, T ],
∂ui

∂ν
=
∂uj

∂ν
on Γij, j ∈ N(i), t ∈ (0, T ],

ui(0) = u0|Ωi
in Ωi,

(2.5.5)

where ui = ū|Ωi
, uti = ūt|Ωi

, fi = f|Ωi
, i = 1, 2, · · · ,M and ν = νij = νji on Γij and νij

and νji are unit outward normals to Ωi and Ωj, respectively. Note that (2.5.5)3 - (2.5.5)4

are called the consistency conditions on the artificial interface Γij. Now we are looking for

the variational formulation for the multi-domain problems (2.5.5). Multiply both sides of

(2.5.5)1 by a test function vi ∈ Xi and integrate over Ωi to obtain

∫

Ωi

uitvidx+

∫

Ωi

∇ui · ∇vidx−
∑

j∈N(i)

〈
∂ui

∂νij
, vi

〉

=

∫

Ωi

fividx,
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where 〈·, ·〉 represents the duality pairing between H
1

2 (Γ) and H− 1

2 (Γ) and νij are unit

outward normals to ∂Ωi. Finally, sum over 1 ≤ i ≤M to find that

M∑

i=1



(uti, vi)Ωi
+ aΩi

(ui, vi) −
∑

j∈N(i)

〈
∂ui

∂νij
, vi

〉


 =

M∑

i=1

(fi, vi)Ωi
∀vi ∈ X, (2.5.6)

where

aΩi
(v, w) =

∫

Ωi

∇v · ∇w dx, (v, w)Ωi
=

∫

Ωi

v w dx. (2.5.7)

Below, we discuss the Lagrange multipliers method on interface Γij. Find u = (u1, u2, · · · , uM) :

(0, T ] ∈ X =

M∏

i=1

Xi and λ : (0, T ] ∈ Y =

M∏

i=1

∏

i<j∈N(i)

Yij such that

(ut, v) + a(u, v) − b(v, λ) = (f, v) ∀v ∈ X, (2.5.8)

b(u, µ) = 0 ∀µ ∈ Y, (2.5.9)

where the bilinear form a : X ×X → IR is given by

a(w, v) =
M∑

i=1

aΩi
(wi, vi), (2.5.10)

the bilinear form b : X × Y → IR is defined as

b(v, µ) =
M∑

i=1

∑

i<j∈N(i)

〈

µ|Γij
, vi − vj

〉

(2.5.11)

and (·, ·) denotes L2 inner product.

Below, we state a Lemma and Theorem without proof.

Lemma 2.5.1 The variational formulation of a single domain problem (2.2.2) and multi-

domain problem (2.5.8)-(2.5.8) are equivalent under the following conditions: the test func-

tion (v1, v2, · · · , vM) ∈ X =
M∏

i=1

Xi belongs to H1
0 (Ω) and λij(t) = ∇ui · νij = −∇uj ·

νji on Γij, 1 ≤ i ≤M, j ∈ N(i).

Theorem 2.5.2 Problem (2.5.8)-(2.5.8) has a unique solution (u, λ) ∈ C0 ([0, T ] :∈ X × Y ).

Moreover if ū : [0, T ] ∈ H1
0 (Ω) is a solution of problem (2.5.2) with ui = ū|Ωi

and we have

λij(t) = ∇ui · νij = −∇uj · νji on Γij, 1 ≤ i ≤ M, j ∈ N(i).

The proof of Lemma 2.5.1 and Theorem 2.5.2 follow in the same way as those of proof of

Lemma 2.2.4 and Theorem 2.2.2, respectively.



Chapter 2. Domain Decomposition Methods 59

2.6 Semi-discrete approximation

In this section, we focus our attention on the spatial discretization of the problem (2.5.8)-

(2.5.9). We state the variational formulation for the semi-discrete problem. Given f ∈

L2(QT ), find uh = (u1,h, · · · , uM,h) : (0, T ] → Xh =
M∏

i=1

Xi,h and λh : [0, T ] → Yh =

M∏

i=1

∏

i<j∈N(i)

Yi,h such that

(uh,t, vh) + ah(uh, vh) −
M∑

i=1

∑

i<j∈N(i)

∫

Γij

λij,h [π vh] ds =
M∑

i=1

(f, vh)Ωi
∀v ∈ Xh, (2.6.1)

M∑

i=1

∑

i<j∈N(i)

∫

Γij

[π uh]µh ds = 0 ∀µh ∈ Yh, (2.6.2)

and initial condition

uh(0) = u0,h, (2.6.3)

where

ah(vh, wh) =
M∑

i=1

ah
Ωi

(vi,h, wi,h) =
M∑

i=1

∫

Ωi

∇vi,h · ∇wi,h dx, (2.6.4)

[π vh] = πij vi,h − πji vj,h on Γij (2.6.5)

and u0,h is an approximation of u0 onto Xh to be defined later.

Theorem 2.6.1 Problem (2.6.1) - (2.6.2) has a unique solution uh = (u1,h, · · · , uM,h) :

[0, T ] → Xh =
M∏

i=1

Xi,h and λh : [0, T ] → Yh =
M∏

i=1

∏

i<j∈N(i)

Yi,h. Moreover, there exist two

constant C and α independent of h such that

||uh||0,Ω ≤ C
(
||u0h||0,Ω + ||f ||L2([0,T ],L2(Ω))

)
. (2.6.6)

Proof. For simplicity, we prove the above theorem for the two fixed subdomains, i.e.,

M = 2. Since Xh and Λh are finite dimensional, the semidiscrete problem (2.6.1)-(2.6.2)
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leads to

M11
dα1

h

dt
+ A11α

1
h − B1Γβh = F1, (2.6.7)

M22
dα2

h

dt
+ A22α

2
h +B2Γβh = F2, (2.6.8)

BΓ1α
1
h − BΓ2α

2
h = 0, (2.6.9)

where Mii = [mi
jk] with mi

jk = (φj, φk), Aii = [ai
jk] with ai

jk = ai(φj, φk), Fi = (F i
j ) with

F i
j = (fi, φj), j, k = 1, 2 · · ·Ni, i = 1, 2, and BiΓ = [bijs] with bijs = b(φj, ψs), j = 1, 2 · · ·Ni,

s = 1, 2 · · ·NΓ, BΓi = BT
iΓ, i = 1, 2. Here Ni is the number of unknowns in the Ωi including

the interface Γ and NΓ denotes the number of unknowns on the interface Γ. Since the mass

matrix Mii, i = 1, 2 is invertible, we obtain

dα1
h

dt
= M−1

11 F1 −M−1
11 A11α

1
h +M−1

11 B1Γβh, (2.6.10)

dα2
h

dt
= M−1

22 F2 −M−1
22 A22α

2
h −M−1

22 B2Γβh. (2.6.11)

Differentiate (2.6.9) with respect to time, and find that

BΓ1
dα1

h

dt
−BΓ2

dα1
h

dt
= 0. (2.6.12)

Substituting (2.6.10)-(2.6.11) into (2.6.12), we arrive at

(
BΓ1M

−1
11 B1Γ +BΓ2M

−1
22 B2Γ

)
βh =

(
−BΓ1M

−1
11 F1 +BΓ1M

−1
11 A11α

1
h

)

+
(
BΓ2M

−1
22 F2 − BΓ2M

−1
22 A22α

2
h

)
. (2.6.13)

Since
(
BΓ1M

−1
11 B1Γ +BΓ2M

−1
22 B2Γ

)
is positive definite, we, therefore, obtain

βh =
(
BΓ1M

−1
11 B1Γ +BΓ2M

−1
22 B2Γ

)−1 (−BΓ1M
−1
11 F1 +BΓ2M

−1
22 F2

+ BΓ1M
−1
11 A11α

1
h − BΓ2M

−1
22 A22α

2
h

)
. (2.6.14)

Setting Σ = BΓ1M
−1
11 B1Γ +BΓ2M

−1
22 B2Γ and substituting (2.6.14) into (2.6.10)-(2.6.11), we

now arrive at a system of linear ordinary differential equations

dα1
h

dt
+
(
I +M−1

11 B1Γ(Σ)−1BΓ1

)
M−1

11 A11α
1
h −M−1

11 B1Γ(Σ)−1BΓ2M
−1
22 A22α

2
h

= M−1
11 B1Γ(Σ)−1BΓ1M

−1
11 F1 −M−1

11 B1Γ(Σ)−1BΓ2M
−1
22 F2 (2.6.15)
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and

dα2
h

dt
+
(
I +M−1

22 B2Γ(Σ)−1BΓ2

)
M−1

22 A22α
2
h −M−1

22 B2Γ(Σ)−1BΓ1M
−1
11 A11α

1
h

= M−1
22 B2Γ(Σ)−1BΓ2M

−1
22 F2 −M−1

22 B2Γ(Σ)−1BΓ1M
−1
11 F1 (2.6.16)

with given αh(0). An appeal to Picard’s theorem yields the existence of a unique solution

αh = (α1
h, α

2
h) of (2.6.15)-(2.6.16) on [0, T ]. Substituting the value of αh in (2.6.14), we

obtain a unique βh. This completes the proof of existence and uniqueness of (uh, λh) on

(2.6.1)-(2.6.2).

Suppose (uh, λh) is a solution of (2.6.1) and (2.6.2). Choose vh = uh in (2.6.1) and µh = λh

in (2.6.2), then we arrive at

1

2

d

dt
||uh||20,Ω + ah(uh, uh) = (f, uh). (2.6.17)

Using Cauchy-Schwarz inequality, coercive property of ah, |(f, vh)| ≤ ||f ||0,Ω ||vh||0,Ω and

||vh||0,Ω ≤ C||vh||1,h in (2.6.17), we obtain

d

dt
||uh||20,Ω + α ||uh||21,h ≤ C(α)||f ||20,Ω. (2.6.18)

Here we have used ||f ||0,Ω ||vh||0,Ω ≤ C ||f ||0,Ω ||vh||1,Ω ≤ C(α) ||f ||20,Ω +
α

2
||vh||21,Ω. Now

integrate (2.6.18) over 0 to T to obtain (2.6.6). Similarly we can proceed for more than

two subdomains. This completes the rest of the proof.

2.6.1 Error estimates

In this subsection, we discuss error estimates for the semi-discrete scheme.

For given u and λ, define Rhu ∈ Xh and Ghλ ∈ Yh by

ah(u− Rhu, vh) −
M∑

i=1

∑

i<j∈N(i)

[
∫

Γij

λij [vh] ds−Ghλij [π vh] ds

]

=

M∑

i=1

∑

T∈Th,i

∫

∂Tint

∂ui

∂νT
vi,h ds ∀vh ∈ Xh, (2.6.19)

M∑

i=1

∑

i<j∈N(i)

∫

Γij

[u− π Rhu]µh ds = 0 ∀µh ∈ Yh. (2.6.20)
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Lemma 2.6.1 Let Rhu and Ghλ be satisfy (2.6.19) and (2.6.20). Assume that

{u, ut, utt, uttt} ∈
M∏

i=1

H2(Ωi). Then there exists a constant C independent of h such that

∥
∥
∥
∥

∂m

∂tm
(u− Rhu)

∥
∥
∥
∥

1,h

+ h1/2

∥
∥
∥
∥

∂m

∂tm
(λ−Ghλ)

∥
∥
∥
∥

0,Γ

≤ C h
M∑

i=1

m∑

l=0

∥
∥
∥
∥

∂l

∂tl
ui

∥
∥
∥
∥

2,Ωi

, m = 0, 1,

(2.6.21)

and
∥
∥
∥
∥

∂m

∂tm
(u− Rhu)

∥
∥
∥
∥

0,Ω

≤ C h2

M∑

i=1

m∑

l=0

∥
∥
∥
∥

∂l

∂tl
ui

∥
∥
∥
∥

2,Ωi

, m = 0, 1, 2, 3. (2.6.22)

The proof follows easily from Theorem 2.3.1 and Theorem 2.3.2.

Theorem 2.6.2 Let (u, λ) and (uh, λh) be the solutions of the equations (2.5.8)-(2.5.9) and

(2.6.1)-(2.6.2), respectively. Assume that u0 ∈
M∏

i=1

H2(Ωi) and ut ∈
M∏

i=1

L2(0, T ;H1(Ωi)).

Then there exists a positive constant C independent of h such that for (0, T ],

||u− uh||1,h ≤ C

{

||u(0)− u0,h||1,h + h
M∑

i=1

||u0||H2(Ωi) + h
M∑

i=1

||ut||L2(0,T ;H1(Ωi))

}

. (2.6.23)

In addition, if ut ∈
M∏

i=1

L2(0, T ;H2(Ωi)), then

||u− uh||0,Ω ≤ C

{

||u(0) − u0,h||0,Ω + h2
M∑

i=1

(
||u0||H2(Ωi) + ||ut||L2(0,T ;H2(Ωi))

)

}

. (2.6.24)

Proof. Setting

u− uh = (u− Rhu)
︸ ︷︷ ︸

η

− (uh − Rhu)
︸ ︷︷ ︸

θ

and λ− λh = (λ−Ghλ)
︸ ︷︷ ︸

Φ

− (λh −Ghλ)
︸ ︷︷ ︸

Ψ

, (2.6.25)

we now rewrite
M∑

i=1

ah
Ωi

(θi, vi,h) =

M∑

i=1

[
ah

Ωi
(ui,h, vi,h) − ah

Ωi
(ui, vi,h) + ah

Ωi
(ui − Rhui, vi,h)

]

= −(uh,t, vh) +
M∑

i=1

∑

i<j∈N(i)

∫

Γij

λij,h [πvh] ds+ (f, vh)

−
M∑

i=1

ah
Ωi

(ui, vi,h) +
M∑

i=1

ah
Ωi

(ui − Rhui, vi,h). (2.6.26)
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Using (2.6.19) in (2.6.26) and subtracting (2.6.20) from (2.6.2), we arrive at

(θt, vh) + ah(θ, vh) −
M∑

i=1

∑

i<j∈N(i)

∫

Γij

Ψ [πvh] ds = (ηt, vh) ∀vh ∈ Xh, (2.6.27)

M∑

i=1

∑

i<j∈N(i)

∫

Γij

[π θ]µh ds = 0 µh ∈ Yh. (2.6.28)

Substituting vh = θ in (2.6.27) and µh = Ψ in (2.6.28) and using Cauchy-Schwarz inequality,

extended Poincaré inequality and Young’s inequality, we obtain

1

2

d

dt
||θ||20,Ω + α||θ||21,h ≤ C(α)||ηt||20,Ω +

α

2
||θ||21,h. (2.6.29)

Integrating from 0 to T with respect to time, we find that

||θ(t)||20,Ω + α

∫ T

0

||θ||21,h ≤ ||θ(0)||20,Ω + C(α)

∫ T

0

||ηt||20,Ωds. (2.6.30)

Using (2.6.22),

||θ(0)||0,Ω = ||Rhu(0) − uh(0)||0,Ω ≤ ||u(0) − uh(0)||0,Ω + ||Rhu(0) − u(0)||0,Ω

≤ ||u(0)− u0,h||0,Ω + C h2
M∑

i=1

||u0||H2(Ωi). (2.6.31)

Using (2.6.22) and (2.6.31), we derive the estimate (2.6.24).

Differentiate (2.6.28) with respect to t. Choose µh = Ψ to obtain

M∑

i=1

∑

i<j∈N(i)

∫

Γij

[π θt] Ψ ds = 0. (2.6.32)

Substituting vh = θt in (2.6.27) and using (2.6.32), we arrive at

||θt||20,Ω +
1

2

d

dt
ah(θ, θ) = (ηt, θt). (2.6.33)

Using Cauchy-Schwarz inequality, extended Poincaré inequality, Young’s inequality and

integrating with respect to time, we obtain

∫ T

0

||θt||20,Ω ds+ α||θ(t)||21,h ≤ ||θ(0)||21,h + C

∫ T

0

||ηt||20,Ω. (2.6.34)
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Using (2.6.21)

||θ(0)||1,h = ||Rhu(0) − uh(0)||1,h ≤ ||u(0)− uh(0)||1,h + ||Rhu(0) − u(0)||1,h

≤ ||u(0)− u0,h||1,h + C h
M∑

i=1

||u0||H2(Ωi). (2.6.35)

Using (2.6.34) and (2.6.35), we derive the estimate (2.6.23). This completes the proof of

the theorem.

Theorem 2.6.3 Let (u, λ) and (uh, λh) be the solutions of the equations (2.5.8)-(2.5.9) and

(2.6.1)-(2.6.2), respectively. Assume that u0 ∈
M∏

i=1

H2(Ωi), {ut, utt} ∈
M∏

i=1

L2(0, T ;H1(Ωi)).

Then there exists a positive constant C independent of h such that for (0, T ],

h1/2 ||λ− λh||0,Γ ≤ C

{

||u(0)− u0,h||1,h + h
M∑

i=1

||u0||H2(Ωi)

+ h

M∑

i=1

(
||ut||L2(0,T ;H1(Ωi)) + ||utt||L2(0,T ;H1(Ωi))

)

}

. (2.6.36)

Proof. From (2.6.27), we obtain

M∑

i=1

∑

i<j∈N(i)

∫

Γij

Ψ [π vh] ds = (θt, vh) + ah(θ, vh) − (ηt, vh) ∀vh ∈ Xh. (2.6.37)

Now choose vh = SijΨij in (2.6.37), using Lemma 2.2.6, extended Poincaré inequality and

Cauchy-Schwarz inequality, we find that

||Ψ||0,Γ ≤ C h−1/2 ( ||ηt||0,Ω + ||θ||1,h + ||θt||0,Ω ) . (2.6.38)

To estimate (2.6.38), we need to an estimation of ||θt||0,Ω. Now differentiate (2.6.27) and

(2.6.28) with respect to the time to obtain

(θtt, vh) + ah(θt, vh) −
M∑

i=1

∑

i<j∈N(i)

∫

Γij

Ψt [π vh] ds = (ηtt, vh), (2.6.39)

M∑

i=1

∑

i<j∈N(i)

∫

Γij

[π θt]µh ds = 0. (2.6.40)
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Substituting vh = t θt in (2.6.39) and µh = tΨt in (2.6.40), we arrive at

t (θtt, θt) + t ah(θt, θt) = t (ηtt, θt), (2.6.41)

and hence,

d

dt

(
t ||θt||20,Ω

)
+ t ||θt||21,h ≤ C t ||ηtt||20,Ω + ||θt||20,Ω. (2.6.42)

Now integrating with respect to time from 0 to T , we find that

t||θt||20,Ω ≤
∫ T

0

s ||ηtt||20,Ωds+

∫ T

0

||θt||20,Ωds ≤ C

∫ T

0

s ||ηtt||20,Ωds+

∫ T

0

||θt||20,Ωds. (2.6.43)

From (2.6.43), we obtain

||θt||20,Ω ≤ 1

t

∫ T

0

s ||ηtt||20,Ωds+
1

t

∫ T

0

||θt||20,Ωds. (2.6.44)

Using (2.6.21) and substituting (2.6.34) and (2.6.35) in (2.6.44), and applying (2.6.34), we

arrive at

||θt||20,Ω ≤ C

t

{

||u0 − u0,h||21,h + h2
M∑

i=1

[

||u0||2H2(Ωi)
+ ||ut||2L2(0,T ;H1(Ωi))

+||utt||2L2(0,T ;H1(Ωi))

]}

. (2.6.45)

An application of triangle inequality completes the rest of the proof.

2.7 Fully discrete approximation

In this section, we discuss a completely discrete scheme which is based on backward Euler

method for the problem (2.5.8)-(2.5.9). Let 0 < t1 < t2 < · · · < tN be a partition of [0, T ]

into N subintervals with T = N∆t, ∆t = tn − tn−1 being the time step and tn = n∆t. For

a continuous function Θ on [0, T ], define

∂̄tΘ
n =

Θn − Θn−1

∆t
, (2.7.1)

where Θn = Θ(tn), n = 1, 2, 3, · · · , N.

Given f ∈ L2(QT ) and Un−1 ∈ Xh, find Un = (Un
1 , · · · , Un

M) ∈ Xh =
M∏

i=1

Xi,h and λn
h ∈
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Yh =

M∏

i=1

∏

i<j∈N(i)

Yi,h for n = 1, 2, 3, · · · , N, such that

(∂̄tU
n, vh) + ah(Un, vh) −

M∑

i=1

∑

i<j∈N(i)

∫

Γij

λn
ij,h [π vh] ds = (fn, vh) ∀vh ∈ Xh, (2.7.2)

M∑

i=1

∑

i<j∈N(i)

∫

Γij

[π Un]µh ds = 0 ∀µh ∈ Yh, (2.7.3)

and

U0 = u0,h, (2.7.4)

where u0,h is an approximation of u0 onto Xh to be defined later. We now rewrite (2.7.2)-

(2.7.3) as

(Un, vh) + ∆t ah(Un, vh) − ∆t
M∑

i=1

∑

i<j∈N(i)

∫

Γij

λn
ij,h [π vh] ds = (Un−1, vh) + ∆t (fn, vh)

∀vh ∈ Xh, (2.7.5)
M∑

i=1

∑

i<j∈N(i)

∫

Γij

[π Un]µh ds = 0 ∀µh ∈ Yh. (2.7.6)

Theorem 2.7.1 Given (Un−1, λn−1
h ), there exists a unique solution (Un, λn

h) to problem

(2.7.5) and (2.7.6).

Proof. For simplicity, we prove the result for two fixed subdomains, i.e., M = 2. Since Xh

and Yh are finite dimensional, the problem (2.7.5)- (2.7.6) leads to






Â11 0 B̂1Γ

0 Â22 −B̂2Γ

B̂Γ1 −B̂Γ2 0













Un
1

Un
2

λn
h







=







Gn
1

Gn
2

0






, (2.7.7)

where Âii = Mii+∆tAii, Mii = [mi
jk] with mi

jk = (φj, φk), Aii = [ai
jk] with ai

jk = ai(φj, φk),

B̂iΓ = ∆tBiΓ, BiΓ = [bijs] with bijs = b(φj, ψs), B̂Γi = B̂T
iΓ, Gn

i = MiiU
n−1
1 + ∆tFi, Fi = (F i

j )

with (F i
j ) = (fi, φj), j = 1, 2 · · ·Ni, k = 1, 2 · · ·Ni, s = 1, 2 · · ·NΓ. Here Ni is the number

of unknowns in the Ωi including the interface Γ and NΓ denotes the number of unknowns

on the interface Γ for all i = 1, 2,. Since Âii is invertible,

Un
1 = Â−1

11 ( Gn
1 − B̂1Γλ

n
h) (2.7.8)
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and

Un
2 = Â−1

22 ( Gn
2 + B̂2Γλ

n
h). (2.7.9)

Substituting Un
1 and Un

2 from (2.7.8) and (2.7.9) in (2.7.7), we obtain

Σ̂h λ
n
h = χn

Γ, (2.7.10)

where

χn
Γ = B̂Γ1Â

−1
11 Gn

1 − B̂Γ2Â
−1
22 Gn

2 , (2.7.11)

and

Σ̂h = B̂Γ1Â
−1
11 B̂1Γ + B̂Γ2Â

−1
22 B̂2Γ. (2.7.12)

The system (2.7.10) is called the Schur complement system and the the matrix Σ̂h is

called the Schur complement matrix. Rewrite Σ̂h as

Σ̂h = Σ̂1,h + Σ̂2,h, with Σ̂i,h = B̂ΓiÂ
−1
ii B̂iΓ. (2.7.13)

Since Σ̂h is positive definite, Σ̂h is invertible, and, hence, we obtain from (2.7.10) a

unique λn
h. Substituting λn

h in (2.7.8)-(2.7.9), we obtain a unique Un = (Un
1 , U

n
2 ) , for

n = 1, 2, · · · , N . Similarly, we can proceed for more than two subdomains and this com-

pletes the rest of the proof.

2.7.1 Error estimates

In this subsection, we discuss error estimates for the completely discrete scheme (2.7.2)-

(2.7.3).

Theorem 2.7.2 Let (un, λn) and (Un, λn
h) be the solutions of (2.5.8)-(2.5.9) and (2.7.2)-

(2.7.3) respectively. Assume that u(0) ∈
2∏

i=1

H2(Ωi), u ∈
2∏

i=1

H2(Ωi), utt ∈ L2(0, T ;L2(Ω))

and ut ∈
2∏

i=1

L2(0, T ;H1(Ωi)). Then there exists a positive constant C independent of h
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such that for (0, T ],

max
0≤n≤N

||un − Un||1,h ≤ C
{
||u(0) − U0||1,h + ∆t ||utt||L2(0,T ;L2(Ω))

+ h

M∑

i=1

(
||u(0)||H2(Ωi) + ||u||H2(Ωi) + ||ut||L2(0,T ;H1(Ωi))

) }
. (2.7.14)

In addition, if ut ∈
2∏

i=1

L2(0, T ;H2(Ωi)), then

max
0≤n≤N

||un − Un||0,Ω ≤ C
{
||u(0) − U0||0,Ω + ∆t ||utt||L2(0,T ;L2(Ω))

+h2
M∑

i=1

(
||u(0)||H2(Ωi) + ||u||H2(Ωi) + ||ut||L2(0,T ;H2(Ωi))

) }
. (2.7.15)

Proof. Set

u(tn) − Un = (u(tn) − Rhu(tn))
︸ ︷︷ ︸

ηn

− (Un − Rhu(tn))
︸ ︷︷ ︸

θn

(2.7.16)

and

λ(tn) − λn
h = (λ(tn) −Ghλ(tn))

︸ ︷︷ ︸

Φn

− (λn
h −Ghλ(tn))

︸ ︷︷ ︸

Ψn

. (2.7.17)

Since the estimates for ηn and Φn are known, it is enough to estimate the error θn and Ψn.

From (2.7.2), we now rewrite

M∑

i=1

ah
Ωi

(θn
i , vi,h) =

M∑

i=1

[
ah

Ωi
(Un

i , vi,h) − ah
Ωi

(ui(tn), vi,h) + ah
Ωi

(ui(tn) − Rhui(tn), vi,h)
]

= −(∂̄tU
n, vh) +

M∑

i=1

∑

i<j∈N(i)

∫

Γij

λn
ij,h [πvh] ds+ (fn, vh)

−
M∑

i=1

ah
Ωi

(ui(tn), vi,h) +

M∑

i=1

ah
Ωi

(ui(tn) − Rhui(tn), vi,h). (2.7.18)
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Using (2.6.19) in (2.7.18) at t = tn and subtracting (2.6.20) from (2.6.28) at t = tn, we

arrive at

(∂̄tθ
n, vh) + ah(θn, vh) −

M∑

i=1

∑

i<j∈N(i)

∫

Γij

Ψn [πvh] ds = (ρn, vh) + (∂̄tη
n, vh) ∀vh ∈ Xh,

(2.7.19)
M∑

i=1

∑

i<j∈N(i)

∫

Γij

[π θn]µh ds = 0 ∀µh ∈ Yh, (2.7.20)

where

ρn = ut(tn) − ∂̄tu(tn) and ∂̄tη
n = ∂̄t (u(tn) − Rhu(tn)) . (2.7.21)

We note that

(∂̄tθ
n, θn) =

1

2
∂̄t

(
||θn||20,Ω

)
+

∆t

2
||∂̄tθ

n||20,Ω. (2.7.22)

Choosing vh = θn in (2.7.19), µh = Ψn in (2.7.20) and using (2.7.22), Cauchy-Schwarz

inequality and Young’s inequality, we obtain

∂̄t

(
||θn||20,Ω

)
+ ∆t||∂̄tθ

n||20,Ω + α||θn||21,h ≤ C1(α)||ρn||20,Ω + C2(α)||∂̄tη
n||20,Ω. (2.7.23)

Multiplying (2.7.23) by ∆t and summing over n, we arrive at

||θn||20,Ω + α∆t
n∑

k=1

||θk||21,h ≤ ||θ0||20,Ω + C1(α)∆t
n∑

k=1

||ρk||20,Ω + C2(α)∆t
n∑

k=1

||∂̄tη
k||20,Ω.

(2.7.24)

We now estimate each term of the right hand side of (2.7.24). The first term of (2.7.24),

we obtain

||θ0||0,Ω = ||U0 − Rhu(0)||0,Ω ≤ ||U0 − u(0)||0,Ω + ||u(0) −Rhu(0)||0,Ω

≤ ||U0 − u(0)||0,Ω + C h2

M∑

i=1

||u(0)||H2(Ωi). (2.7.25)

Using Taylor’s expansion, write

ρk =
1

∆t

∫ tk

tk−1

(s− tk−1)uttds (2.7.26)
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and hence

||ρk||20,Ω ≤
(

1

∆t

∫ tk

tk−1

(s− tk−1)||utt||ds
)2

≤ C
1

∆t

∫ tk

tk−1

(s− tk−1)
2||utt||2ds

≤ C∆t||utt||2L2(tk−1,tk ;L2(Ω)). (2.7.27)

The third term of (2.7.24) is estimated as

||∂̄tη
k||20,Ω =

M∑

i=1

∫

Ωi

|∂̄tui(tk) − ∂̄tRhui(tk)|2dx

≤
M∑

i=1

(∆t)−1

∫ tk

tk−1

∫

Ωi

|uti(tk) − Rhuti(tk)|2dxdt

≤ C(∆t)−1h4
M∑

i=1

||ut||2L2(tk−1 ,tk;H2(Ωi))
. (2.7.28)

Substituting (2.7.25), (2.7.27) and (2.7.28) into (2.7.24) and using the triangle inequality,

we obtain (2.7.15).

Choosing vh = ∂̄tθ
n in (2.7.19), µh = Ψn in (2.7.20) and using Cauchy-Schwarz inequality

and Young’s inequality, we obtain

||∂̄tθ
n||20,Ω + ah(θn, ∂̄tθ

n) ≤ 1

4
||ρn||20,Ω +

1

2
||∂̄tθ

n||20,Ω +
1

4
||∂̄tη

n||20,Ω (2.7.29)

with
M∑

i=1

∑

i<j∈N(i)

∫

Γij

[π θn] Ψn ds = 0. Multiplying in (2.7.29) by ∆t and summing over n,

the error bound shows

∆t

2

n∑

j=1

||∂̄tθ
j||20,Ω +

α

2
||θn||21,h ≤ C(α)||θ0||21,h +

∆t

4

n∑

j=1

||ρj||20,Ω +
∆t

4

n∑

j=1

||∂̄tη
j||20,Ω. (2.7.30)

We now estimate each term of the right hand side of (2.7.30). The first term of (2.7.30),

we obtain

||θ0||1,h = ||U0 −Rhu(0)||1,h ≤ ||U0 − u(0)||1,h + ||u(0)− Rhu(0)||1,h

≤ ||U0 − u(0)||1,h + Ch
M∑

i=1

||u(0)||H2(Ωi). (2.7.31)
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The third term of (2.7.30) is estimated as

||∂̄tη
k||20,Ω =

M∑

i=1

∫

Ωi

|∂̄tui(tk) − ∂̄tRhui(tk)|2dx

≤
M∑

i=1

(∆t)−1

∫ tk

tk−1

∫

Ωi

|uti(tk) − Rhuti(tk)|2dxdt

≤ C(∆t)−1h2
M∑

i=1

||ut||2L2(tk−1 ,tk;H1(Ωi))
. (2.7.32)

Substituting (2.7.31), (2.7.27) and (2.7.32) into (2.7.30) and using the triangle inequality,

we obtain (2.7.14). This completes the rest of the proof.

Theorem 2.7.3 Let (un, λn) and (Un, λn
h) be the solutions of the equations (2.5.8)-(2.5.9)

and (2.7.2)-(2.7.3), respectively. Assume that u(0) ∈
M∏

i=1

H2(Ωi), u ∈
M∏

i=1

H2(Ωi), ut ∈

L∞(H1(Ωi)) ut ∈
M∏

i=1

L2(0, T ;H1(Ωi)), utt ∈
M∏

i=1

L2(0, T ;H1(Ωi)), utt ∈ L2(0, T ;L2(Ω)),

uttt ∈ L2(0, T ;L2(Ω)), and utt ∈ L∞(L2(Ω)). And also assume that U 0−Rhu(0) = 0. Then

there exists a positive constant C independent of h such that for (0, T ]

max
0≤n≤N

h1/2 ||λn − λn
h||0,Γ ≤ C

{
∆t
[
||utt||L2(0,T ;L2(Ω)) + ||utt||L∞(L2(Ω))

+ ||uttt||L2(0,T ;L2(Ω))

]
+ h

M∑

i=1

(
||u(0)||H2(Ωi) + ||u||H2(Ωi) + ||ut||L2(0,T ;H1(Ωi))

+||ut||L∞(H1(Ωi)) + ||utt||L2(0,T ;H1(Ωi))

) }
. (2.7.33)

Proof. Now Choose vh = θn in (2.7.19), we obtain

M∑

i=1

∑

i<j∈N(i)

∫

Γij

Ψn [πvh] ds = (∂̄tθ
n, vh) + ah(θn, vh) − (ρn, vh) − (∂̄tη

n, vh). (2.7.34)

Now choose vh = SijΨ
n
ij in (2.7.34), using Lemma 2.2.6, extended Poincaré inequality and

Cauchy-Schwarz inequality, we find that

||Ψn||0,Γ ≤ C h−1/2
(
||∂̄tθ

n||0,Ωi
+ ||θn

i ||1,h,Ωi
+ ||ρn||0,Ωi

+ ||∂̄tη
n||0,Ωi

)
. (2.7.35)

We now estimate each term of the right hand side of (2.7.35). Estimates of second, third

and fourth terms of (2.7.35) are known. Only the first term of (2.7.35) has to be estimated.
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The equation (2.7.19) is true for every n. Then we can write n ∈ {1, 2, · · · , N} such that

(∂̄tθ
n, vh) + ah(θn, vh) =

M∑

i=1

∑

i<j∈N(i)

∫

Γij

Ψn [πvh] ds+ (ρn, vh) + (∂̄tη
n, vh). (2.7.36)

Also, for n ∈ {2, · · · , N}, such that

(∂̄tθ
n−1, vh) + ah(θn−1, vh) =

M∑

i=1

∑

i<j∈N(i)

∫

Γij

Ψn−1 [πvh] ds+ (ρn−1, vh) + (∂̄tη
n−1, vh).

(2.7.37)

For n ∈ {2, · · · , N}, subtracting (2.7.37) from (2.7.36), then we obtain

(∂̄ttθ
n, vh) + ah(∂̄tθ

n, vh) =
M∑

i=1

∑

i<j∈N(i)

∫

Γij

∂̄tΨ
n [πvh] ds+ (∂̄tρ

n, vh) + (∂̄ttη
n, vh). (2.7.38)

We note that

(∂̄ttθ
n, ∂̄tθ

n) =
1

2
∂̄t

(
||∂̄tθ

n||20,Ω

)
+

∆t

2
||∂̄ttθ

n||20,Ω. (2.7.39)

Choosing vh = ∂̄tθ
n in (2.7.38), then apply Cauchy-Schwarz inequality and Young’s in-

equality to obtain

1

2
∂̄t

(
||∂̄tθ

n||20,Ω

)
+

∆t

2
||∂̄ttθ

n||20,Ω +
α

2
||∂̄tθ

n||21,h ≤ C1(α)||∂̄tρ
n||20,Ω + C2(α)||∂̄ttη

n||20,Ω,

(2.7.40)

with
M∑

i=1

∑

i<j∈N(i)

∫

Γij

∂̄tΨ
n [π∂̄tθ

n] ds = 0. Now we have to estimate each term of the right

hand side of (2.7.35). From Taylor’s series expansion, we know

u(tn) = u(tn−1) + ∆tut(tn−1) +
(∆t)2

2!
utt(tn−1) +

1

2!

∫ tn

tn−1

(s− tn−1)
2uttt(s) ds, (2.7.41)

u(tn−2) = u(tn−1) − ∆tut(tn−1) +
(∆t)2

2!
utt(tn−1) −

1

2!

∫ tn

tn−1

(tn−1 − s)2uttt(s) ds, (2.7.42)

u(tn) = u(tn−1) + ∆tut(tn−1) +

∫ tn

tn−1

(s− tn−1)utt(s) ds, (2.7.43)

u(tn−2) = u(tn−1) − ∆tut(tn−1) +

∫ tn−1

tn−2

(tn−1 − s)utt(s) ds, (2.7.44)

ut(tn) = ut(tn−1) + ∆tutt(tn−1) +

∫ tn

tn−1

(s− tn−1)uttt(s) ds. (2.7.45)
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The first term of (2.7.40) is estimated as

∂̄tρ
n =

1

∆t

[(
ut(tn) − ∂̄tu(tn)

)
−
(
ut(tn−1) − ∂̄tu(tn−1)

)]

=
1

(∆t)2
[∆t (ut(tn) − ut(tn−1)) − (u(tn) − 2u(tn−1) + u(tn−2))] . (2.7.46)

Substituting (2.7.41), (2.7.42) and (2.7.45) into (2.7.46)

∂̄tρ
n =

1

(∆t)2

[

∆t

∫ tn

tn−1

(s− tn−1)uttt(s) ds−
1

2!

∫ tn

tn−1

(s− tn−1)
2uttt(s) ds

− 1

2!

∫ tn−1

tn−2

(tn−1 − s)2uttt(s) ds

]

. (2.7.47)

||∂̄tρ
n||20,Ω ≤ C

(∆t)4

[

(∆t)3

∫ tn

tn−1

(s− tn−1)
2|||uttt(s)|||2 ds

+
∆t

4

∫ tn−1

tn−2

(s− tn−1)
4|||uttt(s)|||2 ds+

∆t

4

∫ tn−1

tn−2

(tn−1 − s)4|||uttt(s)||| ds
]

≤ C∆t

[∫ tn

tn−1

|||uttt(s)|||2 ds+

∫ tn−1

tn−2

|||uttt(s)|||2 ds
]

. (2.7.48)

The second term of (2.7.40) is estimated as

∂̄ttη
n =

1

(∆t)2
[(u(tn) −Rhu(tn)) − 2 (u(tn−1) − Rhu(tn−1)) + (u(tn−2) − Rhu(tn−2))]

=
1

(∆t)2
[(u(tn) − 2u(tn−1) + u(tn−2)) +Rh (u(tn) − 2u(tn−1) + u(tn−2))] . (2.7.49)

Substituting (2.7.43) and (2.7.44) into (2.7.49), we obtain

∂̄ttη
n =

1

(∆t)2

[∫ tn

tn−1

(s− tn−1)(utt(s) −Rhutt(s)) ds−
∫ tn−1

tn−2

(tn−1 − s)(utt(s) − Rhutt(s)) ds

]

.

||∂̄ttη
n||20,Ω ≤ 2

(∆t)3

[∫ tn

tn−1

(s− tn−1)
2||utt − Rhutt||20,Ωds

+

∫ tn−1

tn−2

(tn−1 − s)2||utt − Rhutt||20,Ωds

]

≤ C(∆t)−1h2
M∑

i=1

[∫ tn

tn−1

||utt(s)||2H1(Ωi)
ds+

∫ tn−1

tn−2

||utt(s)||2H1(Ωi)
ds

]

. (2.7.50)
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Substituting (2.7.50) and (2.7.48) into (2.7.40), multiplying ∆t and summing over n ∈
{2, 3, · · · , N}, we obtain

||∂̄tθ
n||20,Ω ≤ ||∂̄tθ

1||20,Ω + C

{

(∆t)2||uttt||2L2(0,T ;L∞) + h2

2∑

i=1

||utt||2L2(0,T ;H1(Ωi))

}

. (2.7.51)

From (2.7.40) with n = 1, we obtain

∆t||∂̄tθ
1||20,Ω + α||θ1||21,h ≤ ||θ0||21,h + C∆t{||ρ1||20,Ω + ||∂̄tη

1||20,Ω}

≤ ||θ0||21,h + C∆t

{

(∆t)2||utt||2L∞(L∞) + h2

M∑

i=1

||ut||2L∞(H1(Ωi))

}

. (2.7.52)

Substitute (2.7.52) in (2.7.51) and an application of triangle inequality completes the rest

of the proof.

2.8 Numerical Experiments

In this section, we have applied the fully discrete scheme to a model problem. The numerical

implementation scheme has been performed in a sequential machine using MATLAB.

h D.O.F. in Ω1 D.O.F. in Ω2 eh = ‖u(·, tN) − UN‖0,Ω Rate

1/8 138 46 5.84592952×10−4 -

1/12 315 105 2.69221264×10−4 1.9123

1/16 564 188 1.53057306×10−4 1.9630

1/20 885 295 9.84439608×10−5 1.9778

1/24 1278 426 6.85490517×10−5 1.9852

1/28 1743 581 5.04449543×10−5 1.9894

Table 2.2: L2 error and order of convergence for the 2-domain case

Consider the problem (2.5.1) with f(x, y, t) = et[x(1−x)+y(1−y)+2x(1−x)+2y(1−y)]
and u(x, y, 0) = u0(x, y). The exact solution of the problem (2.5.1) is given by u(x, y, t) =

etx(1 − x)y(1 − y).
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Figure 2.4: The order of convergence

Here we take Ω = (0, 1) × (0, 1). We decompose the square into [0, 3/4] × [0, 1] and

[3/4, 1] × [0, 1], with interface Γ = {3/4} × (0, 1).

In Figure 2.4, the graph of the L2 error ‖u − uh‖ is plotted as a function of the dis-

cretization step ′h′ in the log − log scale. The slope of the graph gives the computed

order of convergence as approximately 2.0. These results match with the theoretical results

obtained in Theorem 2.7.2.

In Table 2.2, the L2 error eh = ‖u(·, tN) − UN‖ for h = 1/8, h = 1/12, h = 1/16,

h = 1/20, h = 1/24 and h = 1/28, and ∆t = h2 at time t = 1 are given.



Chapter 3

A Robin-Type Non-Overlapping

Domain Decomposition Procedure

for Second Order Elliptic Problems

3.1 Introduction

In this chapter, we discuss the analysis of an iterative nonoverlapping DD method for

second order elliptic and parabolic problems using Robin-type transmission condition on

the artificial interfaces, that is, on the inter subdomain boundaries. The nonoverlapping

DD method using Robin-type boundary condition as transmission condition on the artificial

interface (inter subdomain boundary) is becoming an an important tool for solving the

following second order elliptic problems:






−
d∑

i,j=1

∂

∂xi

(

ai,j(x)
∂u

∂xj

)

+ b(x) u = f ∀ x ∈ Ω,

u = 0 ∀ x ∈ ∂Ω,

(3.1.1)

where the coefficients ai,j(x) and b(x) are in L∞(Ω) and the coefficients ai,j(x) satisfies

ellipticity condition

d∑

i,j=1

ai,j(x)ξiξj ≥ α0|ξ|2 ∀ ξ ∈ IRd, ∀ x ∈ Ω,

for a suitable constant α0 > 0 and b(x) ≥ 0. The Robin-type boundary conditions as

interface conditions was proposed by P. L. Lions in [92] as a tool for domain decomposition

76
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iterative methods and the convergence properties by taking a suitable pseudo energy was

also investigated in [92]. This idea has been applied to a more difficult Helmholtz problem

by Despres [45, 46]. Exploiting the structure of the mixed finite elements, Douglas et al.

[49] have obtained a more precise convergence rate by a spectral radius estimation of the

iterative solution and the spectral radius has a bound of the form 1 − Ch for quasiregular

partitions when b(x) ≥ b0 > 0. Subsequently in [52], Douglas et al. have discussed

the convergence rate as 1 − Ch for nonconforming finite element methods by again using

the spectral radius estimation of the iterative solution for the elliptic problems (3.1.1) on

quasiregular partitions when b(x) ≥ b0 > 0. An improved variant of Lions method is

proposed by Q. Deng and its convergence rate is analyzed in [43, 44]. Deng obtained the

convergence rate by a spectral radius estimation of the iterative solution and the spectral

radius has a bound of the form 1 − Ch for quasiregular partitions when b(x) ≥ b0 > 0.

In [49, 52, 44], the iterative method is shown to be convergent but without the rate of

convergence, when b(x) = 0. Based on the method proposed in [44], L. Qin and X. Xu

[109] have derived the convergence rate, in general, when the lower term vanishes, i.e.,

b(x) = 0 and the convergence rate is shown to be of 1 - O(h1/2H−1/2), when the winding

number N (see, the Definition 3.2.1 given in section 3) is not large.

A brief outline of this chapter is as follows. In Section 3.2, we introduce an iterative

method for the elliptic multidomain problem. The key feature that we have adopted here

is the introduction of the nonconforming Crouzeix-Raviart space for the discretization

of the primal variable. In Section 3.3, we have discussed discrete iterative multidomain

formulation. In Section 3.4, we have shown the discrete iterative multidomain problem

is convergent. In Section 3.5, we have calculated the rate of convergence for iterative

scheme. In Section 3.7, we extend the iterative method to a parabolic initial and boundary

value problems and analyze the convergence, spectral radius and rate of convergence for

fully discrete schemes. Finally, Section 3.6 and Section 3.8 deals with some numerical

experiments to support our theoretical results.
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3.2 Problem formulation.

We consider the following second order elliptic problem:






−∆u = f ∀x ∈ Ω,

u = 0 ∀x ∈ ∂Ω,
(3.2.1)

where Ω is a bounded domain in IRd(d = 2, 3) and f ∈ L2(Ω). The weak formulation of

(3.2.1) is to find ū ∈ H1
0(Ω) such that

aΩ(ū, v) = (f, v) ∀ v ∈ H1
0 (Ω), (3.2.2)

where

aΩ(v, w) =

∫

Ω

∇v · ∇w dx. (3.2.3)

To describe finite element approximations for (3.2.2), we begin with a triangulation of Ω̄.

Let Th be a regular triangulation of Ω̄ into triangles (resp. rectangles) satisfying

T ⊂ Ω̄, ∀T ∈ Th, Ω̄ =
⋃

T∈Th

T. (3.2.4)

Let h be the length of the greatest side of the T ∈ Th. Let Pr(T ) denote the space of

polynomials of degree less than or equal to r in two variables defined on the triangle T .

Now we define the nonconforming Crouzeix-Raviart space (cf. [39]) associated with the

triangulation Th. Let

X̄h =
{
v ∈ L2(Ω) | v|T ∈ P1(T ), T ∈ Th, v continuous at p ∈ Nh

and vanishes at p ∈ Γh} , (3.2.5)

where Nh is the set of all face barycenters of elements of Th in the interior of Ω and Γh

is the set of all face barycenters of elements of Th on the boundary of ∂Ω. A function in

Xh is completely determined by its nodal values at centers of the sides of the triangles

(d = 2) or tetrahedra (d = 3) in Th (cf. Figure 2.1 ). Then, the nonconforming Galerkin

approximation of (3.2.2) is defined as the solution uh ∈ Xh of the equations

ah
Ω(uh, vh) = (f, vh) ∀vh ∈ Xh, (3.2.6)
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Figure 3.1: Non-overlapping decompositions of the domain into 30 disjoint sub-domains

where

ah
Ω(vh, wh) =

∫

Ω

∇vh · ∇wh dx. (3.2.7)

Lemma 3.2.1 The problem (3.2.6) has a unique solution.

For a proof, see, the Lemma 2.2.1 given in Chapter 2.

For the domain decomposition method, the domain Ω̄ is partitioned into a finite num-

ber of sub-domains. We define a sequence of sets Di whose elements are subdomains by

induction:

D1 = {Ωi | at least one face of Ωi belongs to ∂Ω},

Dr+1 = {Ωi | Ωi 6∈ Dr,Ωi share one face with atleast some Ωj ∈ Dr}.

Definition 3.2.1 [109] There exists an integer N called the winding number of the domain

decomposition such that

N⋃

i=1

Di contains all subdomains of Ω.
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For example (see Figure 3.1), the integer i in each subdomain means that this subdomain

is Ωi. So

D1 = {Ωi | i = 1, 2, · · · , 18},

D2 = {Ωi | i = 19, 20, · · · , 28},

D3 = {Ω29,Ω30},

and the winding number N = 3. For notational convenience, we denote a subdomain

belonging to Dr by Dir . For example

D1 = (Di1)1≤i≤18 = {Ω1, Ω2, · · · ,Ω18},

D2 = (Di2)19≤i≤28 = {Ω19, Ω20, · · · ,Ω28},

D3 = (Di3){i=29, 30} = {Ω29,Ω30}.

3.2.1 Iterative Method for the Multidomain Problem

In this subsection, a nonoverlapping DD procedure is developed and analyzed. Since

the domain Ω is partitioned into a finite number of non-overlapping sub-domains Ωi (i =

1, 2, · · · ,M), we define an iterative procedure as:







− ∆uk
i = f in Ωi,

∂uk
i

∂νij

= λk
ij on Γij, j ∈ N(i),

uk
i = 0 on ∂Ωi ∩ ∂Ω,

(3.2.8)

λk
ij = −( βiju

k
i − βjiu

k−1
j ) − λk−1

ji ∀x ∈ Γij, j ∈ N(i), (3.2.9)

where Γij = ∂Ωi ∩ ∂Ωj with |Γij| as the measure of Γij, Γi = ∂Ωi\∂Ω denotes the interior

interfaces, βij = βji > 0 are parameters and

N(i) = {j 6= i| |Γij| > 0}. (3.2.10)

Let H1
Γi

(Ωi) = {ui|ui ∈ H1(Ωi) and ui = 0 on ∂Ωi ∩ ∂Ω}. The weak formulation corre-

sponding to the problem (3.2.8) may be stated as follows: Given {u0
i , λ

0
ij, λ

0
ji} ∈ {H1

Γi
(Ωi),
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L2(Γij), L
2(Γji)} and f ∈ L2(Ωi), find uk

i ∈ H1
Γi

(Ωi), i = 1, · · · ,M such that

aΩi
(uk

i , v) +
∑

j∈N(i)

βij

∫

Γij

uk
i vds = (f, v)Ωi

+
∑

j∈N(i)

βji

∫

Γij

uk−1
j vds

−
∑

j∈N(i)

∫

Γij

λk−1
ji vds ∀v ∈ H1

Γi
(Ωi), (3.2.11)

and

λk
ij = −( βiju

k
i − βjiu

k−1
j ) − λk−1

ji ∀x ∈ Γij, j ∈ N(i). (3.2.12)

Let u be the solution of (3.2.1) and uk
i (1 ≤ i ≤ M) be the solutions of (3.2.11)-(3.2.12).

For 1 ≤ i ≤M ,

ui = u|Ωi
, u = (ui)1≤i≤M ∈

M∏

i=1

H1
Γi

(Ωi), (3.2.13)

uk = (uk
i )1≤i≤M ∈

M∏

i=1

H1
Γi

(Ωi), (3.2.14)

ek
i = uk

i − ui, ek = (ek
i )1≤i≤M ∈

M∏

i=1

H1
Γi

(Ωi), (3.2.15)

and

µk
ij = λk

ij − λij, µk
ji = λk

ji − λji, µk = (µk
ij)

M∏

i=1, j∈N(i)

L2(Γij), (3.2.16)

where λij, λji are defined in the (2.2.15), and ek and µk are the errors at iterative step k.

Assume that u ∈ H1
0 (Ω) ∩ H3/2(Ω),

∂ui

∂νij
∈ L2(Γij), j ∈ N(i). Due to linearity of (3.2.1)

and (3.2.8)-(3.2.9), the equations in ek
i and µk

ij satisfy







− ∆ek
i = 0 in Ωi,

∂ek
i

∂νij
= µk

ij on Γij, j ∈ N(i),

ek
i = 0 on ∂Ωi ∩ ∂Ω,

(3.2.17)

µk
ij = −β ( ek

i − ek−1
j ) − µk−1

ji ∀x ∈ Γij, j ∈ N(i), (3.2.18)
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where β = βij = βji. The weak formulation corresponding to the problem (3.2.17) may be

stated as follows:

aΩi
(ek

i , v) −
∑

j∈N(i)

∫

Γij

µk
ij v ds = 0 ∀v ∈ H1

Γi
(Ωi). (3.2.19)

Setting v = ek
i in (3.2.19), we arrive at the following equation :

aΩi
(ek

i , e
k
i ) =

∑

j∈N(i)

∫

Γij

µk
ije

k
i ds. (3.2.20)

Define

Ek
i = Ei(e

k
i , µ

k
ij) =

∑

j∈N(i)

||µk
ij + βek

i ||20,Γij
, (3.2.21)

and

Ek = E(ek, µk) =
M∑

i=1

Ek
i =

M∑

i=1

Ei(e
k
i , µ

k
ij). (3.2.22)

Lemma 3.2.2 Let Ek
i and Ek be defined, respectively, by (3.2.21) and (3.2.22). Then, the

following identity

Ek = Ek−1 − 4β
M∑

i=1

aΩi
(ek−1

i , ek−1
i ) (3.2.23)

holds true.

Proof. From (3.2.20) and (3.2.21), we obtain

Ek
i =

∑

j∈N(i)

(

||µk
ij||20,Γij

+ β2||ek
i ||20,Γij

)

+ 2β
∑

j∈N(i)

∫

Γij

µk
ije

k
i ds

=
∑

j∈N(i)

(

||µk
ij||20,Γij

+ β2||ek
i ||20,Γij

)

+ 2β aΩi
(ek

i , e
k
i ). (3.2.24)

Then, from (3.2.18), (3.2.21) and (3.2.24), we arrive at

Ek
i =

∑

j∈N(i)

||µk
ij + βek

i ||20,Γij
=
∑

j∈N(i)

|| − µk−1
ji + βek−1

j ||20,Γij

=
∑

j∈N(i)

(

||µk−1
ij ||20,Γij

+ β2||ek−1
i ||20,Γij

)

− 2β
∑

j∈N(i)

∫

Γij

µk−1
ij ek−1

i ds

=
∑

j∈N(i)

(

||µk−1
ij ||20,Γij

+ β2||ek−1
i ||20,Γij

)

− 2β aΩi
(ek−1

i , ek−1
i )

= Ek−1
i − 4β aΩi

(ek−1
i , ek−1

i ), (3.2.25)
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and this completes the proof.

Theorem 3.2.1 Let u ∈ H1
0 (Ω) be the solution of (3.2.2) which also belongs to H 2(Ω);

ui = u|Ωi
, and λij =

∂ui

∂νij
on Γij, j ∈ N(i), with ν = νij = −νji. Let uk

i ∈ H1
Γi

(Ωi)

(i = 1, 2, · · · ,M) be the solution of (3.2.11). Then for any initial guess {u0
i , λ

0
ij, λ

0
ji} ∈

{H1
Γi

(Ωi), L
2(Γij), L

2(Γji)}, ∀j ∈ N(i), the following convergence result holds true :

||uk − u||1,Ω =

(
M∑

i=1

||uk
i − ui||21,Ωi

)1/2

→ 0, as k → ∞ (3.2.26)

and

||λk − λ||H−1/2(Γ) =





M∑

i=1

∑

j∈N(i)

||λk
ij − λij||2H−1/2(Γij )





1/2

→ 0, as k → ∞. (3.2.27)

Proof. Since ek
i = uk

i − ui and µk
ij = λk

ij − λij, it is enough to show that for each i

||ek
i ||21,Ωi

→ 0, as k → ∞, (3.2.28)

and

||µk
ij||2H−1/2(Γij)

→ 0, as k → ∞, ∀j ∈ N(i). (3.2.29)

From Lemma 3.2.2 and (3.2.21)-(3.2.22), we note that each Ek ≥ 0 and

Ek + 4 β

M∑

i=1

aΩi
(ek−1

i , ek−1
i ) = Ek−1. (3.2.30)

The second term on the left hand side of (3.2.30) is non-negative, 0 ≤ Ek ≤ Ek−1 and

hence, {Ek} is a decreasing sequence of non-negative terms which is bounded above by E0.

Therefore, {Ek} converges. Moreover,

4 β
M∑

i=1

aΩi
(ek−1

i , ek−1
i ) = Ek−1 − Ek. (3.2.31)

On summing from k = 1 to N1, where N1 is a large number, we obtain

4 β

N1∑

k=1

M∑

i=1

aΩi
(ek

i , e
k
i ) = E0 − EN1 ≤ 2E0, (3.2.32)
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and hence, as N1 → ∞, we find that

0 ≤
N1∑

k=1

M∑

i=1

aΩi
(ek

i , e
k
i ) <∞. (3.2.33)

Thus,

aΩi
(ek

i , e
k
i ) → 0 as k → ∞, i = 1, 2, · · · ,M. (3.2.34)

Therefore,

||∇ek
i ||0,Ωi

→ 0 as k → ∞, i = 1, 2, · · · ,M. (3.2.35)

First we consider the subdomains Ωi ∈ D1, that is one face of the subdomains Ωi, belongs

to the boundary ∂Ω. From (3.2.17)(iii), for all i, Ωi ∈ D1,

ek
i = 0 on ∂Ωi ∩ ∂Ω. (3.2.36)

Therefore, it follows from (3.2.35)-(3.2.36) and the Poincaré-Friedrich’s inequality (Lemma

1.2.5) that

||ek
i ||1,Ωi

≤ C||∇ek
i ||0,Ωi

→ 0 as k → ∞, ∀i, Ωi ∈ D1. (3.2.37)

Hence, an use of the trace theorem (Theorem 1.2.1) yields for all i, Ωi ∈ D1

||ek
i ||L2(Γij ) → 0 as k → ∞, ∀ j ∈ N(i). (3.2.38)

From (3.2.19), (3.2.35), (3.2.37)-(3.2.38), and using Lemma 2.2.5 in (3.2.19), we obtain for

all i, Ωi ∈ D1

||µk
ij||H−1/2(Γij) → 0 as k → ∞, ∀ j ∈ N(i). (3.2.39)

Now we consider the domains Ωi ∈ D2. Using (3.2.18) in (3.2.19) with β = βij = βji, we

arrive at

aΩi
(ek

i , v) +
∑

j∈N(i)

β

∫

Γij

ek
i vds =

∑

j∈N(i)

β

∫

Γij

ek−1
j vds−

∑

j∈N(i)

∫

Γij

µk−1
ij vds

∀v ∈ H1
Γi

(Ωi). (3.2.40)
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Now, choose v ∈ H1
Γi

(Ωi) such that

v =







ek
i on Γij, ∀ j ∈ N(i), Ωj ∈ D1

0 elsewhere on ∂Ωi.
(3.2.41)

Substituting (3.2.41) into (3.2.40), we find that

β
∑

j∈N(i)

||ek
i ||2L2(Γij)

≤ ||∇ek
i ||0,Ωi

||∇v||0,Ωi
+ β

∑

j∈N(i)

||ek−1
j ||L2(Γij)||ek

i ||L2(Γij)

+
∑

j∈N(i)

||µk−1
ji ||L2(Γij)||ek

i ||L2(Γij). (3.2.42)

Using (3.2.35), (3.2.38) and (3.2.39) in (3.2.42), we obtain for all i, Ωi ∈ D2

||ek
i ||L2(Γij ) → 0 as k → ∞, ∀ j ∈ N(i), Ωj ∈ D1. (3.2.43)

From the definition of Dr, for all i, Ωi ∈ D2, there exists at least one j such that Ωj ∈ D1,

with meas(Γij) > 0. Therefore, it follows from (3.2.35), (3.2.43), and the Poincaré inequality

that

||ek
i ||1,Ωi

≤ C



||∇ek
i ||0,Ωi

+
∑

j∈N(i), Ωj∈D1

||ek
i ||L2(Γij)



→ 0 as k → ∞, ∀ i, Ωi ∈ D2.

(3.2.44)

Similarly, we can continue the argument until the domain is exhausted and this completes

the rest of the proof.

3.3 Discrete multidomain formulation

In this subsection, we discuss iterative method based on the nonconforming finite element

problem (3.2.6).

For the triangulation Th, we now assume that the triangles (resp. rectangles) T should

not cross the interface Γij, and thus, each element is either contained in Ω̄i or in Ω̄j and

they share the same edges of Γij. For the multi-domain problem, let Xi,h = Xh|Ωi
. Define

X0
i,h = {vh|vh ∈ Xi,h and vh(p) = 0 at p ∈ ∂Ωi,h}. We now define two discrete spaces Yi,h and
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Yij,h on ∂Ωi and Γij, respectively, as follows. Let Yi,h consist of piecewise constant elements

on triangulation Th,i|∂Ωi
, where Th,i|∂Ωi

is the triangulation of ∂Ωi \ ∂Ω inherited from Th,

i.e., Th,i|∂Ωi
= Th|∂Ωi\∂Ω

. Furthermore, let Yij,h = Yi,h|Γij
. The spaces are nonconforming,

since Xi,h is not subspace of H1
Γi

(Ωi). For v ∈ Xi,h, set the discrete H1 semi-norm as

|v|21,h,Ωi
=
∑

T∈Th,i

∫

T

|∇v|2dx. (3.3.1)

We define the weighted H1 energy norm for v ∈ Xi,h by

||v||21,h,Ωi
= |v|21,h,Ωi

+
1

H2
||v||20,Ωi

, (3.3.2)

and

||v||21,h =

M∑

i=1

||v||21,h,Ωi
, (3.3.3)

where H is the diameter of the subdomain. Given the finite element spaces Xi,h, Yi,h and

Yij,h, we now introduce the linear operators:

πi : Xi,h → Yi,h and πij : Xi,h → Yij,h (3.3.4)

as

πivi|τ ≡ vi(p) ∀τ ∈ Th,i|∂Ωi
and πijvi = πivi|Γij

. (3.3.5)

Similarly, we define the linear operators

Si : Yi,h → Xi,h and Sij : Yij,h → Xi,h (3.3.6)

as

Siwi =







wi freedom on ∂Ωi,

0 other freedom,
and Sijwij =







wij freedom on Γij,

0 other freedom.
(3.3.7)

From the equation (3.3.6) and (3.3.7), we note that in general πivi 6= vi|∂Ωi
and Siwi|∂Ωi

6= wi.

Furthermore, we observe that

vi − Siπivi ∈ X0
i,h, (3.3.8)
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and

πiSi = Idi, πijSij = Idij, (3.3.9)

where Idi and Idij are identity operators on Yi,h and Yij,h, respectively.

Lemma 3.3.1 [109, Lemma 2.1, pp. 2542] There exists a positive constant C independent

of h such that

||πijvi||0,Γij
≤ C||vi|Γij

||0,Γij
∀ vi ∈ Xi,h, (3.3.10)

||Sijwij||0,Ωi
≤ Ch1/2||wij||0,Γij

. (3.3.11)

Also, ∀wij ∈ Yij,h,

|Sijwij|1,h,Ωi
≤ Ch−1/2||wij||0,Γij

. (3.3.12)

The next lemma is a Poincaré Friedrich’s inequality (cf. [20, (1.1)] and [117, Lemma 5])

for nonconforming P1 elements.

Lemma 3.3.2 (Poincaré-Friedrich’s inequality). Let H = max
1≤i≤M

diam(Ωi) and let Γij be

a face of Ωi. Then, there exists a constant C constant independent of Ωi such that for

v ∈ Xi,h we have

||v||20,Ωi
≤ CH2|v|21,Ωi

+ CH2−d

(
∫

Γij

v(s)ds

)2

, (3.3.13)

where d = 2, 3 is the dimension of Ωi. Further, if

∫

Γij

v(s)ds = 0, the following version of

Poincaré inequality holds :

||v||0,Ωi
≤ CH|v|1,Ωi

. (3.3.14)

The next lemma is a the special trace theorem for Crouzeix-Raviart element space. For a

proof, see [109, pp. 2544].
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Lemma 3.3.3 [109] (Special trace theorem) Let the diameter of each subdomain

Ωi (i = 1, 2, · · · ,M) be O(H), and let Γij, Γil be two faces of Ωi. Then, there exists a

positive constant C independent of Ωi such that for vi ∈ Xi,h, 1 ≤ l, j ≤M , l 6= j,

||πilvi||20,Γil
≤ CH|vi|21,h,Ωi

+ C||πijvi||20,Γij
. (3.3.15)

Now we are in a position to state the nonconforming Galerkin multidomain approximation

corresponding to (3.2.11) and (3.2.12). Given {u0
i,h, λ

0
ij,h, λ

0
ji,h} ∈ {Xi,h, Yij,h, Yji,h} and

f ∈ L2(Ω), find uk
i,h ∈ Xi,h, λ

k
ij,h ∈ Yij,h and λk

ji,h ∈ Yji,h such that

ah
Ωi

(uk
i,h, vh) +

∑

j∈N(i)

βij

∫

Γij

πiju
k
i,h πijvh ds = (f, vh)Ωi

+
∑

j∈N(i)

βji

∫

Γij

πjiu
k−1
j,h πijvh ds

−
∑

j∈N(i)

∫

Γij

λk−1
ji,hπijvh ds ∀vh ∈ Xi,h, (3.3.16)

λk
ij,h = −( βijπiju

k
i,h(p) − βjiπjiu

k−1
j,h (p) ) − λk−1

ji,h ∀x ∈ Γij, j ∈ N(i), (3.3.17)

where

ah
Ωi

(vi,h, wi,h) =

∫

Ωi

∇vi,h · ∇wi,h dx. (3.3.18)

Remark 3.3.1 (3.3.16)-(3.3.17) is well posed can be proved similar as the proof of Theo-

rem 2.2.3.

Since vh, wh ∈ Xh are linear polynomials on Γij, using midpoint rule we obtain

∫

Γij

πijvh πijwh ds =
∑

p∈Γij∩Nh

vh(p)wh(p)|sp| ∀ vh, wh ∈ Xh, (3.3.19)

where sp is the element face with p as its barycenter and |sp| is the measure of sp.

3.4 Convergence Analysis

For convergence analysis, we now state the discrete nonconforming multidomain variational

formulation based on Lagrange multipliers as ( see, Chapter 2, (2.2.36)-(2.2.37) ) : Given
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f ∈ L2(Ω), find uh = (u1,h, · · · , uM,h) ∈ Xh =

M∏

i=1

Xi,h and λh ∈ Yh =

M∏

i=1

∏

i<j∈N(i)

Yij,h such

that

ah(uh, vh) −
M∑

i=1

∑

i<j∈N(i)

∫

Γij

λij,h [π vh] ds =
M∑

i=1

(f, vh)Ωi
∀v ∈ Xh, (3.4.1)

M∑

i=1

∑

i<j∈N(i)

∫

Γij

[π uh]µh ds = 0 ∀µh ∈ Yh, (3.4.2)

where

ah(vh, wh) =

M∑

i=1

ah
Ωi

(vi,h, wi,h) =

M∑

i=1

∫

Ωi

∇vi,h · ∇wi,h dx. (3.4.3)

Lemma 3.4.1 Let uh and λh be the solution of (3.4.1)-(3.4.2). Then

||λij,h||0,Γij
≤ C

(
h−1/2|ui,h|1,h,Ωi

+ h1/2||f ||0,Ωi

)
, i = 1, 2, · · · ,M, ∀j ∈ N(i), (3.4.4)

where C is a positive constant independent of h and M is the number of subdomains.

The proof of Lemma 3.4.1 is similar to that of the proof of Lemma 2.2.8.

From (3.4.1), we note that in each subdomain Ωi

ah
Ωi

(ui,h, vh) −
∑

j∈N(i)

∫

Γij

λij,hπijvh ds = (f, vh) ∀ vh ∈ Xi,h. (3.4.5)

Since λij,h = −λji,h, then from (3.4.2) we obtain

λij,h = −λji,h − β(πijui,h(p) − πjiuj,h(p)). (3.4.6)

Set

ek
i,h = uk

i,h − ui,h, µ
k
ij,h = λk

ij,h − λij,h and µk
ji,h = λk

ji,h − λji,h. (3.4.7)

Then, subtracting (3.4.5) from (3.3.16) and (3.4.6) from (3.3.17) with β = βij = βji, for

1 ≤ i ≤ M , we obtain the error equations

ah
Ωi

(ek
i,h, vh) −

∑

j∈N(i)

∫

Γij

µk
ij,hπijvhds = 0 ∀ vh ∈ Xi,h, (3.4.8)

µk
ij,h = −

(
βijπije

k
i,h(p) − βjiπjie

k−1
j,h (p)

)
− µk−1

ji,h ∀ x ∈ Γij, j ∈ N(i). (3.4.9)
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Setting vh = (0, · · · , ek
i,h, · · · , 0) in (3.4.8), we arrive at the following equality

ah
Ωi

(ek
i,h, e

k
i,h) =

∑

j∈N(i)

∫

Γij

µk
ij,hπije

k
i,hds. (3.4.10)

Define

Ek
i,h = Ei,h(e

k
i,h, µ

k
ij,h) =

∑

j∈N(i)

||µk
ij,h + βπije

k
i,h||20,Γij

, (3.4.11)

and

Ek
h = Eh(e

k
h, µ

k
h) =

M∑

i=1

Ek
i,h =

M∑

i=1

Ei,h(e
k
i,h, µ

k
ij,h). (3.4.12)

Lemma 3.4.2 Let Ek
h and Ek

i,h be defined, respectively, by (3.4.12) and (3.4.11). Then

following identity

Ek
h = Ek−1

h − 4β
M∑

i=1

ah
Ωi

(ek−1
i,h , ek−1

i,h ) (3.4.13)

holds true.

Proof. From (3.4.11) and (3.4.10), we obtain

Ek
i,h =

∑

j∈N(i)

(

||µk
ij,h||20,Γij

+ β2||πije
k
i,h||20,Γij

)

+ 2β
∑

j∈N(i)

∫

Γij

µk
ij,hπije

k
i,hds

=
∑

j∈N(i)

(

||µij,h||20,Γij
+ β2||πije

k
i,h||20,Γij

)

+ 2β ah
Ωi

(ek
i,h, e

k
i,h). (3.4.14)

Then, from (3.4.9), (3.4.11) and (3.4.14), we arrive at

Ek
i,h =

∑

j∈N(i)

||µk
ij,h + βπije

k
i,h||20,Γij

=
∑

j∈N(i)

|| − µk−1
ji,h + βπjie

k−1
j,h ||20,Γij

=
∑

j∈N(i)

(

||µk−1
ij,h ||20,Γij

+ β2||πije
k−1
i,h ||20,Γij

)

− 2β
∑

j∈N(i)

∫

Γij

µk−1
ij,h πije

k−1
i,h ds

=
∑

j∈N(i)

(

||µk−1
ij,h ||20,Γij

+ β2||πije
k−1
i,h ||20,Γij

)

− 2β ah
Ωi

(ek−1
i,h , ek−1

i,h )

= Ek−1
i,h − 4β ah

Ωi
(ek−1

i,h , ek−1
i,h ), (3.4.15)

and this completes the proof.
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Theorem 3.4.1 Let (ui,h, λij,h), i = 1, 2, · · · ,M , be the solutions of the problem (3.4.5)-

(3.4.6) and let (uk
i,h, λ

k
ij,h) be the solutions of the discrete iterative problem (3.3.16) and

(3.3.17) at iterative step k. Then, for any initial guess {u0
i,h, λ

0
ij,h, λ

0
ji,h} ∈ {Xi,h, Yij,h, Yji,h}

∀j ∈ N(i), the iterative method converges in the sense that

||uk
h − uh||1,h =

(
M∑

i=1

||uk
i,h − ui,h||21,h,Ωi

)1/2

→ 0, as k → ∞, (3.4.16)

and

||λk
h − λh||0 =





M∑

i=1

∑

j∈N(i)

||λk
ij,h − λij,h||20,Γij





1/2

→ 0, as k → ∞. (3.4.17)

Proof. Since ek
i,h = uk

i,h − ui,h and µk
ij,h = λk

ij,h − λij,h, it is enough to show that for each i,

||ek
i,h||21,h,Ωi

→ 0, as k → ∞, (3.4.18)

||µk
ij,h||20,Γij

→ 0, as k → ∞, ∀j ∈ N(i). (3.4.19)

From (3.4.10) and (3.4.11)-(3.4.12), we note that each Ek
i,h ≥ 0 and

Ek
h + 4 β

M∑

i=1

ah
Ωi

(ek−1
i,h , ek−1

i,h ) = Ek−1
h . (3.4.20)

The second term on the left hand side of (3.4.20) is non-negative, 0 ≤ Ek
h ≤ Ek−1

h and

hence, {Ek
h} is a decreasing sequence of non-negative terms which is bounded above by E0

h.

Therefore, {Ek
h} converges. Moreover,

4 β

M∑

i=1

ah
Ωi

(ek−1
i,h , ek−1

i,h ) = Ek−1
h − Ek

h. (3.4.21)

On summing from k = 1 to N1, where N1 is a large number, we obtain

4 β

N1∑

k=1

M∑

i=1

aΩi
(ek

i,h, e
k
i,h) = E0

h − EN1

h ≤ 2E0
h, (3.4.22)

and hence, as N1 → ∞, we find that

0 ≤
N1∑

k=1

M∑

i=1

ah
Ωi

(ek
i,h, e

k
i,h) <∞. (3.4.23)



Chapter 3. Domain Decomposition Methods 92

Thus,

ah
Ωi

(ek
i,h, e

k
i,h) → 0 as k → ∞, i = 1, 2, · · · ,M. (3.4.24)

Therefore,

||∇ek
i,h||0,Ωi

→ 0 as k → ∞, i = 1, 2, · · · ,M. (3.4.25)

Setting λij,h = µk
ij,h, ui,h = ek

i,h and f = 0 in Lemma 3.4.1, and (3.4.25), then for all i, we

obtain

||µk
ij,h||0,Γij

→ 0 as k → ∞, ∀ j ∈ N(i). (3.4.26)

First we consider the subdomains Ωi ∈ D1, that is, one face of the subdomains Ωi, belongs

to the boundary ∂Ω. Since, for all i, Ωi ∈ D1,

ek
i,h(p) = 0 on ∂Ωi ∩ ∂Ω, (3.4.27)

where p denote any nodal point on Γi. Therefore, it follows from (3.3.2), (3.4.25) and the

Poincaré inequality (3.3.14) that

||ek
i,h||1,h,Ωi

≤ C||∇ek
i,h||0,Ωi

→ 0 as k → ∞, ∀i, Ωi ∈ D1. (3.4.28)

Hence, by the special trace theorem (Lemma 3.3.3), (3.4.27) and (3.4.28) implies that for

all i, Ωi ∈ D1

||πije
k
i,h||0,Γij

→ 0 as k → ∞, ∀ j ∈ N(i). (3.4.29)

From (3.4.9) with β = βij = βji, it follows that

βπije
k
i,h(p) = −µk

ij,h + βπjie
k−1
j,h (p) − µk−1

ji,h ∀x ∈ Γij, j ∈ N(i). (3.4.30)

Using (3.4.29) and (3.4.26) in (3.4.30), we obtain for Ωi ∈ D2, ∀ i

||πije
k
i,h||0,Γij

→ 0, as k → ∞, ∀ j ∈ N(i), Ωj ∈ D1. (3.4.31)

From the definition of the Dr, for all i, Ωi ∈ D2, there exists at least one j such that

Ωj ∈ D1, with meas(Γij) > 0. Therefore, it follows from (3.4.25), (3.4.31), and the Poincaré
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Friedrich’s inequality that

||ek
i,h||1,h,Ωi

≤ C



H||∇ek
i,h||0,Ωi

+
∑

j∈N(i), Ωj∈D1

||πije
k
i,h||0,Γij



→ 0

as k → ∞, ∀ i, Ωi ∈ D2. (3.4.32)

Similarly, we can continue the argument until the domain is exhausted and this completes

the proof.

3.5 Convergence Rate

Let

X̃h =

M∏

i=1

Xi,h, Ỹh =

M∏

i=1

Yij,h, ∀j ∈ N(i). (3.5.1)

Also, let Tf : X̃h × Ỹh → X̃h × Ỹh be a mapping such that for any (wh, θh) ∈ X̃h × Ỹh,

(zh, ηh) ≡ Tf (wh, θh) is the solution, for all i, of

ah
Ωi

(zi,h, vh) +
∑

j∈N(i)

β

∫

Γij

πijzi,hπijvh ds = (f, vh)Ωi
+
∑

j∈N(i)

β

∫

Γij

πjiwj,hπijvh ds

−
∑

j∈N(i)

∫

Γij

θji,hπijvh ds ∀vh ∈ Xi,h, (3.5.2)

ηij,h = −β( πijzi,h(p) − πjiwj,h(p) ) − θji,h ∀x ∈ Γij, j ∈ N(i), (3.5.3)

where zi,h = zh|Ωi
, wi,h = wh|Ωi

, ηij,h = ηh|Γij
and θji,h = θh|Γij

. Since the operator Tf is

linear, we can now split the operator Tf as Tf (wh, θh) = T0(wh, θh) + Tf (0, 0), where the

operators T0 and Tf are defined as follows : Given (wh, θh), (z?
h, η

?
h) = T0(wh, θh) satisfies

for all i,

ah
Ωi

(z?
i,h, vh) +

∑

j∈N(i)

β

∫

Γij

πijz
?
i,hπijvh ds =

∑

j∈N(i)

β

∫

Γij

πjiwj,hπijvh ds

−
∑

j∈N(i)

∫

Γij

θji,hπijvh ds ∀vh ∈ Xi,h, (3.5.4)
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η?
ij,h = −β( πijz

?
i,h(p) − πjiwj,h(p) ) − θji,h ∀x ∈ Γij, j ∈ N(i), (3.5.5)

and (zo
h, η

o
h) = Tf (0, 0) satisfies, for all i,

ah
Ωi

(zo
i,h, vh) +

∑

j∈N(i)

β

∫

Γij

πijz
o
i,hπijvh ds = (f, vh)Ωi

∀vh ∈ Xi,h, (3.5.6)

ηo
ij,h = −β πijz

o
i,h(p) ∀x ∈ Γij, j ∈ N(i). (3.5.7)

Then (zh, ηh) = (z?
h, η

?
h) + (zo

h, η
o
h).

Lemma 3.5.1 The pair (zh, ηh) ∈ X̃h × Ỹh is a solution, for all i, of

ah
Ωi

(zi,h, vh) +
∑

j∈N(i)

β

∫

Γij

πijzi,hπijvhds = (f, vh)Ωi
+
∑

j∈N(i)

β

∫

Γij

πjizj,hπijvhds

−
∑

j∈N(i)

∫

Γij

ηji,hπijvhds ∀vh ∈ Xi,h, (3.5.8)

ηij,h = −β( πijzi,h(p) − πjizj,h(p) ) − ηji,h ∀x ∈ Γij, j ∈ N(i), (3.5.9)

where ηij,h = −ηji,h if and only if it is a fixed point of the operator Tf .

It is easy to check that for each i any solution of (3.4.5)-(3.4.6) is a fixed point of Tf and

conversely a fixed point of Tf is a solution of (3.4.5)-(3.4.6).

Lemma 3.5.2 Let (uh, λh) be a fixed point of Tf . Then πijui,h(p) = πjiuj,h(p) and λij,h =

−λji,h for all Γij. Furthermore, ūh ∈ X̄h is the solution of (3.2.6).

Proof. Let (uh, λh) be a fixed point of Tf . Then, substituting (3.5.3) into (3.5.2) yields

ah
Ωi

(ui,h, vh) −
∑

j∈N(i)

∫

Γij

λij,hπijvh ds = (f, vh)Ωi
∀vh ∈ Xi,h, (3.5.10)

and, hence, for each i, (ui,h, λij,h) satisfies (3.4.5). From (3.5.3), we obtain

λij,h = −( βπijui,h(p) − βπjiuj,h(p) ) − λji,h ∀x ∈ Γij, j ∈ N(i).

Thus, (3.4.6) is also satisfied. From (3.5.3), λij,h = −β( πijui,h(p) − πjiuj,h(p) ) − λji,h, it

is clear that πijui,h(p) = πjiuj,h(p) since λij,h = −λji,h. Also from Lemma 2.2.7, ūh is the
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solution of (3.2.6). This completes the rest of the proof.

Since

(zh, ηh) = Tf(wh, θh) = T0(wh, θh) + Tf (0, 0), (3.5.11)

the fixed point (zh, ηh) of Tf that is Tf (zh, ηh) = (zh, ηh) is indeed a solution of

(I − T0)(zh, ηh) = Tf (0, 0). (3.5.12)

Note that, from (3.7.7)-(3.7.11), we conclude that

(ek
h, µ

k
h) = T0(e

k−1
h , µk−1

h ). (3.5.13)

If (zh, ηh) is a fixed point of T0, then from (3.5.4)-(3.5.5), we write the operator T0 satisfies

the following problem

ah
Ωi

(zi,h, vh) −
∑

j∈N(i)

∫

Γij

ηij,hπijvhds = 0 ∀vh ∈ Xi,h, (3.5.14)

ηij,h = −β( πijzi,h(p) − πjizj,h(p) ) − ηji,h ∀x ∈ Γij, j ∈ N(i). (3.5.15)

Lemma 3.5.3 Let (zh, ηh) ∈ X̃h × Ỹh be the solution of (3.5.14) and (3.5.15). Then

||ηij,h||20,Γij
≤ Ch−1|zi,h|21,h,Ωi

∀j ∈ N(i). (3.5.16)

Proof. Now choosing vh = (0, · · · , Sijηij,h, · · · , 0) in (3.5.14), and using (3.3.9) and Lemma

3.3.1, we obtain

||ηij,h||20,Γij
=

∫

Γij

ηij,h.πijSijηij,h ds = ah
Ωi

(zi,h, Sijηij,h)

≤ |zi,h|1,h,Ωi
|Sijηij,h|1,h,Ωi

≤ Ch−1/2|zi,h|1,h,Ωi
||ηij,h||0,Γij

∀j ∈ N(i). (3.5.17)

This completes the rest of the proof.

Since the errors ek
h, µ

k
h satisfy (3.5.13). Our next aim to find the spectral radius of T0.
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Remark 3.5.1 Here X̃h × Ỹh is a real linear space and T0 is a real linear operator. In

general, the spectral radius formula does not hold for the real case. So the complexification

of the real linear space and the real linear operator is necessary.

Now, we recall the linear operator T0 defined in (3.5.13) and the linear space X̃h × Ỹh

defined in (3.5.1). Using Lemmas given in the Chapter 1, how X̃h, Ỹh are defined and also

T̄0. The next lemma shows that the relation between ||T k
0 || and ρ(T̄0).

Lemma 3.5.4 Let X̃h × Ỹh be equipped with an inner-product and

ρ(T̄0) ≤ 1 −R, R ∈ (0, 1). (3.5.18)

Then for every positive integer k, there is a constant C independent of k such that

||T k
0 || ≤ C(1 − R/2)k. (3.5.19)

Although, the proof of Lemma 3.5.4 is available in [109, Lemma 3.6, pp. 2547], but for

making the thesis self content, we sketch briefly below a proof.

Proof. From Lemmas 1.2.13 and 1.2.14 we find that

||T̄ k
0 || = ||T k

0 ||. (3.5.20)

Since T̄0 is a complex linear operator on the complex linear space C ⊗ (X̃h × Ỹh), then by

the spectral radius formula ( see, Chapter 1, Theorem 1.2.3)

ρ(T̄0) = lim
k→∞

||T̄ k
0 ||1/k, (3.5.21)

for ε > 0, there exists a natural number N such that for k > N , we have

||T̄ k
0 ||1/k ≤ ρ(T̄0) + ε,

and hence

||T̄ k
0 || ≤ (ρ(T̄0) + ε)k.

Choose a constant C > 1 such that

||T̄ k
0 || ≤ C(ρ(T̄0) + ε)k

for k = 1, 2, · · · , N . Then ∀ k

||T k
0 || = ||T̄ k

0 || ≤ C(ρ(T̄0) + ε)k. (3.5.22)

With ε = R/2 in (3.5.22), we complete the rest of the proof.
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3.5.1 Spectral radius without quasi-uniformity assumptions

Let (z̄h, η̄h) ∈ C ⊗ (X̃h × Ỹh), i.e.,

(z̄h, η̄h) = (z̃h, η̃h) +
√

(−1)(ẑh, η̂h), (3.5.23)

where (z̃h, η̃h), (ẑh, η̂h) ∈ X̃h × Ỹh. Using Lemma 1.2.12, we obtain the following identity.

Lemma 3.5.5 Let (z̄h, η̄h) ∈ C⊗(X̃h×Ỹh), and (z̃h, η̃h), (ẑh, η̂h) ∈ X̃h×Ỹh satisfy (3.5.23).

Then

|z̄i,h|21,h,Ωi
= |z̃i,h|21,h,Ωi

+ |ẑi,h|21,h,Ωi
(3.5.24)

||η̄ij,h||20,ij = ||η̃ij,h||20,ij + ||η̂ij,h||20,ij, (3.5.25)

and

||π̄ij z̄i,h||20,ij = ||πij z̃i,h||20,ij + ||πij ẑi,h||20,ij, (3.5.26)

where π̄ij is the complexification of πij. For the sake of convenience, let us define another

notation Gi,h similar to Ek
i,h, but both having the same property, where each Gi,h acts on

complex values and each Ek
i,h acts on real values:

Gi,h = Gi,h(z̄i,h, η̄ij,h) =
∑

j∈N(i)

||η̄ij,h + βπ̄ij z̄i,h||20,Γij
, (3.5.27)

and

Gh = Gh(z̄h, η̄h) =

M∑

i=1

Gi,h =

M∑

i=1

Gi,h(z̄i,h, η̄ij,h). (3.5.28)

Lemma 3.5.6 Let Gh and Gi,h be defined, respectively, by (3.5.27) and (3.5.28). Then the

following identity holds true :

Gh(z̄h, η̄h) =
M∑

i=1

∑

j∈N(i)

(

||η̄ij,h||20,Γij
+ β2||π̄ij z̄i,h||20,Γij

)

+ 2β
M∑

i=1

ah
Ωi

(z̄i,h, z̄i,h). (3.5.29)

Proof. Setting vh = zi,h ∈ Xi,h in (3.5.14), we arrive at the following equality

ah
Ωi

(zi,h, zi,h) =
∑

j∈N(i)

∫

Γij

ηij,h.πijzi,hds. (3.5.30)
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From (3.5.27) and (3.5.28), and using Lemma 1.2.12, we obtain

Gi,h =
∑

j∈N(i)

||η̄ij,h + βπ̄ij z̄i,h||20,Γij

=
∑

j∈N(i)

||η̃ij,h + βπij z̃i,h||20,Γij
+
∑

j∈N(i)

||η̂ij,h + βπij ẑi,h||20,Γij

= I1 + I2. (3.5.31)

Since (zi,h, ηij,h) ∈ Xi,h × Yij,h, by (3.5.30),

I1 =
∑

j∈N(i)

(

||η̃ij,h||20,Γij
+ β2||πij z̃i,h||20,Γij

)

+ 2β
∑

j∈N(i)

〈η̃ij,h, πij z̃i,h〉|Γij

=
∑

j∈N(i)

(

||η̃ij,h||20,Γij
+ β2||πij z̃i,h||20,Γij

)

+ 2β ah
Ωi

(z̃i,h, z̃i,h). (3.5.32)

Similarly, we find that

I2 =
∑

j∈N(i)

(

||η̂ij,h||20,Γij
+ β2||πij ẑi,h||20,Γij

)

+ 2β
∑

j∈N(i)

〈η̂ij,h, πij ẑi,h〉|Γij

=
∑

j∈N(i)

(

||η̂ij,h||20,Γij
+ β2||πij ẑi,h||20,Γij

)

+ 2β ah
Ωi

(ẑi,h, ẑi,h). (3.5.33)

Using (3.5.32), (3.5.33) and Lemma 1.2.12 in (3.5.31), we arrive at

Gi,h =
∑

j∈N(i)

(

||η̄ij,h||20,Γij
+ β2||π̄ij z̄i,h||20,Γij

)

+ 2β ah
Ωi

(z̄i,h, z̄i,h), (3.5.34)

where

ah
Ωi

(z̃i,h, z̃i,h) + ah
Ωi

(ẑi,h, ẑi,h) = ||∇z̃i,h||20,Ωi
+ ||∇ẑi,h||20,Ωi

= ||∇z̄i,h||20,Ωi
= ah

Ωi
(z̄i,h, z̄i,h).

This completes the rest of the proof.

Theorem 3.5.1 Let ρ(T̄0) be the spectral radius of T̄0. Then

ρ(T̄0) < 1. (3.5.35)

Proof. Let γ be an eigenvalue of T̄0 and let (z̄h, η̄h) 6= (0, 0) be the corresponding eigen-

vector. Then

T̄0(z̄h, η̄h) = γ (z̄h, η̄h). (3.5.36)
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It follows from (3.5.27) and (3.5.29) that

Gh(T̄0(z̄h, η̄h)) = |γ|2Gh(z̄h, η̄h). (3.5.37)

On the other hand,

Gi,h(T̄0(z̄i,h, η̄i,h)) =
∑

j∈N(i)

||γη̄ij,h + βγπ̄ij z̄i,h||20,Γij

=
∑

j∈N(i)

||γη̃ij,h + βγπij z̃i,h||20,Γij
+
∑

j∈N(i)

||γη̂ij,h + βγπij ẑi,h||20,Γij

=
∑

j∈N(i)

|| − η̃ji,h + βπjiz̃j,h||20,Γij
+
∑

j∈N(i)

|| − η̂ji,h + βπjiẑj,h||20,Γij

= I3 + I4. (3.5.38)

To find the estimates of I3 and I4, we proceed in the same way of finding the estimates of

I1 and I2 in (3.5.32) and (3.5.33), respectively. Then using (3.5.34) and (3.5.29), we obtain

Gh(T̄0(z̄h, η̄h)) = Gh(z̄h, η̄h) − 4β

M∑

i=1

ah
Ωi

(z̄i,h, z̄i,h) (3.5.39)

and hence,

|γ|2 = 1 − 4β

Gh(z̄h, η̄h)

M∑

i=1

ah
Ωi

(z̄i,h, z̄i,h). (3.5.40)

From (3.5.40), we conclude that |γ| ≤ 1. Note that |γ| = 1 if and only if

ah
Ωi

(z̃i,h, z̃i,h) = 0 and ah
Ωi

(ẑi,h, ẑi,h) = 0 ∀i = 1, 2, · · · ,M. (3.5.41)

Then proceeding as in the proof of Theorem 2.2.3, it is easy to show that (z̄h, η̄h) is trivial,

i.e., (z̄h, η̄h) = (0, 0) and this leads to a contradiction as (z̄h, η̄h) is an eigenvector of T0.

Hence, |γ| < 1 and this completes the rest of the proof.

3.5.2 Rate of convergence with quasi-uniformity assumption on

the mesh

From (3.5.40), we obtain

|γ|2 ≤ 1 − 1

Q
, (3.5.42)
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where Q > 1 is such that

Gh(z̄h, η̄h) ≤ 4Qβ
M∑

i=1

ah
Ωi

(z̄i,h, z̄i,h). (3.5.43)

Note that the estimation of Q yields the convergence rate for the iterative procedure

(3.3.16)-(3.3.17).

Lemma 3.5.7 If (z̄h, η̄h) ∈ C ⊗ (X̃h × Ỹh), j ∈ N(i), then

||η̄ij,h||20,Γij
≤ Ch−1|z̄i,h|21,h,Ωi

, (3.5.44)

where C is independent of h.

Proof. Using (3.5.23), Lemma 3.5.5 and Lemma 3.5.3, we obtain (3.5.44). This completes

the proof.

Lemma 3.5.8 For every v̄h ∈ C ⊗ X̃h, ∀j, l ∈ N(i), then

||π̄ilv̄i||20,Γil
≤ CH|v̄i|21,h,Ωi

+ C||π̄ijv̄i||20,Γij
, (3.5.45)

where π̄ij and π̄il are the complexifications of πij and πil, respectively, and the positive

constant C is independent of H.

Proof. Using (3.5.23), Lemma 3.5.5 and Lemma 3.3.3, we obtain (3.5.45). This completes

the proof.

Lemma 3.5.9 Let (z̄h, η̄h) ∈ C ⊗ (X̃h × Ỹh) be an eigenvector of T̄0 such that T̄0(z̄h, η̄h) =

γ(z̄h, η̄h). Then

γη̄ij,h = −β( γπ̄ij z̄i,h(p) − π̄jiz̄j,h(p) ) − η̄ji,h ∀x ∈ Γij, j ∈ N(i). (3.5.46)

Lemma 3.5.10 Let (z̄h, η̄h) ∈ C⊗ (X̃h× Ỹh) be an eigenvector of T̄0 such that T̄0(z̄h, η̄h) =

γ(z̄h, η̄h). Then there is a positive constant C independent of Γij and β such that

||π̄ij z̄i,h||20,Γij
≤ Cβ−2

(

||η̄ij,h||20,Γij
+ ||η̄ji,h||20,Γij

)

+ C||π̄jiz̄j,h||20,Γij
∀j ∈ N(i). (3.5.47)

Proof. From (3.5.46), we note that

βπ̄ij z̄i,h = η̄ij,h + γη̄ji,h + βγπ̄jiz̄j,h ∀j ∈ N(i). (3.5.48)
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Using (3.5.23), Lemma 3.5.5, we obtain

β2||π̄ij z̄i,h||20,Γij
≤ ||η̄ij,h||20,Γij

+ γ2||η̄ji,h||20,Γij
+ β2γ2||π̄jiz̄j,h||20,Γij

. (3.5.49)

We know from Theorem 3.5.1 that |γ| < 1 and this completes the rest of the proof.

It follows from (3.5.27), (3.5.23) and Lemma 3.5.5 that

Gi,h(z̄i,h, η̄ij,h) =
∑

j∈N(i)

||η̄ij,h + βπ̄ij z̄i,h||20,Γij

≤ 2
∑

j∈N(i)

(

||η̄ij,h||20,Γij
+ β2||π̄ij z̄i,h||20,Γij

)

. (3.5.50)

Below, we discuss a bound for the terms in the bracket which appear on the right hand

side of (3.5.50).

Theorem 3.5.2 Let Ωir be the sets of subdomain in Dr, and β = O(h−1/2H−1/2). Further,

let (z̄h, η̄h) ∈ C ⊗ (X̃h × Ỹh) be an eigenvector of T̄0 such that T̄0(z̄h, η̄h) = γ(z̄h, η̄h), then

||η̄irj,h||20,Γirj
+ β2||π̄irj z̄ir ,h||20,Γirj

≤ C3
1h

−1/2H1/2β|z̄ir,h|21,h,Ωir

+ C2r−1
1 h−1/2H1/2β|z̄ir−1,h|21,h,Ωir−1

+ · · · + C2r−1
1 h−1/2H1/2β|z̄i1,h|21,h,Ωi1

∀j ∈ N(ir), (3.5.51)

where C1 ≥ 1.5 is independent of h and H, and N is the winding number.

Proof. First we consider when r = 1, i.e., Ωi1 ∈ D1. Note that there is at least one face of

Ωi1 belonging to ∂Ω and π̄i1lz̄i1,h vanishes on this face. Then using Lemma 3.5.8, we find

that

||π̄i1j z̄i1,h||20,Γi1j
≤ CH|z̄i1,h|21,h,Ωi1

, ∀j ∈ N(i1). (3.5.52)

From Lemma 3.5.7 and (3.5.52), we arrive at

||η̄i1j,h||20,Γi1j
+ β2||π̄i1j z̄i1,h||20,Γi1j

≤ C1h
−1/2H1/2β|z̄i1,h|21,h,Ωi1

, ∀j ∈ N(i1), (3.5.53)

and hence (3.5.51) holds for r = 1. Next, we consider when r = 2, i.e., Ωi2 ∈ D2. In this

case, at least one face of Ωi2 is common to some Ωi1 ∈ D1. From Lemma 3.5.10, we find

that

β2||π̄i2i1 z̄i2,h||20,Γi2i1
≤ C1||η̄i2i1,h||20,Γi2i1

+ C1

(

||η̄i1i2,h||20,Γi2i1
+ β2||π̄i1i2 z̄i1,h||20,Γi2i1

)

∀i1 ∈ N(i2). (3.5.54)
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Using Lemma 3.5.7 and substituting (3.5.53) in (3.5.54), we arrive at

β2||π̄i2i1 z̄i2,h||20,Γi2i1
≤ C2

1h
−1/2H1/2β|z̄i2,h|21,h,Ωi2

+ C2
1h

−1/2H1/2β|z̄i1,h|21,h,Ωi1
. (3.5.55)

Substituting (3.5.55) in Lemma 3.5.8, we obtain ∀j ∈ N(i2)

β2||π̄i2j z̄i2,h||20,Γi2j
≤ C1h

−1/2H1/2β|z̄i2,h|21,h,Ωi2
+ C3

1h
−1/2H1/2β|z̄i2,h|21,h,Ωi2

+C3
1h

−1/2H1/2β|z̄i1,h|21,h,Ωi1
. (3.5.56)

From Lemma 3.5.7 and (3.5.56), we arrive at

||η̄i2j,h||20,Γi2j
+ β2||π̄i2j z̄i2,h||20,Γi2j

≤ C3
1h

−1/2H1/2β|z̄i2,h|21,h,Ωi2

+ C3
1h

−1/2H1/2β|z̄i1,h|21,h,Ωi1
∀j ∈ N(i2), (3.5.57)

where C1 ≥ 1.5. Next, we consider when r = 3, i.e., Ωi3 ∈ D3. That means at least one

face of Ωi3 is common to one of Ωi2 ∈ D2. From Lemma 3.5.10, we find that

β2||π̄i3i2 z̄i3,h||20,Γi3i2
≤ C1||η̄i3i2,h||20,Γi3i2

+ C1

(

||η̄i2i3,h||20,Γi3i2
+ β2||π̄i2i3 z̄i2,h||20,Γi3i2

)

∀i2 ∈ N(i3). (3.5.58)

Using Lemma 3.5.7 and (3.5.57) in (3.5.58), we arrive at

β2||π̄i3i2 z̄i3,h||20,Γi3i2
≤ C2

1h
−1/2H1/2β|z̄i3,h|21,h,Ωi3

+ C4
1h

−1/2H1/2β|z̄i2,h|21,h,Ωi2

+C4
1h

−1/2H1/2β|z̄i1,h|21,h,Ωi1
. (3.5.59)

Substituting (3.5.59) in Lemma 3.5.8, we obtain ∀j ∈ N(i3)

β2||π̄i3j z̄i3,h||20,Γi3j
≤ C1h

−1/2H1/2β|z̄i3,h|21,h,Ωi3
+ C3

1h
−1/2H1/2β|z̄i3,h|21,h,Ωi3

+C5
1h

−1/2H1/2β|z̄i2,h|21,h,Ωi2
+ C5

1h
−1/2H1/2β|z̄i1,h|21,h,Ωi1

. (3.5.60)

From Lemma 3.5.7 and 3.5.60, we arrive at ∀j ∈ N(i3)

||η̄i3j,h||20,Γi3j
+ β2||π̄i3j z̄i3,h||20,Γi3j

≤ C3
1h

−1/2H1/2β|z̄i3,h|21,h,Ωi3

+ C5
1h

−1/2H1/2β|z̄i2,h|21,h,Ωi2
+ C5

1h
−1/2H1/2β|z̄i1,h|21,h,Ωi1

, (3.5.61)
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where C1 ≥ 1.5. Similarly, we can continue the argument until the entire domain is

exhausted. In general, we obtain ∀j ∈ N(ir)

β2||π̄irj z̄ir ,h||20,Γirj
≤ C1h

−1/2H1/2β|z̄ir ,h|21,h,Ωir
+ C3

1h
−1/2H1/2β|z̄ir,h|21,h,Ωir

+ C2r−1
1 h−1/2H1/2β|z̄ir−1,h|21,h,Ωir−1

+ · · ·+ C2r−1
1 h−1/2H1/2β|z̄i1,h|21,h,Ωi1

, (3.5.62)

and

||η̄irj,h||20,Γirj
+ β2||π̄irj z̄ir ,h||20,Γirj

≤ C3
1h

−1/2H1/2β|z̄ir,h|21,h,Ωir

+ C2r−1
1 h−1/2H1/2β|z̄ir−1,h|21,h,Ωir−1

+ · · ·+ C2r−1
1 h−1/2H1/2β|z̄i1,h|21,h,Ωi1

, (3.5.63)

where C1 ≥ 1.5. This completes the rest of the proof.

From Theorem 3.5.2 and (3.5.50), we find that

∑

Ωir∈Dr

Gi,h(z̄i,h, η̄ij,h) ≤ 2
∑

Ωir∈Dr

∑

j∈N(ir)

(

||η̄irj,h||20,Γirj
+ β2||π̄irj z̄ir ,h||20,Γirj

)

≤ RC3
1h

−1/2H1/2β
∑

Ωir∈Dr

|z̄ir,h|21,h,Ωir

+ RC2r−1
1 h−1/2H1/2β

∑

Ωir−1∈Dr−1

|z̄ir−1,h|21,h,Ωir−1

+ · · · +RC2r−1
1 h−1/2H1/2β

∑

Ωi1∈D1

|z̄i1,h|21,h,Ωi1
, (3.5.64)

where R is the total number of interfaces. Now we sum up all the subdomains using

(3.5.64), and arrive at

Gh(z̄h, η̄h) =

N∑

r=1

∑

Ωir∈Dr

Gi,h(z̄i,h, η̄ij,h) ≤ Rh−1/2H1/2β

N∑

r=1

(

C2r−1
1

∑

Ωir∈Dr

|z̄ir,h|21,h,Ωir

)

≤ RC2N
1 h−1/2H1/2β

M∑

i=1

ah
Ωi

(z̄i,h, z̄i,h). (3.5.65)

From the estimate (3.5.65), we obtain that (3.5.43), i.e., 4Q = RC2N
1 h−1/2H1/2.
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Theorem 3.5.3 Assume that the parameter β = βij = βji in the iterative procedure

(3.3.16)-(3.3.17) satisfies β = O(h−1/2H−1/2). Then, the spectral radius ρ(T̄0) of the oper-

ator is bounded as follows:

ρ(T̄0) ≤ 1 − Ch1/2H−1/2 ≡ γ0, (3.5.66)

where C =
4

RC2N
1

and the iteration (3.3.16)-(3.3.17) converges with an error at the kth

iteration bounded asymptotically by O(γk
0 ).

3.6 Numerical experiments

In this section, we have applied the present results to a model problem. The numerical

implementation scheme has been performed in a sequential machine using MATLAB.

Consider the problem (3.2.1) with f = 2[x(1− x) + y(1− y)]. The exact solution of the

problem (3.2.1) problem is given by u = x(1 − x)y(1 − y).

Here we take Ω = (0, 1) × (0, 1). We decompose the square into [0, 3/4] × [0, 1] and

[3/4, 1] × [0, 1], with interface Γ = {3/4} × (0, 1).

We triangulate the domain uniformly and mesh size is h. Here, we consider the winding

number N = 1. We choose the initial guess {u0
i,h, λ

0
ij,h} = {0, 0}. The stop criterion is

‖uk
h − uh‖∞ ≤ 10−4, where iteration number is k. We choose the relaxation parameter

β = O(h−1/2H−1/2).

h H D.O.F. in Ω1 D.O.F. in Ω2 k = No. of Iter. eh = ‖u− uh‖0,Ω Rate

1/8 1 138 46 6 2.13200154×10−4 -

1/16 1 564 188 10 5.53207760×10−5 1.9463

1/24 1 1278 426 12 2.44792188×10−5 2.0108

1/32 1 2280 760 14 1.36365473×10−5 2.0337

1/40 1 3570 1190 16 8.66312732×10−6 2.0331

1/48 1 5148 1716 17 5.82667301×10−6 2.1754

Table 3.1: L2 error and the rate of convergence for the 2-domain case



Chapter 3. Domain Decomposition Methods 105

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4
8

8.5

9

9.5

10

10.5

11

11.5

12

12.5

−ln(h)

−
ln

(e
h)

Slope  = 2

Figure 3.2: The order of convergence

In Figure 3.2, the graph of the L2 error ‖u − uh‖ is plotted as a function of the dis-

cretization step ′h′ in the log − log scale. The slope of the graph provides the computed

order of convergence as approximately 2.0.

In Table 3.1, the iteration number, order of convergence and L2 error eh = ‖u− uh‖ for

h = 1/8, h = 1/16, h = 1/24, h = 1/32, h = 1/40 and h = 1/48 are given. The numerical

result confirms our theoretical result.

3.7 The parabolic problem

In this section, we discuss the fully discrete non-conforming finite element method combined

with nonoverlapping DD method using Robin-type boundary conditions across the inter-

subdomains boundary at each time step for the following linear second order parabolic
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initial and boundary value problem. Find u = u(x, t) such that







ut − ∆u = f(x, t) in Ω, t ∈ (0, T ],

u(x, t) = 0 on ∂Ω, t ∈ (0, T ],

u(x, 0) = u0(x) in Ω,

(3.7.1)

where Ω is a bounded convex polygon or polyhedron in IRd, d = 2 or 3 with a Lipschitz

continuous, piecewise C1 boundary ∂Ω. Here the non-homogeneous term f = f(x, t) and

u0(x) are given functions.

In section 2.7, we have stated a completely discrete scheme which is based on backward

Euler method for the multi-domain problem. The weak formulation corresponding to the

multi-domain problem stated as follows (see, chapter 2, problem (2.7.2)-(2.7.4)): Given

f ∈ L2(QT ) and Un−1 ∈ Xh, find Un = (Un
1 , · · · , Un

M) ∈ Xh =

M∏

i=1

Xi,h and λn
h ∈ Yh =

M∏

i=1

∏

i<j∈N(i)

Yi,h for n = 1, 2, 3, · · · , N, such that

(
Un

i − Un−1
i

∆t
, vh

)

+ ah(Un, vh) −
M∑

i=1

∑

i<j∈N(i)

∫

Γij

λn
ij,h [π vh] ds = (fn, vh) ∀vh ∈ Xh,(3.7.2)

M∑

i=1

∑

i<j∈N(i)

∫

Γij

[π Un]µh ds = 0 ∀µh ∈ Yh, (3.7.3)

and

U0 = u0,h. (3.7.4)

Let us formulate an iterative version of (3.7.2)-(3.7.3). Consider the Lagrange multiplier

to be λn
ij,h as seen from Ωi and λn

ji,h as seen from Ωj. Then, the iterative procedure is to

compute {Un,k
i , λn,k

ij,h} ∈ Xi,h × Yij,h recursively as the solution of

(

Un,k
i − Un−1

i

∆t
, vh

)

+ ah
Ωi

(Un,k
i , vh) +

∑

j∈N(i)

βij

∫

Γij

πijU
n,k
i πijvh ds = (fn, vh)Ωi

+
∑

j∈N(i)

βji

∫

Γij

πjiU
n,k−1
j,h πijvh ds−

∑

j∈N(i)

∫

Γij

λn,k−1
ji,h πijvh ds ∀vh ∈ Xi,h, (3.7.5)
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and

λn,k
ij,h = −( βijπijU

n,k
i (p) − βjiπjiU

n,k−1
j (p) ) − λn,k−1

ji,h ∀x ∈ Γij, j ∈ N(i), (3.7.6)

with initial guess {Un,0
i , λn,0

ij,h, λ
n,0
ji,h} ∈ {Xi,h, Yij,h, Yji,h} as given in the time level tn−1.

3.7.1 Convergence of iterative scheme

In this subsection, we discuss the convergence of the iteration defined by (3.7.5)-(3.7.6).

From (3.7.3), we note that in each subdomain Ωi,

(
Un

i − Un−1
i

∆t
, vh

)

+ ah
Ωi

(Un
i , vh) −

∑

j∈N(i)

∫

Γij

λn
ij,h πij vh ds = (fn, vh) ∀vh ∈ Xi,h. (3.7.7)

Since λn
ij,h = −λn

ji,h, then form (3.7.3), we obtain

λn
ij,h = −λn

ji,h − β(πij U
n
i (p) − πji U

n
j (p)). (3.7.8)

Set

en,k
i,h = Un,k

i − Un
i , µ

n,k
ij,h = λn,k

ij,h − λn
ij,h and µn,k

ji,h = λn,k
ji,h − λn

ji,h. (3.7.9)

Then, subtracting (3.7.7) from (3.7.5) and (3.7.8) from (3.7.6) with β = βij = βji, lead to

the following equations:
(

en,k
i,h

∆t
, vh

)

+ ah
Ωi

(en,k
i,h , vh) −

∑

j∈N(i)

∫

Γij

λn,k
ij,h πij vh ds = 0 ∀vh ∈ Xi,h (3.7.10)

and

λn,k
ij,h = −β

(

πij e
n,k
i,h (p) − πji e

n,k−1
j,h (p)

)

− λn,k−1
ji,h . (3.7.11)

Setting vh = en,k
i,h in (3.7.10), we arrive at

1

∆t
||en,k

i,h ||20,Ωi
+ ah

Ωi
(en,k

i,h , e
n,k
i,h ) =

∑

j∈N(i)

∫

Γij

µn,k
ij,hπije

n,k
i,h ds. (3.7.12)

For analyzing convergence, we now define

En,k
i,h = Ei,h(e

n,k
i,h , µ

n,k
ij,h) =

∑

j∈N(i)

||µn,k
ij,h + βπije

n,k
i,h ||20,Γij

, (3.7.13)
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and

En,k
h = Eh(e

n,k
h , µn,k

h ) =
M∑

i=1

En,k
i,h =

M∑

i=1

Ei,h(e
n,k
i,h , µ

n,k
ij,h). (3.7.14)

Lemma 3.7.1 Let En,k
h and En,k

i,h be defined, respectively, by (3.7.14) and (3.7.13). Then

following identity

En,k
h = En,k−1

h − 4β
M∑

i=1

(

ah
Ωi

(en,k−1
i,h , en,k−1

i,h ) +
1

∆t
||en,k−1

i,h ||20,Ωi

)

(3.7.15)

holds true.

Proof. From (3.7.13) and (3.7.12), we obtain

En,k
i,h =

∑

j∈N(i)

(

||µn,k
ij,h||20,Γij

+ β2||πije
n,k
i,h ||20,Γij

)

+ 2β
∑

j∈N(i)

∫

Γij

µn,k
ij,hπije

n,k
i,h ds

=
∑

j∈N(i)

(

||µn,k
ij,h||20,Γij

+ β2||πije
n,k
i,h ||20,Γij

)

+ 2β

(

ah
Ωi

(en,k
i,h , e

n,k
i,h ) +

1

∆t
||en,k

i,h ||20,Ωi

)

.

(3.7.16)

Then, from (3.7.11), (3.7.13) and (3.7.16), we arrive at

En,k
i,h =

∑

j∈N(i)

||µn,k
ij,h + βπije

n,k
i,h ||20,Γij

=
∑

j∈N(i)

|| − µn,k−1
ji,h + βπjie

n,k−1
j,h ||20,Γij

=
∑

j∈N(i)

(

||µn,k−1
ij,h ||20,Γij

+ β2||πije
n,k−1
i,h ||20,Γij

)

− 2β
∑

j∈N(i)

∫

Γij

µn,k−1
ij,h πije

n,k−1
i,h ds

=
∑

j∈N(i)

(

||µn,k−1
ij,h ||20,Γij

+ β2||πije
n,k−1
i,h ||20,Γij

)

−2β

(

ah
Ωi

(en,k−1
i,h , en,k−1

i,h ) +
1

∆t
||en,k−1

i,h ||20,Ωi

)

= En,k−1
i,h − 4β

(

ah
Ωi

(en,k−1
i,h , en,k−1

i,h ) +
1

∆t
||en,k−1

i,h ||20,Ωi

)

,

and this completes the proof.

Theorem 3.7.1 Let (Un
i , λ

n
ij,h), i = 1, 2, · · · ,M , be the solutions of the problem (3.7.7)-

(3.7.8) and let (Un,k
i , λn,k

ij,h) be the solutions of the discrete iterative problem (3.7.5) and
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(3.7.6) at iterative step k. Then, for any initial guess {Un,0
i , λn,0

ij,h, λ
n,0
ji,h} ∈ {Xi,h, Yij,h, Yji,h}

∀j ∈ N(i), the iterative method converges in the sense that

||Un,k − Un||1,h =

(
M∑

i=1

||Un,k
i − Un

i ||21,h,Ωi

)1/2

→ 0, as k → ∞, (3.7.17)

and

||λn,k
h − λn

h||0 =





M∑

i=1

∑

j∈N(i)

||λn,k
ij,h − λn

ij,h||20,Γij





1/2

→ 0, as k → ∞. (3.7.18)

For a proof of Theorem 3.7.1, we refer to Theorem 3.4.1.

3.7.2 Spectral radius

Let T n
f : X̃h × Ỹh → X̃h × Ỹh be an mapping such that for any (wn

h, θ
n
h) ∈ X̃h × Ỹh,

(zn
h , η

n
h) ≡ T n

f (wn
h , θ

n
h) is the solution, for all i, of

1

∆t
(zn

i,h, vh) + ah
Ωi

(zn
i,h, vh) +

∑

j∈N(i)

β

∫

Γij

πijz
n
i,hπijvh ds = (fn, vh)Ωi

+
∑

j∈N(i)

β

∫

Γij

πjiw
n
j,hπijvh ds−

∑

j∈N(i)

∫

Γij

θn
ji,hπijvh ds ∀vh ∈ Xi,h, (3.7.19)

ηn
ij,h = −β( πijz

n
i,h(p) − πjiw

n
j,h(p) ) − θn

ji,h ∀x ∈ Γij, j ∈ N(i), (3.7.20)

where zn
i,h = zn

h |Ωi
, wn

i,h = wn
h |Ωi

, ηn
ij,h = ηn

h |Γij
and θn

ij,h = θn
h |Γij

. Since the operator T n
f

is linear, we can now split the operator T n
f as T n

f (wn
h, θ

n
h) = T n

0 (wn
h, θ

n
h) + T n

f (0, 0) where

the operators T n
0 and T n

f are defined as follows : Given (wn
h , θ

n
h), (zn,?

h , ηn,?
h ) = T n

0 (wn
h, θ

n
h)

satisfies for all i,

1

∆t
(zn,?

i,h , vh) + ah
Ωi

(zn,?
i,h , vh) +

∑

j∈N(i)

β

∫

Γij

πijz
n,?
i,h πijvh ds =

∑

j∈N(i)

β

∫

Γij

πjiw
n
j,hπijvh ds

−
∑

j∈N(i)

∫

Γij

θn
ji,hπijvh ds ∀vh ∈ Xi,h, (3.7.21)

ηn,?
ij,h = −β( πijz

n,?
i,h (p) − πn

jiwj,h(p) ) − θn
ji,h ∀x ∈ Γij, j ∈ N(i), (3.7.22)
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and given (zn,o
h , ηn,o

h ) = T n
f (0, 0) satisfies for all i,

1

∆t
(zn,o

i,h , vh) + ah
Ωi

(zn,o
i,h , vh) +

∑

j∈N(i)

β

∫

Γij

πijz
n,o
i,h πijvh ds = (fn, vh)Ωi

∀vh ∈ Xi,h, (3.7.23)

ηn,o
ij,h = −β πijz

n,o
i,h (p) ∀x ∈ Γij, j ∈ N(i). (3.7.24)

Then (zn
h , η

n
h) = (zn,?

h , ηn,?
h ) + (zn,o

h , ηn,o
h ).

Lemma 3.7.2 The pair (zn
h , η

n
h) ∈ X̃h × Ỹh is a solution, for all i, of

1

∆t
(zn

i,h, vh) + ah
Ωi

(zn
i,h, vh) +

∑

j∈N(i)

β

∫

Γij

πijz
n
i,hπijvhds = (fn, v)Ωi

+
∑

j∈N(i)

β

∫

Γij

πjiz
n
j,hπijvhds−

∑

j∈N(i)

∫

Γij

ηn
ji,hπijvhds ∀vh ∈ Xi,h, (3.7.25)

ηn
ij,h = −β( πijz

n
i,h(p) − πjiz

n
j,h(p) ) − ηn

ji,h ∀x ∈ Γij, j ∈ N(i), (3.7.26)

where ηn
ij,h = −ηn

ji,h if and only if it is a fixed point of the operator T n
f .

It is easy to check that for each i any solution of (3.7.7)-(3.7.8) is a fixed point of T n
f and

conversely a fixed point of T n
f is a solution of (3.7.7)-(3.7.8).

Lemma 3.7.3 Let (un
h, λ

n
h) be a fixed point of T n

f . Then πiju
n
i,h(p) = πjiu

n
j,h(p) and λn

ij,h =

−λn
ji,h for all Γij.

Note that the operator T n
f (zn

h , η
n
h) can be decomposed into a sum of two operators T n

0 (zn
h , η

n
h)

and T n
f (0, 0). Then then

(zn
h , η

n
h) = T n

f (wn
h , θ

n
h) = T n

0 (wn
h , θ

n
h) + T n

f (0, 0). (3.7.27)

The fixed point (zn
h , η

n
h) of T n

f that is T n
f (zn

h , η
n
h) = (zn

h , η
n
h) is a solution of

(I − T n
0 )(zn

h , η
n
h) = T n

f (0, 0). (3.7.28)

Lemma 3.7.4 Let (un
h, λ

n
h) be a fixed point of T n

f . Then from (3.7.27), we write

(un
h, λ

n
h) = T n

f (un
h, λ

n
h) = T n

0 (un
h, λ

n
h) + T n

f (0, 0). (3.7.29)
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Moreover,

(en,k
h , µn,k

h ) = T n
0 (en,k−1

h , µn,k−1
h ). (3.7.30)

If (zn
h , η

n
h) is a fixed point of T n

0 , then from (3.7.27), the operator T n
0 satisfies

1

∆t
(zn

i,h, vh) + ah
Ωi

(zn
i,h, vh) −

∑

j∈N(i)

∫

Γij

ηn
ij,hπijvhds = 0 ∀vh ∈ Xi,h, (3.7.31)

ηn
ij,h = −β( πijz

n
i,h(p) − πjiz

n
j,h(p) ) − ηn

ji,h ∀x ∈ Γij, j ∈ N(i). (3.7.32)

Lemma 3.7.5 Let (zn
h , η

n
h) ∈ X̃h × Ỹh be the solution of (3.7.31) and (3.7.32). Then

||ηn
ij,h||0,Γij

≤ Ch−1/2|zn
i,h|1,h,Ωi

+ C
h1/2

∆t
||zn

i,h||0,Ωi
∀j ∈ N(i). (3.7.33)

Proof. Now choose vh = Sijη
n
ij,h in (3.7.31), and using Lemma 2.2.6, we obtain

||ηn
ij,h||20,Γij

= ah
Ωi

(zn
i,h, Sijη

n
ij,h) +

1

∆t
(zn

i,h, Sijη
n
ij,h)

≤ |zn
i,h|1,h,Ωi

|Sijη
n
ij,h|1,h,Ωi

+
1

∆t
||zn

i,h||0,Ωi
|Sijη

n
ij,h|0,Ωi

≤ Ch−1/2|zn
i,h|1,h,Ωi

||ηn
ij,h||0,Γij

+ C
h1/2

∆t
||zn

i,h||0,Ωi
||ηn

ij,h||0,Γij
. (3.7.34)

This completes the rest of the proof.

Now next aim to find the spectral radius of T n
0 .

Here X̃h × Ỹh is a real linear space and T n
0 is a real linear operator. In general, the spectral

radius formula does not hold in the real case. So the complexification of a real linear space

and a real linear operator is necessary. Now, we recall the linear operator T n
0 defined in

(3.5.13) and the linear space X̃h × Ỹh defined in (3.5.1). Our main idea to find ||T n,k
0 ||,

which is dominated by ρ(T̄ n
0 ), where ρ(T̄ n

0 ) is the spectral radius of T̄ n
0 . The next lemma

shows that the relation between ||T n,k
0 || and ρ(T̄ n

0 ).

Lemma 3.7.6 Let X̃h × Ỹh be equipped with an inner-product and

ρ(T̄ n
0 ) ≤ 1 − R, R ∈ (0, 1). (3.7.35)

Then for all positive integer number k, there is a constant C independent of k such that

||T n,k
0 || ≤ C(1 − R/2)k. (3.7.36)
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Let (z̄n
h , η̄

n
h) ∈ C ⊗ (X̃h × Ỹh), i.e.,

(z̄n
h , η̄

n
h) = (z̃n

h , η̃
n
h) +

√

(−1)(ẑn
h , η̂

n
h), (3.7.37)

where (z̃n
h , η̃

n
h), (ẑn

h , η̂
n
h) ∈ X̃h×Ỹh. Using the Lemma 1.2.12, we obtain the following identity.

Lemma 3.7.7 Let (z̄n
h , η̄

n
h) ∈ C ⊗ (X̃h × Ỹh), and (z̃n

h , η̃
n
h), (ẑn

h , η̂
n
h) ∈ X̃h × Ỹh. Then

|z̄n
i,h|21,h,Ωi

= |z̃n
i,h|21,h,Ωi

+ |ẑn
i,h|21,h,Ωi

(3.7.38)

||η̄n
ij,h||20,ij = ||η̃n

ij,h||20,ij + ||η̂n
ij,h||20,ij, (3.7.39)

and

||π̄ij z̄
n
i,h||20,ij = ||πij z̃

n
i,h||20,ij + ||πij ẑ

n
i,h||20,ij (3.7.40)

where π̄ij is the complexification of πij.

For the sake of convenience, let us define another notation Gn
i,h similar to En

i,h, but both

having the same property, where each Gn
i,h acts on complex values and each En

i,h acts on

real values.

Gn
i,h = Gi,h(z̄

n
i,h, η̄

n
ij,h) =

∑

j∈N(i)

||η̄n
ij,h + βπ̄ij z̄

n
i,h||20,Γij

, (3.7.41)

and

Gn
h = Gh(z̄

n
h , η̄

n
h) =

M∑

i=1

Gn
i,h =

M∑

i=1

Gi,h(z̄
n
i,h, η̄

n
ij,h). (3.7.42)

Lemma 3.7.8 Let Gn
h and Gn

i,h be defined, respectively, by (3.7.41) and (3.7.42). Then the

following identity holds :

Gh(z̄
n
h , η̄

n
h) =

M∑

i=1

∑

j∈N(i)

(

||η̄n
ij,h||20,Γij

+ β2||π̄ij z̄
n
i,h||20,Γij

)

+2β

M∑

i=1

(

ah
Ωi

(z̄n
i,h, z̄

n
i,h) +

1

∆t
||z̄n

i,h||20,Ωi

)

. (3.7.43)

Theorem 3.7.2 Let ρ(T̄ n
0 ) be the spectral radius of T̄ n

0 . Then

ρ(T̄ n
0 ) < 1. (3.7.44)
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Proof. Let γ be an eigenvalue of T̄ n
0 and let (z̄n

h , η̄
n
h) 6= (0, 0) be its corresponding eigen-

vector. Then

T̄ n
0 (z̄n

h , η̄
n
h) = γ (z̄n

h , η̄
n
h). (3.7.45)

It follows from (3.7.41) and (3.7.43) that

Gh(T̄
n
0 (z̄n

h , η̄
n
h)) = |γ|2Gh(z̄

n
h , η̄

n
h). (3.7.46)

In the other hand,

Gi,h(T̄
n
0 (z̄n

i,h, η̄
n
i,h)) =

∑

j∈N(i)

||γη̄n
ij,h + βγπ̄ij z̄

n
i,h||20,Γij

=
∑

j∈N(i)

||γη̃n
ij,h + βγπij z̃

n
i,h||20,Γij

+
∑

j∈N(i)

||γη̂n
ij,h + βγπij ẑ

n
i,h||20,Γij

=
∑

j∈N(i)

|| − η̃n
ji,h + βπjiz̃

n
j,h||20,Γij

+
∑

j∈N(i)

|| − η̂n
ji,h + βπjiẑ

n
j,h||20,Γij

= I5 + I6. (3.7.47)

To find the estimates of I5 and I6, we proceed in the same way as finding the estimates of

I1 and I2 in (3.5.32) and (3.5.32), respectively. By the simple calculation, we obtain

Gh(T̄
n
0 (z̄n

h , η̄
n
h)) = Gh(z̄

n
h , η̄

n
h) − 4β

M∑

i=1

(

ah
Ωi

(z̄n
i,h, z̄

n
i,h) +

1

∆t
||z̄n

i,h||20,Ωi

)

. (3.7.48)

Therefore,

|γ|2 = 1 − 4β

Gh(z̄n
h , η̄

n
h)

M∑

i=1

(

ah
Ωi

(z̄i,h, z̄i,h) +
1

∆t
||z̄n

i,h||20,Ωi

)

. (3.7.49)

From (3.7.49), we concluded that |γ| ≤ 1. Note that |γ| = 1 if and only if ∀i = 1, 2, · · · ,M

ah
Ωi

(z̃n
i,h, z̃

n
i,h) +

1

∆t
||z̃n

i,h||20,Ωi
= 0 and ah

Ωi
(ẑn

i,h, ẑ
n
i,h) +

1

∆t
||ẑn

i,h||20,Ωi
= 0. (3.7.50)

Then using the argument of proof of Theorem 2.2.3, it is easy to show that (z̄n
h , η̄

n
h) is

trivial, i.e., (z̄n
h , η̄

n
h) = (0, 0) and this leads to a contradiction as (z̄n

h , η̄
n
h) is an eigenvector

of T n
0 . Hence, |γ| < 1 and this completes the rest of the proof.
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3.7.3 Rate of convergence

From (3.7.49), we obtain

|γ|2 ≤ 1 − 1

Q1
, (3.7.51)

where Q1 > 1 is such that

Gh(z̄
n
h , η̄

n
h) ≤ 4Q1 β

M∑

i=1

(

ah
Ωi

(z̄n
i,h, z̄

n
i,h) +

1

∆t
||z̄n

i,h||20,Ωi

)

. (3.7.52)

Note that estimation of Q1 with yields the convergence rate for the iterative procedure

(3.7.5) and (3.7.6).

Lemma 3.7.9 If (z̄n
h , η̄

n
h) ∈ C ⊗ (X̃h × Ỹh), j ∈ N(i), then

||η̄n
ij,h||0,Γij

≤ Ch−1/2|z̄n
i,h|1,h,Ωi

+ C
h1/2

∆t
||z̄n

i,h||0,Ωi
, (3.7.53)

where C is independent of h.

Proof. Using (3.7.37), Lemma 3.7.7 and Lemma 3.7.5, we obtain (3.7.53). This completes

the proof.

Lemma 3.7.10 Let (z̄n
h , η̄

n
h) ∈ C⊗(X̃h×Ỹh) be an eigenvector of T̄ n

0 such that T̄ n
0 (z̄n

h , η̄
n
h) =

γ(z̄n
h , η̄

n
h). Then

γη̄n
ij,h = −β( γπ̄ij z̄

n
i,h(p) − π̄jiz̄

n
j,h(p) ) − η̄n

ji,h ∀x ∈ Γij, j ∈ N(i). (3.7.54)

Lemma 3.7.11 Let (z̄n
h , η̄

n
h) ∈ C⊗(X̃h×Ỹh) be an eigenvector of T̄ n

0 such that T̄ n
0 (z̄n

h , η̄
n
h) =

γ(z̄n
h , η̄

n
h). Then there is a positive constant C independent of Γij and β such that

||π̄ij z̄
n
i,h||20,Γij

≤ Cβ−2
(

||η̄n
ij,h||20,Γij

+ ||η̄n
ji,h||20,Γij

)

+ C||π̄jiz̄
n
j,h||20,Γij

∀j ∈ N(i). (3.7.55)

Proof. From (3.7.54), we note that

βπ̄ij z̄
n
i,h = η̄n

ij,h + γη̄n
ji,h + βγπ̄jiz̄

n
j,h ∀j ∈ N(i). (3.7.56)

Using (3.7.37), Lemma 3.7.7, we obtain

β2||π̄ij z̄
n
i,h||20,Γij

≤ ||η̄n
ij,h||20,Γij

+ γ2||η̄n
ji,h||20,Γij

+ β2γ2||π̄jiz̄
n
j,h||20,Γij

. (3.7.57)
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We know from Theorem 3.7.2 that |γ| < 1 and this completes the rest of the proof.

It follows from (3.7.41), (3.7.37) and Lemma 3.7.7 that

Gi,h(z̄
n
i,h, η̄ij,h) =

∑

j∈N(i)

||η̄n
ij,h + βπ̄ij z̄

n
i,h||20,Γij

≤ 2
∑

j∈N(i)

(

||η̄n
ij,h||20,Γij

+ β2||π̄ij z̄
n
i,h||20,Γij

)

. (3.7.58)

Below, we discuss a bound for the terms in the bracket which appear in the right-hand side

of (3.7.58).

Theorem 3.7.3 Let Ωir be the sets of subdomain in Dr, and β = O(h−1/2H−1/2). Further,

let (z̄n
h , η̄

n
h) ∈ C ⊗ (X̃h × Ỹh) be an eigenvector of T̄ n

0 such that T̄ n
0 (z̄n

h , η̄
n
h) = γ(z̄n

h , η̄
n
h), then

||η̄n
irj,h||20,Γirj

+ β2||π̄irj z̄
n
ir ,h||20,Γirj

≤ C3
1h

−1/2H1/2

(

2 +
h2

∆t

)

β

(

|z̄n
ir,h|21,h,Ωir

+
1

∆t
||z̄n

ir ,h||20,Ωir

)

+C2r−1
1 h−1/2H1/2

(

2 +
h2

∆t

)

β

(

|z̄n
ir−1,h|21,h,Ωir−1

+
1

∆t
||z̄n

ir−1,h||20,Ωir−1

)

+ · · ·+ C2r−1
1 h−1/2H1/2

(

2 +
h2

∆t

)

β

(

|z̄n
i1,h|21,h,Ωi1

+
1

∆t
||z̄n

i1,h||20,Ωi1

)

∀j ∈ N(ir), (3.7.59)

where C1 ≥ 1.5 is independent of h and H, and N is the winding number.

Proof. First we consider when r = 1, i.e., Ωi1 ∈ D1. Note that there is at least one face of

Ωi1 belonging to ∂Ω and π̄i1lz̄
n
i1,h vanishes on this face. Then using Lemma 3.5.8, we find

that

||π̄i1j z̄
n
i1,h||20,Γi1j

≤ CH|z̄n
i1,h|21,h,Ωi1

, ∀j ∈ N(i1). (3.7.60)

From Lemma 3.7.9 and (3.7.60), we arrive at

||η̄n
i1j,h||20,Γi1j

+ β2||π̄i1j z̄
n
i1,h||20,Γi1j

≤ C1h
−1/2H1/2

(

2 +
h2

∆t

)

β

(

|z̄n
i1,h|21,h,Ωi1

+
1

∆t
||z̄n

i1,h||20,Ωi1

)

, ∀j ∈ N(i1), (3.7.61)

and hence (3.7.59) holds for r = 1. Next, we consider when r = 2, i.e., Ωi2 ∈ D2. In this

case, at least one face of Ωi2 is common to some Ωi1 ∈ D1. From Lemma 3.7.11, we find
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that

β2||π̄i2i1 z̄
n
i2,h||20,Γi2i1

≤ C1||η̄n
i2i1,h||20,Γi2i1

+ C1

(

||η̄n
i1i2,h||20,Γi2i1

+ β2||π̄i1i2 z̄
n
i1,h||20,Γi2i1

)

∀i1 ∈ N(i2). (3.7.62)

Using Lemma 3.7.9 and substituting (3.7.61) in (3.7.62), we arrive at

β2||π̄i2i1 z̄
n
i2,h||20,Γi2i1

≤ C2
1h

−1/2H1/2

(

1 +
h2

∆t

)

β

(

|z̄n
i2,h|21,h,Ωi2

+
1

∆t
||z̄n

i2,h||20,Ωi2

)

+C2
1h

−1/2H1/2

(

2 +
h2

∆t

)

β

(

|z̄n
i1,h|21,h,Ωi1

+
1

∆t
||z̄n

i1,h||20,Ωi1

)

. (3.7.63)

Substituting (3.7.63) in Lemma 3.5.8, we obtain ∀j ∈ N(i2)

β2||π̄i2j z̄
n
i2,h||20,Γi2j

≤ C1h
−1/2H1/2β|z̄n

i2,h|21,h,Ωi2

+C3
1h

−1/2H1/2

(

1 +
h2

∆t

)

β

(

|z̄n
i2,h|21,h,Ωi2

+
1

∆t
||z̄n

i2,h||20,Ωi2

)

+C3
1h

−1/2H1/2

(

2 +
h2

∆t

)

β

(

|z̄n
i1,h|21,h,Ωi1

+
1

∆t
||z̄n

i1,h||20,Ωi1

)

. (3.7.64)

From Lemma 3.7.9 and (3.7.64), we arrive at

||η̄n
i2j,h||20,Γi2j

+ β2||π̄i2j z̄
n
i2,h||20,Γi2j

≤ C3
1h

−1/2H1/2

(

2 +
h2

∆t

)

β

(

|z̄n
i2,h|21,h,Ωi2

+
1

∆t
||z̄n

i2,h||20,Ωi2

)

+C3
1h

−1/2H1/2

(

2 +
h2

∆t

)

β

(

|z̄n
i1,h|21,h,Ωi1

+
1

∆t
||z̄n

i1,h||20,Ωi1

)

∀j ∈ N(i2), (3.7.65)

where C1 ≥ 1.5. Next, we consider when r = 3, i.e., Ωi3 ∈ D3. That means at least one

face of Ωi3 is common to one of Ωi2 ∈ D2. From Lemma 3.7.11, we find that

β2||π̄i3i2 z̄
n
i3,h||20,Γi3i2

≤ C1||η̄n
i3i2,h||20,Γi3i2

+ C1

(

||η̄n
i2i3,h||20,Γi3i2

+ β2||π̄i2i3 z̄
n
i2,h||20,Γi3i2

)

∀i2 ∈ N(i3). (3.7.66)

Using Lemma 3.7.9 and (3.7.65) in (3.7.66), we arrive at

β2||π̄i3i2 z̄
n
i3,h||20,Γi3i2

≤ C2
1h

−1/2H1/2

(

1 +
h2

∆t

)

β

(

|z̄n
i3,h|21,h,Ωi3

+
1

∆t
||z̄n

i3,h||20,Ωi3

)

+C4
1h

−1/2H1/2

(

2 +
h2

∆t

)

β

(

|z̄n
i2,h|21,h,Ωi2

+
1

∆t
||z̄n

i2,h||20,Ωi2

)

+C4
1h

−1/2H1/2

(

2 +
h2

∆t

)

β

(

|z̄n
i1,h|21,h,Ωi1

+
1

∆t
||z̄n

i1,h||20,Ωi1

)

. (3.7.67)
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Substituting (3.7.67) in Lemma 3.5.8, we obtain ∀j ∈ N(i3)

β2||π̄i3j z̄
n
i3,h||20,Γi3j

≤ C1h
−1/2H1/2β|z̄n

i3,h|21,h,Ωi3

+C3
1h

−1/2H1/2

(

1 +
h2

∆t

)

β

(

|z̄n
i3,h|21,h,Ωi3

+
1

∆t
||z̄n

i3,h||20,Ωi3

)

+C5
1h

−1/2H1/2

(

2 +
h2

∆t

)

β

(

|z̄n
i2,h|21,h,Ωi2

+
1

∆t
||z̄n

i2,h||20,Ωi2

)

+C5
1h

−1/2H1/2

(

2 +
h2

∆t

)

β

(

|z̄n
i1,h|21,h,Ωi1

+
1

∆t
||z̄n

i1,h||20,Ωi1

)

. (3.7.68)

From Lemma 3.7.9 and 3.7.68, we arrive at ∀j ∈ N(i3)

||η̄n
i3j,h||20,Γi3j

+ β2||π̄i3j z̄
n
i3,h||20,Γi3j

≤ C3
1h

−1/2H1/2

(

2 +
h2

∆t

)

β

(

|z̄n
i3,h|21,h,Ωi3

+
1

∆t
||z̄n

i3,h||20,Ωi3

)

+C5
1h

−1/2H1/2

(

2 +
h2

∆t

)

β

(

|z̄n
i2,h|21,h,Ωi2

+
1

∆t
||z̄n

i2,h||20,Ωi2

)

+C5
1h

−1/2H1/2

(

2 +
h2

∆t

)

β

(

|z̄n
i1,h|21,h,Ωi1

+
1

∆t
||z̄n

i1,h||20,Ωi1

)

, (3.7.69)

where C1 ≥ 1.5. Similarly, we can continue the argument until the entire domain is

exhausted. In general,we obtain ∀j ∈ N(ir)

β2||π̄irj z̄
n
ir ,h||20,Γirj

≤ C1h
−1/2H1/2β|z̄n

ir,h|21,h,Ωir

+C3
1h

−1/2H1/2

(

1 +
h2

∆t

)

β

(

|z̄n
ir ,h|21,h,Ωir

+
1

∆t
||z̄n

ir,h||20,Ωir

)

+C2r−1
1 h−1/2H1/2

(

2 +
h2

∆t

)

β

(

|z̄n
ir−1,h|21,h,Ωir−1

+
1

∆t
||z̄n

ir−1,h||20,Ωir−1

)

+ · · ·+ C2r−1
1 h−1/2H1/2

(

2 +
h2

∆t

)

β

(

|z̄n
i1,h|21,h,Ωi1

+
1

∆t
||z̄n

i1,h||20,Ωi1

)

. (3.7.70)

and

||η̄n
irj,h||20,Γirj

+ β2||π̄irj z̄
n
ir ,h||20,Γirj

≤ C3
1h

−1/2H1/2

(

2 +
h2

∆t

)

β

(

|z̄n
ir,h|21,h,Ωir

+
1

∆t
||z̄n

ir ,h||20,Ωir

)

+C2r−1
1 h−1/2H1/2

(

2 +
h2

∆t

)

β

(

|z̄n
ir−1,h|21,h,Ωir−1

+
1

∆t
||z̄n

ir−1,h||20,Ωir−1

)

+ · · ·+ C2r−1
1 h−1/2H1/2

(

2 +
h2

∆t

)

β

(

|z̄n
i1,h|21,h,Ωi1

+
1

∆t
||z̄n

i1,h||20,Ωi1

)

, (3.7.71)
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where C1 ≥ 1.5. This completes the rest of the proof.

From Theorem 3.7.3 and (3.7.58), we find that

∑

Ωir∈Dr

Gi,h(z̄
n
i,h, η̄

n
ij,h) ≤ 2

∑

Ωir∈Dr

∑

j∈N(ir)

(

||η̄n
irj,h||20,Γirj

+ β2||π̄irj z̄
n
ir ,h||20,Γirj

)

≤ R1C
3
1h

−1/2H1/2

(

2 +
h2

∆t

)

β
∑

Ωir∈Dr

(

|z̄n
ir ,h|21,h,Ωir

+
1

∆t
||z̄n

ir,h||20,Ωir

)

+R1C
2r−1
1 h−1/2H1/2

(

2 +
h2

∆t

)

β
∑

Ωir−1∈Dr−1

(

|z̄n
ir−1,h|21,h,Ωir−1

+
1

∆t
||z̄n

ir−1,h||20,Ωir−1

)

+ · · ·+R1C
2r−1
1 h−1/2H1/2

(

2 +
h2

∆t

)

β
∑

Ωi1∈D1

(

|z̄n
i1,h|21,h,Ωi1

+
1

∆t
||z̄n

i1,h||20,Ωi1

)

, (3.7.72)

where R1 is the total number of interfaces. Now we sum up all the subdomains using

(3.7.72), we arrive at

Gh(z̄
n
h , η̄

n
h) =

N∑

r=1

∑

Ωir∈Dr

Gi,h(z̄
n
i,h, η̄

n
ij,h)

≤ R1h
−1/2H1/2

(

2 +
h2

∆t

)

β

N∑

r=1

(

C2r−1
1

∑

Ωir∈Dr

(

|z̄n
ir ,h|21,h,Ωir

+
1

∆t
||z̄n

ir,h||20,Ωir

))

≤ R1C
2N
1 h−1/2H1/2

(

2 +
h2

∆t

)

β

M∑

i=1

(

ah
Ωi

(z̄n
i,h, z̄

n
i,h) +

1

∆t
||z̄n

i,h||20,Ωi

)

. (3.7.73)

From the estimate (3.7.73), we obtain that (3.7.52), i.e., 4Q = R1C
2N
1 h−1/2H1/2

(

2 +
h2

∆t

)

.

Theorem 3.7.4 Assume that the parameter β = βij = βji in the iterative procedure

(3.7.5)-(3.7.6) satisfies β = O(h−1/2H−1/2). Then, for ∆t = O(h2) the spectral radius

ρ(T̄ n
0 ) satisfies

ρ(T̄ n
0 ) ≤ 1 − Ch1/2H−1/2 ≡ γn

0 , (3.7.74)

where C =
4

R1C2N
1 C4

with C4 > 2 and the iteration (3.7.5)-(3.7.6) converges with an error

at the kth iteration bounded asymptotically by O(γkn
0 ).
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Remark 3.7.1 From Theorem 2.7.2, Theorem 3.7.1 and Theorem3.7.4, we conclude that

||un − Un,k||0,Ω ≤ ||un − Un||0,Ω + ||Un − Un,k||0,Ω ≤ O(∆t+ h2) +O(γkn
0 ). (3.7.75)

Since the overall error estimate at time level tn is of order O(∆t + h2). We need to stop

the iterative procedure in k when we achieve γkn
0 ≤ O(∆t + h2), that is with ∆t ≈ h2, kn

satisfies

kn ≈ log(∆t)

log(γ0)
. (3.7.76)

Remark 3.7.2 In this iterative procedure, both theoretical and computational result shows

the parabolic problem has faster convergence than the elliptic problem.

3.8 Numerical experiments

In this section, we have discussed the implementation procedure of the present results to a

model problem. The numerical implementation scheme has been performed in a sequential

machine using MATLAB.

Consider the parabolic initial boundary value problem (3.7.1) with f(x, y, t) = et[x(1−
x) + y(1 − y) + 2x(1 − x) + 2y(1 − y)] and u(x, y, 0) = u0(x, y). The exact solution of the

problem (3.7.1) problem is given by u = etx(1 − x)y(1 − y).

Here we take the square domain Ω = (0, 1) × (0, 1). We decompose the square into

[0, 3/4] × [0, 1] and [3/4, 1] × [0, 1], with interface Γ = {3/4} × (0, 1). We triangulate the

domain uniformly and mesh size is h. Here, we consider the winding number N = 1. We

choose the initial guess {un,0
i,h , λ

n,0
ij,h} = {un−1

i,h , λn−1
ij,h }, where n− 1 is the previous time step.

The stop criterion is ‖un,k
h − un

h‖∞ ≤ 10−4, where iteration number is k. We choose the

relaxation parameter β = O(h−1/2H−1/2).

In Figure 3.3, the graph of the L2 error ‖u − uh‖ is plotted as a function of the dis-

cretization step ′h′ in the log − log scale. The slope of the graph provides the computed

order of convergence as approximately 2.0.

In Table 3.2, the iteration number, order of convergence and L2 error eh = ‖u − uh‖
for h = 1/8, h = 1/12, h = 1/16, h = 1/20, h = 1/24 and h = 1/28, and ∆t = h2 at time

t = 1 are given. The numerical result confirms our theoretical result.
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Figure 3.3: The order of convergence

h H D.O.F. in Ω1 D.O.F. in Ω2 k = No. of Iter. eh = ‖u− uh‖0,Ω Rate

1/8 1 138 46 5 5.83814998×10−4 -

1/12 1 315 105 5 2.68160215×10−4 1.9188

1/16 1 564 188 5 1.51485628×10−4 1.9851

1/20 1 885 295 5 9.65067546×10−5 2.0206

1/24 1 1278 426 5 6.63850676×10−5 2.0521

1/28 1 1743 581 5 4.81675258×10−5 2.0810

Table 3.2: L2 error and the rate of convergence for the 2-domain case



Chapter 4

Parallel Iterative Procedures Using

Mixed Finite Element Methods

4.1 Introduction

In this chapter, we discuss an iterative method based on mixed finite element methods

using Robin-type boundary condition as transmission data on the artificial interface (inter-

subdomain boundary) for nonoverlapping DDM. We now consider the following second

order elliptic problem, which models single phase Darcy flow in a porous medium: Find

pressure p and velocity u satisfying

u = −K∇p in Ω, (4.1.1)

∇ · u + b p = f in Ω, (4.1.2)

p = g on ∂Ω, (4.1.3)

where Ω ⊂ IRd, d = 2 or 3, is the bounded domain, K is a symmetric, uniformly positive

definite tensor with L∞(Ω)-components representing the permeability divided by the vis-

cosity and b(x) ≥ 0, b(x) ∈ L∞(Ω). The Dirichlet boundary conditions are considered for

simplicity. In the proposed method, the problem (4.1.1)-(4.1.3) is decomposed into a series

of small, local (or subdomain) problems. On each artificial interface, Robin-type boundary

are considered as transmission conditions and then the subproblems are solved using mixed

finite element methods.

Other domain decomposition methods with nonoverlapping partitions for mixed fi-

nite element methods are discussed by Glowinski and Wheeler [74, 37], Cowsar, Mandel,

121
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Wheeler [38], and Douglas et al [49, 51]. The balancing domain decomposition method is

proposed in [38, 94]. In [49], Douglas et al. have also proposed and analyzed a parallel iter-

ative domain decomposition method with Robin-type boundary conditions as transmission

conditions on the interface. While the proposed iterative method is different from the one

introduced by Douglas et al. [49], it is closely related to one proposed by Deng [43, 44].

The organization of this chapter is as follows. In Section 4.2, we have discussed DD

procedures based on mixed finite element methods. In this section, we have introduced

iterative method for multidomain problem. In Section 4.3, we have discussed the conver-

gence analysis for the iterative mixed finite element multidomain formulation. In Section

4.4, we have estimated rate of convergence using spectral radius of the matrix associated

with the fixed point iterations.

4.2 Domain decomposition and finite element frame-

work

In this section, we discuss the variational and mixed finite element formulations for the

multidomain problems.

Before stating the weak formulation of (4.1.1)-(4.1.3), we recall the usual velocity space

[26]. Let

H(div; Ω) =
{
v ∈ (L2(Ω))d : ∇ · v ∈ L2(Ω)

}
, (4.2.1)

be equipped with the norm

||v||H(div;Ω) =
(
||v||2 + ||∇ · v||2

)1/2
. (4.2.2)

The weak formulation corresponding to (4.1.1)-(4.1.3) is to find {u?, p?} ∈ H(div; Ω) ×
L2(Ω) such that

(K−1u?,v)Ω − (p?,∇ · v)Ω = −〈g,v · ν〉∂Ω, v ∈ H(div; Ω), (4.2.3)

(∇ · u?, q)Ω + (b p?, q)Ω = (f, q)Ω, q ∈ L2(Ω), (4.2.4)

where ν is the outward unit normal vector to ∂Ω. Under the assumption of coercivity

and LBB condition (see, the References [26, 114]) the problem (4.2.3)-(4.2.4) has a unique
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solution. We now assume that the problem (4.1.1)-(4.1.3) is H2−regular, i.e., there exists

a positive constant C depending only on K and Ω such that

||p||2 ≤ C
(
||f ||+ ||g||3/2,∂Ω

)
. (4.2.5)

We refer the reader to [71, 75, 93] for sufficient conditions for H2−regularity.

In order to obtain a discretization of (4.2.3)-(4.2.4), we assume that there are two

standard mixed finite element spaces V̄h ⊂ H(div; Ω) and W̄h ⊂ L2(Ω) (see, the References

[26, 114]). Now the approximation of (u?, p?) is to find (u?
h, p

?
h) ∈ V̄h × W̄h satisfying

(K−1u?
h,v)Ω − (p?

h,∇ · v)Ω = 〈g ,v · ν〉∂Ω, v ∈ V̄h, (4.2.6)

(∇ · u?
h, q)Ω + (b p?

h, q)Ω = (f, q), q ∈ W̄h. (4.2.7)

Under the assumption of coercivity and discrete LBB condition (see, the References [26,

114]) the discrete problem (4.2.6)-(4.2.7) has a unique solution in (u?
h, p

?
h) ∈ V̄h × W̄h.

For the multidomain formulation, let the domain Ω be partitioned into a finite number

of non-overlapping sub-domains Ωi(i = 1, 2, · · · ,M) with Ω̄ =
M⋃

i=1

Ωi, and let Γij = ∂Ωi ∩

∂Ωj = Γji with |Γij| as the measure of Γij. Further, let Γ =

M⋃

i=1, j∈N(i)

Γij, and Γi = ∂Ωi\∂Ω

denote the interior interfaces, where N(i) = {j 6= i | |Γij| > 0}.
We define a sequence of sets Di whose elements are subdomain by induction: D1 = {Ωi |

at least one face of Ωi belongs to ∂Ω}, Dr+1 = {Ωi | Ωi 6∈ Dr,Ωi share one face with some

Ωj ∈ Dr at least} (see the definition 3.2.1 in chapter 3).

Now we are in a position to write the following multidomain formulation correspond-

ing to the problem (4.1.1)-(4.1.3). Find (ui, pi), i = 1, 2, · · · ,M satisfying the following

subproblems:

ui +K∇pi = 0 in Ωi, (4.2.8)

∇ · ui + b pi = f in Ωi, (4.2.9)

pi = g on ∂Ωi ∩ ∂Ω. (4.2.10)

The consistency conditions which need to be imposed on the artificial interface Γ of the
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problem are

pi = pj on Γij, ∀j ∈ N(i), (4.2.11)

K∇pi · ν = K∇pj · ν on Γij, ∀j ∈ N(i), (4.2.12)

where ν = νij = −νji on Γij and νij and νji are the unit outward normal vectors to ∂Ωi

and ∂Ωj, respectively. The equation (4.2.12) can be written as

ui · νij = −uj · νji on Γij, ∀j ∈ N(i). (4.2.13)

We need the following spaces for our future use. Let

Vi = H(div; Ωi), V =

M∏

i=1

Vi, (4.2.14)

Wi = L2(Ωi), W =

M∏

i=1

Wi = L2(Ω). (4.2.15)

For v ∈ V, q ∈ W and η ∈ L2(Γ), the multidomain weak formulation corresponding to

(4.2.3)-(4.2.4) becomes :

M∑

i=1

{
(K−1ui,v)Ωi

− (pi,∇ · v)Ωi

}
= −

M∑

i=1







∑

j∈N(i)

〈pi ,v · νij〉Γij
− 〈g ,v · ν〉∂Ωi\Γ






, (4.2.16)

M∑

i=1

{(∇ · ui, q)Ωi
+ (b pi, q)Ωi

} =
M∑

i=1

(f, q)Ωi
, (4.2.17)

M∑

i=1

∑

j∈N(i)

〈ui · νij, η〉Γij
= 0, (4.2.18)

where νij is the outward unit normal vector on ∂Ωi (see, [26, pp. 91-92]), ui = u?
| Ωi

and

pi = p?
| Ωi

. There may be problem in assigning a meaning of the traces in (4.2.16)-(4.2.18),

but this formulation will be useful for discrete formulation.

To describe finite element approximations for (4.2.16)-(4.2.18), we begin with the tri-

angulation of Ωi, i = 1, 2, · · · ,M . Let Th,i be a conforming and regular triangulation of Ω̄i

into triangles (resp. tetrahedrons) satisfying ∀ i

T ⊂ Ω̄i ∀T ∈ Th,i, Ω̄i =
⋃

T∈Th,i

T. (4.2.19)
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We also assume that the triangles (resp. tetrahedrons) T should not cross the interface Γ,

and thus, each element is either contained in Ω̄i or in Ω̄j, where 1 ≤ i, j ≤ M and they

share the same edges of Γij. This implies that the global triangulation Th of Ω̄ induces the

triangulations Th,i of Ω̄i and Th,j of Ω̄j, 1 ≤ i, j ≤M . i.e., Th =
M⋃

i=1

Th,i. Let

Vi,h ×Wi,h ⊂ Vi ×Wi, (4.2.20)

be any of the usual mixed finite element spaces defined on Th,i (see for the RT spaces

[104, 112], the BDM spaces [25], the BDFM spaces [24], the BDDF spaces [23], or the CD

spaces [31]). The velocity and pressure mixed finite element spaces on Ω are defined as

follows:

Vh =

M∏

i=1

Vi,h, Wh =

M∏

i=1

Wi,h. (4.2.21)

For example, let T be a d- simplicial (triangular or tetrahedral) element. Define the Raviart-

Thomas spaces [104, 112]

RTr(T ) = (Pr(T ))d + xPr(T ), (4.2.22)

where x = (x1, x2) for d = 2, x = (x1, x2, x3) for d = 3 and Pr(T ) is the polynomial of

degree ≤ r over T .

Lemma 4.2.1 [26, pp. 116] For any d-simplicial element T we have for v ∈ RTr(T )

div v ∈ Pr(T ), v · ν |∂T
∈ Rr(∂T ), (4.2.23)

where ν is the outward unit normal vector on ∂T and

Rr(∂T ) =
{

φ |φ ∈ L2(∂T ), φ|ei
∈ Pr(ei)∀ei, and ei are the edges of triangles

}

.

In the remaining part of the paper, we have used the Raviart-Thomas spaces of lowest

order RT0 [104, 112]. Define the finite dimensional spaces

Vh =
{
v = (v1, · · · , vd) ∈ V : v|T

= vl = αl + βxl ; αl, β ∈ IR, l = 1, · · · , d
}
, (4.2.24)

Wh =
{
w ∈ L2(Ω) : w|T

= constant
}
. (4.2.25)
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Note that for any element T ∈ Th, the degrees of freedom for a vector v ∈ Vh can be

specified by the values of its normal components v · νT at the midpoints of all edges (faces)

of T , where νT is the outward unit normal vector on ∂T . The degree of freedom for a

function w ∈ Wh is its value at the center of T .

Remark 4.2.1 The normal components of vectors in Vh are continuous between the inter

element faces within each subdomain Ωi and there is no such restriction across Γ, that is,

the normal component of the flux variable may not be continuous across the inter-subdomain

boundaries Γij and hence, Vh may not be a subspace of H(div; Ω).

Let Tij,h be a quasi-uniform finite element partition of Γij. From Proposition 4.2.1, we

find that r is the degree of the polynomials in Vh · νij. In order to construct the Lagrange

multiplier space on Γij, let Λij,h ⊂ L2(Γij) consist of either the continuous or discontinuous

piecewise polynomials of degree r on Tij,h, where r is associated with the degree of the

polynomials in Vh · νij. For example, in the case of RT0, Λij,h is the space of all piecewise

constants (linear, if d = 3 and the grids are hexahedral) polynomials on Tij,h. Let

Λh =

M∏

i=1

∏

j∈N(i)

Λij,h. (4.2.26)

be the Lagrange multiplier space on Γ. For convenience, we interpret any function η ∈ Λh

to be extended by zero on ∂Ω. The mixed finite element formulation corresponding to

(4.2.16)-(4.2.18) is to seek (uh, ph, λh) ∈ Vh ×Wh ×Λh such that, for v ∈ Vh, q ∈ Wh and

η ∈ Λh

M∑

i=1

{
(K−1uh,v)Ωi

− (ph,∇ · v)Ωi

}
= −

M∑

i=1







∑

j∈N(i)

〈v · νij, λh〉Γij
− 〈g,v · ν〉∂Ωi\Γ






, (4.2.27)

M∑

i=1

{(∇ · uh, q)Ωi
+ (b ph, q)Ωi

} =
M∑

i=1

(f, q)Ωi
, (4.2.28)

M∑

i=1

∑

j∈N(i)

〈uh · νij, η〉Γij
= 0. (4.2.29)

Here on each subdomain Ωi, we have a standard mixed finite element method, and (4.2.28)

enforces local conservation over each degree of freedom. Moreover, since uh ·ν is continuous
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at any element face (or edge) τ 6⊂ Γ ∪ ∂Ω, the local mass conservation property across

interior element faces is satisfied. By considering the Dirichlet boundary condition, it is

clear from (4.2.16) and (4.2.27) that the Lagrange multiplier λh ∈ Λh actually replaces

the pressure p on the boundary Γij. The equation (4.2.29) enforces weak continuity of the

flux across the interfaces (weakly with respect to the Lagrange multiplier space Λh). The

matrix associated with (4.2.27)-(4.2.29) takes the form







Â B̂ Ĉ

B̂T Ê 0

ĈT 0 0






, (4.2.30)

where Â is a block diagonal matrix and B̂ also has a block structure. Actually, by intro-

ducing the Lagrange multiplier, we easily eliminate the flux and obtain a reduced problem

for the pressure unknowns only. Thus, the variable uh can be eliminated by computing the

inverse of Â which is trivial. The reduced matrix takes the form

D̂ =




B̂T Â−1B̂ + Ê B̂T Â−1Ĉ

ĈT Â−1B̂ ĈT Â−1Ĉ



 . (4.2.31)

Notice that the simplification of the matrix (4.2.30) cannot in general be done in practice.

Moreover, the matrix D̂ in (4.2.31) is also ill-conditioned. Therefore, efficient iterative

methods need be introduced to handle such a difficult situation. In the next section, we

are going to introduce mixed iterative domain decomposition method.

4.2.1 Iterative method for multidomain problem

In this subsection, we discuss the iterative method based on the multidomain subproblems,

and also derive the weak formulation for both continuous and discrete problems.

It is easy (cf. [45, 46]) to replace (4.2.11) and (4.2.13) by the following Robin-type

boundary condition on the artificial interfaces Γij as :

−βij ui · νij + pi = βji uj · νji + pj, x ∈ Γij ⊂ ∂Ωi, (4.2.32)

−βji uj · νji + pj = βij ui · νij + pi, x ∈ Γji ⊂ ∂Ωj , (4.2.33)
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where βij = βji > 0 are parameters. Now, we define an iterative procedure based on the

nonoverlapping multidomain problems as follows: for all i = 1, 2, · · · ,M
(i) given l0ij, 1 ≤ i 6= j ≤M , arbitrarily.

(ii) recursively compute uk
i , p

k
i , i = 1, 2, · · · ,M , by solving in parallel

αuk
i + ∇pk

i = 0 in Ωi, (4.2.34)

∇ · uk
i + b pk

i = f in Ωi, (4.2.35)

−βij uk
i · νij + pk

i = lkij on Γij, ∀j ∈ N(i), (4.2.36)

pk
i = g on ∂Ωi ∩ ∂Ω, (4.2.37)

where α = K−1.

(iii) for i = 1, 2, · · · ,M update the Robin-type transmission condition

lk+1
ij = 2 βji u

k
j · νji + lkji on Γij, ∀j ∈ N(i). (4.2.38)

The weak formulation corresponding to the problem (4.2.34)-(4.2.38) may be stated as

follows: For all i and j, given l0ij ∈ Λij, l
0
ji ∈ Λji arbitrarily, find

{
uk

i , p
k
i , l

k+1
ij

}
∈ Vi ×

Wi × Λij such that

(αuk
i ,v)Ωi

− (pk
i ,∇ · v)Ωi

+
∑

j∈N(i)

βij〈uk
i · νij ,v · νij〉Γij

= −
∑

j∈N(i)

〈lkij ,v · νij〉Γij
− 〈g ,v · νi〉∂Ωi\Γ, v ∈ Vi, (4.2.39)

(∇ · uk
i , q)Ωi

+ (b pk
i , q)Ωi

= (f, q)Ωi
, q ∈ Wi, (4.2.40)

and

〈lk+1
ij ,v · νij〉Γij

= 2 βji〈uk
j · νji ,v · νij〉Γij

+ 〈lkji ,v · νij〉Γij
, v · νij ∈ L2(Γij). (4.2.41)

There may be some difficulty in assigning a meaning to (4.2.41) regarding the product 〈uk
j ·

νji , v·νij〉Γij
if uk

j ∈ Vj and v ∈ Vi. Similar difficulties may arise while attaching a meaning

to some of the term in (4.2.39). However, the problem (4.2.39)-(4.2.41) may be viewed a

motivation for the following iterative mixed finite element multidomain formulation.

For all i and j, given l0ij,h ∈ Λij,h, l
0
ji,h ∈ Λji,h arbitrarily, find

{
uk

i,h, p
k
i,h, l

k+1
ij,h

}
∈ Vi,h ×
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Wi,h × Λij,h such that

(αuk
i,h,v)Ωi

− (pk
i,h,∇ · v)Ωi

+
∑

j∈N(i)

βij〈uk
i,h · νij ,v · νij〉Γij

= −
∑

j∈N(i)

〈lkij,h ,v · νij〉Γij
− 〈g ,v · νi〉∂Ωi\Γ, v ∈ Vi,h, (4.2.42)

(∇ · uk
i,h, q)Ωi

+ (b pk
i,h, q)Ωi

= (f, q)Ωi
, q ∈ Wi,h, (4.2.43)

and

lk+1
ij,h = 2 βji u

k
j,h · νji + lkji,h on Γij, ∀j ∈ N(i). (4.2.44)

Note that the two spaces Λij,h and Λji,h are different on the edge or side Γij.

4.3 Convergence analysis

In this section, we discuss the convergence of the iterative method defined by (4.2.42)-

(4.2.44).

Below, we first discuss the equivalence between the mixed finite element multidomain for-

mulation and the single domain formulation (4.2.6)-(4.2.7).

Theorem 4.3.1 Let (u?
h, p

?
h) ∈ V̄h×W̄h be the solution of (4.2.6)-(4.2.7), and ui,h = u?

h|Ωi

and wi,h = w?
h|Ωi

. Then for all 1 ≤ i ≤ M and j ∈ N(i), there exists lij,h ∈ Λij,h, such that

(ui,h, pi,h) ∈ Vi,h ×Wi,h satisfies

(αui,h,v)Ωi
− (pi,h,∇ · v)Ωi

+
∑

j∈N(i)

βij〈ui,h · νij ,v · νij〉Γij

= −
∑

j∈N(i)

〈lij,h ,v · νij〉Γij
− 〈g ,v · νi〉∂Ωi\Γ, v ∈ Vi,h, (4.3.1)

(∇ · ui,h, q)Ωi
+ (b pi,h, q)Ωi

= (f, q)Ωi
, q ∈ Wi,h, (4.3.2)

and

lij,h = 2 βji uj,h · νji + lji,h on Γij, ∀j ∈ N(i), (4.3.3)

where α = K−1 and β = βij = βji > 0.

Proof. For simplicity, we prove the above theorem for the two fixed subdomains, i.e.,
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M = 2. For example, Ω̄ = Ω̄1 ∪ Ω̄2 and Γ = Γ12 = ∂Ω1 ∩ ∂Ω2. Let

V̄h = V0
1,h

⊕

V0
2,h

⊕

VΓ12,h, (4.3.4)

where

V0
i,h =

{

vi,h |vi,h = vh|Ωi
∈ V̄h and vh · νi = 0 on Γij

}

, i = 1, 2, (4.3.5)

and we associate to Γ12 a complementary subspace VΓ12,h of V0
1,h

⊕
V0

2,h in V̄h. Now

equation (4.2.6)-(4.2.7) can be written in an equivalent split form: Find (ui,h, pi,h) ∈ Vi,h×
Wi,h such that

(αui,h,v)Ωi
− (pi,h,∇ · v)Ωi

= −〈g ,v · νi〉∂Ωi∩∂Ω, ∀v ∈ V0
i,h, i = 1, 2, (4.3.6)

(∇ · ui,h, q)Ωi
+ (b pi,h, q)Ωi

= (f, q)Ωi
, ∀q ∈ Wi,h, i = 1, 2, (4.3.7)

and

(αu2,h,v)Ω2
− (p2,h,∇ · v)Ω2

= − [(αu1,h,v)Ω1
− (p1,h,∇ · v)Ω1

] , ∀v ∈ VΓ12,h. (4.3.8)

Now we consider first Ω1. Then for v ∈ VΓ12,h, we define L12,h as

L12,h = (αu2,h,v)Ω2
− (p2,h,∇ · v)Ω2

. (4.3.9)

Therefore, we can construct l12,h ∈ Λ12,h such that

〈l12,h , v · ν12〉Γ12
= −β〈u1,h · ν12 , v · ν12〉Γ12

+ L12,h ∀v ∈ VΓ12,h. (4.3.10)

The space Λ12,h consists of polynomials of degree ≤ r and also the normal component v ·ν12

on Γ12 is a polynomial of fixed degree ≤ r. So, existence of a unique l12,h follows from the

equation (4.3.10). Similarly, we now consider Ω2. Then we define L21,h as

L21,h = (αu1,h,v)Ω1
− (p1,h,∇ · v)Ω1

. (4.3.11)

Therefore, we can construct l21,h ∈ Λ21,h such that

〈l21,h , v · ν21〉Γ12
= −β〈u2,h · ν21 , v · ν21〉Γ12

+ L21,h ∀v ∈ VΓ12,h. (4.3.12)
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Existence of a unique l21,h follows from the equation (4.3.12). Thus, it follows from (4.3.6),

(4.3.8), (4.3.10) and (4.3.12) that

(αu1,h,v)Ω1
− (p1,h,∇ · v)Ω1

+ β〈u1,h · ν12 ,v · ν12〉Γ12

= −〈l12,h ,v · ν12〉Γ12
− 〈g ,v · ν1〉∂Ω1∩∂Ω, v ∈ V1,h, (4.3.13)

(αu2,h,v)Ω2
− (p2,h,∇ · v)Ω2

+ β〈u2,h · ν21 ,v · ν21〉Γ12

= −〈l21,h ,v · ν21〉Γ12
− 〈g ,v · ν2〉∂Ω2∩∂Ω, v ∈ V2,h. (4.3.14)

Clearly, (4.3.13)-(4.3.14) and (4.3.7) implies (4.3.1)-(4.3.2) with β = βij = βji. Adding

(4.3.12) and (4.3.10), we obtain

〈l12,h , v · ν12〉Γ12
+ 〈l21,h , v · ν21〉Γ12

= −β〈u1,h · ν12 , v · ν12〉Γ12

−β〈u2,h · ν21 , v · ν21〉Γ12
+ (L12,h + L21,h) ∀v ∈ VΓ12,h. (4.3.15)

Since u1,h = u?
h|Ω1

, u2,h = u?
h|Ω2

and u?
h is the solution of (4.2.6)-(4.2.7), therefore, we obtain

u1,h · ν12 = −u2,h · ν21 on Γ12, (4.3.16)

where ν12 and ν21 are outward normals to Ω1 and Ω2, respectively. From (4.3.9) and

(4.3.11), we find that

L12,h + L21,h = 0. (4.3.17)

Substituting (4.3.17) in (4.3.15), we arrive at

〈l12,h + β u1,h · ν12 , v · ν12〉Γ12
+ 〈l21,h + β u2,h · ν21, v · ν21.〉Γ12

= 0 (4.3.18)

We rewrite the equation (4.3.18) to obtain

〈l12,h + β u1,h · ν12 , v · ν12〉Γ12
− 〈l21,h + β u2,h · ν21 , −v · ν21〉Γ12

= 0. (4.3.19)

Now choose v · ν12 = l12,h − l21,h + β u1,h · ν12 − β u2,h · ν21 and v · ν21 = −l12,h + l21,h −
β u1,h · ν12 + β u2,h · ν21, and substituting in (4.3.19), we arrive at

〈l12,h + β u1,h · ν12 , l12,h − l21,h + β u1,h · ν12 − β u2,h · ν21〉Γ12

−〈l21,h + β u2,h · ν21 , l12,h − l21,h + β u1,h · ν12 − β u2,h · ν21〉Γ12
= 0.(4.3.20)
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Using (4.3.16) in (4.3.20), we find that

l12,h = 2 β u2,h + l21,h. (4.3.21)

Similarly, we obtain

l21,h = 2 β u1,h + l12,h. (4.3.22)

Clearly, (4.3.21)-(4.3.22) implies (4.3.3) with β = βij = βji. Here, we have proved for

two subdomain cases with β = βij = βji. Similarly we can proceed for more than two

subdomains with β = βij = βji. This completes the rest of the proof.

Now we are in a position to discuss the convergence of the iterative method defined by

(4.2.42)-(4.2.44). Define

ek
i,h = uk

i,h − ui,h, r
k
i,h = pk

i,h − pi,h, µ
k
ij,h = lkij,h − lij,h and µk

ji,h = lkji,h − lji,h. (4.3.23)

Then, subtracting (4.3.1)-(4.3.3) from (4.2.42)-(4.2.44), we obtain the following equations:

(α ek
i,h,v)Ωi

− (rk
i,h,∇ · v)Ωi

+
∑

j∈N(i)

βij〈ek
i,h · νij ,v · νij〉Γij

= −
∑

j∈N(i)

〈µk
ij,h ,v · νij〉Γij

, v ∈ Vi,h, (4.3.24)

(∇ · ek
i,h, q)Ωi

+ (b rk
i,h, q)Ωi

= 0, q ∈ Wi,h, (4.3.25)

and

µk+1
ij,h = 2 βji e

k
j,h · νji + µk

ji,h on Γij, ∀j ∈ N(i). (4.3.26)

Setting v = ek
i,h in (4.3.24) and q = rk

i,h in (4.3.25), and adding the resulting equations, we

arrive at the following equality:

(α ek
i,h, e

k
i,h)Ωi

+ (b rk
i,h, r

k
i,h)Ωi

+
∑

j∈N(i)

βij〈ek
i,h · νij , ek

i,h · νij〉Γij
= −

∑

j∈N(i)

〈µk
ij,h , e

k
i,h · νij〉Γij

.

Lemma 4.3.1 Let {ek
i,h, r

k
i,h, µ

k
ij,h} for all i and j ∈ N(i) satisfy (4.3.24)-(4.3.26). Then,

the following identity holds true :

||µk
h||20,Γ = ||µk−1

h ||20,Γ − 4 β
M∑

i=1

{
(α ek−1

i,h , ek−1
i,h )Ωi

+ (b rk−1
i,h , rk−1

i,h )Ωi

}
, (4.3.27)
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where β = βij = βji and

||µk
h||20,Γ =

M∑

i=1

∑

j∈N(i)

||µk
ij,h||20,Γij

. (4.3.28)

Proof. From (4.3.26), we arrive at

∑

j∈N(i)

||µk
ij,h||20,Γij

=
∑

j∈N(i)

∫

Γij

|µk
ij,h|2ds =

∑

j∈N(i)

∫

Γij

|2 β ek−1
j,h · νji + µk−1

ji,h |2ds

=
∑

j∈N(i)

∫

Γij

|µk−1
ij,h |2ds+ 4 β

∑

j∈N(i)

∫

Γij

(
µk−1

ij,h + β ek−1
i,h · νji

)
ek−1

i,h · νjids

=
∑

j∈N(i)

∫

Γij

|µk−1
ij,h |2ds− 4 β

{
(α ek−1

i,h , ek−1
i,h )Ωi

+ (b rk−1
i,h , rk−1

i,h )Ωi

}
. (4.3.29)

Sum up over i = 1, · · · ,M to complete the rest of the proof.

Below, we discuss some lemmas for our future use.

Lemma 4.3.2 (Local inverse inequality) [2, Lemma 4.1, pp. 1304] For any function

v ∈ Vi,h, there exists a positive constant C independent of h and Ωi such that

||v · νij||0,∂Ωi
≤ Ch−1/2||v||0,Ωi

. (4.3.30)

Lemma 4.3.3 [49, pp. 102] For any function v ∈ Vi,h, there exists a positive constant C1

independent of h such that

||v||0,Ωi
≤ C1



||∇ · v||0,Ωi
+
∑

j∈N(i)

||v · νij||0,Γij



 . (4.3.31)

Lemma 4.3.4 [49, pp. 102] Let Th,i be a regular triangulation of Ωi and let Γij and Γim

be the two faces of Ωi, then for any function v ∈ Vi,h, there exists a positive constant C2

such that

||v · νij||0,Γij
≤ C2

(
||∇ · v||0,Ωi

+ ||v · νim||0,Γim

)
. (4.3.32)

Theorem 4.3.2 Let {ui,h, pi,h, lij,h}, i = 1, 2, · · · ,M , j ∈ N(i), be the solutions of the

problem (4.3.1)-(4.3.3) and let
{
uk

i,h, p
k
i,h, l

k
ij,h

}
, i = 1, 2, · · · ,M , j ∈ N(i), be the solutions
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of the discrete iterative problem (4.2.42)-(4.2.44) at iterative step k. Then, for any initial

guess
{
l0ij,h, l

0
ji,h

}
∈ {Λij,h,Λji,h}, ∀i, ∀j ∈ N(i), the iterative method converges in the sense

that

||uk
h − uh||0,Ω =

(
M∑

i=1

||uk
i,h − uh||20,Ωi

)1/2

→ 0, as k → ∞, (4.3.33)

||pk
h − ph||0,Ω =

(
M∑

i=1

||pk
i,h − ph||20,Ωi

)1/2

→ 0, as k → ∞, (4.3.34)

and

||lkh − lh||0,Γ =





M∑

i=1

∑

j∈N(i)

||lkij,h − lij,h||20,Γij





1/2

→ 0, as k → ∞. (4.3.35)

Proof. Since ek
i,h = uk

i,h − ui,h, r
k
i,h = pk

i,h − pi,h and µk
ij,h = lkij,h − lij,h, it is enough to show

that for each i,

||ek
i,h||20,Ωi

→ 0, as k → ∞, (4.3.36)

||rk
i,h||20,Ωi

→ 0, as k → ∞, (4.3.37)

||µk
ij,h||20,Γij

→ 0, as k → ∞, ∀j ∈ N(i). (4.3.38)

From (4.3.28), we note that

||µk
h||20,Γ + 4 β

M∑

i=1

{
(α ek−1

i,h , ek−1
i,h )Ωi

+ (b rk−1
i,h , rk−1

i,h )Ωi

}
= ||µk−1

h ||20,Γ. (4.3.39)

Since the second term on the right hand side of (4.3.39) is non-negative, 0 ≤ ||µk
h||20,Γ ≤

||µk−1
h ||20,Γ and hence, {||µk

h||0,Γ} is a decreasing sequence of non-negative terms which is

bounded above by ||µ0
h||0,Γ. Therefore, lim

k→∞
||µk

h||0,Γ converges. Moreover,

4 β

M∑

i=1

{
(α ek−1

i,h , ek−1
i,h )Ωi

+ (b rk−1
i,h , rk−1

i,h )Ωi

}
= ||µk−1

h ||20,Γ − ||µk
h||20,Γ. (4.3.40)

On summing up k = 1 to Ns, we obtain

4 β

Ns∑

k=1

M∑

i=1

{
(α ek−1

i,h , ek−1
i,h )Ωi

+ (b rk−1
i,h , rk−1

i,h )Ωi

}
=

Ns∑

k=1

(
||µk−1

h ||20,Γ − ||µk
h||20,Γ

)

= ||µ0
h||20,Γ − ||µNs

h ||20,Γ ≤ 2 ||µ0
h||20,Γ (4.3.41)
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and, hence,

∞∑

k=1

M∑

i=1

{
(α ek

i,h, e
k
i,h)Ωj

+ (b rk
i,h, r

k
i,h)Ωj

}
<∞. (4.3.42)

Thus,

(α ek
i,h, e

k
i,h)Ωj

→ 0 as k → ∞, i = 1, 2, · · · ,M. (4.3.43)

Therefore,

ek
i,h → 0 in L2(Ωi) as k → ∞, i = 1, 2, · · · ,M. (4.3.44)

Using Lemma 4.3.2 and (4.3.44), we find that for fixed h

||ek
i,h · νij||0,∂Ωi

→ 0 as k → ∞, i = 1, 2, · · · ,M. (4.3.45)

In particular,

ek
i,h · νij → 0 in L2(Γij) as k → ∞, ∀ i, ∀ j ∈ N(i). (4.3.46)

If the function b(x) ≥ b0 > 0 on Ω, then it follows from (4.3.42) that

rk
i,h → 0 in L2(Ωi) as k → ∞, i = 1, 2, · · · ,M. (4.3.47)

But we have to prove this in general case, i.e., b(x) ≥ 0. First we consider the subdomains

Ωi ∈ D1, that is, one face of the subdomains Ωi, which belongs to the boundary ∂Ω. Choose

v ∈ Vi,h, for all i, Ωi ∈ D1, such that

∇ · v = rk
i,h on Ωi and v · νij = 0 on Γi. (4.3.48)

Substituting (4.3.48) in (4.3.24) and using Lemma 4.3.3, we obtain

||rk
i,h||20,Ωi

= (α ek
i,h,v)Ωi

≤ C||ek
i,h||0,Ωi

||v||0,Ωi
≤ C||ek

i,h||0,Ωi
||rk

i,h||0,Ωi
. (4.3.49)

Therefore,

||rk
i,h||0,Ωi

→ 0, as k → ∞, for all i, where Ωi ∈ D1. (4.3.50)
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Other way around, we choose v ∈ Vi,h , for all i, Ωi ∈ D1, such that

∇ · v = 0 on Ωi and v · νij =







−µk
ij,h on Γij,

0 on Γim, m 6= j.
(4.3.51)

Substituting (4.3.51) in (4.3.24) and using Lemma 4.3.3, we arrive at

||µk
ij,h||20,Γij

= (α ek
i,h,v)Ωi

+ β 〈ek
i,h · νij ,v · νij〉Γij

≤ C||ek
i,h||0,Ωi

||v||0,Ωi
+ Cβ ||ek

i,h · νij||0,Γij
||v · νij||0,Γij

≤ C
(
||ek

i,h||0,Ωi
+ β ||ek

i,h · νi||0,Γij

)
||v · νi||0,Γij

= C
(
||ek

i,h||0,Ωi
+ β ||ek

i,h · νi||0,Γij

)
||µk

ij,h||0,Γij
. (4.3.52)

Using (4.3.44) and (4.3.46) in (4.3.52), we find that for all i, Ωi ∈ D1

||µk
ij,h||0,Γij

→ 0 k → ∞ j ∈ N(i). (4.3.53)

Thus, we have proved convergence of uk
i,h, p

k
i,h, l

k
ij,h on boundary subdomains (Ωi ∈ D1).

Now, we consider a subdomain, which shares at least one interface with boundary subdo-

mains, and having a common face Γim with one of the boundary elements, i.e., for all i,

Ωi ∈ D2. From (4.3.26) with β = βij = βji, it follows that

µk
ij,h = 2 β ek−1

j,h · νji + µk−1
ji,h ∀x ∈ Γij, j ∈ N(i). (4.3.54)

Using (4.3.46) and (4.3.53) in (4.3.54), we obtain for all i, Ωi ∈ D2

||µk
ij,h||0,Γij

→ 0, as k → ∞, where Ωj ∈ D1. (4.3.55)

Now, we choose v ∈ Vi,h, for all i, Ωi ∈ D2, such that

∇ · v = rk
i,h on Ωi and v · νij =







0 on Γij, m 6= j ∈ N(i),

v · νim on Γim, m 6= j.
(4.3.56)

Substituting (4.3.56) in (4.3.24) and using Lemma 4.3.3, we obtain

||rk
i,h||20,Ωi

= (α ek
i,h,v)Ωi

+ β 〈ek
i,h · νim ,v · νim〉Γim

+ 〈µk
ij,h ,v · νim〉Γim

≤ C||ek
i,h||0,Ωi

||v||0,Ωi
+ C

(
β ||ek

i,h · νim||0,Γim
+ ||µk

im,h||0,Γim

)
||v · νim||0,Γim

≤ C||ek
i,h||0,Ωi

||rk
i,h||0,Ωi

+ C
(
||ek

i,h||0,Ωi
+ β ||ek

i,h · νim||0,Γim
+ ||µk

im,h||0,Γim

)
||v · νim||0,Γim

. (4.3.57)
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First we have to use Lemma 4.3.4 in (4.3.57) and then using (4.3.56), (4.3.44), (4.3.46) and

(4.3.55), we arrive at

||rk
i,h||0,Ωi

→ 0 as k → ∞ for all i, where Ωi ∈ D2. (4.3.58)

Similarly, we can continue the argument until the domain is exhausted and this completes

the rest of the proof.

We now recall the spaces defined earlier in (4.2.21) and (4.2.26),

Vh =

M∏

i=1

Vi,h, Wh =

M∏

i=1

Wi,h, Λh =

M∏

i=1

∏

j∈N(i)

Λij,h.

Also, let Tf,g : Vh ×Wh × Λh → Vh ×Wh × Λh be an affine mapping such that for any

(zh, wh, ηh) ∈ Vh ×Wh × Λh, (mh, dh, θh) ≡ Tf,g(zh, wh, ηh) is the solution, for all i, of

(αmi,h,v)Ωi
− (di,h,∇ · v)Ωi

+
∑

j∈N(i)

βij〈mi,h · νij ,v · νij〉Γij

= −
∑

j∈N(i)

〈θij,h ,v · νij〉Γij
− 〈g ,v · νi〉∂Ωi\Γ, v ∈ Vi,h, (4.3.59)

(∇ · mi,h, q)Ωi
+ (b di,h, q)Ωi

= (f, q)Ωi
, q ∈ Wi,h, (4.3.60)

and

θij,h = 2 βji zj,h · νji + ηji,h on Γij, ∀j ∈ N(i), (4.3.61)

where α = K−1, mi,h = mh|Ωi
, zi,h = zh|Ωi

, di,h = dh|Ωi
, wi,h = wh|Ωi

, θij,h = θh|Γij
,

θji,h = θh|Γij
, ηij,h = ηh|Γij

and ηji,h = ηh|Γij
.

Lemma 4.3.5 The triple (uh, ph, lh) ∈ Vh ×Wh × Λh is the solution of (4.3.1)-(4.3.3) if

and only if it is a fixed point of Tf,g. Moreover, if (uh, ph, lh) is a fixed point of Tf,g, then

ui,h · νij = −uj,h · νji for all Γij.

Proof. Observe that if (uh, ph, lh) is a fixed point of Tf,g, then Tf,g(uh, ph, lh) = (uh, ph, lh)

and hence, (uh, ph, lh) is a solution of (4.3.1)-(4.3.3). Conversely, if (uh, ph, lh) ∈ Vh×Wh×
Λh is a solution of (4.3.1)-(4.3.3), then, it is straight forward to check that it is a fixed point

of Tf,g. For the second part, let (uh, ph, lh) ∈ Vh ×Wh × Λh be a fixed point of Tf,g, i.e.,
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Tf,g(uh, ph, lh) = (uh, ph, lh). Then replacing θh by lh and ηh by lh from (4.3.61), we note

that

lij,h = 2 βji uj,h · νji + lji,h, (4.3.62)

lji,h = 2 βij ui,h · νij + lij,h. (4.3.63)

Summing (4.3.62) and (4.3.63), we arrive at

βij ui,h · νij + βji uj,h · νji = 0. (4.3.64)

Here β = βij = βji and this completes the rest of the proof.

Since the operator Tf,g(zh, wh, ηh) is linear, we can split the operator Tf,g(zh, wh, ηh) into a

sum of two operators T0,0(zh, wh, ηh) and Tf,g(0, 0, 0), i.e.,

Tf,g(zh, wh, ηh) = T0,0(zh, wh, ηh) + Tf,g(0, 0, 0), (4.3.65)

where T0,0(zh, wh, ηh) and Tf,g(0, 0, 0) are defined as follows: Given (zh, wh, ηh), the operator

(m?
h, d

?
h, θ

?
h) = T0,0(zh, wh, ηh) is defined for all i through

(αm?
i,h,v)Ωi

− (d?
i,h,∇ · v)Ωi

+
∑

j∈N(i)

βij〈m?
i,h · νij ,v · νij〉Γij

= −
∑

j∈N(i)

〈θ?
ij,h ,v · νij〉Γij

, v ∈ Vi,h, (4.3.66)

(∇ · m?
i,h, q)Ωi

+ (b d?
i,h, q)Ωi

= 0, q ∈ Wi,h, (4.3.67)

and

θ?
ij,h = 2 βji zj,h · νji + ηji,h on Γij, ∀j ∈ N(i), (4.3.68)

and (m?
h, d

?
h, θ

?
h) = Tf,g(0, 0, 0) satisfies for all i,

(αmo
i,h,v)Ωi

− (do
i,h,∇ · v)Ωi

+
∑

j∈N(i)

βij〈mo
i,h · νij ,v · νij〉Γij

=
∑

j∈N(i)

〈θo
ij,h ,v · νij〉Γij

− 〈g ,v · νi〉∂Ωi\Γ, v ∈ Vi,h, (4.3.69)

(∇ · mo
i,h, q)Ωi

+ (b do
i,h, q)Ωi

= (f, q)Ωi
, q ∈ Wi,h, (4.3.70)
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and

θo
ij,h = 0 on Γij, ∀j ∈ N(i), (4.3.71)

Then (mh, dh, θh) = (m?
h, d

?
h, θ

?
h) + (mo

h, d
o
h, θ

o
h).

Then the fixed point (uh, ph, lh) of Tf,g, that is, Tf,g(uh, ph, lh) = (uh, ph, lh) is characterized

as a solution of

(I − T0,0)(uh, ph, lh) = Tf,g(0, 0, 0). (4.3.72)

Observe that the problem (4.3.24) - (4.3.26) can be written in abstract form as

(ek
h, r

k
h, µ

k
h) = T0,0(e

k−1
h , rk−1

h , µk−1
h ). (4.3.73)

Now our next aim to find the spectral radius of T0,0.

Remark 4.3.1 Here Vh×Wh×Λh is a real linear space and T0,0 is a real linear operator. In

general, the spectral radius formula does not hold for the real case. So the complexification

of the real linear spaces and the real linear operators are necessary.

Now, we recall the linear operator T0,0 defined in (4.3.73) and the linear space Vh×Wh×Λh

defined in (4.2.21) and (4.2.26). Our main idea to find ||T k
0,0||, i.e., ||T k

0,0|| is dominated

by ρ(T̄0,0), where T̄0,0 = 1 ⊗ T0,0 is the complexification of T0,0 (see, subsection 1.2.2) and

ρ(T̄0,0) is the spectral radius of T̄0,0. The next lemma shows the relation between ||T k
0,0||

and ρ(T̄0,0).

Lemma 4.3.6 If Vh ×Wh × Λh is equipped with an inner-product and

ρ(T̄0,0) ≤ 1 − R, R ∈ (0, 1), (4.3.74)

then for each positive integer k, there exists a constant C independent of k such that

||T k
0,0|| ≤ C(1 − R/2)k. (4.3.75)

Proof. From Lemmas 1.2.13 and 1.2.14, we find that

||T̄ k
0,0|| = ||T k

0,0||. (4.3.76)
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Since T̄0,0 is a complex linear operator on the complex linear space C ⊗ (Vh ×Wh × Λh),

by the spectral radius formula

ρ(T̄0,0) = lim
k→∞

||T̄ k
0,0||1/k, (4.3.77)

that is for ε > 0, there exists a natural number Nm such that when k > Nm, we arrive at

||T̄ k
0,0||1/k ≤ ρ(T̄0,0) + ε,

and hence,

||T̄ k
0,0|| ≤ (ρ(T̄0,0) + ε)k.

Choose a constant C > 1 such that

||T̄ k
0,0|| ≤ C(ρ(T̄0,0) + ε)k

for k = 1, 2, · · · , N . Then ∀k

||T k
0,0|| = ||T̄ k

0,0|| ≤ C(ρ(T̄0,0) + ε)k. (4.3.78)

With ε = R/2 in (4.3.78), we complete the rest of the proof.

We have complexify only the operator T0,0 and the space Vh ×Wh ×Λh. In our subsequent

analysis, we need also the complexification of other real linear spaces such as Vi,h,Wi,h,

Λij,h and Λji,h.

4.4 Spectral radius

In Section 4.3, we have discussed the convergence of the proposed iterative scheme in

Theorem 4.3.2. Now in this section, we plan to derive the rate of convergence of the

iterative procedure.

4.4.1 Spectral radius without quasi-uniformity assumptions

Let (m̄h, d̄h, θ̄h) ∈ C ⊗ (Vh ×Wh × Λh), i.e.,

(m̄h, d̄h, θ̄h) = (m̃h, d̃h, θ̃h) +
√

(−1)(m̂h, d̂h, θ̂h), (4.4.1)
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where (m̃h, d̃h, θ̃h), (m̂h, d̂h, θ̂h) ∈ Vh × Wh × Λh. Using Lemma 1.2.12, we obtain the

following identities.

Lemma 4.4.1 Let (m̄h, d̄h, θ̄h) ∈ C ⊗ (Vh × Wh × Λh), and (m̃h, d̃h, θ̃h), (m̂h, d̂h, θ̂h) ∈
Vh ×Wh × Λh satisfy (4.4.1). Then

||m̄i,h||20,Ωi
= ||m̃i,h||20,Ωi

+ ||m̂i,h||20,Ωi
(4.4.2)

||∇ · m̄i,h||20,Ωi
= ||∇ · m̃i,h||20,Ωi

+ ||∇ · m̂i,h||20,Ωi
(4.4.3)

||d̄i,h||20,Ωi
= ||d̃i,h||20,Ωi

+ ||d̂i,h||20,Ωi
(4.4.4)

||θ̄ij,h||20,ij = ||θ̃ij,h||20,ij + ||θ̂ij,h||20,ij, (4.4.5)

and

||m̄i,h · νij||20,ij = ||m̃i,h · νij||20,ij + ||m̂i,h · νij||20,ij. (4.4.6)

Lemma 4.4.2 Let (m̄h, d̄h, θ̄h) ∈ C⊗(Vh×Wh×Λh), with (m̄i,h, d̄i,h, θ̄ij,h) = (m̃i,h, d̃i,h, θ̃ij,h)+
√

(−1)(m̂i,h, d̂i,h, θ̂ij,h), where (m̃i,h, d̃i,h, θ̃ij,h), (m̂i,h, d̂i,h, θ̂ij,h) ∈ Vi,h ×Wi,h ×Λij,h are the

solutions of (4.3.66)-(4.3.68). Then the following identity holds true :

||θ̄h||20,Γ = ||θ̄h||20,Γ − 4 β

M∑

i=1

{
(α m̄i,h, m̄i,h)Ωi

+ (b d̄i,h, d̄i,h)Ωi

}
, (4.4.7)

where β = βij = βji and

||θ̄h||20,Γ =

M∑

i=1

∑

j∈N(i)

||θ̄ij,h||20,Γij
. (4.4.8)

Proof. By Lemma 4.4.1, we find that

∑

j∈N(i)

||θ̄ij,h||20,Γij
=

∑

j∈N(i)

||θ̃ij,h||20,Γij
+
∑

j∈N(i)

||θ̂ij,h||20,Γij

= I1 + I2. (4.4.9)

Since (m̃i,h, d̃i,h, θ̃ij,h)and(m̂i,h, d̂i,h, θ̂ij,h) ∈ Vi,h ×Wi,h × Λij,h, then by Lemma 4.3.1, we

obtain

I1 =
∑

j∈N(i)

||θ̃ij,h||20,Γij
ds− 4 β

{

(α m̃i,h, m̃i,h)Ωj
+ (b d̃i,h, d̃i,h)Ωj

}

, (4.4.10)
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and

I2 =
∑

j∈N(i)

||θ̂ij,h||20,Γij
ds− 4 β

{

(α m̂i,h, m̂i,h)Ωj
+ (b d̂i,h, d̂i,h)Ωj

}

. (4.4.11)

From (4.4.9)-(4.4.11) and Lemma 4.4.1, we arrive at (4.4.7) and this completes the rest of

the proof.

Lemma 4.4.3 Let (m̄h, d̄h, θ̄h) ∈ C ⊗ (Vh ×Wh × Λh) be an eigenvector of T̄0,0 such that

T̄0,0(m̄h, d̄h, θ̄h) = γ (m̄h, d̄h, θ̄h). Then the following identity holds true :

γ θ̄ij,h = 2 β m̄j · νji + θ̄ji,h ∀x ∈ Γij, j ∈ N(i). (4.4.12)

Theorem 4.4.1 Let ρ(T̄0,0) be the spectral radius of T̄0,0. Then

ρ(T̄0,0) < 1. (4.4.13)

Proof. Let γ be an eigenvalue of T̄0,0 and let (m̄h, w̄h, θ̄h) 6= (0, 0) be its corresponding

eigenvector, i.e.,

T̄0,0(m̄h, w̄h, θ̄h) = γ (m̄h, w̄h, θ̄h). (4.4.14)

It follows from (4.4.12) and Lemma 4.4.2 that

γ2 ||θ̄h||20,Γ = ||θ̄h||20,Γ − 4 β

M∑

i=1

{
(α m̄i,h, m̄i,h)Ωi

+ (b d̄i,h, d̄i,h)Ωi

}
, (4.4.15)

Therefore,

|γ|2 = 1 − 4 β

||θ̄h||20,Γ

M∑

i=1

{
(α m̄i,h, m̄i,h)Ωi

+ (b d̄i,h, d̄i,h)Ωi

}
. (4.4.16)

From (4.4.16), we concluded that |γ| ≤ 1. Note that |γ| = 1 if and only if

(α m̃i,h, m̃i,h)Ωi
+ (b d̃i,h, d̃i,h)Ωi

= 0 ∀ i = 1, 2, · · · ,M, (4.4.17)

and

(α m̂i,h, m̂i,h)Ωi
+ (b d̂i,h, d̂i,h)Ωi

= 0 ∀ i = 1, 2, · · · ,M. (4.4.18)

Then applying the argument used in the proof of Theorem 4.3.2, it is easy to show that

(m̄h, w̄h, θ̄h) is trivial, i.e., (m̄h, w̄h, θ̄h) = (0, 0, 0) and this leads to a contradiction as

(m̄h, w̄h, θ̄h) is an eigenvector of T0,0. Hence, |γ| < 1 and this completes the rest of the

proof.
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4.4.2 Rate of convergence with quasi-uniformity assumption on

the mesh

In this subsection, we estimate the spectral radius and derive the rate of convergence of

the iterative method under the quasi-uniformity assumption on the mesh in each Ωi.

From (4.4.20), we obtain

|γ|2 ≤ 1 − 1

Q0
, (4.4.19)

where 1 < Q0 <∞ is such that

||θ̄h||20,Γ ≤ 4Q0 β

M∑

i=1

{
(α m̄i,h, m̄i,h)Ωi

+ (b d̄i,h, d̄i,h)Ωi

}
. (4.4.20)

Note that estimation of Q0 with yields the convergence rate for the iterative procedure

(4.2.42)-(4.2.44).

Lemma 4.4.4 Let (m̄h, d̄h, θ̄h) ∈ C ⊗ (Vh ×Wh × Λh) be an eigenvector of T̄0,0 and let γ

be its corresponding to an eigenvalue, i.e., T̄0(m̄h, d̄h, θ̄h) = γ (m̄h, d̄h, θ̄h). Then

M∑

i=1

∑

j∈N(i)

||θ̄ij,h||20,Γij
≤ C β−1

(
C3 + β2 h−1 +H−1

? b−1
)
β

M∑

i=1

{(α m̄i,h, m̄i,h)Ωi

+(b d̄i,h, d̄i,h)Ωi

}
, (4.4.21)

where C is independent of Γij and β and H? is the minimum diameter of the subdomains.

Proof. It is enough to show that

∑

j∈N(i)

||θ̃ij,h||20,Γij
≤ C β−1

(
C3 + β2 h−1 +H? b

−1
)
β
{

(α m̃i,h, m̃i,h)Ωi
+ (b d̃i,h, d̃i,h)Ωi

}

,

(4.4.22)

and

∑

j∈N(i)

||θ̂ij,h||20,Γij
≤ C β−1

(
C3 + β2 h−1 +H? b

−1
)
β
{

(α m̂i,h, m̂i,h)Ωi
+ (b d̂i,h, d̂i,h)Ωi

}

.

(4.4.23)
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From (4.3.66), we observe that

(αmi,h,v)Ωi
− (di,h,∇ · v)Ωi

+
∑

j∈N(i)

β〈mi,h · νij ,v · νij〉Γij
= −

∑

j∈N(i)

〈θij,h,v · νij〉Γij
.

(4.4.24)

Now, we choose v ∈ Vi,h, for all i, such that

v · νij = −θij,h, ∇ · v = S̃i = − 1

|Ωi|
∑

j∈N(i)

∫

Γij

θij,h ds, (4.4.25)

then

||v||20,Ωi
≤ C3

∑

j∈N(i)

||θij,h||20,Γij
. (4.4.26)

Substituting (4.4.25) in (4.4.24), we obtain

∑

j∈N(i)

||θij,h||20,Γij
= (αmi,h,v)Ωi

+ |S̃i|(di,h, 1)Ωi
+
∑

j∈N(i)

β 〈mi,h · νij ,v · νij〉Γij

≤ C
(

||mi,h||0,Ωi
||v||0,Ωi

+ |S̃i|
√

|Ωi| ||di,h||0,Ωi

+
∑

j∈N(i)

β ||mi,h · νij||0,Γij
||v · νij||0,Γij



 . (4.4.27)

Using Cauchy-Schwarz inequality, we find that

|S̃i| ≤
|∂Ωi|1/2

|Ωi|




∑

j∈N(i)

||θij,h||20,Γij





1/2

. (4.4.28)

Together with (4.4.28), (4.4.26) in (4.4.27) and then applying Lemma 4.3.2, we arrive at

∑

j∈N(i)

||θij,h||20,Γij
≤ C

(

C3||mi,h||0,Ωi
+
√

|∂Ωi|/|Ωi| ||di,h||0,Ωi
+ C β h−1/2 ||mi,h||0,Ωi

)

×




∑

j∈N(i)

||θij,h||20,Γij





1/2

. (4.4.29)
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Now eliminating first




∑

j∈N(i)

||θij,h||20,Γij





1/2

from right hand side of (4.4.29) and squaring

both sides, it follows that

∑

j∈N(i)

||θij,h||20,Γij
≤ C β−1

(
C3 + β2 h−1 + |∂Ωi|/|Ωi| b−1

)
β {(αmi,h,mi,h)Ωi

+(b di,h, di,h)Ωi
} . (4.4.30)

The bound of |∂Ωi|/|Ωi| is less than C H−1
? , where H? is minimum diameter of the subdo-

mains. Since (m̃i,h, d̃i,h, θ̃ij,h), (m̃i,h, d̃i,h, θ̃ij,h) ∈ Vi,h×Wi,h×Λij,h and satisfies the equation

(4.4.24). We, therefore obtain (4.4.22) and (4.4.23) from (4.4.30). This completes the rest

of the proof.

From the estimate (4.4.21), we obtain

4Q0 = C β−1
(
C3 + β2 h−1 +H−1

? b−1
)
. (4.4.31)

Theorem 4.4.2 Let the parameter β = βij = βji, b(x) ≥ b0 > 0, in the iterative procedure

(4.2.42)-(4.2.44) satisfy β = O(
√
h). Then, the spectral radius ρ(T̄0,0) of the operator is

bounded as follows:

ρ(T̄0,0) ≤ 1 − C
√
hH? ≡ γ0, (4.4.32)

where H? is minimum diameter of the subdomains and C =
4

C (C? + b−1)
with C? depends

on fixed constant H?, and the iteration (4.2.42)-(4.2.44) converges with an error at the kth

iteration bounded asymptotically by O(γk
0 ).
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Conclusions

In this concluding chapter, we highlight the main results obtained in the present disserta-

tion. Further, we discuss the possible extensions and the scope for further investigations

in this direction.

5.1 Summary and some observations

In this thesis, we have studied nonoverlapping DD methods for second order elliptic and

parabolic problems for both iterative and non-iterative cases. We also have analyzed the

iterative DD methods using the mixed finite elements for elliptic problems with a scope to

apply mixed finite element methods for parabolic problems.

In Chapter 2, we have discussed a DD method with Lagrange multipliers for elliptic

problems (1.3.1), when b(x) = 0 and parabolic initial and boundary value problems (2.5.1).

In this context, we note that the bilinear form b(·, ·) : X × Y → IR of the Lagrange

multipliers for (2.2.16)-(2.2.17) satisfies naturally the following continuous inf-sup condition

inf
06=µ∈Y

sup
06=v∈X

b(v, µ)

||v||X||µ||Y
≥ K0, (5.1.1)

where K0 > 0, see [8, Lemma 3.1(c), pp. 614], with the spaces X and Y defined as in

Chapter 2.

In the discrete case with V ?
h ⊂ X and Λ?

h ⊂ L2(Γ) as a finite-dimensional subspaces of

X and Y , respectively, we derive the following discrete form of the inf-sup condition (5.1.1)

inf
06=µh∈Λ?

h

sup
06=vh∈V ?

h

b(vh, µh)

||vh||X ||µ||Y
≥ K1, (5.1.2)

146



Chapter 5. Conclusions 147

where K1 > 0. While this discrete inf-sup condition (5.1.2), which plays a crucial role in

deriving the error estimates, is taken as a hypothesis in Bamberger et al. [8, pp. 618],

in the context of mortar finite element method, Belgacem [11] and Wohlmuth [126] have

proved discrete inf-sup condition (5.1.2) with appropriate compatibility condition on V ?
h

and Λ?
h. Based on nonconforming Crouzeix-Raviart space (cf. [39]), an attempt has been

made in Chapter 2 to discuss DD method with Lagrange multipliers for the discretization

of the problem (2.2.16)-(2.2.17). It was shown in [8, 11, 126] that the choice of the discrete

Lagrange multiplier spaces Λ?
h ⊂ L2(Γ) ⊂ Y , but in our analysis, we have chosen discrete

Lagrange multiplier spaces Yh, which are piecewise constants on the elements of the tri-

angulations over interfaces Γ and Yh is not a subspace of Y . The emphasis throughout

this study is on the existence and uniqueness of the approximate solutions (2.2.36)-(2.2.37)

and the order of convergence in the broken H1 norm (2.2.26) and L2-norm using Strang’s

second lemma [34, 121, 122]. For finding the consistency error, a projection operator

Qh : L2(Γij) → Yij,h, which is defined in (2.3.7) as
∫

Γij

(Qhµ) πijvh ds =

∫

Γij

µ (πijvh) ds ∀ vh ∈ Xi,h. (5.1.3)

is introduced and optimal order of estimates in the broken H1-norm (2.2.26) and L2-norm

are derived. The error estimates have been illustrated with numerical experiments for each

of these methods. Further, we have discussed a DD method with Lagrange multipliers

for parabolic problems (2.5.1). Both semidiscrete and fully discrete schemes are discussed.

Based on backward Euler method, a completely discrete scheme is analyzed. For optimal

error estimates in semidiscrete case, we first split the error u− uh = u− Rhu + Rhu− uh

and λ − λh = λ − Ghλ + Ghλ − λh, using intermediate projection Rhu and Ghλ, where

Rhu ∈ Xh and Ghλ ∈ Yh are defined in (2.6.19)-(2.6.20) as : for given u and λ,

ah(u− Rhu, vh) −
M∑

i=1

∑

i<j∈N(i)

[
∫

Γij

λij [vh] ds−Ghλij [π vh] ds

]

=

M∑

i=1

∑

T∈Th,i

∫

∂Tint

∂ui

∂νT
vi,h ds ∀vh ∈ Xh, (5.1.4)

M∑

i=1

∑

i<j∈N(i)

∫

Γij

[u− π Rhu]µh ds = 0 ∀µh ∈ Yh. (5.1.5)
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After deriving the estimates of u−Rhu and λ−Ghλ, the estimates of Rhu−uh and Ghλ−λh

can be derived in terms of u−Rhu and λ−Ghλ and then use of triangle inequality completes

the rest of the estimates. Similar procedures are also adopted for the complete discrete

scheme. This chapter is concluded with some numerical experiments.

We observe that the nonconforming multidomain approximation related to the elliptic

problem leads to a discrete system (2.2.36)-(2.2.37) with a saddle point structure of the

form






Aξ +Bη = b,

BT ξ = c.
(5.1.6)

Here, A ∈ IRm×m a block diagonal matrix, which is symmetric and positive definite, and

B ∈ IRm×n also has a block structure with n ≤ m. Now, the coefficient matrix A associated

with the system (5.1.6) is given by



A B

BT 0



 , (5.1.7)

and it is symmetric, nonsingular, and indefinite. However, the matrix A is invertible, and

the system (5.1.6) can be reduced to a positive definite system in variable η as

BTA−1Bη = BTA−1b− c (5.1.8)

which first yields η on the interface. Using η in (5.1.6), it is easy to obtain ξ. However, the

matrix BTA−1B is dense and has a high condition number. Note that, the construction of

effective iterative methods for the discrete system (5.1.6) is not as well studied compared

to the systems arising from conforming finite element methods. Therefore, it is desirable

to introduce iterative methods to compute a good preconditioner and this is a part of our

future plan.

In Chapter 3, we have discussed a nonoverlapping iterative DD method for the elliptic

problems (1.3.1) and parabolic initial and boundary value problems (2.5.1). The iterative

method has been defined with the help of Robin-type boundary conditions on the artificial

interfaces Γij as

∇ui · νij + βij ui = −∇uj · νji + βji uj on Γij, 1 ≤ j 6= i ≤M, (5.1.9)

∇uj · νji + βji uj = −∇ui · νij + βij ui on Γij, 1 ≤ j 6= i ≤M, (5.1.10)
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where βij = βji > 0 are parameters and M is the number of subdomains. The Robin-type

boundary conditions as interface conditions was earlier proposed by Lions in [92] as a tool for

the domain decomposition iterative methods in the context of conforming discretization.

As in Chapter 2, we introduce in Chapter 3 the following Lagrange multipliers on the

interfaces

λij = ∇ui · νij, λji = ∇uj · νji on Γij, (5.1.11)

where νij is the normal vector oriented from Ωi to Ωj. For deriving the discrete case,

we have adopted the nonconforming method. A convergence analysis is carried out and

the convergence of the iterative algorithm is proved for the elliptic problems (1.3.1) when

b(x) = 0. In discrete case, the convergence of the iterative scheme is obtained by proving

that the spectral radius of the matrix associated with the fixed point iterations is less than 1.

Earlier Douglas et al. [52] have established the convergence rate as 1−Ch for nonconforming

finite element methods by again using the spectral radius estimation of the iterative solution

for the elliptic problems (1.3.1) on quasi-uniform partitions when b(x) ≥ b0 > 0. Note that,

Douglas et al. have considered each triangle as a subdomain. Particular attention is needed

when b(x) = 0 and this is due to lack of coercivity of the associated bilinear form in the inner

subdomains. In case, b(x) = 0, we have derived the convergence rate which is shown to be

of 1 - O(h1/2H−1/2), when the winding number N (see, the definition 3.2.1 given in section

3) is not large and H is the maximum diameter of the subdomains. Note that, we have

also assumed quasi-uniform hypothesis for the mesh on every subdomain and not on the

global mesh defined on the entire domain. This results suggest that the best choice for the

parameter β = βij = βji in the iterative procedure satisfies β = O(h−1/2H−1/2) and this is

the best rate of convergence that can be expected using this iterative procedure. Moreover,

we have extended this iterative method to parabolic initial-boundary value problems and

demonstrated the convergence of the iteration at each time step. Numerical experiments

confirm the theoretical results established in Chapter 3.

The matrix associated with (4.2.27)-(4.2.29) corresponding to mixed finite element for-
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mulations based on Lagrange multiplier takes the form







Â B̂ Ĉ

B̂T Ê 0

ĈT 0 0






, (5.1.12)

where Â is a block diagonal matrix and B̂ also has a block structure. Actually, by intro-

ducing the Lagrange multiplier, we easily eliminate the flux and obtain a reduced problem

for the pressure unknowns only. Thus, the variable uh can be eliminated by computing the

inverse of Â which is trivial. The reduced matrix takes the form

D̂ =




B̂T Â−1B̂ + Ê B̂T Â−1Ĉ

ĈT Â−1B̂ ĈT Â−1Ĉ



 . (5.1.13)

and it is a common practice to complete the process by solving (5.1.13) using a direct

method. It is observed that the matrix D̂ is ill-conditioned, therefore, efficient iterative

methods are required computing a good preconditioner and this may be a part of our future

investigation.

In Chapter 4, we discuss an iterative scheme based on mixed finite element meth-

ods using Robin-type boundary condition as transmission data on the artificial interfaces

(inter subdomain boundaries) for nonoverlapping DD method applied to (1.3.1) with non-

homogeneous boundary condition. In this context, it is easy (cf. [45, 46]) to replace (4.2.11)

and (4.2.13) by the following Robin-type boundary condition on the artificial interfaces Γij:

−βij ui · νij + pi = βji uj · νji + pj, x ∈ Γij ⊂ ∂Ωi, (5.1.14)

−βji uj · νji + pj = βij ui · νij + pi, x ∈ Γji ⊂ ∂Ωj , (5.1.15)

where βij = βji > 0 are parameters. Then, we have proposed an iterative procedure based

on the nonoverlapping multidomain problems in (4.2.34)-(4.2.38). There may be some

difficulty in assigning a meaning to (4.2.41) regarding the product 〈uk
j · νji , v · νij〉Γij

if

uk
j ∈ Vj and v ∈ Vi, but the problem (4.2.39)-(4.2.41) may be viewed as a motivation

for the iterative mixed finite element multidomain formulation (4.2.42)-(4.2.44). In this

chapter, we have shown the convergence of the iterative scheme for the discrete problem

(4.2.42)-(4.2.44). In the convergence analysis, we have used the spectral radius of the
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matrix associated with the fixed point iterations which is shown to be less than 1. Further,

it is shown that the spectral radius has a bound of the form 1−C
√
hH? for quasi-uniform

partitions when b(x) ≥ b0 > 0, where h is the mesh size for triangulations and H? is

the minimum diameter of the subdomains with appropriate parameter β = βij = βji =

O(
√
h). In this context, Douglas et al. [49] have discussed parallel iterative procedure to

approximate the solution of (1.3.1) by using mixed finite element methods and obtained

the rate of convergence through a spectral radius estimation of the iterative solution. Note

that each triangle is considered as a subdomain. Further, it is shown that the spectral

radius has a bound of the form 1 − Ch for quasi-regular partitions when b(x) ≥ b0 > 0,

where h is the mesh size for triangulations. Compared to the iterative method proposed by

Douglas et al. [49], the proposed iterative method is also different. In our case, we choose

initial guess l0ij,h ∈ Λij,h, l
0
ji,h ∈ Λji,h arbitrarily (l0ij,h = l0ji,h seems natural), but in [49], one

needs to choose initial guesses u0
i,h ∈ Vi,h, p

0
i,h ∈ Wi,h, λ

0
ij,h ∈ Λij,h and λ0

ji,h ∈ Λji,h.

5.2 Possible extensions and future problems

In this section, we discuss possible extension and future problems.

5.2.1 Parallelization

One of the main objective of the DD methods is to parallelize the algorithm naturally. In

the entire thesis, we have not touched upon the parallel implementation aspect. Below we

present briefly our on going effort in parallelizing the algorithms.

As our first model problem, we have considered a parallel implementation of the second

order parabolic initial boundary value problem (2.5.1) using a conforming finite element

method with Lagrange multipliers. Parallel numerical computations have been carried out

on a Beowulf cluster called “Galaxy” under message passing library. The cluster comprises

of 34 compute nodes with the following configuration:

• CPU: Intel(R) Dual Processor Xeon(R) CPU 3.2GHz

• RAM: 2GB per node
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• HDD: 40GB IDE

Consider the parabolic problem (2.5.1) with f(x, y, t) = et[x(1 − x) + y(1 − y) + 2x(1 −
x) + 2y(1 − y)]. The exact solution of the problem (2.5.1) problem is given by u(x, y, t) =

etx(1 − x)y(1 − y). Here we take Ω = (0, 1) × (0, 1). For a given number of parallel

processors, say ‘M’, we subdivide the original problem into multi-domain problems on

‘M’ subdomains. Each subdomain is assigned to only one processor and the multidomain

problem for that subdomain is fully solved by its assigned processor. Also, whenever

one subdomain shares an interface with another subdomain, the interface information is

available with both the processors. This kind of subdivision minimizes the inter processor

communication which speeds up the computing time. Under SIMD (single instruction

multiple data) approach, each processor carries out triangulation for its subdomain, defines

matrices for the elements assigned to it and assembles them. For every time step, each

processor uses LU decomposition to solve the system of equations. Processors communicate

the interface data to its neighboring processor, which contains the same interface, to satisfy

the interface condition. Solution obtained at one time step is used as an initial solution for

the next time step.

We carried out our computations on 2 and 4 processors by subdividing the problem into

2 and 4 subdomains, respectively. The following table summarizes the total computing time

on 2 and 4 processors with increasing number of elements in each processor. Here for 8×8

problem size, computing time using 2 processors is more than 4 processors. This is because

of the fact that for small problem size, computing time is very less in comparison to the

inter-processor communication time. For a problem size of order 24 × 24 and more, we

obtain an improvement factor of almost 8. Here for a particular problem size, improvement

factor is calculated as follows:

Improvement factor =
Total computing time on 4 processors

Total computing time on 2 processors
.

Plots in the Figures 5.1 and 5.2 show the time spent in various subroutines of the code

for 2 and 4 processors, respectively, with data size 64 × 64. Here, we notice that the inter

processor communication time is very less as compared with the total time. Also matrix

calculation and solver is the main time consuming part in the code. Using some sparse
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Problem For 2 processors For 4 processors Improvement

size DOF in Total DOF in Total Factor

each computing each computing

processor time processor time

8 × 8 45 0.06s 25 0.49s 0.12

16 × 16 153 0.23s 81 0.08s 2.88

24 × 24 325 3.91s 169 0.47s 8.31

32 × 32 561 30.06s 289 3.61s 8.35

48 × 48 1225 9m 35.50s 625 1m 9.08s 8.38

64 × 64 2145 1h 29m 5.28s 1089 10m 32.44s 8.45

Table 5.1: Parallel computing time

Total Time

Communication
Time

Element matrix
and Solver

Boundary
Conditions

Interface Data

Triangulation

5345.2s

216.40s

5038.21s

6.485E-05s

5.508E-05s

0.020s

Time spent in various subroutines for 2 processors
Problem Size : 64 x 64

Figure 5.1: Time spent in various subroutines of the program: 2 processors case
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Total Time

Communication
Time

Element matrix
and Solver

Boundary
Conditions

Interface Data

Triangulation

619.47s

12.86s

590.25s

7.916E-05s

4.441E-05s

0.0027s

Time spent in various subroutines for 4 processors
Problem Size : 64 x 64

Figure 5.2: Time spent in various subroutines of the program: 4 processors case

storage scheme for the matrix and sparse system solver the performance can be improved

in terms of computing time.

Since the initial results of parallel implementation with conforming finite elements are

quite encouraging, now we propose parallel algorithms for the problems presented in this

thesis. An efficient parallel implementation of these algorithms will be a subject of our

immediate future research.

Parallel Algorithm - I (For elliptic problems in Chapter 3).

Step 1. Given {u0
i,h, λ

0
ij,h, λ

0
ji,h} ∈ {Xi,h, Yij,h, Yji,h}, arbitrarily, for all i = 1, · · · ,M

and j ∈ N(i).

for k = 1, 2, · · · ,
Step 2. Find uk

i,h ∈ Xi,h, i = 1, · · · ,M such that

ah
Ωi

(uk
i,h, vh) +

∑

j∈N(i)

βij

∫

Γij

πiju
k
i,h πijvh ds = (f, vh)Ωi

+
∑

j∈N(i)

βji

∫

Γij

πjiu
k−1
j,h πijvh ds−

∑

j∈N(i)

∫

Γij

λk−1
ji,hπijvh ds ∀vh ∈ Xi,h.
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Step 3. Calculate λk
ji,h ∈ Yji,h, i = 1, · · · ,M

λk
ij,h = −( βijπiju

k
i,h(p) − βjiπjiu

k−1
j,h (p) ) − λk−1

ji,h ∀x ∈ Γij, j ∈ N(i).

end for

Remark 5.2.1 Steps 2 and 3 can be performed in parallel. Step 1 is just providing an

initial guess at the interfaces.

Parallel Algorithm-II (For mixed finite element methods in Chapter 4).

Step 1. Given l0ij,h ∈ Λij,h, l
0
ji,h ∈ Λji,h arbitrarily, for all i = 1, · · · ,M and j ∈ N(i).

for k = 0, 1, 2, · · · ,
Step 2. Find

{
uk

i,h, p
k
i,h

}
∈ Vi,h ×Wi,h, i = 1, · · · ,M such that

(αuk
i,h,v)Ωi

− (pk
i,h,∇ · v)Ωi

+
∑

j∈N(i)

βij〈uk
i,h · νij ,v · νij〉Γij

= −
∑

j∈N(i)

〈lkij,h ,v · νij〉Γij
− 〈g ,v · νi〉∂Ωi\Γ, v ∈ Vi,h,

(∇ · uk
i,h, q)Ωi

+ (b pk
i,h, q)Ωi

= (f, q)Ωi
, q ∈ Wi,h.

Step 3. Calculate lk+1
ij,h ∈ Λij,h, i = 1, · · · ,M

lk+1
ij,h = 2 βji u

k
j,h · νji + lkji,h on Γij, ∀j ∈ N(i).

end for

Remark 5.2.2 Steps 2 and 3 can be performed in parallel. Step 1 is just providing an

initial guess at the interfaces.

Similarly, parallel algorithm can be proposed for the parabolic problem considered in Chap-

ter 3 and elliptic/parabolic problem considered in Chapter 2.

5.2.2 Choice of relaxation parameter

For the improvement in the rate of convergence in Chapter 3, it may be worthwhile to

propose an under relaxed version of the transmission condition by replacing (3.2.9) with

λk
ij = −β

(
(uk

i − uk−1
i ) + δk (uk−1

i − uk−1
j )

)
+ (1 − δk)λ

k−1
ij − δk λ

k−1
ji

∀x ∈ Γij, j ∈ N(i), (5.2.1)
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where β = βij = βji and for some value of the relaxation parameter δk ∈ [0, 1). The relax-

ation parameter approach was introduced by Despres [47] for the Lions iterative method

in the context of Helmholtz problems. But the optimal choice of the relaxation parameter

was not discussed. In his analysis, the random selection of δ ∈ [0.7, 1) for each iteration

is reported to yield unexpectedly good results. Subsequently, Guo and Hou [79] have dis-

cussed relaxation parameter method and applied it to the iterative method proposed by

Deng [43]. They also did not discuss the optimal choice of the relaxation parameter. In

general, their observation is that one can choose δ ∈ [0.5, 1). In the absence of any further

guidance as to a good choice of a constant δ, they have suggested using the golden ration

constant (
√

5 − 1)/2 ≈ 0.618. In our approach (5.2.1), we propose to find the optimal

choice of the relaxation parameter δ as a future problem.

5.2.3 Rate of convergence

In Chapter 4, we have shown the convergence of the iterative scheme for the discrete

problem (4.2.42)-(4.2.44) when b(x) = 0. Further, it is shown that the spectral radius has

a bound of the form 1−C
√
hH? for quasi-uniform partitions when b(x) ≥ b0 > 0, where h

is the mesh size for the triangulations and H? is the minimum diameter of the subdomains

with appropriate parameter β = βij = βji = O(
√
h). To the best of our knowledge, there

is no result for DD with mixed finite element method when b(x) = 0. Therefore, it is

pertinent to discuss the rate of convergence when b(x) = 0 and we plan to investigate this

in future.

In Chapter 4, we obtain the rate of convergence is of 1−C
√
hH?. But in the elliptic case

(see Chapter 3), we have derived the rate of convergence is of 1 − Ch1/2H−1/2. Therefore,

it is worth while to explore this in future.

5.2.4 DD for biharmonic problems

Except for [70] and references cited there, there is hardly any literature in the direction of

DD method for biharmonic problems. Gervasio [70] has analyzed the DD method for plate

bending problems based on spectral element methods and discussed Dirichlet-Neumann
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iterative scheme as a preconditioner. We consider the biharmonic equation as a model

problem. Given f , we are interested to find u such that







∆2u = f in Ω

u =
∂u

∂ν
= 0 on ∂Ω,

(5.2.2)

where Ω is a bounded polygonal domain in IR2 with boundary ∂Ω, ∆2 is the biharmonic

operator defined as

∆2 =
∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4
, (5.2.3)

and (∂u/∂ν) is the exterior normal derivative of u along ∂Ω. This problem arises in fluid

mechanics and in solid mechanics (bending of elastic plates).

In a mixed method, the problem is decomposed into problems involving lower order dif-

ferential equations by introducing new independent variables which are then approximated

along with the solution of the original problem. One reason for this is that if one uses a

finite element method based on the standard variational principle, i.e., find u ∈ H2
0 (Ω) such

that for all v ∈ H2
0 (Ω),

∫

Ω
∆u∆v =

∫

Ω
fvdx, then the approximate solution must lie in a

subspace of H2
0 (Ω). Since the construction of such subspaces can be difficult in general, we

set w = −∆u to obtain the following equivalent system of PDEs in variables u, w :







−∆w = f in Ω

−∆u = w in Ω

u =
∂u

∂ν
= 0 on ∂Ω.

(5.2.4)

Here, both u and w are taken as primary variables. It is worthwhile to extend the Dirichlet-

Neumann and Neumann-Neumann preconditioners to fourth order boundary value prob-

lems and discretize with the help of the mixed finite element methods and this will be a

part of our future project.

Decomposing Ω into two disjoint subdomains Ω1 and Ω2 with Ω̄ = Ω̄1 ∪ Ω̄2, and Γ =

∂Ω1 ∩ ∂Ω2 where Γ is the interface and Γi = ∂Ωi ∩ ∂Ω with Γi the external boundaries for

each i = 1, 2, now we split the original problem in the framework of the multi-domain as
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for each i = 1, 2, find (wi, ui) such that







−∆wi = f in Ωi

−∆ui = wi in Ωi

ui =
∂ui

∂ν
= 0 on Γi

(5.2.5)

and






u2 = u1, w2 = w1 on Γ
∂u2

∂ν
=
∂u1

∂ν
,

∂w2

∂ν
=
∂w1

∂ν
on Γ.

(5.2.6)

Here ui and wi, i = 1, 2 both are the restrictions to Ωi, i = 1, 2 of the solution u and w

of original the problem (5.2.4) (that means ui = u|Ωi
and wi = w|Ωi

, i = 1, 2) and νi is

the unit outward normal to ∂Ωi ∩ Γ (oriented outward). The equation (5.2.6) yields the

transmission conditions for u1 and u2, and w1 and w2 on Γ of the mixed problem (5.2.4),

where ν = ν1 = −ν2.

In order to solve the problem (5.2.5)-(5.2.6), we introduce two iterative procedures

which entails the solution of a sequence of boundary value problems on each subdomain,

along with relaxation conditions at the interface Γ.

Gervasio [70] has introduced the Dirichlet-Neumann type iterative scheme in the context

of plate bending problems. We propose Neumann-Neumann iterative scheme for biharmonic

problem.

Neumann-Neumann Iterative Scheme. Let λ̄0
1 ∈ Λ and λ̄0

2 ∈ Λ0 be given. For kn ≥ 1,

we construct the sequence of functions : find (wk
1 , u

k
1) such that







−∆wk
1 = f in Ω1,

−∆uk
1 = wk

1 in Ω1,

uk
1 =

∂uk
1

∂n
= 0 on Γ1,

uk
1 = λ̄k−1

1 , wk
1 = λ̄k−1

2 on Γ,

(5.2.7)
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and find (wk
2 , u

k
2) such that







−∆wk
2 = f in Ω2,

−∆uk
2 = wk

2 in Ω2,

uk
2 =

∂uk
2

∂n
= 0 on Γ2,

∂uk
2

∂n
=
∂uk

1

∂n
,

∂wk
2

∂n
=
∂wk

1

∂n
on Γ,

(5.2.8)

where, for n ≥ 1, let be given by λ̄0
1 ∈ Λ and λ̄0

2 ∈ Λ0

λ̄k
1 = θ̄1 u

k
2 |Γ

+ (1 − θ̄1)λ̄
k−1
1 and λ̄k

2 = θ̄2 w
k
2 |Γ

+ (1 − θ̄2)λ̄
k−1
2 . (5.2.9)

In (5.2.9), θ̄ = (θ̄1, θ̄2) are the (positive) relaxation parameter that will be determined

in order to ensure (and possibly, to accelerate) the convergence of the iterative scheme.

Variational formulation for the problem (5.2.7)-(5.2.8) given below. Given λ̄0
1 ∈ Λ and

λ̄0
2 ∈ Λ0, find (wk

1 , u
k
1) ∈ H1(Ω1) ×H1

Γ1
(Ω1) such that







(wk
1 , v1)Ω1

− a1(v1, u
k
1) = 0 ∀v1 ∈ H1

Γ(Ω1),

a1(w
k
1 , z1) = (f, z1)Ω1

∀z1 ∈ H1
0 (Ω1),

γ0u
k
1 = λ̄k−1

1 , γ0w
k
1 = λ̄k−1

2 on Γ,

(5.2.10)

and find (wk
2 , u

k
2) ∈ H1(Ω2) ×H1

Γ2
(Ω2) such that







(wk
2 , v2)Ω2

− a2(v2, u
k
2) = 0 ∀v2 ∈ H2

Γ(Ω2),

a2(w
k
2 , z2) = (f, z2)Ω2

∀z2 ∈ H1
0 (Ω2),

(wk
2 ,R2µ)Ω2

− a2(R2µ, u
k
2) = −(wk

1 ,R1µ)Ω1
+ a1(R1µ, u

k
1) ∀ µ ∈ Λ,

a2(w
k
2 ,R0

2η) = (f,R0
2η)Ω2

+ (f,R0
1η)Ω1

− a1(w
k
1 ,R0

1η) ∀ η ∈ Λ0,

(5.2.11)

where, for k ≥ 1, let λ̄k
1 ∈ Λ and λ̄k

2 ∈ Λ0 be given by

λ̄k
1 = θ̄1 γ0u

k
2 + (1 − θ̄1)λ̄

k−1
1 and λ̄k

2 = θ̄2 γ0w
k
2 + (1 − θ̄2)λ̄

k−1
2 , (5.2.12)

and Ri (i = 1, 2) denotes any possible extension operator from Λ to H1(Ωi) that satisfies

(Riµ)|Γ = µ and R0
i (i = 1, 2) denotes any possible extension operator from Λ0 to H1

Γi
(Ωi)

that satisfies (R0
i η)|Γ = η.

We are working on the convergence analysis, finite element formulation and implemen-

tation of the iterative scheme (5.2.7)-(5.2.8).
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