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Abstract

In this dissertation, we have focused on nonoverlapping non-conforming domain decompo-
sition (DD) methods for second order elliptic and parabolic problems using both iterative
and non-iterative schemes. We have also analyzed iterative nonoverlapping DD methods for
elliptic problems using mixed finite element technique with a scope to apply it to parabolic
problems. In Chapter 2 of this thesis, we have discussed a DD method with Lagrange
multipliers for elliptic and parabolic problems. The key feature that we have adopted here
is the nonconforming Crouzeix-Raviart space for the discretization of the primal variable.
The emphasis throughout this study is on the existence and uniqueness of the approximate
solutions, and optimal order of estimates in the broken H'-norm and L?-norm. Further, we
have extended the DD method with Lagrange multipliers to parabolic problems. Optimal
error estimates for both semidiscrete and fully discrete schemes are proved. The results
of numerical experiments support the theoretical results which are derived in this chap-
ter. Chapter 3 deals with a nonoverlapping iterative DD method for elliptic and parabolic
problems. The iterative method has been defined with the help of Robin-type boundary
conditions on the artificial interfaces (inter-subdomain boundaries). A convergence analysis
is carried out and the convergence of the iterative algorithm is proved for the elliptic prob-
lems. In discrete case, the convergence of the iterative scheme is obtained by proving that
the spectral radius of the matrix associated with the fixed point iterations is less than one.
We have also derived the convergence rate which is shown to be of 1 - O(hY?2H~'/2), when
the winding number N is not large, H is the maximum diameter of the subdomains and
the transmission parameter is of O(h~'/2H~1/2). This is the best rate of convergence that
can be expected using this iterative procedure. Moreover, we have extended this iterative
method to parabolic initial-boundary value problems and demonstrated the convergence
of the iteration at each time step. Numerical experiments confirm the theoretical results
established in Chapter 3. In Chapter 4, we have analyzed an iterative scheme based on
mixed finite element methods using Robin-type boundary condition as transmission data

on the artificial interfaces (inter-subdomain boundaries) for nonoverlapping DD method



applied to second order elliptic problems. In this chapter, we have shown the convergence
of the iterative scheme for the discrete problem. In the convergence analysis, we have shown
that the spectral radius of the matrix associated with the fixed point iterations is less than
one. Further, it is shown that the spectral radius has a bound of the form 1 — CvhH, for
quasi-uniform partitions when the coefficients of the lower order term that is b in the elliptic
problem —Au + bu = f with non-homogeneous boundary condition is positive, where h is
the mesh size for triangulations and H, is the minimum diameter of the subdomains with
appropriate transmission parameter O(\/E) Finally, the possible extensions with scope for

future investigations are discussed in the concluding Chapter.
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Chapter 1

Introduction

1.1 Motivation

With the widespread acceptance of distributed memory multiprocessing as a cost-
effective means of solving very large-scale problems in computational fluid dynamics (CFD)
and computational structural mechanics (CSM), many engineers and scientists are encour-
aged with their initial ports of CFD or CSM codes for parallel execution, and are interested
in learning whether applied mathematicians and computer scientists have anything to offer
as a next step. While parallelization at the level of large linear system of algebraic equa-
tions is one option, the Domain decomposition (DD) seems to be a more natural way of
parallelizing the algorithms and in this thesis, we explore some of the important roles that
remain to be played by DD methods.

DD is a class of methods for solving large linear or nonlinear systems of equations
arising from the discretization of partial differential equations by using numerical methods
such as finite element methods or finite difference schemes or finite volume methods to
obtain fast solutions. These methods are based on decomposing the physical domain into
regions, where a problem is modeled by separate partial differential equations (PDEs) with
suitable interface conditions between the sub-domains or by the same PDEs with natural
transmission conditions on the subdomain interfaces and then obtaining solution by solving
smaller problems on these subdomains. Due to the advancement in the high performance
computer architectures, these subproblems can be solved in parallel and, thereby, the so-
lution process has a considerable speed-up over traditional methods. Now-a-days, these

methods are becoming natural tools for solving problems in parallel specially in CSM and
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CFD. Therefore, DD methods turn out to be a subject of intense interest in scientific and
engineering computing, see DD Conference Proceedings [29, 73].

The domain can be decomposed into overlapping or nonoverlapping subregions. Some
of the attractive features of these methods include their efficient way of handling compli-
cated geometries in a simple manner, to deal with different type of equations in different
parts of the physical domain, and even to take advantage of the parallel processors in com-
putations. After decomposition, the elemental or subdomain problems can be decoupled
and solved in each sub-domain independently (to a great extent) except for a matching
step, which is necessary for obtaining a smooth global solution from different subdomain
solutions. The matching procedure requires communication between the sub-domains. The
local interaction is through the exchange of information between neighbouring subregions.
DD methods are becoming increasingly popular for solving elliptic and parabolic prob-
lems and these methods have been discussed at some length in the existing literature
[29, 30, 73, 110, 119, 125]. DD methods can often be viewed as preconditioners for iter-
ative methods like the conjugate gradient (CG) method and generalized minimal residual
(GMRES) method.

In this thesis, we first discuss non-iterative, nonoverlapping DD methods and non-
conforming finite element methods with Lagrange multipliers for elliptic and parabolic
problems. Then, we propose and analyze iterative nonoverlapping DD methods with Robin

type transmission conditions on the artificial interfaces between the subdomains.

1.2 Preliminaries

In this section, we discuss the standard Sobolev spaces with some properties which are used
in the sequel. Moreover, we appeal to some results which will be useful in the subsequent
chapters.

Let R denote the set of all real numbers and IN denote the set of non-negative integers.
Define a multi-valued index oo = (o, g, - - - ), a; > 0, oy € IN with || = g+ s+ -+ ay.
Let © denote an open bounded convex polygon or polyhedron in IR¢, with d = 2 or 3, having

boundary 0€2. For 1 < p < oo, let LP(2) denote the real valued measurable functions v on
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Q for which / |v(x)[Pdz < oo. The norm on LP() is given by
Q

1/p
0]l Loy = (/Q |v(x)|pdx) for 1<p<o0.

In addition, let L>°(2) denote the real valued measurable functions which are essentially

bounded in 2 and let its norm be given by

[0]| o () = esssup |v(z)].
€N

With H°(Q) = L*(Q2) and for natural numbers m > 1, let H™(f2) denote the standard
Hilbert Sobolev space of order m which is defined by

H™Q) = {ve L*(Q): 0% € L*(Q), |a| <m}. (1.2.1)

H™(Q) is equipped with the seminorm and norm, respectively, defined by

1/2
Wlmo = | D 110°v][5q for all m > 1, (1.2.2)
|a|=m
1/2
[ollme = | D 110°v][5q for all m > 1, (1.2.3)
|a| <m

1/2
where ||v]|o.o = (/ V() da:) denotes the norm in L?(Q2). For d € IN the product
Q

space (H™(Q)) = {9=(0)1<i<a: ¢ € H™Q) foralli=1,...,d} is equipped with the

seminorm and norm, respectively, defined by

d 1/2 d 1/2
|qlma = (Z \qilfn,g) and  |[g||m,0 = <Z qu-llfn,g) : (1.2.4)
i=1

i=1
For our subsequent use, we resort to the following notations. Let (a,b) be an interval with
—00 < a < b < o0, and let X be a Banach space with norms ||.|x. For 1 < p < oo, we

denote by LP(a,b; X') the space

b
LP(a,b; X) :={¢: (a,b) — X | ¢(t) is measurable in (a,b) and / |o(t)|5 < oo}
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It is equipped with the following norm for 1 < p < oo

b 1/p
D[]0 (aps20) = </ \\¢(t)||§dt)

and for p = oo,

@[] Lo (a,p,20) = ess sup [[(t)]|x-
te(a,b)

When —oo < a < b < 00, the space
C(la,b; X) :={¢ : [a,b] — X | ¢ is continuous in [a, b]}
is a Banach space equipped with the norm

ablx) = 1312
[6cqution = max [9(0)] v

When the interval [a,b] is the time interval [0,7],7 > 0 fixed, we may conveniently use
LP(X) for LP(a,b; X) and C(X) for C'(0,T; X).

For our future use, we recall the following results.

Theorem 1.2.1 [22, Theorem 1.6.6, pp. 37| Let Q be a bounded domain with Lipschitz
boundary 2. Then for 1 < p < oo, there exists a constant C' depending on € such that

1-1 1
0] r@e) < ClIol @ 0l Yo € WHP(Q). (1.2.5)

We need Sobolev spaces on 0f2, or an open subspace of J€2. We have an obvious definition

of boundary values, or trace, on 052, for functions in C'*°(2). These maps can be generalized

to functions in H'(Q) for a bounded Lipschitz region 2; see Necas [103].

Lemma 1.2.1 [105] (Trace and Extension theorem) Let Q2 be a bounded domain with
Lipschitz boundary OS2. The trace map To: v — vj,,, defined for C>=(Q), has a unique
continuous extension from H'(Q) onto HY?(9SQ). This operator has a right continuous
imuverse.

As a consequence, we can easily show that the kernel T is Hg(Q), i.e.,

Hy(Q) ={ve H'(Q): Tov=0 on 9Q}.
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We define the seminorm for the space H/2(92) by

| 12 (00) = veHl(g)T){fTov:u ‘U|H1(Q)7 (1.2.6)

and norm for the space H'/2(98) by

1
el 1200y = 11l Fr/200) + ﬁHﬂH%?(aQ)’ (1.2.7)

where H is the diameter of 2. We now introduce spaces that will be used in the mixed
formulation of elliptic problems. We denote by H~'/2(9), the dual space of H'/?(9Q)
which is equipped with the norm

<, u >
||90||H—1/2(89) = sup M, (128)

pEH/2(8Q),1£0 ||M||H1/2(aﬂ)

where < -,- >5q denotes the duality pairing between H~Y/2(0Q2) and H'Y?(0€). With
[y C 9, let ¥ be an extension of v € H'/2(T) by zero to all of 92. Then we set HééQ(Fo),
a subspace of H'/2(T) as

H)?(To) = {v e H*(Ty) : © € H/?(0Q)}.
The norm in H&?(FO) is defined by

= imf ol (1.2.9)

191l 15224 vEHY (To) vy, =0

Note that Hgl*(To) is strictly contained in H'/2(Iy) and also continuously embedded in
H'2(Ty). For a more detailed discussion of trace spaces; cf. Grisvard [75] or Lions and

Magenes [93]. The space H(div; () is defined by

H(div; Q) = {g = (qi)1<i<a € (L*(Q))?: divg = " € L*(Q) } , (1.2.10)
and is a Hilbert space with norm

. 1/2
llallraivie) = { llallo.o + lldivallso } (1.2.11)
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Lemma 1.2.2 [11/, Theorem 1.2, pp. 1.05] (Trace and Extension theorems for
H(div;Q)) The mapping ¢ — q - v defined from (H'(Q))* into L*(0) can be extended
to a continuous, linear mapping from H(div;Q) onto H=Y2(0Q). Further, we have the

following characterization of the norm on H=Y/2(0Q) :

. _ inf . 1.2.12
illrvsom = ot il (1:2.12)

We also define the space
H(div;Q) = { g € H(div; Q) : ¢-v € L*(09) } (1.2.13)

which is a Hilbert space with norm

1/2
HQHH(div;Q) = { ||Q||%{(div;ﬂ) + HQ : VH?),(‘?Q } . (1.2.14)

We shall make use of the following version of the Green’s formula : Forv € H'(Q) and ¢ €

H(div; Q)

/(vdivq—i—gradv-q)dx:/ vq-vds. (1.2.15)
Q B B o

Lemma 1.2.3 [105] (Friedrich’s’ inequality) Let Q be a bounded domain in R®. Then
there exists a positive constant C depending on € such that for v € H}(Q)

1Vl ) < C vl gy (1.2.16)

Lemma 1.2.4 [64, 103, 105] (Poincaré’s inequality) Let Q be a bounded domain in IR®.
Then there exists a positive constant C' depending on 0 such that for v € H'(Q)

1 2
lollf@ < C {Iv\ip(m + =ra (/dex) } (1.2.17)

where H is the diameter of €).

Lemma 1.2.5 [103] (Poincaré-Friedrich’s inequality) Let I'y be an open subset of OS2
with positive measure. Then there exists a positive constant C' depending on €2 and 'y such

that

1
o] F) < C {|v\§p(9) + ﬁ/p v ds} Vv e HY(Q), (1.2.18)
0

where H is the diameter of €).



Chapter 1. Domain Decomposition Methods 7

1.2.1 Triangulation and its properties

Let © be a bounded convex polygon or polyhedron in IR?, d = 2 or 3, with boundary 0.
Let 7}, be a regular triangulation of Q [34] into triangles for d = 2, tetrahedrons for d = 3
satisfying

TCQ VIeT, Q=T

TET),

The boundary of T will be denoted by 0T, T” will be an edge of T' when d = 2, a triangular

face when d = 3. We also use the following notations :

IT| = meas (T), that is, the Euclidean measure of 7" in IR?

(geometric area if d = 2, geometric volume if d = 3),
hy = the diameter of T (1.2.19)
pr = the radius of the circle inscribed in T"if d = 2, of the

sphere inscribed in T if d = 3,

and

h = maxhr.
TeTy,

Definition 1.2.1 [62] (Shape-regularity) A family of meshes {71, }n~0 is said to be shape

reqular if there exists oy such that

h
or=—<oy, Vh, VT €T
Pr
Definition 1.2.2 [62/ (Quasi-uniformity) A family of meshes {7 }r~0 is said to be quasi

uniform if and only if it is shape-reqular and there exists o1 such that
hr >o1h Vh, VT €7T,.

Remark 1.2.1 (i) Let T be a triangle and denote by Or the smallest of its angles. One

readily sees that

EE
pr ~— sinfr
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Therefore, in a shape-reqular family of triangulations, the triangles cannot become too flat
as h — 0.

(i4) In dimension 1, hy = pr, hence, any mesh family is shape-regular.

(1ii) A necessary and sufficient condition for quasi-uniformity is that there exists To such
that pr > 1o h for all h and T € Ty,. Indeed, if {7}, }n>o0 satisfies the above property, then
hr < To_lh% <7 for all h and T € Ty, thus showing that the family {T;}n>o is shape-
f%ular. Furthermore, hyr > pr > 7o h implies hy > o1 h. Conversely, if {Tp}ns0 is a

1
quasi-uniform mesh family, pr > —hp > 9y forallh >0 and T € Ty,.
00 pT

Lemma 1.2.6 [11/, Theorem 1.3, pp. 1.06] Let T;, be such a decomposition of Q with

Q= U T. A function v € L*(Q), whose restriction v), may be identified with a function
TeT,
vp € HY(T) for each T € Ty, belongs to H'(Q) if and only if for each interface T' = T1 NTy

with Ty, Ty € Ty, the traces of vy, and of vy, on T" coincide:
Uy, = Vny, for all 7" = T, N'Ty with T}, T, € Ty, (1.2.20)

Similarly a function g € (L*(Q))%, whose restriction q,, may be identified with a function
q € H(div;T) forT € Ty, belongs to H(div; Q) if and only if for each interface T" = T1 NT
with Ty, Ty € Ty, the normal trace of q,, coincides with the negative of that of q,. -

1 2

Q‘Tl . ]/T1| —}—ngQ . 1/T2 =0 fOI' all T, = Tl N T2 Wlth Tl, T2 c ,]71, (1221)
T/

|7/

T

where vt is the unit exterior normal vector to OT .

Lemma 1.2.7 [62, Lemma 3.32, pp. 128] Let {Ty}n=0 be a shape-reqular family of ge-
ometrically conformal affine meshes. Let m > 1 be a fized integer. For T € Ty, let
— 1
v e (HYT))™, and for a face T' € T, set p = 7/ Ydx. Then, there exists C
B meas(T") Jp
independent of hr such that for v, € X, and T € 0T with T € Ty,

[ — o < Cth/2 Y] 1, (1.2.22)

where X, is the nonconforming Crouzeiz-Raviart space (cf. [39]).
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1.2.2 Some results from functional analysis

We need some well known results from functional analysis, which we state without proof

in this subsection.

Definition 1.2.3 Let 4 be the finite element solution and u® be the solution at the kth

iterative step respectively. If
[u* — 4| < CLF||u® — 4], (1.2.23)

L €[0,1), and C is independent of k, then u* is said to converge to u with the convergence

rate L.

Lemma 1.2.8 (Hoélder Inequality) Let 1 < p < oo and q satisfy 1/p+ 1/q = 1. If
v e LP(Q), we LIQ), then vw € L () and

| @@l de < ol 10l (1.2.22)

Lemma 1.2.9 (Young’s Inequality) Let a and b be two positive real numbers, then the
following inequality holds for all € > 0

1
ab < §a2 50 (1.2.25)

Lemma 1.2.10 (Cauchy-Schwarz Inequality) Let 1 < p,q < oo and 1/p+1/q = 1.

Suppose that {a;} and {b;} are two sequences of N positive real numbers. Then

N N 1/p N 1/q
(Z a; bz-> < (Z ag’> (Z bj’) : (1.2.26)

i=1
Now we introduce the spectral radius formula, the complexification of real linear space as
well as real linear operators.

Let 1,19, -+ ,ns be the (real or complex) eigenvalues of a matrix A. Then its spectral

radius p(A) is defined as:

p(A) = max |n;]). (1.2.27)

1<i

Below, we state a lemma without proof which provides a useful upper bound for the spectral

radius of a matrix.
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Lemma 1.2.11 Let A € C**" be a complex-valued matriz and p(A) be its spectral radius.

For a consistent matriz norm || - || and for k € N,
p(A) < || AF|V* vk eN. (1.2.28)

Theorem 1.2.2 [35] Let A € C**" be a complex-valued matriz and p(A) be its spectral

radius. Then

lim A* =0 if and only if p(A) < 1. (1.2.29)

k—oo

Moreover, if p(A) > 1, ||A¥|| is not bounded for increasing k values.

Theorem 1.2.3 /89, Theorem 12.8, pp. 209] (Spectral radius formula) Let V be a

Banach space over C and A be a complex linear bounded operator on V to itself. Then

p(A) = inf HAkHl/k hmHAkHl/k (1.2.30)

k=12,
Now, we are in a position to construct the complexification of a real linear space. The

construction is based on the construction of a complex number field by a real number field.

Definition 1.2.4 Suppose V' is a real n dimensional linear space; we call the tensor prod-
uct space C ® V' the complexification of V', where C 1is the complex number field or one
dimensional complex linear space. In other words, C®V is a complex n dimensional space

such that

C@V:{x+My|x,y€V}.

Note that C®V s equipped with the following addition and scalar multiplication properties:

(21 + vV (=Dy1) + (22 + V(= 1D)ya) = (71 + 22) + V(1) (41 + ¥2),
(a4 (=1)b)(x ++/(—-1)y) = (ax — by) + /(—=1)(bz + ay), a+ +/(—1)b € C.

Lemma 1.2.12 Suppose V is a real linear space equipped with inner product (-,-); then we

can define an inner product on CRQV as

(1 4+ vV (=Dy1, 22 + V(=1Dy2) = (x1, 22) + (Y1, 92) — V(=1){x1,92) + /(=1){y1, T2).

Moreover, if || - || is the norm induced by the inner product, then

[z + V(=D)ylI* = [l + [yl (1.2.31)
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Definition 1.2.5 IfV is a real linear space and A is a real linear operator of V', we define

a complex linear operator 1 @ A of CR V by
1® A(z + v/ (—1)y) = Az + /(—1)Ay.
We call 1 ® A the complexification of A. For convenience, we also denote 1 ® A by A.

Lemma 1.2.13 [109] If V is a real linear space and Ay, Ay are real linear operators of V.,
then

(10 A)(1® Ay) =1® (A A4y). (1.2.32)
In particular,
1@ (AF) = (1@ A)F, (1.2.33)

we denote 1 ® (AF) or (1@ A)* by A*.

Proof. Using definition, we observe that
(1®A)I® A)(z++V(-1)y) = (1®A1)(Asx +/(—1)Azy)

= AlAQI —|— \/ (—1)A1A2y
1® (A1Aq)(z + v/ (—1)y).

This completes the rest of the proof. [ |

Lemma 1.2.14 [109] Let V be a finite dimensional real linear space equipped with an

inner-product, and A be a real linear operator on V into itself. Then
1Al = f1A]1 (1.2.31)

From time to time, we shall use ¢ and C' as generic positive constants which do not depend

on the discretizing parameters.

1.3 Literature review

Due to the advancement of high speed computers, more attention has been paid to

the development of parallel algorithms on massively parallel machines in the last two to
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three decades. Since DD algorithms help to solve many large scale problems efficiently,
which otherwise would be difficult to solve numerically, in the recent past, a large num-
ber of articles are devoted to this area. In an early survey article by Chan and Mathew
[30], a systematic survey on various DD methods applied to different problems has been
presented. In a review article, Xu [128] has discussed the motivation in developing the
iterative methods by using the notions of sub-space decomposition and sub-space correc-
tions. Subsequently, a detailed survey article has been written by Xu and Zou [129] on
nonoverlapping DD methods which are based on the substructuring-type schemes and the
Neumann-Neumann-type methods.

In recent years, DD methods have attracted much attention due to their successful
application to many elliptic and parabolic problems. In DD methods, the PDE or its
approximation is split into coupled problems on smaller overlapping or non-overlapping
sub-domains which form a partition of the original domain. In this thesis, we consider
only the case of non-overlapping sub-domains. However, there is a good deal of literature
available on overlapping DD methods and we refer the reader to the survey articles [30]
and the references, therein.

When the original domain is decomposed into subdomains, the transmission conditions
come into picture on the inter-subdomain boundaries. The matching conditions of the
solution or the normal derivatives of the solution on the artificial boundary are expressed
in terms of Lagrange multipliers. Once the values of the solution or its normal derivatives
on the subdomain interfaces are available, then the problem can be solved in parallel in
each subdomain. Depending on how we achieve an approximation of the solution or its
normal derivatives on the interfaces, the DD methods can be categorized under iterative

and non-iterative schemes.
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1.3.1 Non-iterative non-overlapping domain decomposition meth-

ods

In order to define non-iterative non-overlapping DD methods, we consider the following

model problem:

—Au+bx)u = f Vz e Q,

(1.3.1)
u = 0 YV e of,

where Q is in bounded domain in R? (d = 2,3), with sufficiently smooth boundary 9, f
is a given function in L?*(€2) and b(x) > 0. For the multi-domain formulation, let us assume
that 2 is divided into two non-overlapping subdomains 2; and 5 with Q = Q; U, and
interface I' = 0y N 0Qy. Now we split the original problem (1.3.1) to a problem in the

multi-domain framework. Find w1, us such that:

[ Aus - bu = f n o
u; =0 on 09 N 0N
(1.3.2)
UL = Us on r
Ouy  Ouy
\ o - b

Here u;, i = 1,2 are the restrictions of the solution u of original the problem to §2;, i = 1,2
(that is w; = ujg,,i = 1,2) and v is the unit outward normal to 9Q; NT" (oriented outward)
and v = v!. The equations (1.3.2)3 and (1.3.2), are the transmission conditions for u; and
ug on I

The variational formulation (see, [110, Sect. 1.2]) for the multi-domain problem (1.3.2)
is: find u; € Vi, us € V5 such that

(

CLZ'(UZ', UZ') + (bui,vi) = (f, Uz’) i v; € ‘/Z-O
UL = Ug on I

az(ug, Rop) + (bug, Rap)a, = (f, Rapt)q, + (f, Ript)g,
_a'l(ula Rl,u) - (bub Rl,u)Ql v JAS Ev

(1.3.3)

where (w;, v;)q = / wiv; dz, a;(w;,v;) = / Vw;-Vo; de, Vi={v; € H'(Q) | vijao = 0},
VO = Hi(©),

1

[1]

={ne HAM) | n= vr for a suitable v € V'} and R; (i = 1,2) denotes

any possible extension operator from = to V.
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We now introduce the following multi-domain finite element approximation of (1.3.2).

Let V}, denote a finite dimensional subspace of H{(€2) defined by
Vi = {Uh | Vp € OO(Q), Vh|p € PT(T) VT € 7;1, r> 1} .

Set ‘/Lh = {Uhmi DUy € Vh}, V;?h = {Uh € ‘/i,h D Upp = O} and =), = {Uh‘l" DU € Vh}
The multi-domain finite element approximation to (1.3.3) is to seek w;p € Vip, @ = 1,2

such that
a;(wipn,vipn) + (Ouin,vin)o, = (fyvin)o, Y uin € Vi?h, i=1,2, (1.3.4)
Uy =Uzp  on I, (1.3.5)
a2(u2,h> RQ,th) + (b U2,hs RQ,th)92 =(f, Rl,h,uh)Ql + (f, R2,h,Uh)Qg
—ay(u1p, Rippn) — (Durp, Runpin)ao, YV pn € Zp, (1.3.6)
where

pr on I’

Rippn =
0 at other nodes of €);.

To write (1.3.4)-(1.3.6) in vector matrix form, let {4}, and {x;}22, respectively,
be bases for V', and Vi,. Further, let {¢;}1 U {s;}15 and {x:}1% U {si}1]; be bases
for Vi and Vs, respectively. Here N;, N; and Np are the dimensions of the spaces

VP, Vi and Zj, respectively. Setting

N Nr No Nr
Uy = Z a; ¢ + Z Aj Yy, Uy = Z Bm Xm + Z Aj ¥y,
=1 7=1 m=1 7=1

in ( 1.3.4), ( 1.3.5), ( 1.3.6), we arrive at

(A1) Nvxv (Un)wvxa + (Air) vosxve (Ur) sy = (F1) vy xas (1.3.7)

(A22) Ny v, (U2) o x1 + (Aar) Ny (Ur) jpser = (f2) o, (1.3.8)

(Ar)ne < (Un)vsxa + (Ar2)nvexvs (Uz2) vy + (Are) Npsve (Ur) vpxa = () vpxa,s
(1.3.9)

where (All)N1><N1 = (a1(¢i7¢j) + (b¢27¢]))7 1< iaj < va (A22)N2><N2 - (a2(Xi7Xj) +
(bxi,x5)), 1 <4,5 < Na, (Arr) npxny = (a1 (Wi, 95) (045, 105) )+ (az (i, ¥5)+(b i, 5)), 1 <
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i,J < Nr, (Air)nyxar = (@1 (Wi, ¢5) + (0, ¢5)), 1 < i < Np, 1 <7 < Ny, (Aor)npscvy =
(a2 (i, x;) + (b¥iyx;)), 1 < i < Np, 1 < j < N, while (Ar;) denotes the transpose
of (Air), i = 1,2, a;(-,-) is the restriction of the bilinear form a(-,-) to Q;, (fi)n,x1 =
(f,06), 1 <i < Ny, (Bo)wosr = (f, xa), 1 <0 < Ny, (fr)npxa = (f,¥3), 1 <4 < Np. Also,

1 2
(AFF)NFXNF = (A%IE)NFXNF + (Aéf)‘)NFXNm

(fF)erl = (flg))erl + (flg‘2)>Nr><17 (UF>NFX1 = (Ul(“l))NFxl + (U?))prl’

where Ag%, Ug) and flg) denotes the contribution from the sub-domains €2;,7 = 1,2.

From (1.3.7) and (1.3.8),

AnU, + ApUp = £, = U = A (£, — ArUyp) (1.3.10)
and

AUy + AxUr = £, = Uy = Ay (f, — AypUrp). (1.3.11)

Substituting U; and U, from (1.3.10) and (1.3.11) in (1.3.9), we obtain

Yp Ur = Xxr, (1.3.12)
where
xr = fr — Ap AT — ArAyf (1.3.13)
and
S = Arr — AnAR Air — ArAy) Aor. (1.3.14)

The system (1.3.12) is called the Schur complement system and the matrix 3, is called
the Schur complement matrix. However, the matrix ¥, is a full matrix and is ill-
conditioned. Its spectral condition number is of order 1/h for triangulations of characteristic
mesh size h, see [110, Eqn. 2.3.13, pp. 51]. Compared to the the finite element stiffness
matrix A for a second order problem, the condition number of matrix 3, is of order 1/h
where the condition number of the matrix A is of order 1/h?. For more detailed analysis
and references, we refer to [110, 125]. Therefore, it is a common practice to solve the Schur

complement system (1.3.12) iteratively via preconditioned CG methods.
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In the next subsection, we are going to introduce iterative substructuring methods
for the the elliptic problem (1.3.1). For finding the preconditioner for the matrix ¥, in
the system (1.3.12), we need to define Steklov-Poincaré operator, which may also be
obtained directly from the interface relationship (1.3.2),. DD methods depend on the
interface equation which is associated with the given problem. This interface problem can
be defined in terms of Steklov-Poincaré operator that we are going to introduce below. Let
¥ be the unknown value of v on I' and we consider the following two Dirichlet problems:

For i = 1, 2, find w; such that

w; =0 on  9%; NN (1.3.15)

w; =9 on I

Since A operator is linear, we can split the above problem into two problems as follows.

Find u§ (i = 1,2) such that

—AU? + buf =0 n QZ
0 on QNN (1.3.16)
¥ on r

o
(2
o

u
u

7

and find u} (i = 1,2) such that

—Aur +buf = f in Q;
=0 on  09Q; NN (1.3.17)
=0 on T

Then w; = u¢ +u} (i = 1,2). For each i = 1,2, uf is the harmonic extension of ¥
into €; and is denoted by H;J. Since (—A + b1) is invertible, we set u} = G,f, where

G; = (—=A+0bI)"'. Now comparing (1.3.2) and (1.3.15), we obtain w; = u;, i = 1,2, if and

.. Ow ow . ow ow . o
only if — 1 -—=2onT. Since — = —2 on I, using the definition of w;, we find that
o 8 v 881/ - % v
u u u u
L~ 2_-"2_ " Llon T. Asu?is the harmonic extension of ¥ into €2;, we obtain

ov ov ov ov
I(HY)  O(HpW)  0(Gaf) O(Gif)

— = — on [

ov ov ov ov
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Setting the Steklov-Poincaré operator as

Sy = a(gf;ﬂ) . a(gfjﬂ) _ z:a(Hi??)7

we now arrive at
SYy=x on I, (1.3.18)

where
2

~0(Gaof)  OGif) (Gif)
XT T T T o __Z ot

—_

The equation ( 1.3.18) is the Steklov-Poincaré interface equation. In particular, we

split S as

d(Hin)
ovi

The variational formulation corresponding to (1.3.18) is given as follows: Find ¥ € = such

S=51+853 where Sn= 1=1,2.

that

(SU, ) = (x,pn) Vpez. (1.3.19)

The functions v = H;9 (i = 1,2) and u; = G;f (i = 1,2) introduced in (1.3.16) and

(1.3.17) are, respectively, the solutions to the following variational problems:

Find H;¥ € V; such that
ai(H9,v;) + (bHD,v;), =0 Yu € VP, (1.3.20)
Hy=9 on I

and

find G;f € V;? such that

(1.3.21)
ai(Gif,vi) + (0Gif,vi)a, = (f,vi)a, Vv € Vz'o'

Note that the variational form of the Steklov-Poincaré equation can be obtained directly

from the interface relation (1.3.3)3. The corresponding finite element approximation of the

the Steklov-Poincaré operator can be stated as follows:
Find H; pny € Vi p, such that
a;(Hipnn, vip) + (Hip0p,vip) =0 Vv, € th, (1.3.22)
H;pipyp = on T
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and

find G;pf € V5, such that

(1.3.23)
ai(Ginf,vip) + (Ginfovin) = (f,vin) Yvin € Vz-?h-
Then find ¥, € =, an approximation of ¥ such that
Shigh = Xp On F, (1324)

where

2 2
i O(H; _
Z }-lf s Shnn = Z Sy Sintn = M Vo, € Zh. (1.3.25)

— ovi
In variational form, we rewrite (1.3.24) as
(Shins tn) = (Xns fin) ¥ i € Zn, (1.3.26)
where

(Shnn, pn) = Z {ai(H; pnn, Rippen) + (b Hi pnin, Ripin) ¥

2 2
= > A{ai(Hipnn, Hippn) + (0 Hyn, Hippn) Y = _(Sintins 10n)

i=1

and
2
Ocntins pn) = > ((f Rinpn) = {ai(Ginf, Rinpn) + (0Ginf, Rinpsn) IV 1w, in € En.
1=1

Here R;p, © = 1,2, is any extension operator from Zj, into V;;. Similarly, we obtain a
matrix Y, which is precisely the algebraic counterpart of the discrete Steklov-Poincaré

operator S, as

[ Znnns pin ] = (S bin)  Vn, ftn € Zn, (1.3.27)

where [+, -] is the Euclidean scalar product in R and for each y;, € =5, uy, denotes the set

of its values at the nodes on I'. For ¢ = 1,2, we define X, as

[ Zinnns tin | = (Sinths tin) 0k, pin € Zp. (1.3.28)
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The above results are discussed in [110].

Another approach called Lagrange multiplier based approach is also used in the liter-
ature [48, 123]. In Lagrange multiplier approach, we obtain solution as well as its normal
derivate on the subdomain interfaces. Through this approach it is possible to relax the con-
tinuity conditions at the interfaces of the subdomains. Lagrange multiplier based framework
can be defined in terms of Steklov-Poincaré operator that we are going to introduce below.

Let ~y; be the trace operator mapping functions in HA(€;) = V;, i = 1,2 to their traces in
I'. Let HééQ(F) be the fractional order Sobolev space on I' consisting of traces of functions
in HE(;) and let (H&éQ(F))’ denote its dual. Using the continuity of fluxes, we will split

the problem into two subproblems for ¢ = 1,2 such that

—Au; +bu; = f in €,
u = 0 on 0% N oY (1.3.29)
Vui-v = (=1)"'A on T.
The vector v is the outward normal to I' oriented, from €2; to €25. The weak formulation

corresponding to the problems (1.3.29) is to find u; € HL(€;), ¢ = 1,2 such that
ai(ui, ’UZ') + (bUZ,UZ)QZ = <)\7’Ui>1“ + (fi,Ui)Qi, VUZ‘ € H%(Ql) (1330)

Here, we first reduce the problem to a problem on the subdomain interface using Steklov-
Poincaré operators. For the unknown Neumann data A on I', we define the Steklov-Poincaré

operators 7 : (Hy*(T)) — HY(T), i =1,2 by

where A € (Héf(ﬂ)’ and wu; is the solution of (1.3.30) with f; = 0. Here u; is the harmonic
function satisfying the Neumann condition given by A. In other words, the Steklov-Poincaré
operator maps the Neumann boundary condition into the corresponding Dirichlet boundary
condition as :

-
Furthermore, we define GF : (Hp(;)) — H&F(F), i = 1,2 by the equation

. (1.3.32)

G fi = viwi, (1.3.33)
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where f; € L*(€);), u; is the solution of (1.3.30) with A = 0. In terms of the Steklov-Poincaré
operators, the problem is to find the solution A\ such that

(ST +53)A = Gif2 — Gifi, (1.3.34)

that is to find the Neumann data A on I' such that the traces of the solutions u;, i = 1,2
of (1.3.30) coincide on T

The standard finite element method with Lagrange multipliers was first introduced by
Babuska in [6] for second order elliptic problems with Dirichlet boundary conditions. He
further showed that an application of Lagrange multipliers would avoid the difficulty in
fulfilling essential boundary conditions on the finite element spaces. In the primal hybrid
finite element method of Raviart and Thomas [112] the usefulness of Lagrange multipliers
which approximate normal derivatives on the boundary of each finite element is shown.
Subsequently, Bramble [17] has reformulated the Lagrange multiplier method of Babuska
[6], and discussed estimates for the solution and the boundary flux.

The Lagrange multiplier approach to enforce the continuity of the solution is linked to
interface formulation using Poincaré-Steklov operators in the DD context by Dorr [48]. This
Lagrange multiplier technique consists in relaxing the continuity conditions at the corners of
the subdomains and gives a saddle-point problem without Lagrange multipliers associated
with vertices, where the normal derivative may not be well defined as the normal vector field
is discontinuous at these points. He has used the Lagrange formulation to introduce finite
element spaces of smaller dimension on the interfaces for regular meshes. This can reduce
the size of the problem substantially, but it is restricted to regular meshes. Swann [123] has
used cell discretization method in his analysis. In his approach, the domain of a problem
is partitioned into cells; approximations are made on each cell, and the approximations
are forced to be weakly continuous across the boundaries of each cell by using Lagrange
multipliers. The only requirement for convergence of this method, which is referred to as
moment collocation is that the basis functions on each cell constitute a Schauder basis in
an appropriate space. The finite element tearing and interconnecting (FETI) method is an
iterative substructuring method using Lagrange multipliers to enforce the continuity of the
finite element solution across the subdomain interface, see [63, 96]. Exploiting the structure

of the Lagrange multipliers, Belgacem [11] has analyzed the mortar element method with
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Lagrange multiplier by setting it under the frame work of a primal hybrid formulation.
A basic requirement for the Lagrange multiplier method is to construct multiplier spaces
which satisfy certain criteria known as the inf-sup properties for the scheme to be stable.
To achieve stability of the corresponding Lagrange multiplier scheme, we need to choose
the multiplier space appropriately so that the discrete spaces for the primal variable and
the multiplier satisfy the inf-sup condition, also known as the Ladyzhenskaya-Babuska-
Brezzi (LBB) condition. When the Lagrange multiplier is used to relax the mortaring
condition on the finite element spaces, the corresponding discrete formulation gives rise
to an indefinite system. The mortar element method using dual spaces for the Lagrange
multipliers has been studied in [126]. The Lagrange multiplier space is replaced by a dual
space without losing the optimality of the method. The advantage of this approach is that
all the basis functions are locally supported. Compared to the standard mortar method
where a linear system of equations for the mortar projection must be solved; in this case
the matrix associated with mortar is represented by a diagonal matrix. In [88], Lamichhane
and Wohlmuth extended the mortar finite elements with Lagrange multipliers to elliptic
interface problems. Many natural and convenient choices of these spaces are ruled out
as these spaces do not satisfy the inf-sup condition. In order to alleviate this problem,
stabilized multiplier techniques or Nitsche’s method [120] is used. In this method, the
original bilinear forms of the problem are modified by adding suitable stabilized terms in
order to improve stability without compromising on the consistency of the method. We
refer to [7, 9, 10] for the various penalty methods applied to elliptic problems and discuss
how to circumvent the inf-sup condition in order to achieve the consistency and stability
of the methods. The drawback of most of the stabilized methods is that they use jump in
the primal variables as one of stabilized term across the subdomain interfaces. To mitigate
this problem, Hansbo et al. [80] have proposed a stabilization method which avoids the
cumbersome integration of products of unrelated mesh functions.

Another approach based on the balancing DD algorithm uses solution of local problems
on the subdomains in each iteration coupled with a coarse problem that is used to propagate
the error globally and to guarantee that the possibly singular local problems are consistent.

The abstract theory introduced in [94] is used to develop bound on the condition numbers
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for conforming linear elements in two and three dimensions. It is to be observed that the
balancing DD algorithm is known as the Neumann-Neumann algorithm for non-overlapping
DD methods. For related results on the balancing DD algorithms, we refer to [95, 97, 98].

From an engineering point of view, the mixed finite element methods for approximating
flux for elliptic problems with discontinuous and rapidly varying coefficients provide effi-
cient and accurate solutions. Glowinski and Wheeler [74] have proposed and analyzed DD
techniques combined with mixed finite element methods for elliptic problems. However,
their approach requires that the resulting discrete systems should be solved exactly by a
fast direct method on the subdomains. Other DD methods with nonoverlapping parti-
tions for mixed finite element methods are discussed by Cowsar and Wheeler [37], Rusten
and Winther [116], and Cowsar, Mandel, and Wheeler [38]. In [116], Rusten and Winther
have derived DD preconditioners for the linear systems arising from mixed finite element
discretizations of second-order elliptic boundary value problems. The preconditioners are
based on subproblems with either Neumann or Dirichlet boundary conditions on the inte-
rior boundary. In [32], Chen has shown that the mixed finite element formulation can be
algebraically condensed to a symmetric and positive definite system for Lagrange multi-
pliers using the features of the existing mixed finite element spaces for elliptic problems.
Subsequently, Chen et al. [33] have discussed the DD algorithms for mixed finite element
methods based on the approach described in [32] for second order elliptic problems.

Most of the above methods are designed for elliptic partial differential equations (PDEs).
In principle, DD methods can be applied to the resulting elliptic problem at each time level
when implicit time discretization applied to parabolic problems. In the context of parabolic
problems, explicit schemes are parallel and also easy to implement, but they usually require
small time steps because of stability constraints. On the other hand, implicit schemes are
necessary for finding the steady state solutions or computing slowly unsteady problems
where one needs to march with large time steps. However, the implicit schemes are not
inherently parallel because at each time step essentially an elliptic type of problem needs
to be solved.

DD methods for time dependent problems have been discussed in [40, 41, 42, 58, 59,
60, 87, 110, 130] and the references, therein. In [40, 60, 87], the authors have discussed
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the DD method in the frame work of finite difference schemes. Kuznetsov [87] has pro-
posed an explicit-implicit scheme to solve parabolic problems based on a partition of {2 into
non-overlapping regions. The boundary value of ©™™! on the interface I is first computed
using an explicit method (or even an implicit scheme) in a small neighborhood of T'. Using
these boundary values, Dirichlet problems can be solved on each sub-domain to provide
the solution ™! on the whole domain €. This idea is particularly appealing on the grids
containing regions of refinement, see [87]. Another alternate direct approach was proposed
by Dawson, Du and Dupont [40] by finite difference methods in the context of finite dif-
ference methods. In this procedure, interface values between subdomains are found by an
explicit difference formula. Dawson and Du [41] has extended earlier work by Dawson et
al. [40] based on finite element methods. In this procedure, subdomain interface data are
updated using an explicit procedure in one dimension, and an ”implicit in y, explicit in
x” procedure in two dimensions. Dawson and Dupont [42] has discussed explicit/implicit
conservative Galerkin domain decomposition procedures for parabolic problems. In this
procedure, the domain is partitioned into many non-overlapping sub-domains with inter-
face I' and special basis functions are constructed having support in a small 'tube’ of width
O(H) containing the interface I'. In the first step approximate flux using explicit procedure
on I' using these special basis functions. Finally, using these boundary values, the solution
u™* is determined at the interior of the sub-domains, see [42]. The explicit nature of the
flux calculation induces a time step limitation necessary to preserve stability, although this
constraint is not necessary sharp which comes with a fully explicit method.

In contrast, a second approach based on the discretization of the parabolic problems
which leads to a DD algorithm as a direct method as given by Dryja [58] and corre-
sponds to a domain decomposed matrix splitting (fractional step method) involving two
non-overlapping subregions. The resulting scheme can be shown to be unconditionally sta-
ble. Unfortunately, the discretization error of splitting scheme becomes the square root
of the discretization error of the original scheme. In the two-dimensional finite element
case Dryja [58] has proved ig’h is the preconditioner for f]h, where the condition number,
n(i;kih) is bounded by C(1 + log#)?, C' > 0 is a constant independent of h, H and

At, 3, being the Schur complement matrix and H being the diameter of the sub-domain.
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Dryja [59] used Crank-Nicolson scheme for time discretization of parabolic problems, but
this algorithm is stable and convergent with an error bound O(At + h) in an appropriate
norm. The error bound obtained for the method is same as for the backward FEuler scheme.
Zheng et al. [132] have discussed nonoverlapping DD method for parabolic problems based
on stabilized explicit Lagrange multipliers. First they formulate the problem into a differ-
ential algebraic equations and then solve them using Runge-Kutta-Chebyshev projection
method [131]. To develop a stabilized explicit DD finite element method, they use the mass
lumping technique [127]. In [106], Pradhan et al. have discussed the application of DD
methods to a parabolic integro-differential equations.

Another approach was proposed by Girault, Glowinski and Lopez [72], in which the do-
main is partitioned into many non-overlapping sub-domains, where the sub-domain meshes
need not be quasi-uniform. They are composed of triangles or quadrilaterals that do not
match at interfaces. For the case of computation, this lack of continuity is compensated
by a mortar technique based on piecewise constant (discontinuous) multipliers on the in-
terfaces, thus making the implementation simpler. But the price to pay is asymptotically

a half-order loss in accuracy compared with mortar methods, see [72].

1.3.2 Iterative non-overlapping domain decomposition methods

In this subsection, we discuss iterative procedures to solve the multi-domain problem
(1.3.2). Under the iterative schemes assuming either the value of the solution or its normal
derivative or a combination of both the solution and its normal derivative on the intersub-
domain interfaces, the problem can be solved in parallel in each subdomain and then an
iterative technique is invoked to update the values of the solution or its normal derivative
on the interfaces. To motivate the iterative schemes, we now introduce a sequence of sub-
problems in 2y and {2y for which the conditions (1.3.2)3 and (1.3.2)4 provide the Dirichlet
and Neumann data, respectively, on the interface I'. In general, we expect that the two
sequences of functions {u¥} and {uf} starting from initial guesses u?, u9 will converge to
uy and uy respectively.

Dirichlet-Neumann iterative scheme. Given 9°, find «*! uf™ and ¥**+! for each
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k > 0 such that

AU T = in Q,
ubtt =0 on 09 NOL, (1.3.35)

ubtt = Yk on T,

—Autt Ut = f in o,

ub™ =0 on 9y N9, (1.3.36)
aul2€+1 aullf+1
pr— F
ov ov o 7
and
O = Guy™ + (1 0) 9", (1.3.37)

where 6 is an acceleration parameter with 0 < # < 1. This method was considered by
Bjorstad and Widlund [13], Funaro et al. [65] and Marini and Quarteroni [99]. It is
shown in [110] that the Dirichlet-Neumann iterative scheme is convergent and the rate of
convergence is independent of h, where h is the mesh size for triangulations. It is to be
noted that the Dirichlet-Neumann iterative scheme is algorithmically sequential. Next, we
define Neumann-Neumann iterative procedures to solve the multi-domain problem (1.3.2).
Neumann-Neumann iterative scheme. Given 9°, find u*!, ¢! € V;, i =1, 2 for

each & > 0 such that

AUt 4yttt = f on

ub ! = 0 on 09;NIN, (1.3.38)
ubtt = 9% on T
and then
—AYFT byt = 0 on
Yttt =0 on 99,09, (1.3.39)
Ot _ oul™! B Ous™! on T,
ov on ov
with IR = 9k — 4 <01 fH‘F — 09 ¢§+1|F> ., 0 > 0 and o, and o, are two positive

averaging coefficients. It is observed that in [14] that the Neumann-Neumann iterative
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scheme is convergence and the rate of convergence is shown to be independent of the grid-
size h. Further, we note that the Neumann-Neumann iterative scheme is algorithmically
parallel.

Now, we define Robin iterative procedures to solve the multi-domain problem (1.3.2).

Robin iterative scheme. Given v, find ™ and u5™ for each & > 0 such that

AUt bl = f in €,

W =0 on o N OS2, (1.3.40)

ouktt ouk

aly +yuftt = 6—1/2 +yus  on T,

—AukT pbultt = f in i,
Ukt = on 0y N O, (1.3.41)
oustt Auyt!

5 =T w1

where ; and 5 are non-negative acceleration parameters satisfying v; + v > 0. For the
sake of parallelisation, in (1.3.41) we could also consider u¥ instead of uA** and assigning
in that case also u!. The Robin-type boundary conditions as interface conditions was
proposed by Lions in [92] as a tool for the domain decomposition iterative methods. This
method is now referred to as Lions nonoverlapping DD method (Lions method). In [92]
only the convergence of the Lions method in the multi-domain case has been proved when
b(xz) > 0, that is, there are no estimates of error reduction factor at each iteration, nor any
information about the rate of convergence. We refer the reader to Agoshkov [1] for a similar
formulation at the algebraic level. Later on, Despres [45, 46] has applied Lions idea to the
Helmholtz problems. In 1993, Douglas et al. [49] have discussed parallel iterative procedure
to approximate the solution of (1.3.1) by using mixed finite element methods and obtained
the rate of convergence through a spectral radius estimation of the iterative solution. Note
that each triangle is considered as a subdomain. Further, it is shown that the spectral radius
has a bound of the form 1 — Ch for quasiregular partitions when b(z) > by > 0, where
h is the mesh size for triangulations. Subsequently, Douglas et al. [52] have established
the convergence rate as 1 — C'h for nonconforming finite element methods by again using

the spectral radius estimation of the iterative solution for the elliptic problems (1.3.1) on
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quasiregular partitions when b(x) > by > 0.
Later, Deng [43, 44] has developed and analyzed another non-overlapping DD iterative
procedure for elliptic problems (1.3.1), which are based on the following subproblems: Given

95, 1 < j #4 <2 arbitrarily, find uf, i = 1,2 for each k > 0 such that

—Auf+buf=f in  Q
ub =0 on 9NN, (1.3.42)

7
oul

oVt

+PBuf =gl on I, VI<j <2 j#id
and then update the Robin data of the transmission condition as
gt =28ul —gk on T, V1<j<2 j#i (1.3.43)

where § > 0 is the transmission coefficient. Note that the updation technique of Robin
data ¢ in (1.3.43) is different from Lions method [92]. Deng has analyzed the convergence
when b(z) = 0 in [44] for (1.3.1) and obtained the convergence rate by a spectral radius
estimation of the iterative solution when b(x) > by > 0. He has shown that the spectral
radius has a bound of the form 1 — Ch for quasiregular partitions, provided b(z) > by > 0.
In [44, 49, 52], the iterative method is shown to be convergent but the rate of convergence is
not established, when b(z) = 0. Recently, Gou and Hou [79] have analyzed a one-parameter
generalization of Lions nonoverlapping method [92] for solutions of (1.3.1). They have
established the convergence and acceleration properties of the finite element versions of the
proposed method, when b(x) = 0. But there are no estimates of the error reduction factor at
each iteration, nor any information about the rate of convergence of the proposed method.
Due to lack of coercivity of the associated bilinear form in the inner-subdomains, particular
attention is needed when b(z) = 0 to achieve the convergence rate of the iterative method.
Based on the method proposed in [44], Qin and Xu [109] have derived the convergence
rate, in general, when the lower term vanishes, i.e., b(z) = 0 and the convergence rate is
shown to be of order 1 - O(hY?2H~'/2), when the winding number N (see, the definition
3.2.1 given in chapter 3) is not large and H is the maximum diameter of the subdomains.
In [84], Kim et al. have discussed iterative DD method to approximate the solution of a

nonlinear parabolic problems based on fully discrete mixed finite element method. In this
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paper, they have used Robin type boundary conditions for inter-subdomains boundaries

and demonstrated the convergence of the iteration at each time step.

1.3.3 Various other domain decomposition methods

There are other classes of direct and iterative methods, which are quite popular amongst
the DD community. Since in this dissertation, we have not touched upon these classes of
methods, we only briefly present some earlier results. In the earliest 19th century, Schwarz
[118] proposed an iterative method for the solution of classical boundary value problems
for harmonic functions. It consists of solving successively a similar problem in subdomains,
going alternatively from one to other. The convergence of this process was proved using
of the maximum principle. This is called as iterative Schwarz alternating procedure for
overlapping DD method. In 1953, Kron [86] introduced the set of principles and a sys-
tematic procedure to establish the exact solutions of very large and complicated physical
systems, without solving a large number of simultaneous equations. The procedure con-
sists of dividing the system into several smaller sub-systems. To obtain a solution of the
original system, Kron has interconnected sub-system solutions through a set of transfor-
mations and this method is subsequently known as fast direct DD solvers (substructuring
or tearing methods) in literature. Subsequently, in 1963, Przemieniecki [108] discussed a
matrix method of linear structural analysis for the calculation of stresses and deflections in
an aircraft structure divided into a number of structural components. This direct matrix
method is called substructuring. In 1982, Dryja [53] has described algorithms for the solu-
tion of the system of linear equations arising from the application of finite element method
to the Dirichlet problem on a polygonal region based on the capacitance matrix technique.
Exploiting the capacitance matrix technique, Dryja [54] has applied it to the symmetric
elliptic problem with the Dirichlet condition on an arbitrary region. In 1984, Dryja [55] has
again employed the same method to a general elliptic problems. In DD terminology, this is
a”Schur complement matrix” system, see [29, 36, 73, 110, 119, 125]. A good approximation
to the Schur complement of a linear system can be constructed algebraically by investigat-
ing its numerical structure. This idea is introduced by Dryja [53] and further developed in

a paper by Golub and Mayers [77] that refered to the symmetric two dimensional case. The
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subdomain structuring of the Schur complement matrix or capacitance matrix can lead to
block direct methods. It can lead to block iterative methods via preconditioners, see [36].
Gropp and Keyes [76], Langer et al. [82] have discussed preconditioners for DD methods.

The Schur complement system can be extended by iterative coupling of the subregions.
There are two approaches widely followed for the construction of DD preconditioner. One
is a (modified) Schur complement preconditioner that has been studied by the DD com-
munity very intensively, see [18, 19, 53]. Another is a preconditioner for the local problems
with homogeneous Dirichlet boundary conditions arising in each sub-domain. The most
sensitive part is the transformation operator transforming the nodal finite element basis on
the interfaces into the approximate discrete harmonic basis. However, we provide here the
results from some articles which play crucial role in developing DD methods, see [110]. See
[13, 18, 65] for the Dirichlet-Neumann algorithm for non-overlapping DD methods. Often,
as in preconditioner conjugate gradient (PCG), the objective is to produce an iterative
method in which the matrix is symmetric positive definite. Meyer [102] has proposed a
parallelization and preconditioning of the conjugate gradient (CG) method on the basis of
a non-overlapping DD approach. A survey of preconditioners for DD is given by Chan and
Resasco [28]; see also Meurant [101].

In [61], Ehrlich has discussed the iterative Schwarz alternating procedure for overlap-
ping DD method. For Schwarz alternating algorithm in a variational framework, see Dryja
and Widlund [56], Matsokin and Nepomnyaschikh [100] and Lions [90]. The original two-
subdomain Schwarz method is now called the multiplicative Schwarz method, see [12].
First one subdomain is solved with pseudo-boundary conditions, then the information is
transfered to the pseudo-boundary conditions for the other subdomain. This method is
algorithmically effective. Subsequently, Haase and Langer [81] have discussed a multiplica-
tive Schwarz method for non-overlapping DD procedure. Although the Schwarz alternating
method is straightforward and intuitive, it is, in fact, a very effective procedure, see the
reference [90, 91]. We now conclude this section with a quotation of P . L. Lions [91] "In
some sense, even if many interesting and important variants have been introduced recently,
the Schwarz algorithm remains the prototype of such methods and also presents some prop-

erties (like robustness, or indifference to the type of equations considered...) which do not
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seem to be enjoyed by other methods”.

1.4 Outline of the Thesis

The organization of thesis is as follows. Chapter 1, which is introductory in nature con-
sists of some definitions, inequalities and some results to be used in subsequent chapters.
Further, it deals with a brief survey on DD methods.

In Chapter 2, an effort has been made to apply non-iterative non-overlapping DD meth-
ods combined with non-conforming finite element methods with Lagrange multipliers for
elliptic problems. When the original domain is decomposed into subdomains, the trans-
mission conditions come into picture on the inter-subdomain boundaries. The matching
conditions are expressed in terms of Lagrange multipliers for the Neumann boundary condi-
tion on the artificial boundary, which produce good approximation of the normal derivatives
of the exact solution across the interfaces. The key feature that we have adopted here is
the nonconforming Crouzeix-Raviart space for the discretization of the primal variable.

For parabolic equations a completely discrete scheme based on backward Euler scheme
is discussed. Optimal error estimates in L? and H'-norms are demonstrated. The results
of numerical experiments support the theoretical results which are derived in this chapter.

Chapter 3 is concerned with the analysis of an iterative non-overlapping DD method
with Robin-type boundary conditions on the artificial interfaces, that is, on the inter sub-
domain boundaries of the elliptic problems. The rate of convergence is derived to be of
1 — O(RY?2H=Y2), where h is the finite element mesh parameter and H is the maximum
diameter of the subdomains. This chapter is concluded with an application to parabolic
equations. Finally, some numerical experiments are conducted to illustrate the theoretical
results.

In Chapter 4, we propose and analyze an iterative non-overlapping DD method for
elliptic problems based on mixed finite element methods. We have used Robin-type bound-
ary conditions to obtain the transmission data on the inter-subdomain boundaries. The
convergence analysis of the parallel iterative procedure is discussed in details. The rate of

convergence is estimated as 1 — O(hY/2H,), where h is the finite element mesh parameter



Chapter 1. Domain Decomposition Methods 31

and H, is the minimum diameter of the subdomains.
Finally, we present, in Chapter 5, we first present a summary of the results with some

observations. Further, we conclude this Chapter with a discussion of some possible exten-

sions and future problems.



Chapter 2

A Non-Conforming Finite Element

Method with Lagrange Multipliers

2.1 Introduction

In this chapter, we discuss a non-overlapping domain decomposition procedure for
approximating the solution of second order elliptic and parabolic equations using non-
conforming finite element methods. When the original domain is decomposed into sub-
domains, the transmission conditions come into play on the inter-subdomain boundaries.
The matching conditions are expressed in terms of the Lagrange multiplier for the Neu-
mann boundary condition on the artificial boundary, which produces good approximation
of the normal derivatives of the exact solution across the interfaces. Lagrange multiplier
technique helps in relaxing the continuity conditions at the interfaces of the subdomains.
A basic requirement for the Lagrange multiplier method is to construct multiplier spaces
which satisfy certain criteria known as the inf-sup properties for the scheme to be stable.
To achieve stability of the corresponding Lagrange multiplier scheme, we need to choose the
multiplier space appropriately so that the discrete spaces for the primal variable and the
multiplier satisfy the inf-sup condition, also known as the Ladyzhenskaya-Babuska-Brezzi
(LBB) condition.

Earlier, a finite element method with Lagrange multipliers was first introduced by
Babuska in [6] for second order elliptic problems with Dirichlet boundary condition. In his
paper, he showed that an application of Lagrange multipliers would avoid the difficulty in

fulfilling essential boundary conditions on the finite element spaces. Subsequently, Bramble

32
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[17] reformulated the Lagrange multiplier method of Babuska [6], and discussed estimates
for the solution and the boundary flux. The Lagrange multiplier approach to enforcing
solution continuity is related to interface formulations using Poincaré-Steklov operators on
the regular mesh by Dorr [48]. Exploiting the structure of the Lagrange multipliers, Bel-
gacem [11] has applied it to the mortar finite element method. Further, he has discussed
the construction of the discrete Lagrange multiplier space, which is compatible to the dis-
crete trace space, so that the Babuska-Brezzi condition (inf-sup condition) is satisfied. In
[126], Wohlmuth has analyzed the mortar finite element method with Lagrange multipliers
using dual Lagrange multiplier spaces. In [88], Lamichhane and Wohlmuth have extended
the mortar finite elements with Lagrange multipliers to elliptic interface problems. Sub-
sequently, Hansbo et al. [80] has analyzed the Lagrange multiplier method for the finite
element solution of the multi-domain elliptic PDEs using non-matching meshes. Moreover,
they introduced a penalty term as a stabilizer and derived a priori error bounds.

DD methods for time dependent problems have been discussed in [40, 41, 42, 58, 59,
60, 87, 110, 130] and the references, therein. In [40, 60, 87], the authors have discussed the
DD method in the frame work of finite difference schemes. Kuznetsov [87] has proposed a
modified approximation scheme of mixed type, where the standard second order implicit
scheme is used inside each subdomain, while the explicit Euler scheme is applied to update
the interface values on the new time level. Once the interface values are available, the global
problem is fully decoupled and can, thus, be computed in parallel. A similar scheme was
proposed in [40, 41, 42], where instead of using the same spacing h as for the interior points
where the implicit scheme is applied, a larger spacing H is used at each interface point
where the explicit scheme is applied. Due to stability and accuracy requirements, both
methods do not lead to satisfactory computational results. In the two-dimensional finite
element case Dryja [58] has proved 22,}1 is the preconditioner for S, where the condition
number, m(flgkflh) is bounded by C(1 4+ log)? C > 0 is a constant independent of h, H
and At, 3, being the Schur complement matrix and H being the diameter of the sub-
domain. Dryja [59] used Crank-Nicolson scheme for the time discretization of parabolic
problems, and this algorithm is stable and convergent with an error bound O(At + h) in

an appropriate norm. But the error bound obtained for the method is same as for the
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backward Euler scheme. Zheng et al. [132] have discussed nonoverlapping DD method for
parabolic problems based on stabilized explicit Lagrange multipliers. First they formulate
the problem into a differential algebraic equations and then solve them using Runge-Kutta-
Chebyshev projection method [131]. To develop a stabilized explicit DD finite element
method, they use the mass lumping technique [127].

A brief outline of this chapter is as follows. In Section 2.2, we formulate the elliptic
multidomain problem and we introduce Lagrange multipliers on inter-element subdomain
boundaries. The key feature that we have adopted here is nonconforming Crouzeix-Raviart
space for the discretization of the primal variable. In Section 2.3, we have discussed both
L? and H! error estimates. In Section 2.5-2.7, we extend the method to parabolic initial
and boundary value problems and analyze the error estimates for both semidiscrete and
fully discrete schemes. Finally, Section 2.4 and Section 2.8 deals with some numerical

experiments to support our theoretical results.

2.2 The elliptic problem
We consider the following second order problem:

Au = f Vo € Q,

(2.2.1)
u = 0 YV € 0,

where 2 is a bounded convex polygon or polyhedron in R?, d = 2 or 3 and f € L?*(Q).
The weak formulation of (2.2.1) is to find @ € HJ(f2) such that

ao(i,v) = (f,v) Vv € Hy(Q), (2.2.2)
where
ag(v,w) = / Vv - Vuw dx. (2.2.3)
Q

To describe finite element approximations for (2.2.2), we begin with a regular triangulation
of Q. Let Ty, be a regular triangulation of {2 into triangles for d = 2, tetrahedrons for d = 3.
Let the boundary of T" be denoted by 0T and let 7" denote an edge of T" when d = 2,
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Figure 2.1: Nonconforming finite elements

a triangular face when d = 3 (see details in Chapter 1). Let P.(T") denote the space of
polynomials of degree less than or equal to r in two variables defined on the triangle T'.
Now, we define the nonconforming Crouzeix-Raviart space (cf. [39]) associated with the

triangulation 7j,. Let

X, = {v € LQ(Q) | v, € Pi(T), T € Ty, v is continuous at p € N,
and vanishes at p € 'y}, (2.2.4)
where IV}, is the set of all face barycenters of elements of 7, in the interior of €2 and Iy
is the set of all face barycenters of elements of 7, on the boundary of 9€2. A function
in X, is completely determined by its values at centers of the sides of the triangle (d =

2) or tetrahedron (d = 3) in 7, (cf. Figure 2.1). Then, the nonconforming Galerkin

approximation of (2.2.2) is defined as the solution ; € X}, of
al (i, v) = (f,vn) Yo, € X, (2.2.5)
where
ap (vp, wp) = /QVvh - Vuwy, dx. (2.2.6)

Lemma 2.2.1 The problem (2.2.5) has a unique solution.
Proof: Since (2.2.5) leads to a system of linear algebraic equations, it is enough to prove

uniqueness. Setting f = 0 and vy, = uy, in (2.2.5), we obtain al (i, u,) = 0. Hence on each
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T € Ty, %:O,Whereizl, 2, when d =2 ori =1, 2, 3, when d = 3. Thus, uy is
constant orfleach element T' € 7;,. Since uy, € X}, @y, is continuous at p € N, NIy, and @y (p)
vanishes at p € 9€). Therefore, u; vanishes for all elements T if at least one face belongs
to 02. We can continue the argument for elements 7" in the interior of €2 not necessarily
having boundary 0T a part of 02 and obtain u;, = 0. Hence, the problem (2.2.5) has a

unique solution and this completes the proof. [ |

Lemma 2.2.2 [62, Lemma 3.31, pp. 127] (Extended Poincaré inequality). There exists
C(Q2) depending only on S such that, for all h <1,

1/2
||UhH07Q < C(Q) <Z ||V,UhH?),T> Y, € Xh. (227)

TeTy

The next theorem follows from [15, Theorem 1.5, pp. 106].

Theorem 2.2.1 Suppose €2 is a convex and bounded domain. Then, there exists a constant

C > 0 independent of h such that

1/2 1/2
||u—uhuo7a+h(Zuv<u—uh>uaT> <cn (Zuunz,T) @28

TeT, Te€Ty

where U and uy, are the solution of (2.2.2) and (2.2.5), respectively.

Lemma 2.2.3 [107, Lemma A.3, pp. 39] Let T be a triangle or a quadrilateral in a shape

reqular triangulation T,. Then, there exists a constant C > 0 such that for v e HY(T)

1
ol or < € (5 Iblfe + el [0l ) 229)

2.2.1 Lagrange multiplier on inter subdomain interfaces

In this subsection, we discuss the variational formulation for the multi-domain problem
and introduce Lagrange multipliers on inter-element subdomain interfaces.
For the domain decomposition method, let the domain €2 be partitioned into a finite

M
number of non-overlapping sub-domains Q; (i = 1,2,---, M) with Q = UQ“ and let

=1
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Figure 2.2: Normal vector v outward to Q;

M

Iy =0Q;N0Q; =T with |I';;| as the measure of I';;. Further let I' = U I';; and
i=1, i<jEN()

I, = 09;\09 denote the interior interfaces, where N (i) = {j # i||I';;| > 0}. Now we are

in a position to write the multi-domain problems. Find u;, i =1, 2,--- , M satisfying the

following subproblems:

([ Aw = f moQ,
U; =0 on 3QZﬂaﬂ,

2.2.10
up = U on I';;, jeN(i), ( )
8u2- an . .
— — Fi'7 6 N 5
.\ Ov v on Ly J (3)
where u; = U, fi = f|9i7 i=1,2,--- M, and v = v¥ = —13" on I';; and ¥ and

17" are unit outward normals to 9€; and 9, respectively. Note that last two conditions

(2.2.10)2-(2.2.10)3 are called the transmission conditions on the artificial interface I'.

M
Let X; = {v € H(Q) | vjpgnpe = 0}, i =1,2,-- M and X = [[X;. The space X
i=1

endowed with the norm

M

ol =D il o, (2.2.11)
i=1
M

is a Hilbert space. Note that |v|% = Z |vi] 7., is a semi norm,

i=1
Now we are looking for the variational formulation of the multi-domain problem. Multiply
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both sides of (2.2.10); by a test function v; € X; and integrate over {2; to obtain
0ui
Vu; - Vv, doe — Z ﬁ,vi = fiv; dx,
& jenay VY Q4
where (-,-) represents the duality pairing between H~2(I') and H2(I') and v is unit
outward normal to ;. Finally, sum over 1 < i < M to find that

M ou; M
Z aq, (Ui,Ui) — Z <67;], Ui> = Z(f“ ,Ui)Qi Vvi c X, (2212)

i=1 JEN(i) i=1

where

ag, (v, w) :/ Vo-Vw dz, (v,w)q, :/ vw dx. (2.2.13)
Qi Qi

M
Define the space Y;; = H_%(Fij) and Y = H H Y;;. Define

i=1 {<jeN(3)

lully = sup (2.2.14)

veH? (M\{0} ||UH%T

We are in a position to introduce Lagrange multipliers on interface. Set the Lagrange

multipliers as
)‘ij = VUZ . Vij = —VUJ' : l/ji on Fz‘j and )\ij = _>\ji on Fz‘j, (2215)

where % is the normal vector oriented from €; to €, (see Figure 2.2). Using (2.2.15) in

(2.2.12) at the interface, we derive the following equations: Find u = (uy, ug, -+ ,up) €

M M
X:HXiand)\EY:H H Y;; such that

i=1 i=1 i<jeN(i)
a(u,v) —b(v, \) = (f,v) Yo e X, (2.2.16)
b(u, ) =0 Y ey, (2.2.17)

where the bilinear form a : X x X — IR is given by

a(w,v) = aq, (w;, vi), (2.2.18)
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the bilinear form b : X x Y — IR is defined by

b(v, ) = i/[: Z <vi —vj, “lrij> ; (2.2.19)

i=1 i<jeN(i)

M
and (f,v) = Z(fi7vi)ﬂi‘ We now define a space Z by

i=1

Z={veX : bv,u=0 VueY}. (2.2.20)
The space Z may be identified with HZ () (see, [112, pp. 394]).

Lemma 2.2.4 The variational formulation of a single domain problem (2.2.2) and multi-

domain problem (2.2.16)-(2.2.17) are equivalent under the following conditions: the test
M

function (vi,vq, -+ ,vp) € X = HXZ- belongs to Hy(Q) and \jj = Vu,; -v7 = —Vu; -

i=1
K OHFZ']', ]_S’LSM,]EN(Z)

Proof. Let @ € Hy(Q2) is a solution of a single domain problem (2.2.2). Setting u; = 1y, ,
we obtain (2.2.16)-(2.2.17). Let (u,\) € X X Y be a solution of problem (2.2.16)-(2.2.17).
Then u € Z and hence u € Hy(§2). Choosing v € H}(2) in (2.2.16), we arrive at

M M
Zaﬂi (ug, v5) = Z(f, v;), (2.2.21)
i=1 i=1
where @, = u; and v, = v;. Therefore, (2.2.21) can be written as
aq(t,v) = (f,v) Vv € Hy (). (2.2.22)
This completes the rest of the proof. [ |

Theorem 2.2.2 [112, Theorem 1, pp. 395] Problem (2.2.16)-(2.2.17) has a unique so-
lution (u,\) € X x Y. Moreover if u € H}(Q) is a solution of the problem (2.2.2) with
up =ty and we have Aij = Vu; - v7 = =Vu; - v on Ty, 1 <i < M, j € N(i).

Below, we state a Lemma on the inf-sup condition satisfied by b(-, -) without proof. For a

proof, see [8, Lemma 3.1(c), pp. 614]. We need Lemma 2.2.5 in our future analysis.
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Lemma 2.2.5 There exists a constant Ko > 0 such that

inf osup M s g (2.2.23)

0£ueY  ozeex  ||V||x|lplly T

Discrete multidomain formulation. Now we focus our attention on the discretization of
the problem (2.2.16)-(2.2.17) based on the Crouzeix-Raviart element. For the triangulation
T, we now assume that the triangles (resp. rectangles) T' should not cross the interface
I';;, and thus, each element is either contained in Q; or in Qj and they share the same
edges of I';;. For multi-domain problem, let X, = Xh\szi’ where X, is defined in (2.2.4).
Define Xgh = {uplvy, € Xip and vp(p) = 0 at p € 08}, We now define two discrete
spaces Y;, and Y, on 0Q; and I'j;, respectively, as follows. Let Y;; consist of piecewise
constant elements on triangulation 7j, ; -y where 7j, ;) o0, is the triangulation of 0%; \ 02

inherited from 7y, i.e., Ty, Furthermore, let Y;;, = Y;;’h‘f‘ij. The spaces

- 77”891-\89'
are nonconforming, since X, is not subspace of X;. For v € X;, set the discrete H*

semi-norm as

0o, = D /:F\VU\2CZ% (2.2.24)

TGT]—LW;

and defines the H! norm by

oll: g, = 1013 g, + 1101160, (2.2.25)
Note that
M
10113 = [lvll ho, (2.2.26)
i=1

defines a norm on Xj. Given the finite dimensional spaces X, Y; and Yj;;, we now

introduce linear operators:
it Xin — Yin and i © Xin — Yijn, (2.2.27)
respectively, as

7ri,Ui|5 = ’Uz(p) Ve € 7;177;‘60 and TV = 7T7;U7;‘F__, (2228)
i )
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where e € 91" N 0€Y; is edge of the triangle T' € 7, ;,, and p is the face barycenter of T'.

Similarly, we define the linear operators

Sz’ . )/i,h — Xz',h and Sz'j . )/ij,h — X@h (2229)
as
w; freedom on 0€);, w;; freedom on T,
Siwl- = and Sl-jwij = (2230)
0 other freedom, 0 other freedom.

From (2.2.29) and (2.2.30), we note that in general m;v; # vy, and S;w;),, # w;. Further,

we observe that
v; — Simv; € X, (2.2.31)
and
™S = 1d;, mi;Si = Id;j, (2.2.32)
where Id; and Id;; are identity operators on Y;;, and Yj; 5, respectively.

Lemma 2.2.6 [109, Lemma 2.1, pp. 2542] There exists a positive constant C independent
of h such that

Imillor, < Cllvi, llory, Vo€ X (2.2.33)
Also, for wij € Yijn,

1S5willoq, < Ch'Y?|wijllor (2.2.34)

ij?
and

1Sijwijline, < Ch™ V2| willor,- (2.2.35)

Now we are in a position to state the nonconforming multidomain approximation of (2.2.16)-
M

(2.2.17). Given f € L*(Q), find up = (upp, -+ ,ump) € Xp = HXi,h and A\, € Y}, =

=1
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M
H H Yi;n such that

i=1 i<jeN(i)

M M

a”(up, vp) — Z Z / Xijn [Top) ds = Z(f, Un)Q; Yop, € Xp, (2.2.36)
i=1 7;<j€N(z') Lij i=1
Z > / Tup] pnds = 0 Y, € Yy, (2.2.37)
1=1 i<jeN(i)
where
M M
a” (vp, wp) Za a, (Vihs Wip) Z/ Vi p - Vw;p, do (2.2.38)
i=1 i=1 Y%
and
[71' ’Uh] = ﬂ—ij U@h — 71']'7; Uj,h on FZJ (2239)

Since py, € Yy, and m;5v;, € Y), are constants on I';;, using mid-point rule we obtain

/ iU pon, ds = Z vn(p)pen(p)|sp] Vo, € Xy, pn € Ya, (2.2.40)
r

j pEFijﬂNh
where s, is the element face with p as its barycenter and |s,| is the measure of s,,.

M
Lemma 2.2.7 Let up, = (uyp, - ,unpp) € Xp = HXi,h. Then @y, € Xy, if and only if

=1

Z ) / ] o Viin € Ya, (2.2.41)

1=1 §<jeN(i)

where up, = (Uyp, - ,unp) and ap are the discrete solutions of (2.2.56)-(2.2.37) and
(2.2.5), respectively.

Proof. Here X, = Xh‘ﬂi’ 1=1,2,---, M, i.e., localize the nonconforming Galerkin space
X}, by removing the midpoint continuity constraints on the interfaces between two adjacent
subdomains. Let us consider first 4, € X, i.e., i;,(p) —@;1(p) = 0 on I';;, where p denotes
the midpoints of the triangle edges. Hence, (2.2.41) is satisfied, where u; ,(p) = ﬂh(p)mi.
Similarly, from (2.2.41), we obtain u;,(p) — u;n(p) = 0 on I';;, that is, the midpoint
continuity condition on the interfaces between two adjacent subdomains is satisfied. Thus,

u, € X;, and this completes the proof. [ |
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Lemma 2.2.8 Let (up, A\p) be the solution of (2.2.36)-(2.2.37). Then there is a positive
constant C' independent of h such that

Niallory < C (WY uinling, + B2 fllog:), i=1,2,---, M, Vje€ N(i), (2.2.42)

where M is the number of subdomains.

Proof. Choose vy, = (0,0, -, SijA\ijn, -+ ,0) in (2.2.36). Using Lemma 2.2.6, we obtain

Nignllir, = ab, (win, Sihign) — (f, Sighijn)
< ugnline [ SijAigeline: + 1 f1lo.: 1S Xm0
< Ch 'Pluiplinail|Njnllors; + CRY2 | Fllogl [Ninllors,-
This completes the rest of the proof. [ |

Theorem 2.2.3 Problem (2.2.36)-(2.2.37) has a unique solution.
Proof. Since the problem problem (2.2.36)-(2.2.37) leads to a square system of linear alge-
braic equations, it is enough to prove uniqueness. Setting f =0, v, = (0,0, ,u;p, -, 0)

in (2.2.36) and pp, = (0,0, , Aijp, -+ ,0) in (2.2.37), we obtain

M
> " ag, (wip, uin) = 0. (2.2.43)
=1

From (2.2.43), we can conclude that w;; is constant on each ;. Now, we consider the
subdomains (2;, having at least one face belonging to 0€2. We know that u;,(p) = 0 on
00); N ON), where p is the face barycenters of the triangulation on 0€2; N 92 inherited from
75,. Hence, we obtain u;;, = 0 in 2;, where ; belongs to boundary subdomain. In the
next step, we consider the subdomains 2, adjacent to €2;. Then the continuity of w;; at
the midpoint of I';; shows the u;; = 0 in ;. Similarly, we continue the analysis further
and obtain wu;;, = 0 for all subdomains. Next we wish to show that \;;, = 0 for each T';;.
Setting f = 0 in (2.2.36), using Lemma 2.2.8, we obtain \;;, = 0 for each I';; and this
completes the rest of the proof. [ |

2.3 Convergence analysis

In this section, we derive the error estimate of the discrete multidomain problem.

Below we discuss an interpolation operator for our future use. Given ¢ € H?(Q) N HL(Q),
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let I € X5, N CY%Q) be the continuous piecewise linear function which interpolates ¢ at

the vertices of the triangulation. Define I, : H*(Q) N Hg(Q) — X, N C°(Q) with

(Ine) (p) = 5 (d(v1) + d(v2)) Vo € HA(Q) N Hy(Q), (2.3.1)

1
2
where p denotes the midpoints of the triangle edges, and v; and v, being the endpoints of

the edge. Note that the interpolation operator Iy € X, (I € X),) satisfies

M
1Y = Inllog + Bl = Lidblln < CH* D[] e, (2.3.2)

=1
2.3.1 Consistency error

Since X}, is not a subspace of X, we, therefore, consider the consistency error for the
proposed nonconforming finite element discretization using Strang’s second lemma [34,
121, 122]. Furthermore, we prove below that the discretization error is bounded by the

best approximation error and the consistency error [15].

Lemma 2.3.1 Let (up, A\p) € Xp, X Yy, be the solution of (2.2.56)-(2.2.37) and let (u, \) €
X xY be the solution of (2.2.16)-(2.2.17). Then there exists a constant C' independent of
h such that

||u—uh\\1,hsc{ inf [lu - valli
v €EXp

} F(wp) + Z Z / Nij.n [mwp) ds — a” (u, wy) ‘
)t

i=1 i<jeN(i

)

+ sup , (2.3.3)

wp€Xp ||wh||1,h

M M

where F(wy) = Z(f, wip)a, and a(v,wy) = Z agy, (vi, wip).
i=1 i=1
Proof. Using Lemma 2.2.2 we find that for all v, € X},

a"(vn,vn) = allval|7 - (2.3.4)
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For z, € Xy,

ol lup, — 2|3, agy, (Wih — Zips Wi — Zip)

M-

=1

[a?)i (U5 — Zips Uiy — Zip) + a’éi (Wi — Uy Uiy, — Zz‘,h)]

M-

=1

M M
< CY lu = zallupllun = zallin + D ag, (wsn = wsyuin = zip). (2.3.5)
i=1 =1

To estimate the last term on the right hand side of (2.3.5), we note from (2.2.36) with
wy, € X}, that

M M
a"(un — w,wp) = a (win — ui, win) = (f,win)e,
=1 =

M

i=1
+ Z Z /r Nijn [T wp] ds — ady, (ws,wip) | . (2.3.6)
)T

i=1 |i<jeN(i

The proof of the lemma follows from (2.3.6) with w; , = w;, — 2 p, (2.3.5) and the triangle
inequality and this completes the rest of the proof. [ |
For finding the consistency error, we need to introduce a projection operator @, : L*(T';;) —

Y n, which is defined as

J

The operator @, given by (2.3.7) is well-defined and continuous. It is easy to see that @,

(Qup) mijop ds = / w(mijon) ds Vo, € X (2.3.7)

i 1—‘ij

is identity
Quit=p Y€ Yy (2.3.8)

Furthermore, the operator (), is L?-stable in the sense that

Using (2.3.8) and (2.3.9), it is easy to establish the following approximation result.
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Lemma 2.3.2 There exists a positive constant C' independent of h such that for u €
H'Y?(Ty)

11 = Quallor,, < CH2 |12, (2.3.10)

Proof. For T € Tp,;, p € L*(T';;), and each edge T" € 9T NT;;, we define the average value

ion T as

_ 1
= meas(T") /T/,uds. (2.3.11)

meas

From (2.3.8), we note that @, = fi. Hence, using the triangle inequality, (2.3.9) and
Lemma 1.2.7, we find that

IN

= Bllor + [|Qn (ke — )]0
< Cllp—allor < ChY2||plly oz (2.3.12)

|1t — Qnptl]o,r

The global estimate (2.3.10) is obtained by summing over all local contributions and this

completes the rest of the proof. [ |

Lemma 2.3.3 (Asymptotic consistency) Given f € L*(Q), let (u,\) € X x Y be the
M

solution of (2.2.16)-(2.2.17). Assume that w = (uy,--- ,up) € HHQ(Qi). Then, there

exists a constant C' independent of h such that

F(wy, +Z Z /)‘wh Twp) ds — a” (u, wy,)|

M
1
CLIEN® < Ch Y [uillag, Ywn € Xy (2.3.13)
|[whl |1, —
Proof. Since f, = —Aw; and w, € X, using integration by parts we obtain
uwh Z Z / ij,h 7Twh dS— (wh)
1=1 4<jeN(i)

M
:Z /VuZ Vw; p, dx — Z Z / i [mwp, ds—/fﬂwzhdx

TeT) i<jeN(i) OTNL;j#¢
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—Z Z aulwlhals

=1 TETh 8Tznt

DD DD S ¢ IEHTITRy Ty

i=1 TET]—L’,L' Z<]€N(2) 8Tﬂrzg7é¢
I+ D (2.3.14)

where

0T}, each edge/face of an element T € 7j,; located inside €,
or = and neither in 7' N Ty, nor in 0T NI, (2.3.15)
0Ty, other freedom, that is, T' € 7y, € N(i) and 0T NT;; # ¢.

We now estimate each term of the right hand side of (2.3.14). For the first term of (2.3.14),

we obtain

I = Z Z/ aulwzhdS—Z >y /Vuz Vwgpds.  (2.3.16)

i=1 TeTy; i=1 T€T} ; e€0Tiny
Since each face e of an element T located inside €2; appears twice in the above sum (2.3.16),
we can subtract from w;, its mean-value w; j, on the face e. If e is on 012, it is clear that

wW; , = 0. Therefore, the equation (2.3.16) can be written as

Z Z Z/ (Wi — Wi ) ds. (2.3.17)

=1 TeTh K eeaTznt

It follows from the definition of w; , that / (wip, —w; ) ds = 0. The values of the integrals

also do not change if we subtract a constant multiple of Vu, - v7 on each face e. We can

also subtract from Vu; its mean-value Vu; on e and obtain
M
Y Y [(Fu - Va) o (i - i) ds. (2.3.18)
i=1 T€T, ; e€0Tins ¥ ©
An application of Cauchy-Schwarz inequality with Lemma 1.2.7 yields

M
L < Z Z Z [Vu; — Vi) |oe | [win — Winlloe

=1 TETh,i eG@Tim

M
C Z Z h1T/2 |Uz"2,T h1T/2 |wi,h|1,T

i=1 TET, ;

IA
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o 1/2 1/2
< Ch > il > Jwinlir
i=1 \T€Tp; T€T
M
< ChY il |winllume,. (2.3.19)
=1

For the second term on the right hand side of (2.3.14), we note that

Igzi > > ( /a TAZ-j [wy] ds — /a TAZ-M [wp,] ds) (2.3.20)

=1 Z<j€N(Z) TET}LZ‘ 8TOFij7é¢

:i, Z > (/e)‘iﬂ' [wr] ds—/thAij [Twh] ds)-

i=1 Z<j€N(’i) TETh,i eeaTﬂI‘i]-;«é(z)

+§: > |2 > ( th)\ij [mws] dS—/eAij,h [Twy] ds)

=1 ’L<]EN(Z) TETh,i eE@TﬂFij;«éqb
= Doy + Lo, (2.3.21)

Next, we need to estimate I5; and Io. Observe that

> Y fwids = Y ww)ld

TETh,i EEaTﬂFij7ﬁ¢ pENh‘iﬂFij

= > > /[th]d& (2.3.22)

TGTh’i eeaTﬂFij #¢

where e is the element face with p as its barycenter, |e| is the measure of e and N}, ; is the

set of all barycenters of 7, ;. Using (2.3.22), we obtain

]2,1 = Z Z Z Z /E(Az‘j - Qh)\ij) [wh] ds

i=1 i<jeN(i) | T€Th, e€dTNT;j#¢

S>3 1= @illoe (Ilwiny, loe + o, lloe)
I, ; Ir,;

=1 Z<]EN(2) TET]—L’,L' eE@TﬂFij;Aq&

M
O > [ = @ullory, (lwany, llox, + lwiny lor, )] - (2:3.23)

i=1 i<jeN(i)

NE
g

IA
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For the midpoint rule, it is easy to see that

/ w%dsSC’h/ |Vw, |[dx. (2.3.24)
r Qi

ij

Using Lemma 2.3.2 and (2.3.24) in (2.3.23), we arrive at

M
Ly < C’hl/QZ Z [[Aij — QnAijllor,; | [winline,
i=1 \i<jeN(i)
M
< Chy | D Wallmewy | lwinlhone,
i=1 \i<jeN(i)
< (2.3.25)

=1

Using Lemma 2.2.6, Lemma 2.3.4, (2.3.24) and (2.3.31), we estimate I as

Ly < Z STUD0 DT 1 — @uiglloe (mijwinlloe + [lmjiw;nllo.)
i=1 z<]EN(z T€Ty,; ecOTNIj#¢
< CZ > iin = @udisllor,, (Irgwinllor,, + llmjiwiallor,,) ]
1=1 §<jeN (i)
M
< O3S [ @dallor, (lowny llor, + s, llor,) ]
1=1 §<jEN(4) ’ ’
M

< CHPY L YT s — Qudillory, | lwinline,

i=1 1<JEN(3)

(2.3.26)

i=1
Employing (2.3.19), (2.3.21), (2.3.25) and (2.3.26) in (2.3.14), we arrive at (2.3.13) and this
completes the rest of the proof. [ |

Lemma 2.3.4 Let (up, A\p) € Xp, X Yy, be the solution of (2.2.56)-(2.2.37) and let (u, \) €
X XY be the solution of (2.2.16)-(2.2.17) with given data f € L*(Q)). Assume that u =
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(ug, -+ ,upn) € H H*(Q;). Then, there exists a constant C independent of h such that

M
1A= Nallor < CRY Y uillag, (2.3.27)

=1

Proof. From (2.2.36), we obtain using interpolant I, in (2.3.1)

M
Z Z / ij,h th] ds = Z [a?zi (uz‘,havz’,h> - (f, Uz’,h)ﬂi}
i=1 i<jeN() Y Vi i=1
M M
= [a}gl)i(lhui — Uy, Uz’,h) + a?li (Ui,h — Thuy, Ui,h)} + Z [a?)i (s, Ui,h) - (f, Ui,h)Qi}
ZA; ZJVlI ou;
Z [a, (Inui — wi,vip) + afy (win — Iyug, vip) | + Z Z / 3V;U“1d$ (2.3.28)
=1 i=1 T€T} ;

Using the operator @y, in (2.3.28), we can rewrite it as

Z Z / ijh — QnAig) [T o] ds = Z [ad, (Tnu; — ui, vn) + afy (i, — Tnug, vip) |

i=1 i<jEN (i) i=1

+ZZ/ gf%whds—Z > /Qh i [ on]

i=1 TeT} ; i=1 ¢<jEN()

M
:Zahz Inu; — w;, v +Z aQ (wip — Inug,vip) —1—2 Z / Ou; U p ds

=1 i=1 TeT, ; Y 9Tint ar
M
T Z Z Z Z (/ ij [vn] ds — QnAij [mup] ds) . (2.3.29)
i=1 T€Ty,; |i<jeN(i) OTNLi;#e aor

Using Cauchy-Schwarz inequality for the first and second terms, (2.3.19) for the third term,
and (2.3.25) for the fourth term on the right hand side of (2.3.29), we arrive at

Z Z/ Aijn — @nAig) [ up] ds<ChZ||ul

=1 i<jeN(i)

(2.3.30)

Choose vy, = S;j(Nijn — QrAij) in (2.3.30) and using Lemma 2.2.6, we obtain

M
Z Z ||)‘Z]h Qh)‘UHOTij < C h'/? Z HUZH?,QZ (2'3'31>
=1

1=1 §<jeN (i)
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Using triangle inequality, we arrive at (2.3.27) and this completes the rest of the proof. H
Combining the Lemma 2.3.1, Lemma 2.3.3 and Lemma 2.3.4, we obtain the following

estimates.

Theorem 2.3.1 Let (up, \p) € Xp, XY}, be the solution of (2.2.36)-(2.2.37) and let (u,\) €
X XY be the solution of (2.2.16)-(2.2.17). Then, there exists a positive constant C' inde-
pendent of h such that

M
[l = unllin + 22X = Mullor < Ch Y Juillog,- (2.3.32)

i=1

2.3.2 A priori estimates in L?>-norm

For L?-error estimates, we appeal to Aubin and Nitsche duality argument (see, [4, 22, 34,

15]).
Theorem 2.3.2 Let (up, \p) € Xp, XY}, be the solution of (2.2.36)-(2.2.37) and let (u, \) €
M

X XY be the solution of (2.2.16)-(2.2.17). Assume that uw = (uy,--- ,up) € HHQ(Qi).
i=1

Then, there exists a positive constant C independent of h such that

M
= unlloo < CH* > |luill20,- (2.3.33)

=1

Proof. Fori = 1,2,--- M, let ¢; = w; — uip, ¢ = ((1,---,Cu) and let ¢; = VYlo, €
H?(€;) N H} () be a solution of the transmission problem :

( _sz = CZ n Qi;
v, = 0 on 0$; N O,
. . (2.3.34)
v = Y on I'y;, je€ N(i),
oY o; . .
= U T N
L Ov ov on Ty, j € N(i),
which satisfies the regularity condition
M
> W la0: < Clicllog: (2.3.35)

i=1
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Since ¢ = (¢1,++ ,Cn) € X, we multiply both the sides of (2.3.34) by (; and integrate

over €);. Now integration by parts yields

M M M 1/1
1l15.0 =D G150 = D (=A%, G) = Z Z (/ Vi Viide = [ == Gd )
£ £ ~ 5
M
h
ZX:I:QQZ ¢Z>Cz ZZ;T;; /T aVT
5303 ID S oy

=1 T€Ty,; |i<jeN() OTNLi;#¢

Moreover,

M

- 0
€l = o (G~ ) +Za9 Gh) -3 3 / SorGids

vy ly v / ~(23.30)

i=1 T€T},; |i<jeN(i) OTNCi;#¢

Since Ip; € X, and using (2.3.6) and (2.3.14), we obtain

M M

> ag (G It =) Z/ gf}fhwids— 3 / Ajn lrhp)ds| . (2.3.37)
=1

i=1 TeT),; i<jEN(7)

Substituting (2.3.37) in (2.3.36), we find that

O
||<HOQ—ZaQ<<z,¢Z 1) ZZ/ 00 Gods

i=1 T€T}
- Ju;
I SN SRS Sl TGI8 B o S M- YA
i=1 T€Ty,; |i<jeN(i) 8Tr11“]7£¢> /T % i=1 TeT,, 9T OV
3 3 | [ i [ vl
i=1 i<jeN(i) I Tyj

=1+ I, + Iy + Iy + I (2.3.38)



Chapter 2. Domain Decomposition Methods 53

Now, we have to estimate each of the term on the right-hand side of (2.3.38). For I3, using
Cauchy-Schwartz inequality, (2.3.32) and (2.3.2), we arrive at

I3 < ZHCZ

'||2,Qi

M
— Inthilling, < C’h22||ui\
i=1

M
Ch* > [
i=1

For obtaining the estimates of I, and I5, we proceed similarly as in the estimate of I; in

IN

oo (2.3.39)

the previous subsection and obtain

M M
1< Ch Y WilleallGlne, < O 3 lludlaaIGlon, (2340
i=1 i=1
and
M M
Is| < Ch > v lline, <CR* Y 0,0 (2.3.41)
i=1 i=1

Since ¥; = Y = ¢j, i = ¢, and ; = ¢y, , where T7 and T3 are two triangles in 7y, ;

with 7" as the common edge, we find that

/ i s +/ (9u7{ W, ds = 0. (2.3.42)
T T

reomnoT, OV rcorinoT, V2

Using (2.3.42) in I, we obtain

) ol -

i=1 TeT;

, (2.3.43)

CwasY Y Y [

i=1 TeTy; e€OTint

where [v,] = vy, 7~ Uhlgys and let e denote the common face of two triangles. Note that

/[vh] ds =0, (2.3.44)

since [vp] is linear and vanishes at the midpoint of e. Using (2.3.44) in (2.3.43), we obtain

Y Y [(u-Ta)wlne - lds 2545

i=1 T€T,,; e€dTin: ¥ °
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where Vu is the mean value of Vu on e. An application of Cauchy-Schwarz inequality with

Lemma 1.2.7, Lemma 2.2.3, and (2.3.2) yields

M
Io < CRY 3 lluillo, 3o (W21 = Ttillor + 19 — Tusillgs 1 — Tl )
=1

TETh,i
u 1/2
< OB uillag, § Y BN = Inllor + | D 1 — Intiillor
=1 T€Th,i TET,
1/2
X Z |[9i — Intil 10,7
TGT]—LW;
a 2
1
<CRE Y uillzg, {B Willag, + (B2 il a0, b1l 20) " }
i=1
M M
<Ch Z lwill2.0, [[¥ill2.0, < C'h? Z |[uill2.0; [1Gillo.0:- (2.3.46)
i=1 i=1
For I;, we rewrite it as
M
n=3 > | [ o= [ ot
i=1 i<jEN(i) Lij Lij
+/ (Qh>\z‘j — )\z’j,h) [71']}[(” ds } . (2347)
Fij

Using (2.3.22) in (2.3.47), we obtain

D3 Dl D SRED DR [V At

i=1 i<jEN(i) |TET,,; e€dTNT;#¢

M

- Z Z Z /E(Qh)\ij — )\ij7h) [[p]ds| . (2.3.48)

i=1 i<jeN(i) | T€Th,; e€dTNTij#d

Since 1; = 1; on I';;, we therefore, arrive at

I; = Z Z Z Z /e()\ij — QnAij) [Iny — ) ds

i=1 i<jeEN(i) |TET,,; e€dTNTi;j#¢

M

FX T NE Y @) e —vlds| . (@23.49)

i=1 i<jeN(i) | T€Th,; e€dTNTij#d
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We proceed similarly as in the estimates of Iy; and Iy in the previous subsection and

using (2.3.2), we find that

M
Il < CR Y luilla,

i=1

Substituting (2.3.39), (2.3.41), (2.3.46) and (2.3.50) into (2.3.38) and using the triangle

Gillo.0:- (2.3.50)

inequality, we obtain (2.3.33). This completes the proof of the theorem. [ |

2.4 Numerical experiments

In this section, we have applied the discrete scheme to a model problem.

The numerical implementation scheme has been performed in a sequential machine
using MATLAB.

Consider the problem (2.2.1) with f = 2[z(1 — ) + y(1 — y)]. The exact solution of
the problem (2.2.1) is given by u = 2(1 — z)y(1 — y). Here we consider 2 = (0,1) x (0, 1).
We decompose the square into [0,3/4] x [0,1] and [3/4,1] x [0, 1], with interface I' =
{3/4} x (0,1).

h | D.OF.in | D.OF.in Qs | e, = |[u —unlloo | Rate
1/8 138 46 2.13638547 x10~* -
1/16 564 188 5.55749496x 10> | 1.9427
1/24 1278 426 2.48861646x10~° | 1.9818
1/32 2280 760 1.40354724x107° | 1.9908
1/40 3570 1190 8.99370414x107° | 1.9945
1/48 5148 1716 6.24978544x 107 | 1.9964

Table 2.1: L? error and order of convergence for the 2-domain case

In Figure 2.3, the graph of the L? error ||u — uy|| is plotted as a function of the dis-
cretization step ‘A’ in the log — log scale. The slope of the graph gives the computed
order of convergence as approximately 2.0. These results match with the theoretical results

obtained in Theorem 2.3.2.
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Figure 2.3: The order of convergence

In Table 2.1, the L? error e, = ||u — uy|| for h = 1/8, h = 1/16, h = 1/24, h = 1/32,
h =1/40 and h = 1/48 are given.

2.5 The parabolic problem

In the remaining part of this chapter, we consider the following parabolic initial and bound-

ary value problem. Given f € L?(Q) and uo(z) € L*(2), find u = u(x,t) such that

u — Au = f(x,t) in Qr=(0,T] x Q,
u(z,t) =0 on 09, te (0,7, (2.5.1)
u(z,0) = up(x) in

where Q is a bounded convex polygon or polyhedron in IRY, d = 2 or 3 with a Lipschitz
continuous, piecewise C'' boundary 95).

The weak formulation corresponding to the problem (2.5.1) may be stated as follows:
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given f € L*(Qr) and ug € L*(Q), find @ : (0,T] — H(Q) such that

(g, v) + ag(u,v) = (f,v) Vo e HHQ),

2.5.2)
u(0) =y, (

where
ag(v,w) = / Vou-Vwdzr, and (v,w)= / vw dz. (2.5.3)
Q 0

Theorem 2.5.1 Assume that the bilinear form a(-,-) is both continuous and coercive in
H}(Q) x H}(QY). Then, given f € L*(Qr) and ug € L*(), there exits a unique solution
w: [0,T] — H}Q) to (2.5.2). Moreover, u depends continuously on the data; i.e., there

exists a constant C' such that

T T
mox el + [ llalRa < € (lllRa+ [ 1£10) 254)
te[0,T] 0 0

For a proof of this theorem, we refer to [93].
Now we are in a position to write the multi-domain problems. Find u;, t =1, 2,--- , M

satisfying the following subproblems:

;

Uit — AUZ = fl(x,t) in Qi, t e (O,T],
u; =0 on 8QZ N 89, t e (O,T],
U = U, on I'y;, jeN(@i), te(0,T], (2.5.5)
o :a—yj on Fija jEN(Z), tE(O,T],
UZ(O) = Ug|q,, in Qi7
where u; = Uy, , uy = Uyg, fi = fio, i =1, 2, , M and v = v = 1i" on T; and ¥

and 17" are unit outward normals to €; and Q;, respectively. Note that (2.5.5)3 - (2.5.5)4
are called the consistency conditions on the artificial interface I';;. Now we are looking for
the variational formulation for the multi-domain problems (2.5.5). Multiply both sides of
(2.5.5)1 by a test function v; € X; and integrate over €2; to obtain

ou;
v de +/ Vu; - Vudxr — <—.Z.,vi> = / fividz,
/Qi t a Z oV Q,

JEN(3)
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where (-,-) represents the duality pairing between H2(I') and H~2(T") and v;; are unit
outward normals to 0€2;. Finally, sum over 1 <i < M to find that

M M
Ou;
Z (wiis vi)o, + ag, (ui, v;) — Z) <—6;j,vi> = Z(fz,vz)g Vo, € X, (2.5.6)

i=1 JEN(i i=1
where
ag, (v, w) = / Vo-Vwdzr, (v,w)q, = / vw dz. (2.5.7)
Qi Qi
Below, we discuss the Lagrange multipliers method on interface I';;. Find u = (uy, ug, -+, upnm) :

M M
0T eX=]][XiandA: (0.T)eY =] [] Y such that

i=1 i=1 {<jEN(7)
(ug, v) + a(u,v) — b(v,\) = (f,v) Yo e X, (2.5.8)
b(u, ) =0 Yu ey, (2.5.9)

where the bilinear form a : X x X — R is given by
M

a(w,v) = Zaﬂi(wz‘,vz’), (2.5.10)

=1

the bilinear form b : X XY — IR is defined as
M
o) =S Y <MFU_, v —vj> (2.5.11)
i=1 {<jeN(i)
and (-,-) denotes L? inner product.

Below, we state a Lemma and Theorem without proof.

Lemma 2.5.1 The variational formulation of a single domain problem (2.2.2) and multi-

domain problem (2.5.8)-(2.5.8) are equivalent under the following conditions: the test func-
M

tion (vy,vg,- -+ ,vp) € X = HXi belongs to HJ(QY) and \ij(t) = Vu,; - V9 = —Vu,; -

i=1
vt on Ty, 1<i< M, je N(i).

Theorem 2.5.2 Problem (2.5.8)-(2.5.8) has a unique solution (u, \) € C°([0,T] :€ X x Y).
Moreover if w: [0, T] € Hy(Q2) is a solution of problem (2.5.2) with u; = ), and we have
Nij(t) = Vu; - v = —Vu; -7 on Ty, 1 <i < M, j € N(3).

The proof of Lemma 2.5.1 and Theorem 2.5.2 follow in the same way as those of proof of

Lemma 2.2.4 and Theorem 2.2.2, respectively.
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2.6 Semi-discrete approximation

In this section, we focus our attention on the spatial discretization of the problem (2.5.8)-

(2.5.9). We state the variational formulation for the semi-discrete problem. Given f €

M
L2(QT)7 find Up = (uLh;”' auM,h) : (OvT] - Xh = HXi7h and )\h : [O,T] — Yh =

i=1
M
H H Y 5, such that
i=1 i<jeN(i)
M M
(o vn) + @) = S S / Nonlrod ds =S (fo)a, Yo € X, (261)
i=1 i<jeN(i)” Vi i=1

Z > / [ un] pn ds =0 Vi € Yn, (2.6.2)

and initial condition

uh(O) = U,h, (263)
where
M M
a"(vp, wy) = Zagi(vm, wip) = Z/ Vi - Vw,y, de, (2.6.4)
i=1 i=1 /S
[7'(' Uh] = Tj Uj,h — T4 Ujp ON Fz‘j (265)

and v, is an approximation of uy onto X, to be defined later.

Theorem 2.6.1 Problem (2.6.1) - (2.6.2) has a unique solution w, = (Uyp, -, Unp)
M M
0,7 — X = HXi,h and Ay, : [0, T] = Y, = H H Yin. Moreover, there exist two

i=1 i=1 {<jeEN()
constant C' and « independent of h such that

unllo.o < C (JJuonllog + [ f]] 20,2200 ) - (2.6.6)

Proof. For simplicity, we prove the above theorem for the two fixed subdomains, i.e.,

M = 2. Since X}, and A, are finite dimensional, the semidiscrete problem (2.6.1)-(2.6.2)
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leads to
doz,]; 1
Mnﬁ + Ayag, — Bir B, = F, (2.6.7)
doz,21 9
Mmﬁ + Agsaij, + Bor B, = F, (2.6.8)
BplOé}ll — Bpgai = O, (269)

where M;; = [m;k] with mé.k = (¢4, ), Aii = [aj-k] with aék = a;,(¢j, ¢), F; = (F;) with
FJZ = (fia¢j)a ]71{: = 172 ’ 'Ni> L= 1727 and BiF = [bzg] with b;s - b(¢jaws)a .7 = 172 ’ 'Ni>
s=1,2---Np, Br; = BL, i = 1,2. Here N; is the number of unknowns in the ; including
the interface I' and Nt denotes the number of unknowns on the interface I'. Since the mass

matrix M;;, ¢ = 1,2 is invertible, we obtain

1
day,

T M 'Fy — M*Anap, + M Bir B, (2.6.10)
doz% 1 1 2 -1
W = M22 Fg — M22 AQQOéh — M22 ngﬂh. (2611)

Differentiate (2.6.9) with respect to time, and find that

dat dork
Br{—" — Bro—" = 0. 2.6.12
i r2—, ( )

Substituting (2.6.10)-(2.6.11) into (2.6.12), we arrive at

(BriMy;' Bir + BroMsy' Bor) B, = (—BriMy' Fi + BriMy;' Anay,)
+ (BF2M2_21F2 - BF2M2_21A2205]21) . (2613)

Since (BleﬁlBlp + BFQM;;BQF) is positive definite, we, therefore, obtain

By = (BriMi;'Bir + BraMay' Bor) ™' (= Bri My Fy + BroMy' Fy
-+ .Bl"1]\41_1114110(]11 - BF2M2_21A2201}21) . (2614)

Setting ¥ = Bry M;,' Bir + BroMs,' Bor and substituting (2.6.14) into (2.6.10)-(2.6.11), we

now arrive at a system of linear ordinary differential equations

dot _ _ _ _ _ _
d—th + (I + My'Bir(2) " Bri) My Aoy, — M3 Bir(3) ™' BroMyy' Apc,

= M{'Bir(X) ' Bry M ' Fy — My' Bir(X) ' BroMy,' Fy - (2.6.15)
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and

do? _ _ _ _ _ _
d—th + ([ —+ M22lBQF(E) IBF2> M221A220(}21 — M22IBQF(E) lBI*1A7\411114110{]11

= My, Bop(X) ' BroMy,' Fy — My, Bor () 'BriM ' Fy - (2.6.16)

with given «a(0). An appeal to Picard’s theorem yields the existence of a unique solution
anp = (ap,a?) of (2.6.15)-(2.6.16) on [0,T]. Substituting the value of ay, in (2.6.14), we
obtain a unique (3,. This completes the proof of existence and uniqueness of (uy, Ay) on
(2.6.1)-(2.6.2).

Suppose (up, Ap) is a solution of (2.6.1) and (2.6.2). Choose v, = uy, in (2.6.1) and up = Ay,

n (2.6.2), then we arrive at

1d

2 dtHuhHOQ +a (Uh,Uh) (f7 uh)' (2617)

Using Cauchy-Schwarz inequality, coercive property of a”, |(f,vs)| < [|f]lo.q|lvnllo.o and

llonllo.o < Cllvpl|in in (2.6.17), we obtain

d
Tllenllga +alluallty < C(@)I 150 (2.6.18)

«
Here we have used ||f[loe|loalloe < Cllflloallvnllie < C(@)[If§a + Sllonlliq. Now
integrate (2.6.18) over 0 to 7' to obtain (2.6.6). Similarly we can proceed for more than

two subdomains. This completes the rest of the proof. [ |

2.6.1 EFError estimates

In this subsection, we discuss error estimates for the semi-discrete scheme.

For given u and )\, define R,u € X} and GpA € Y}, by

a"(u — Ryu,vp,) — Z Z [/ i [on) ds — G [ vg] ds]
1=1 §<jeN (i)
= Z > / ads  Von € X, (26.19)

i=1 T€T, ; Ty O

Z Z / [u — 7 Rpu] pup, ds = 0 Yun €Y, (2.6.20)
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Lemma 2.6.1 Let Ryu and Gy be satisfy (2.6.19) and (2.6.20). Assume that
M

{uw, wg, g, upe} € HHQ(Qi). Then there exists a constant C independent of h such that
i=1

a M m
— (u—R h'/? — (A — GiA h =0, 1
(2.6.21)
CLTL
= (u— < O h? —0.1, 2 3. 2.6.22
H@tmu Rpu) o Ch ;lz; 6tl 279., m=20,1, 2, 3 (2.6.22)

The proof follows easily from Theorem 2.3.1 and Theorem 2.3.2.
Theorem 2.6.2 Let (u, \) and (up, \p) be the solutzons of the equations (2 5.8)-(2.5.9) and
(2.6.1)-(2.6.2), respectively. Assume that ug € I_IH2 ;) and u; € HL2 (0, T; H'()).

Then there ezists a positive constant C mdependent of h such that for (0 7],

lu = upllip < C {||U(0) — Uo|lp + R Z llwoll 2@y +h ) ||Ut||L2(o,T;H1(Qi))} -(2.6.23)

i=1 i=1

In addition, if u, € HL2 (0, T; H*(S)), then

=1

M
lu = upllop < C {HU(O) —uonlloo+ 02D ([luoll w2, + ||Ut||L2(0,T;H2(Qi>))} . (2.6.24)

i=1
Proof. Setting

U — Up = (U - Rhu) — (Uh — Rhu) and A\ — )\h = ()\ — Gh)\) — ()\h — Gh)\), (2625)

n 0 P g

we now rewrite

M M
Z agi (827 (%3 h Z uz by Ui h ag (uw (% h) + CLQ ( Rhuz> (% h)]
i=1 =1
M
Uht,’Uh + Z Z / ij,h th dS + (f Uh)
=1 i<jeN (i)

M M
- Z agy, (i, vip) + Z agy, (w; — Ryui,vip).  (2.6.26)
— —
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Using (2.6.19) in (2.6.26) and subtracting (2.6.20) from (2.6.2), we arrive at

(0, v3) + a"(6,v3) Z Z / [mop] ds = (1, vp) Yoy, € X3, (2.6.27)

=1 i<jeN (i)

Z > / [ 6] i ds = 0 [h € Yy, (2.6.28)

1=1 i<jeN(7)
Substituting v, = € in (2.6.27) and u;, = V¥ in (2.6.28) and using Cauchy-Schwarz inequality,
extended Poincaré inequality and Young’s inequality, we obtain

1d

(0%
577100+ allbllin < Cl@linllga + 511611 (2.6.29)

Integrating from 0 to T" with respect to time, we find that

T T
100+ [ 101 < 1010+ Clo) [ Iimlads (26.30)

Using (2.6.22),

10(0)lo. = || Rru(0) = un(0)[[o.0 < [[u(0) = un(0)log + [[Rau(0) — u(0)[o.0

M
S Hu(O) - UO,hHQQ + Ch2 Z HUOHHQ(QZ.). (2631)
i=1
Using (2.6.22) and (2.6.31), we derive the estimate (2.6.24).
Differentiate (2.6.28) with respect to t. Choose p, = ¥ to obtain

Z > / (7 6,] ¥ ds = 0. (2.6.32)

1=1 i<jeN (i)
Substituting v, = 6; in (2.6.27) and using (2.6.32), we arrive at

1d

[16:16.0 + §Eah(9> 0) = (e, 0:). (2.6.33)

Using Cauchy-Schwarz inequality, extended Poincaré inequality, Young’s inequality and

integrating with respect to time, we obtain

T T
A\m%@w+awwmﬁswmmh+cé|m%ﬂ (2.6.34)
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Using (2.6.21)

HO(O)[1n = [[Bhu(0) = un(O)[[1n < [u(0) = un(0)||n + |[Rru(0) — w(0)[[1n
M
< 11u(0) = wonllun + CBS lfuol e (2:6.35)
i=1
Using (2.6.34) and (2.6.35), we derive the estimate (2.6.23). This completes the proof of
the theorem. |

Theorem 2.6.3 Let (u, \) and (up, A\p) be the solutzons of the equations (2 5.8)-(2.5.9) and

(2.6.1)-(2.6.2), respectively. Assume that uy € HH2 ), {us,un} € HL2 (0, T; H' ().

=1
Then there exists a positive constant C' independent of h such that for (0 1],

M
W2 X = Aallor < C {||U(0) —won|lin 1Y ol

i=1
M
+ hz ( HU¢HL2(0’T;H1(QZ.)) —+ HU/ttHL2(0’T;H1(Qi))) } . (2636)
i=1

Proof. From (2.6.27), we obtain

Z > / [won] ds = (0, 0n) + a"(0,0) — (m,0n)  Von € Xp.  (2.6.37)

=1 i<jeN (i)

Now choose v, = S;;¥;; in (2.6.37), using Lemma 2.2.6, extended Poincaré inequality and

Cauchy-Schwarz inequality, we find that
10,0 < C B2 ({lllo.c + 161110+ 116l lo0) - (2.6.38)

To estimate (2.6.38), we need to an estimation of ||0:||o . Now differentiate (2.6.27) and
(2.6.28) with respect to the time to obtain

(Qtt, 'Uh) + a Qt, ’Uh Z Z / ‘I’t 7TUh dS = (ntta ’Uh) (2639)

1=1 §<jeN(7)
M

>y /[ﬂ@t],uhds:o. (2.6.40)

i=1 i<jeN() Y Vi
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Substituting v, = ¢6; in (2.6.39) and p, = t ¥, in (2.6.40), we arrive at
t(@tt,é’t) + tah(9t79t) = t(ntt,é’t), (2641)

and hence,

d
7 (t116:]50) + t18:]135 < CtlInullg.0 +110:l5.0 (2.6.42)

Now integrating with respect to time from 0 to 7', we find that

T T
10020 < / s lInel2 ads + / 16,][2 0ds < C /
0 0 0

From (2.6.43), we obtain

T

T
SHthS,stjL/ 110:]|2 ods. (2.6.43)
0

2 e 2 1T 2
H9t||o,9§z ; 3||77tt||o,9d3+z ; 110:1[5.0ds. (2.6.44)

Using (2.6.21) and substituting (2.6.34) and (2.6.35) in (2.6.44), and applying (2.6.34), we

arrive at

M
C
16:]15.0 < n {HUO —uonll}, + P Z [HUOH%IQ(Qi) + ||utH%2(O,T;H1(Qi))
=1

+Hutt||%2(0,T;H1(Qi)):| } . (2645)

An application of triangle inequality completes the rest of the proof. [ |

2.7 Fully discrete approximation

In this section, we discuss a completely discrete scheme which is based on backward Euler
method for the problem (2.5.8)-(2.5.9). Let 0 < t; <ty < --- < ty be a partition of [0, T
into N subintervals with T'= NAt, At =t, —t,,_1 being the time step and ¢,, = nAt. For

a continuous function © on [0,77, define

@n o @n—l

@@ - At y

(2.7.1)

where ©" = O(t,), n=1,2,3,--- , N.
M
Given f € L*(Qr) and U"™! € X, find U™ = (U}, -+, Usy) € Xp = [[ Xin and A} €

i=1



Chapter 2. Domain Decomposition Methods 66

M
Yh:H H Yipforn=1,23,---, N, such that

i=1 i<jeN(i)

(0.U™,vp) + a™(U™, vp) Z Z / won lmon] ds = (f", vn) Vo, € Xy, (2.7.2)

i=1 i<jEN(i)
D3 / [ U] ds = 0 Vin € Vi (273)
1=1 §<jeN(7)

and
U° = ug, (2.7.4)

where ug, is an approximation of uy onto Xj, to be defined later. We now rewrite (2.7.2)-

(2.7.3) as

(U™, vp) + At a" (U™, vyp) Atz Z / Ap g [mon] ds = (U™ on) + AL (™, on)

1=1 i<jeN(i)

Yo, € Xy, (2.7.5)
Z > / T U™y ds =0 Vin € Yy, (2.7.6)
i=1 <jEN (i)
Theorem 2.7.1 Given (U"Y, X", there exists a unique solution (U™, \}) to problem
(2.7.5) and (2.7.6).
Proof. For simplicity, we prove the result for two fixed subdomains, i.e., M = 2. Since X,

and Y}, are finite dimensional, the problem (2.7.5)- (2.7.6) leads to

Au 0 BIF U? G?
0 Ay —Byr Uy = Gy | (2.7.7)
Bri —Br, 0 AP 0

ZF - AthFa [bz ] with bz = b(gbja lbs), éFz szfw Gn = uUn ! + AtE, E (F’;)

with (F )—(fz,qb]) =12---N;; k=1,2---N;, s =1,2--- Np. Here NNV; is the number
of unknowns in the €; including the interface I' and Nr denotes the number of unknowns

on the interface I' for all 7 = 1, 2,. Since Ay is invertible,

U = A7 (G} — BirA) (2.7.8)
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and
Ul = Ayl (G} + Borl). (2.7.9)

Substituting U} and U} from (2.7.8) and (2.7.9) in (2.7.7), we obtain

ST = b (2.7.10)
where
Xt = Brid'G} — BrA;/ Gy, (2.7.11)
and
S = BriAR'Bir + BroAg,) Bor. (2.7.12)

The system (2.7.10) is called the Schur complement system and the the matrix S, is

called the Schur complement matrix. Rewrite Sy as
ih = il,h + SQJL, with Sz‘,h = BFZAZ_ZIBZF (2713)

Since Y, is positive definite, 3, is invertible, and, hence, we obtain from (2.7.10) a
unique A}. Substituting A} in (2.7.8)-(2.7.9), we obtain a unique U" = (U}, U}) , for
n=1,2,---,N. Similarly, we can proceed for more than two subdomains and this com-

pletes the rest of the proof. [ |

2.7.1 Error estimates

In this subsection, we discuss error estimates for the completely discrete scheme (2.7.2)-

(2.7.3).
Theorem 2.7.2 Let (u”, \") and (U™, \}) be the solutions of (2.5.8)-(2.5.9) and (2.7.2)-
2 2

(2.7.3) respectively. Assume that u(0) € HHQ(Qi), u € HHQ(Qi), uy € L*(0,T; L*(2))
i=1 i=1

2
and u; € HLQ(O,T; H'(S%)). Then there exists a positive constant C' independent of h

=1
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such that for (0,71,

Oglagv\\u — UM < C{|[u(0) = U1 + At |Juge]| 200:22(0))

+hz w(0)|| 20y + |[ullazgan) + el 2o m@y) J (2.7.14)

2
In addition, if u; € HL2(O,T; H?*(Q)), then

=1
Jnax, [ = U™o.0 < C{||u(0) — U°||o.0 + At [[uee] |z200,7:02(0))
M
+02 > (1[u(0) |20 + Nl + el 20zm2@0) }- (2.7.15)
=1
Proof. Set
u(ty) — U™ = (u(t,) — Rpu(t,)) — (U™ — Ryu(ty,)) (2.7.16)
hd on
and
Ata) = X = (M(t) = GiA(E) — (N — GaA (1)) (2.7.17)
on on

Since the estimates for n™ and ®" are known, it is enough to estimate the error ™ and W".
From (2.7.2), we now rewrite

M

h
E ag, (03", vin)
i=1

Ul vin) — agy, (ui(tn), vin) + ad, (wi(tn) — Ryui(ta), vip)]

M:

=1

— (0, U™, vy, +Z Z / ii.n [Ton] ds 4+ (f", vn)

i=1 i<jeN (i) i
M

- Z agy, (wi(tn), vin) + Y ag, (wi(tn) = Ryui(tn), vin). (2.7.18)

=1
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Using (2.6.19) in (2.7.18) at ¢ = t,, and subtracting (2.6.20) from (2.6.28) at t = ¢, we

arrive at

(0,0™, vp,) + a™(0™, vp) Z Z / [mup] ds = (p",vp) + (O™, vn) Vo, € Xy,

1=1 i<jeN(i)
(2.7.19)
Z Z / 71'9 ,LLh ds =10 Vuh € Yh, (2720)
1=1 i<jeN(7)
where
p" =y (t,) — Oul(t,) and o™ = 0, (u(t,) — Ruu(t,)). (2.7.21)
We note that
agm ogn 1 3 n At a g
(0,0",0") = 58,5 (||9 ||3Q) + 7“@9 ||3Q (2.7.22)

Choosing vy, = 0" in (2.7.19), pp, = Y™ in (2.7.20) and using (2.7.22), Cauchy-Schwarz

inequality and Young’s inequality, we obtain
a: (110"(15.0) + At10:0"[[5.0 + all0"[11, < Cr(@)|l"|[5.0 + Co()|0m" (|50 (2.7.23)

Multiplying (2.7.23) by At and summing over n, we arrive at

16" 50 +alt Y |6%[3, < [16°150 + Cr(@)At Y [1p"IIFq + Cala)At Y 110" [[5 -
k=1 k=1 k=1

(2.7.24)

We now estimate each term of the right hand side of (2.7.24). The first term of (2.7.24),

we obtain
16°lo.2 = U = Ruu(0)lloe < [IU° = u(0)][o,0 + [u(0) — Ryu(0)]loq

M
< JU° = w(0)[loq + C B> [|u(0)| |2, (2.7.25)

i=1

Using Taylor’s expansion, write

1 [
pF = —/ (s — tp_1)uyds (2.7.26)
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and hence

2

1 b 1 b
HPng,n < <Kt/ (s — tk—l)HUttHdé‘> < CE (s = tr—1)?||ua| [Pds
te—1

te—1

< OA|uel 20, 0in20)- (2.7.27)

The third term of (2.7.24) is estimated as

M
0l = Y [ 10uit) — Ot P

M

ti
< S (an / / lags(te) — Rotas(t)|2dcdlt
i=1 te—1 7/
M
< C(At)_1h4z"utH%Q(tk,l,tk;H%Qi))- (2.7.28)

i=1
Substituting (2.7.25), (2.7.27) and (2.7.28) into (2.7.24) and using the triangle inequality,
we obtain (2.7.15).

Choosing vy, = 0,0™ in (2.7.19), pj, = ¥™ in (2.7.20) and using Cauchy-Schwarz inequality

and Young’s inequality, we obtain

a3 an n a9 gn 1 n L = n L = n
10672 + 0" (0", 88") < S lI5" B + 51007 B+ 10" B (2.729)

with Z Z / [m6"] U™ ds = 0. Multiplying in (2.7.29) by At and summing over n,

1=1 i<jeN(7)
the error bound shows

At S~ = o At o~ - .
—;}:WMWKQ+§WIKhSC(|WWM+-—§:mﬂbg+ > 10| (2.7.30)
j=1 J=1

We now estimate each term of the right hand side of (2.7.30). The first term of (2.7.30),

we obtain

16°]10 = [1U° = Rpu(O)[le < [[U° = w(0)][1 + [[u(0) — Rnu(0)]]1n

M
< U = w(0)][1n + Ch Y Nu(O)|l2@y.  (2.7:31)

i=1
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The third term of (2.7.30) is estimated as
p— M p— p—
o = 3 [ 1anttn) - Ao s

M
S At / / ‘Utl tk Rhun(tkﬂ dxdt
1= 1

< oAy’ Z el B2, st - (2.7.32)

i=1
Substituting (2.7.31), (2.7.27) and (2.7.32) into (2.7.30) and using the triangle inequality,
we obtain (2.7.14). This completes the rest of the proof. |

Theorem 2.7.3 Let (u™, \") and (U™, \}) be the solutwns of the equatzons (2.5.8)-(2.5.9)

and (2.7.2)-(2.7.3), respectively. Assume that u(0) € HH2 i), u € HH2 i), U €

M
Lo(HY)) u € [[L%(0,T; HY (), uu € HL2(O,T; HY (), uy € L2(0,T; L2(Q)),
i=1 =1

uge € L*(0,T; L3(2)), and uy € L=(L*(Q)). And also assume that U° — R,u(0) = 0. Then
there exists a positive constant C independent of h such that for (0,T]

oax, W2 X" = Apflor < C{AL [[|ueel|r20,1:2200)) + |weel L2200

M

+lullz2omizz@y | + 1Y (11(0)lm2n) + [l + el 2o @)
=1

el oo (mrr () + ||utt||L2(07T;H1(Qi))> } (2.7.33)

Proof. Now Choose v, = 6" in (2.7.19), we obtain

Z Z / " rop] ds = (0,0™,vp) + (0™, vp) — (p", vn) — (O™, vp).  (2.7.34)

1=1 §<jeN (i)

Now choose vj, = S;; V7, in (2.7.34), using Lemma 2.2.6, extended Poincaré inequality and
Cauchy-Schwarz inequality, we find that

19" [Jo.r < C R (106" log + 107 [0 + 11" oo, + 10" llog ) - (2.7.35)

We now estimate each term of the right hand side of (2.7.35). Estimates of second, third
and fourth terms of (2.7.35) are known. Only the first term of (2.7.35) has to be estimated.
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The equation (2.7.19) is true for every n. Then we can write n € {1,2,---, N} such that

(0,0™, vp,) + a™(0™, vp,) Z Z / U™ [rop) ds + (p™, vn) + (O™, v).  (2.7.36)

=1 i<jeN (i)

Also, for n € {2,---, N}, such that

(0,07 wp,) + a" (0™, Z Z / U o] ds + (p" ' o) + (O™, o).

1=1 §<jeN(i)

For n € {2,---, N}, subtracting (2.7.37) from (2.7.36), then we obtain

(00", vp,) + a" (0,0, vp,) Z > / AU [wup] ds + (Bep™, vn) + (Oun™, vp). (2.7.38)

=1 i<jeN (i)

We note that
3 gn H aon 15 3 n||2 At = n||2
(@t@ ,@9 ) == 53,5 (||3t9 ||O,Q) + 7“6&9 ||O,Q‘ (2739)

Choosing v, = 9;0" in (2.7.38), then apply Cauchy-Schwarz inequality and Young’s in-
equality to obtain

17 3 An At = n (O n a n a n
50 (110:6"([5.0) + 1108”50 + 106" |17 < Cr(@)100"[[5.0 + Col)]|9un” [I5 0
(2.7.40)

with Z Z / 0, U™ [r0,0"] ds = 0. Now we have to estimate each term of the right

=1 i<jeN (i)
hand side of (2.7. 35) From Taylor’s series expansion, we know
(At)? L[ 2

u(ty) = u(tn_1) + Atug(t,—1) + 5 U (tn—1) + 51 (s — tn—1)uw(s)ds, (2.7.41)

! e,

At 2 1 tn
U(tn_g) = U(tn_l) — Atut(tn_l) + %utt(tn_l) — 5 / (tn—l — S)zum(s) dS, (2742)

! Ve,
u(ty) = u(tn_1)+ Atu(tn-1 +/ s — tp—1)uw(s) ds, (2.7.43)

tn 1

U(tn—2) = u(t,—1) — Atuy(t,—; +/ tho1 — S)uw(s) ds, (2.7.44)

w(tn) = wp(tn_1) + Atwy(t, 1 +/ (s — tn_1)uw(s) ds. (2.7.45)
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The first term of (2.7.40) is estimated as

Gt = it [(uet) — Bru(tn)) — (ueltur) — Bulta_))]
1
= A (AL (ug(tn) = wp(tn-1)) — (ultn) = 2u(tn_1) +u(tn_2))]. (2.7.46)

~—~

Substituting (2.7.41), (2.7.42) and (2.7.45) into (2.7.46)

tn

[At / 5t u(s) ds— [ (5 — by P (s) ds

th—1 2‘ t

5tpn =

(At)?

n—1
I >
—5 (tn—l — S) uttt(s) d5:| . (2747)

tn—2

— C tn
10" s < x| A0 [ (s = tams Pl s
tn—1

25 [ e e MNP ds 5 = ) o) ]
< OAt M see ()12 ds+/tn_1 lasee ()] ds]. (2.7.48)
The second term of (2.7.40) is estimated as
O = (Alt)2 [(u(tn) — Rou(ty)) — 2 (w(tn-1) — Rau(tn-1)) + (u(tn—2) — Rpu(tn-2))]
— (Alt)2 [(u(tn) — 2u(tn_1) + u(tn_s)) + Ry (u(tn) — 2u(ty_1) + u(tn_s))]. (2.7.49)

Substituting (2.7.43) and (2.7.44) into (2.7.49), we obtain

D™ = @ [ /tnnl(s ) (un(s) — Ryun(s)) ds — / s — ) (un(s) — Ruun(s)) ds| .

tn—2

- 2 tn
100 < T || 5= ol = R

tn—1
N RCEEE I Rhuttuagds]

tn—2

< O(At)'h? i {

i=1

tn tn—1
[ By as+ [ iy as] . @750

th—1 tn—2



Chapter 2. Domain Decomposition Methods 74

Substituting (2.7.50) and (2.7.48) into (2.7.40), multiplying At and summing over n €
{2,3,---, N}, we obtain

2
10:6"|[5.0 < 10:6*|[5.0 + C {(At)QHutttH%?(O,T;LOO) +h2y ||utt||%2(0,T;H1(Qi))} . (2.751)

i=1

From (2.7.40) with n = 1, we obtain
At|00[5.0 + all][F 4 < [16°]13 5 + CA{IP 5o + 1om [[5 0}

M
< 7)1, + O {(Atmuﬁu%mm iy ||ut||%m(H1<m>>} @)

i=1
Substitute (2.7.52) in (2.7.51) and an application of triangle inequality completes the rest
of the proof. [ |

2.8 Numerical Experiments

In this section, we have applied the fully discrete scheme to a model problem. The numerical

implementation scheme has been performed in a sequential machine using MATLAB.

h | D.OF.in Q; | D.OF.in Qy | e = |lu(-, ") — UN|lon | Rate
1/8 138 46 5.84592952x 104 -
1/12 315 105 2.69221264x 104 1.9123
1/16 564 188 1.53057306x1074 1.9630
1/20 885 295 9.84439608 x10~° 1.9778
1/24 1278 426 6.85490517x107° 1.9852
1/28 1743 581 5.04449543x107° 1.9894

Table 2.2: L? error and order of convergence for the 2-domain case

Consider the problem (2.5.1) with f(z,y,t) = e'[z(1—z)+y(1—y)+22(1—2)+2y(1—y)]
and u(z,y,0) = ug(x,y). The exact solution of the problem (2.5.1) is given by u(x,y,t) =
elx(l—z)y(l —y).
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10

9.5 i

7 | | | | | | |
2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2

~In(h)

Figure 2.4: The order of convergence

Here we take Q2 = (0,1) x (0,1). We decompose the square into [0,3/4] x [0, 1] and
[3/4,1] x [0, 1], with interface I' = {3/4} x (0, 1).
In Figure 2.4, the graph of the L? error ||u — uyl is plotted as a function of the dis-

cretization step A’/

in the log — log scale. The slope of the graph gives the computed
order of convergence as approximately 2.0. These results match with the theoretical results
obtained in Theorem 2.7.2.

In Table 2.2, the L? error e, = |u(-,t") — UN|| for h = 1/8, h = 1/12, h = 1/16,

h=1/20, h =1/24 and h = 1/28, and At = h? at time t = 1 are given.



Chapter 3

A Robin-Type Non-Overlapping
Domain Decomposition Procedure

for Second Order Elliptic Problems

3.1 Introduction

In this chapter, we discuss the analysis of an iterative nonoverlapping DD method for
second order elliptic and parabolic problems using Robin-type transmission condition on
the artificial interfaces, that is, on the inter subdomain boundaries. The nonoverlapping
DD method using Robin-type boundary condition as transmission condition on the artificial
interface (inter subdomain boundary) is becoming an an important tool for solving the
following second order elliptic problems:

9 du
— — al(x)—) +b(z)u = f Ve Q,
Z 6:1:1 ( J al'j

1,j=1

(3.1.1)
u = 0 YV e of,

where the coefficients a; ;(z) and b(x) are in L*(€2) and the coefficients a; ;(z) satisfies

ellipticity condition
d
Z a; j(2)6& > aplé]? VEERY, Ve,
ij=1

for a suitable constant ap > 0 and b(z) > 0. The Robin-type boundary conditions as

interface conditions was proposed by P. L. Lions in [92] as a tool for domain decomposition

76
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iterative methods and the convergence properties by taking a suitable pseudo energy was
also investigated in [92]. This idea has been applied to a more difficult Helmholtz problem
by Despres [45, 46]. Exploiting the structure of the mixed finite elements, Douglas et al.
[49] have obtained a more precise convergence rate by a spectral radius estimation of the
iterative solution and the spectral radius has a bound of the form 1 — Ch for quasiregular
partitions when b(z) > by > 0. Subsequently in [52], Douglas et al. have discussed
the convergence rate as 1 — C'h for nonconforming finite element methods by again using
the spectral radius estimation of the iterative solution for the elliptic problems (3.1.1) on
quasiregular partitions when b(x) > by > 0. An improved variant of Lions method is
proposed by Q. Deng and its convergence rate is analyzed in [43, 44]. Deng obtained the
convergence rate by a spectral radius estimation of the iterative solution and the spectral
radius has a bound of the form 1 — Ch for quasiregular partitions when b(z) > by > 0.
In [49, 52, 44], the iterative method is shown to be convergent but without the rate of
convergence, when b(z) = 0. Based on the method proposed in [44], L. Qin and X. Xu
[109] have derived the convergence rate, in general, when the lower term vanishes, i.e.,
b(x) = 0 and the convergence rate is shown to be of 1 - O(h'/2H~%/2), when the winding
number N (see, the Definition 3.2.1 given in section 3) is not large.

A brief outline of this chapter is as follows. In Section 3.2, we introduce an iterative
method for the elliptic multidomain problem. The key feature that we have adopted here
is the introduction of the nonconforming Crouzeix-Raviart space for the discretization
of the primal variable. In Section 3.3, we have discussed discrete iterative multidomain
formulation. In Section 3.4, we have shown the discrete iterative multidomain problem
is convergent. In Section 3.5, we have calculated the rate of convergence for iterative
scheme. In Section 3.7, we extend the iterative method to a parabolic initial and boundary
value problems and analyze the convergence, spectral radius and rate of convergence for
fully discrete schemes. Finally, Section 3.6 and Section 3.8 deals with some numerical

experiments to support our theoretical results.
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3.2 Problem formulation.

We consider the following second order elliptic problem:

—Au = f YV € (),

(3.2.1)
u = 0 YV € 0,

where Q is a bounded domain in IR%(d = 2,3) and f € L?*(©2). The weak formulation of
(3.2.1) is to find w € H}(2) such that

ag(u,v) = (f,v) Vv e Hy(9), (3.2.2)
where
aqg(v,w) = | Vv -Vwdzr. 2.
(v, w) /Q (3.2.3)

To describe finite element approximations for (3.2.2), we begin with a triangulation of 2.
Let 7;, be a regular triangulation of ) into triangles (resp. rectangles) satisfying

TCQ VIeT, Q=T (3.2.4)
TeT,

Let h be the length of the greatest side of the T' € 7j. Let P,(T) denote the space of
polynomials of degree less than or equal to r in two variables defined on the triangle T'.
Now we define the nonconforming Crouzeix-Raviart space (cf. [39]) associated with the

triangulation 7j. Let

X, ={ve Q)| v, € A(T), T €Ty, v continuous at p € N,
and vanishes at p € [',}, (3.2.5)

where IV}, is the set of all face barycenters of elements of 7; in the interior of € and I'y
is the set of all face barycenters of elements of 7, on the boundary of 9. A function in
X}, is completely determined by its nodal values at centers of the sides of the triangles
(d = 2) or tetrahedra (d = 3) in 7, (cf. Figure 2.1 ). Then, the nonconforming Galerkin

approximation of (3.2.2) is defined as the solution u; € X of the equations

a?l(uha Uh) = (fv Uh) v,Uh S Xh; (326)
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Qs Qs Qr Qg Qo Q10
Qa4 Q21 Qa2 Qa3 Q24 Q11
Q3 Q20 Q29 Q30 9253 Q12
Qs Q9 Qog Qa7 Q26 Q13
21 Qs Q7 Q16 Q15 Q14

Figure 3.1: Non-overlapping decompositions of the domain into 30 disjoint sub-domains

where

ap (v, wy) = / Vo, - Vwy, dx. (3.2.7)
Q

Lemma 3.2.1 The problem (3.2.6) has a unique solution.
For a proof, see, the Lemma 2.2.1 given in Chapter 2.

For the domain decomposition method, the domain € is partitioned into a finite num-
ber of sub-domains. We define a sequence of sets D; whose elements are subdomains by

induction:

D, = {€; | at least one face of €2; belongs to 00},
D,y1 = {Q | Q; € D,,Q; share one face with atleast some §2; € D, }.

Definition 3.2.1 [109] There ezists an integer N called the winding number of the domain
N

decomposition such that U D; contains all subdomains of ).
i=1



Chapter 3. Domain Decomposition Methods 80

For example (see Figure 3.1), the integer ¢ in each subdomain means that this subdomain

is Qz So

Dl — {91‘221,2,,18},
Dy, = {Q|i=19,20,---,28},
D3 - {9297930}7

and the winding number N = 3. For notational convenience, we denote a subdomain

belonging to D, by D;r. For example

Dy = (Da)i<i<is = {1, O, -+, s},
Dy = (Dp)ig<i<os = {hg, Qoo, -+, Qas},
D3 = (Djs){i=29, 30 = {29, 30}

3.2.1 Iterative Method for the Multidomain Problem

In this subsection, a nonoverlapping DD procedure is developed and analyzed. Since
the domain 2 is partitioned into a finite number of non-overlapping sub-domains ; (i =

1,2,---, M), we define an iterative procedure as:

ouk
azl = Aj on Iy, j € N(i), (3.2.8)
ij

b = 0 on 0€; N oKL,

7

)\Z = —( ﬁZ]Uf - ﬁjiuf_l ) - )\fl_l Vr € Fija j € N(Z), (329)

where I';; = 0€); N 0Q; with |T';;| as the measure of I';;, I'; = 09,;\0€2 denotes the interior

interfaces, 3;; = B;; > 0 are parameters and
N(i) ={j #1] |T';| > 0}. (3.2.10)

Let Hp () = {uslu; € H'(;) and u; = 0 on 9§; N 0Q}. The weak formulation corre-
sponding to the problem (3.2.8) may be stated as follows: Given {uf, A);, \);} € {Hp. (),

R YRR T
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L2(Fij>, LQ(FJZ)} and f S L2(QZ>, find Uf € Hll‘l(QZ)7 1= 1, cee ,M such that

Z ﬁu/ ubvds = (f,v)q, + Z ﬁji/ ui ods

JEN (i) JEN() Lij
- > / Nettods Vo e HE (), (3.2.11)
JEN(7)
and
—( Bijul — Bt ) = N Vo € Ty, j € N(i). (3.2.12)

Let u be the solution of (3.2.1) and uf(1 < i < M) be the solutions of (3.2.11)-(3.2.12).
For1<:< M,

U; = U|ni, U = (ui)lSiSM c H H%Z(QZ), (3213)
i=1
M
uf = (uf)i<ienr € [ HE(Q (3.2.14)
=1
M
el =ul —u, e = (eM)1cicar € I_IH1 (3.2.15)
=1
and
M
= AN — Mg, k=N — N, ph = (uf) H L*(Ty), (3.2.16)
i=1, jEN(i)

where \;;, Aj; are defined in the (2.2. 15) and e and p* are the errors at iterative step k.

ijs
Assume that u € H}(Q) N H*2(Q), € L*(Ty;), j € N(i). Due to linearity of (3.2.1)

81/2]
and (3.2.8)-(3.2.9), the equations in e} and pf; satisfy

—Aef = 0 in €,
Ok _ on Ty, j € N(i) (3.2.17)
—_ = i n ijy J 1), et
81/2-]- J J
ek =0 on 0£; N9,

ph= =Bk -ty — kbt vrely, je N(), (3.2.18)
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where 3 = f3;; = 3;;. The weak formulation corresponding to the problem (3.2.17) may be
stated as follows:
- / pivds =0 Vv € HE (). (3.2.19)
JEN(7)

Setting v = ef in (3.2.19), we arrive at the following equation :

ek ek Z/ ptelds. (3.2.20)

JEN(7)
Define
JEN(9)
and
M M
E* = E(e" %) =Y EF =) Ei(ef, uf)). (3.2.22)
=1 =1

Lemma 3.2.2 Let EF and E* be defined, respectively, by (5.2.21) and (3.2.22). Then, the

following identity
M
EF =E*' =43 ) ag(ef ! el ) (3.2.23)
i=1
holds true.
Proof. From (3.2.20) and (3.2.21), we obtain

B = % (e, PR, ) +29 32 [ e

]EN(’L) ]EN
= > (IR, + BlietlEr, ) +28 aa,(eF,eh). (3.2.24)
JEN(?)
Then, from (3.2.18), (3.2.21) and (3.2.24), we arrive at
Bf = 7 b+ Befllin, = 3 11— ub + Bei 7,
JEN(3) JEN(7)
= 3 (I B, + Bl ) 28 Z/ by ek s
]EN(Z) ]EN
= > (Il B, + B2l R, ) — 26 oo, (ef 7 ek
JEN()

= Bl —4Bag,(ef el ), (3.2.25)
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and this completes the proof. [ |

Theorem 3.2.1 Let u € H}(Q) be the solution of (3.2.2) which also belongs to H?*();

U

up = Ul , and N = 87 on Ty;, j € N(i), with v = v;; = —vy;. Let uf € H%(QZ)
(i =1,2,---,M) be the solution of (3.2.11). Then for any initial guess {u), \j;, \);} €

{HL (), L* (L), L*(Tj)}, Vj € N(i), the following convergence result holds true :

M 1/2
[[uf — ul|10 = <Z |[uk — uZH%QZ> —0, as k— o0 (3.2.26)
i=1
and
1/2
IV = Al 12y = Z DN = Xl —0, as k—oo. (3.2.27)
=1 ]EN

k

Proof. Since e} b

= Uf — u; and ,ufj = )\ij — \ij, it is enough to show that for each 7
lefli o, — 0, as k— oo, (3.2.28)
and

HufjH?{_l/Q(Fij) — 0, as k— 00, Vj € N(3). (3.2.29)

From Lemma 3.2.2 and (3.2.21)-(3.2.22), we note that each E¥ > 0 and
M
EF+43 ag,(ef el ) = EM L (3.2.30)

The second term on the left hand side of (3.2.30) is non-negative, 0 < E¥ < E*! and
hence, { E*} is a decreasing sequence of non-negative terms which is bounded above by E°.

Therefore, { E*} converges. Moreover,

43 ag(ef el = EF - B". (3.2.31)

On summing from k£ = 1 to Ny, where N; is a large number, we obtain

szZaQ ek ek — ENt <2 E°, (3.2.32)

k=1 =1
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and hence, as N; — 0o, we find that

N M
0< Zagi(ef, el) < . (3.2.33)
k=1 i=1
Thus,
ag, (e e¥) — 0 as k — oo, i=1,2,---, M. (3.2.34)
Therefore,
IVeHloo, — 0 as k—o0, i=12--- M. (3.2.35)

First we consider the subdomains §2; € Dy, that is one face of the subdomains §2;, belongs

to the boundary 0€2. From (3.2.17) ), for all 4, €; € Dy,

=0 on 90 NIN. (3.2.36)

7

Therefore, it follows from (3.2.35)-(3.2.36) and the Poincaré-Friedrich’s inequality (Lemma
1.2.5) that

llef |0, < ClIVel|loo, — 0 as k& — oo, Vi, i € Di. (3.2.37)
Hence, an use of the trace theorem (Theorem 1.2.1) yields for all i, Q; € Dy
ek 2r,) — 0 as k— oo, ¥ j € N(i). (3.2.38)

From (3.2.19), (3.2.35), (3.2.37)-(3.2.38), and using Lemma 2.2.5 in (3.2.19), we obtain for
all i, Q; € D,

HM?jHH—l/Q(Fij) — 0 as k— o0, Vj€N(®). (3.2.39)

Now we consider the domains €2; € D,. Using (3.2.18) in (3.2.19) with 8 = §;; = B}, we
arrive at

+Zﬂ/evds— ﬂ/ ’?%ds—Z/um

JEN(i) JEN(3) JEN(i)

Vo€ HE (). (3.2.40)
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Now, choose v € H. (£;) such that

6? on Fij7 VJEN(Z), QjEDl

v = (3.2.41)
0 elsewhere on 09;.

Substituting (3.2.41) into (3.2.40), we find that

8 3 Nellliay < IVefloalVollo, + 8 3 15z lefllzzr,
JEN(D) S0
+ > i ewpllef 2w, (3.2.42)
JEN(D)

Using (3.2.35), (3.2.38) and (3.2.39) in (3.2.42), we obtain for all i, Q; € Dy
lef |l r2qr,) — 0 as k— o0, VjeN(i), Q€D (3.2.43)

From the definition of D,, for all ¢, }; € D,, there exists at least one j such that €; € Dy,
with meas(I';;) > 0. Therefore, it follows from (3.2.35), (3.2.43), and the Poincaré inequality
that

leflluo, <C [ IVeilloo+ D> llefllizwy,) | =0 as k— o0, Vi, Q€ Ds.
JEN(i), Q;€D1
(3.2.44)

Similarly, we can continue the argument until the domain is exhausted and this completes

the rest of the proof. [ |

3.3 Discrete multidomain formulation

In this subsection, we discuss iterative method based on the nonconforming finite element
problem (3.2.6).

For the triangulation 7, we now assume that the triangles (resp. rectangles) T should
not cross the interface I';;, and thus, each element is either contained in Q; or in Qj and
they share the same edges of I';;. For the multi-domain problem, let X, ) = Xhmi. Define
X?h = {wp|vp € X, and vy (p) = 0at p € 0Q; 5 }. We now define two discrete spaces Y; j, and

7
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Yi;n on 0€; and I';;, respectively, as follows. Let Y; ), consist of piecewise constant elements
on triangulation 7y, ;,, , where 7j, ;. is the triangulation of 0€; \ 02 inherited from 7,

ie., 77%“6521- Furthermore, let Y;;, = EJHFU. The spaces are nonconforming,

- %\aﬂi\ag'
since X is not subspace of Hp, (€;). For v € Xj, set the discrete H' semi-norm as

‘Uﬁ,h,ﬁi: Z /T‘VUPCZZE- (3.3.1)

TETh,i

We define the weighted H' energy norm for v € X; j, by

1
HUH%hQ = ‘UﬁhQ + —2HU||(2397 (3.3.2)
H
and
M
oI} = Z [[0]13 1.0, (3.3.3)
i=1

where H is the diameter of the subdomain. Given the finite element spaces X, Y;, and

Y n, we now introduce the linear operators:
it Xin — Yin and mij © Xin — Yijn (3.3.4)
as
mvs, = vi(p) VT € Thio, and Tij Vi = Tiip, - (3.3.5)

Similarly, we define the linear operators

Sz’ : )/z',h — Xz‘,h and Sz‘j . )/z'j,h — X@h (336)
as
w; freedom on 0€2;, w;; freedom on I,
Siwl- = and Sl-jwij = (337)
0 other freedom, 0 other freedom.

From the equation (3.3.6) and (3.3.7), we note that in general 7;v; # vy, and S;w;),,, # w;.

Furthermore, we observe that

Vi — SZ"]Ti’UZ' € XSh? (338)
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and
772'52' = Idz, WijSij = ]dija (339)
where Id; and Id;; are identity operators on Y;;, and Yj; 5, respectively.

Lemma 3.3.1 [109, Lemma 2.1, pp. 2542] There exists a positive constant C independent
of h such that

Imijvillor, < Cllvig, lor, Vv, € Xip, (3.3.10)
Ty
I1Siwiillog, < ChY?||willor,- (3.3.11)
AZSO, Vwij c )/iJ'JH
|Siwisline, < Ch™ Y2 wyllor,,- (3.3.12)

The next lemma is a Poincaré Friedrich’s inequality (cf. [20, (1.1)] and [117, Lemma 5])

for nonconforming P; elements.

Lemma 3.3.2 (Poincaré-Friedrich’s inequality). Let H = lrgiﬁdiam(ﬁi) and let T';; be
a face of Q;. Then, there exists a constant C' constant z'ndezoe_ndent of Q; such that for

v € X, we have
2
||UH(2)Q < CH2|U‘%,91- +CH*? (/ U(S)d8> , (3.3.13)

where d = 2,3 is the dimension of ;. Further, z'f/ v(s)ds = 0, the following version of
Fi]'

Poincaré inequality holds :

[vllo.0, < CH|v|1q,. (3.3.14)

The next lemma is a the special trace theorem for Crouzeix-Raviart element space. For a

proof, see [109, pp. 2544].
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Lemma 3.3.3 [109]  (Special trace theorem) Let the diameter of each subdomain
Q (i =1,2,---,M) be O(H), and let I';;, I'y; be two faces of €;. Then, there exists a
positive constant C' independent of €2; such that for v; € X;,, 1 <1,j < M, 1 # j,

H/]TZ'ZUZ'H%,FZ‘[ S C‘H|Ui‘ih,ﬂi + C||7TZ]UZH(2),FZ] (3315>

Now we are in a position to state the nonconforming Galerkin multidomain approximation
corresponding to (3.2.11) and (3.2.12). Given {u,, X}, A\, .} € {Xin, Yijn Yiin} and
f e L*Q), find uﬁh € Xin, )\fj,h €Y, and )‘ji,h € Y such that

agy, (uf,, va) + Z ﬂ”/ miguyy mvn ds = (f,vn)e, + Z ﬁﬂ/ 7T]ZU ! igun ds

jen@ YT JEN()

— Z / )\]Zhﬂ'mvh V’Uh & Xz',h7 (3316)

JEN(7)

N = —( Bymijui(p) = Brmjius (p) ) — Mo Vo ey, j € N(i), (3.3.17)

where
a?li (Vip, Wip) = / Vv - Vw;y, de. (3.3.18)
Q;

Remark 3.3.1 (3.3.16)-(3.5.17) is well posed can be proved similar as the proof of Theo-
rem 2.2.3.

Since vy, wy, € X}, are linear polynomials on I';;, using midpoint rule we obtain

/ TijUp TiWp, ds = Z vp(p)w(p)|sy| Vo, wy, € Xy, (3.3.19)
r

j pelj;NNy,

where s, is the element face with p as its barycenter and |s,| is the measure of s,,.

3.4 Convergence Analysis

For convergence analysis, we now state the discrete nonconforming multidomain variational

formulation based on Lagrange multipliers as (see, Chapter 2, (2.2.36)-(2.2.37)) : Given
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M M
f € L*Q), find up = (urp, - ,upmp) € Xp = HXi,h and A\, € Y, = H H Yi;n such

i=1 =1 i<jeN(i)
that
M M
a”(up,vp) — Z Z / Nijh [mop) ds = Z(f, U)o, Yo e X, (3.4.1)
i=1 z‘<j€N(z') Lij i=1
Z Z / 7ruh I, ds = 0 Yun € Yy, (342)
1=1 §<jeN (i)
where
" (o, wp) Z ag, (Vin, Win) / Vi - Vw;y, de. (3.4.3)

Lemma 3.4.1 Let up and Ay, be the solution of (3.4.1)-(3.4.2). Then
Nijnllor, < C (W Pluinling, + 072 fllog), i=1,2,---, M, VjeN(), (3.4.4)

where C' is a positive constant independent of h and M is the number of subdomains.
The proof of Lemma 3.4.1 is similar to that of the proof of Lemma 2.2.8.

From (3.4.1), we note that in each subdomain 2;

UZ o Uh Z / i5,hTij VR ds = (f Uh) VU}L - Xz‘,h. (345)
JEN(3)
Since Ajjp = —Ajin, then from (3.4.2) we obtain
Aijh = —Njin — B(mijuin(p) — mjiusn(p))- (3.4.6)
Set
ef,h = uﬁh — Ui ij,h = )\fj,h — Xijp and /,L;?Z-,h = )\?@h — Njih- (3.4.7)

Then, subtracting (3.4.5) from (3.3.16) and (3.4.6) from (3.3.17) with 8 = §;; = B};, for

1 <i < M, we obtain the error equations

?2 ( fh’vh Z / :uzg hﬂ-ljvhds - 0 vUh S Xz ho (348)

JEN(7)

wisn = — ( Biymizern(p) — Biimjies ' (p) ) — iy Va €Ty, j€N(@).(34.9)
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Setting vy, = (0, - - - ,eﬁh, -+-,0) in (3.4.8), we arrive at the following equality

ag, (¢ns €in) Z/ pl el ds. (3.4.10)

JEN(7)
Define
Ef,h = Ei,h(eﬁhaﬂg,h) = Z ||Nf]h + 57Tij€i'€,h||(2),rija (3.4.11)
JEN(i)
and
M

Lemma 3.4.2 Let EY and Ekh be defined, respectively, by (3.4.12) and (3.4.11). Then
following identity

M
Ef =By =48 ) ab (el el (3.4.13)

i=1
holds true.
Proof. From (3.4.11) and (3.4.10), we obtain

Efjh = Z <||MzthOFZ]+ﬁ2||7TZJ zhHOFZ]>+2ﬁ Z / :Uz]hﬂljezhds

JEN(D) e
> <||“ijvhH0Tz’j + 5 ||7TijeznhHo,Fi]-> +20 ag, (e}, €fp)- (3.4.14)
JEN(D)

Then, from (3.4.9), (3.4.11) and (3.4.14), we arrive at

Efjh = Z Hufj,h—i_ﬁﬂijef,hHg,Fij = Z H_M?ijhl_‘_ﬁﬂjieileg,Fij
JEN(Q) JEN()
= Z (th;thor +52H7Tm€ ||OI‘” —20 Z/ Mf;hlﬂm zhlds
JEN(3) JEN(7)
= > (IR, + Bllmeln 1R, ) — 26 ol (eh" ez )
JEN()
= Bl =48 ag (e e, (3.4.15)

and this completes the proof. [ |
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Theorem 3.4.1 Let (u;p, Nijp), @ = 1,2,---, M, be the solutions of the problem (3.4.5)-
(3.4.6) and let (uf,, NS ;) be the solutions of the discrete iterative problem (3.3.16) and
(3.3.17) at iterative step k. Then, for any initial guess {u?,h, b Nji, O € {Xin, Yijn Yiint
Vj € N(i), the iterative method converges in the sense that

M 1/2
||U§ - Uh||1,h = (Z ||Ufh - uth%hQ) — 0, as k— oo, (3.4.16)
i=1
and
1/2
=l = (30 0 I~ Aalin, | 0. s k—oe. (341
=1 jeN(i)

Proof. Since ef), = uf, — iy and gy, = A, — Agjip, it is enough to show that for each 4,

letalling, — 0, as k— oo, (3.4.18)
pfallor, — 0, as k— oo, Vj € N(i). (3.4.19)

From (3.4.10) and (3.4.11)-(3.4.12), we note that each EJ, > 0 and

Eh+4ﬁza9 R (3.4.20)

The second term on the left hand side of (3.4.20) is non-negative, 0 < E’,,f < E,’f‘l and
hence, { E¥} is a decreasing sequence of non-negative terms which is bounded above by EY.

Therefore, {EF} converges. Moreover,

452% (efyt efnl)y = By — EF. (3.4.21)

On summing from k£ = 1 to Ny, where V; is a large number, we obtain

4522a9 et ef) =E) — B <2E), (3.4.22)

k=1 i=1

and hence, as N; — 0o, we find that

0<ZzaQ ek el) < oo (3.4.23)
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Thus,

agy, (ef, ef,) =0 as k—oo,  i=1,2,--- M, (3.4.24)
Therefore,

IVelilloo, =0 as k—oo,  i=1,2--- M. (3.4.25)

Setting Aijn = pif; p, win = €}y, and f =0 in Lemma 3.4.1, and (3.4.25), then for all i, we

obtain
i allor, — 0 as k— oo, V j € N(i). (3.4.26)

First we consider the subdomains €2; € Dy, that is, one face of the subdomains €;, belongs

to the boundary 0€2. Since, for all 7, ; € Dy,
ef,(p) =0 on 0 N0, (3.4.27)

where p denote any nodal point on I';. Therefore, it follows from (3.3.2), (3.4.25) and the
Poincaré inequality (3.3.14) that

Hef’hHthgi < C’||Vef7h||o,gi — 0 as k — oo, Vi, ; € Dy. (3.4.28)

Hence, by the special trace theorem (Lemma 3.3.3), (3.4.27) and (3.4.28) implies that for
all 7, ; € Dy

|mijelnllor, — 0 as k— oo, V j € N(i). (3.4.29)
From (3.4.9) with 8 = (;; = [, it follows that
Brisein(p) = =i + Omjich () — phiy Vo €Ty, je N(i). (3.4.30)
Using (3.4.29) and (3.4.26) in (3.4.30), we obtain for Q; € Dy, Vi
Hmjef’hHo,pij — 0, as k— o0, VjeN(i), Q; €D. (3.4.31)

From the definition of the D, for all i, €); € Dy, there exists at least one j such that
Q; € Dy, with meas(I';;) > 0. Therefore, it follows from (3.4.25), (3.4.31), and the Poincaré
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Friedrich’s inequality that

lefulline, < C | HIIVe lloa, + D lmijelullor, | =0
JEN(3), Q;eD1
as k— o0, Vi, Q € D,. (3.4.32)

Similarly, we can continue the argument until the domain is exhausted and this completes

the proof. u

3.5 Convergence Rate

Let
_ M _ M
Xp=[[Xin.  Ya=]]Yyn  VieN(G). (3.5.1)

Also, let Ty : X, xY, — X, XY, be a mapping such that for any (wy, ) € X, x Y,
(zn,nn) = T (wp, ;) is the solution, for all 4, of

a'}gl)i (Zi,ha Uh) ﬁ/ T 2i,h T Uh, ds = (f7 Uh Q; + Z ﬁ/ T Wj h T35 Uk ds
JEN(3) JEN(7)
Z / 0]1 RT3 Un ds Yy, € th, (3 5. 2)
JEN(3)
Nij,h = —5( Wijzi,h(P) - Wjiwj,h(p) ) - jS,h Ve eTly, j€ N(i)a (3-5-3)

where 25 = Zn|g , Wi = Wh)g 5 Nijh = Mhir. and 0j;, = Op), . Since the operator T} is
7 7 (%] )

linear, we can now split the operator Ty as T¢(wp, 0y) = To(ws, 0r) + T7(0,0), where the

operators Ty and Ty are defined as follows : Given (wp, 6y), (2}, nj) = To(wn, 0) satisfies

for all 4,
Zh,vh + E 5/ i thjvhds = 5/ TjW,; p 55V dS
JEN(3) JEN(3)

- Z/ 0o ds NYun € Xip, (3.5.4)

JEN(3)
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Mijn = —B( 1320 (p) — mjiwin(p) ) — O Vo €T, j € N(i), (3.5.5)
and (z5,n5) = T7(0,0) satisfies, for all i,

agi(zf,h,vh) ﬁ/ T2 1 TigVh ds = (f, vn)a, Vo, € Xin, (3.5.6)
jEN (i

J

nioj,h == —ﬁ ﬂ—ijzio,h(p) Vo € Fija ] € N(Z) (357)

Then (Zh>77h) = (22777;) + (327772)-

Lemma 3.5.1 The pair (zp,m,) € X, x Yy, is a solution, for all i, of

agi(zi,havh) ﬁ/ T 24, hﬂ—zjvhds = (f, 'Uh Q; + Z 6/ TjiZ5, h’/TZJ’UhdS
JEN() JEN(3)
Z / Ny, h?TZ]UhdS Yo, € X; s (3 5. 8)
JEN(3)
Nijh = —B( 720 (0) — Tz n(P) ) — Njin Ve ely;, je N(i), (3.5.9)

where 1 n = —Njin if and only if it is a fived point of the operator T}.
It is easy to check that for each ¢ any solution of (3.4.5)-(3.4.6) is a fixed point of T’y and
conversely a fixed point of T} is a solution of (3.4.5)-(3.4.6).

Lemma 3.5.2 Let (up, \) be a fized point of Ty. Then mju;n(p) = mjiujn(p) and Nijp =
—Njin for allT';;. Furthermore, u;, € X, is the solution of (3.2.6).
Proof. Let (up, Ap) be a fixed point of Ty. Then, substituting (3.5.3) into (3.5.2) yields

a UZ o ’Uh Z / )‘ZJ T Uh ds = (f, Uh) Y, € Xi,ha (3510)

JEN(7)

and, hence, for each i, (u;p, Aij ) satisfies (3.4.5). From (3.5.3), we obtain
Aijh = —( Brijuin(p) — Bmjiwin(p) ) — Ajin Vo € Iy, j € N(i).

Thus, (346) is also satisfied. From (353), )\z'j,h = —ﬁ( Wijuiﬁ(p) - 7Tj2'u]'7h(p) ) - )\ji,ha it

is clear that m;;u; ,(p) = mjujn(p) since Ajjp = —Njin. Also from Lemma 2.2.7, uy, is the
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solution of (3.2.6). This completes the rest of the proof. |

Since
(zn,mn) = T¢(wp, 0n) = To(wp, 0,) + T (0,0), (3.5.11)
the fixed point (zj,n,) of Ty that is T¢(zp, nn) = (2n,mp) is indeed a solution of
(I —T06)(zn,mn) = T%(0,0). (3.5.12)
Note that, from (3.7.7)-(3.7.11), we conclude that
(e 1) = Toley ™" unh). (3.5.13)

If (2, mp) is a fixed point of Tp, then from (3.5.4)-(3.5.5), we write the operator Ty satisfies
the following problem

agy, (2ip, vn) — Z / NijnTijonds =0 Yo, € X;p, (3.5.14)
jeN(i) T
Nijn = —B( 7520 (P) — Tjizin(P) ) — Njin Vo € Ty, j € N(i). (3.5.15)

Lemma 3.5.3 Let (z,,m,) € X), x Y}, be the solution of (3.5.14) and (3.5.15). Then
1niallar,, < Ch7einling, Vi€ N(i). (3.5.16)

Proof. Now choosing vy, = (0, - -, SijMijn, - -+ ,0) in (3.5.14), and using (3.3.9) and Lemma
3.3.1, we obtain

||7]Z’j,h||(2j,1‘ij = / mj,h-ﬂz'jsz'jﬂz‘j,h ds = a?zi(zz’,h, Sz'jﬂz‘j,h)
< Nzinlin0)Sininl1n0
S Ch_l/2‘2i7h‘17hygi nijthOIij VJ c N(Z) (3517)
This completes the rest of the proof. [ |

Since the errors ef, p¥ satisfy (3.5.13). Our next aim to find the spectral radius of Tj.
ho Hp y
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Remark 3.5.1 Here X, x Y}, is a real linear space and Ty is a real linear operator. In
general, the spectral radius formula does not hold for the real case. So the complexification
of the real linear space and the real linear operator is necessary.

Now, we recall the linear operator T defined in (3.5.13) and the linear space X, x Y,
defined in (3.5.1). Using Lemmas given in the Chapter 1, how X, Y, are defined and also
Ty. The next lemma shows that the relation between ||T|| and p(Tp).

Lemma 3.5.4 Let X, X Y}, be equipped with an inner-product and
p(Ty) <1—R, R e (0,1). (3.5.18)
Then for every positive integer k, there is a constant C' independent of k such that
IT¥]| < C(1 - R/2). (3.5.19)

Although, the proof of Lemma 3.5.4 is available in [109, Lemma 3.6, pp. 2547|, but for
making the thesis self content, we sketch briefly below a proof.

Proof. From Lemmas 1.2.13 and 1.2.14 we find that
T = N1T31]- (3.5.20)

Since Ty is a complex linear operator on the complex linear space C ® (X n X ffh), then by

the spectral radius formula ( see, Chapter 1, Theorem 1.2.3)

p(Ty) = lim || T, (3.5.21)
for € > 0, there exists a natural number N such that for £ > N, we have

1T 11Y* < p(To) + e,
and hence

1511 < (p(To) + )"
Choose a constant C' > 1 such that

1751 < Clp(To) + o)
fork=1,2,---,N. Then Vk

IT511 = T3l < C(p(To) + )" (3.5.22)

With € = R/2 in (3.5.22), we complete the rest of the proof. |
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3.5.1 Spectral radius without quasi-uniformity assumptions
Let (2, 71) € C® (X, x Y},), ie

(Zn, ) = (B i) + v/ (=1) (20, ), (3.5.23)
where (Z,, ), (Zn, 1n) € X, X Yy, Using Lemma 1.2.12, we obtain the following identity.

Lemma 3.5.5 Let (Zh,ﬁh) € C@(Xh ><Y~'h), and (2h>77h)> (2h>ﬁh) € th};h satz'sfy (3523)
Then

‘Ziyh‘ih,ﬂi = |2i,h|ih7Qi + |2i,h|ih7Qi (3524)
01335 = Nignl 16,55 + Niigonl l6.i75 (3.5.25)

and
1 FiiZinl 5 s; = misZinll5s; + |1miiZinlld ;0 (3.5.26)

where T;; s the complezification of m;;. For the sake of convenience, let us define another
notation G similar to Ekh, but both having the same property, where each G, acts on

complex values and each Ekh acts on real values:

Gi,h = Gi,h(gi,hu ﬁij h Z ng h+ ﬁﬂ'zgzz h| |0 Ty (3527)
JEN(i)
and
Gn = Gu(Zn, Tn) ZGzh = Z Gin(Zin: Nijn) (3.5.28)

Lemma 3.5.6 Let G}, and G, p, be defined, respectively, by (3.5.27) and (3.5.28). Then the
following identity holds true :

=3 Y (1175l + 811725l ) + 28 Zag B Fin)- (3:5.29)
=1 jEN(i)

Proof. Setting v, = 2, € X, in (3.5.14), we arrive at the following equality

ag (Zihs Zin) Z/ Nijh-Tij 2 ndS. (3.5.30)

JEN(7)
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From (3.5.27) and (3.5.28), and using Lemma 1.2.12, we obtain

Gin = > Mg+ B7Zinllor,
JEN()
= Y liign + BrigZinllor, + Y s+ Brizinllor,
JEN(@) JEN()
_ e, (3.5.31)

Since (Zi,ha 7’]7;]'7}1) € Xi,h X Y;j,h; by (3530),

L= > <||77z'j,hH3,rij +52||7Tij5i,h\\§,rij) +28 ) (Tijns Wi i),

JENG) JEN()
= > <||77z'j,th2>,rij + ﬁ2||ﬂij2i,h\\§7pij) + 20 ad, (Zin, Zin)- (3.5.32)
JEN(3)

Similarly, we find that

L = > <||ﬁz'j,hH§,rij +52||7Tij2i,h\\§,rij) +28 ) (Ao TigZin) e,

= ) <||ﬁz'j,hH§,rij + 52||7Tij2i,h\\§,rij> +206 ag, (Zins Zin)- (3.5.33)
JEN(@)

Using (3.5.32), (3.5.33) and Lemma 1.2.12 in (3.5.31), we arrive at

Gin=> (Hﬁz‘j,hHg,rij + ﬁzHﬁijii,hHg,nj) +206 ag, (Zin, Zin), (3.5.34)
JEN(@)
where
ag, (Zin, Zin) + at, (Zins 2n) = [IVZinll5 0, + V26,0, = V20l 0, = at, (Zins Zin)-
This completes the rest of the proof. [ |

Theorem 3.5.1 Let p(Ty) be the spectral radius of Ty. Then
o(Ty) < 1. (3.5.35)

Proof. Let v be an eigenvalue of Ty and let (2,,7,) # (0,0) be the corresponding eigen-

vector. Then

To(zn, n) = v (Zh, TIn)- (3.5.36)
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It follows from (3.5.27) and (3.5.29) that

Gn(To(Zn, 7)) = [VI*Gr(Zn, 7n)- (3.5.37)
On the other hand,
Gin(To(Zin, Tin)) = Z Y70 + ﬁﬁz’jfi,hHg,mj

JEN(H)

= D Wi+ BymisZnllor, + Y [viin + BymiZinl i,
JEN (i) JEN (i)

= > N=iin+BmiZinlldr, + Y = fjin + Brdinllor,
JEN (i) JEN (i)

To find the estimates of I3 and I, we proceed in the same way of finding the estimates of

I, and I, in (3.5.32) and (3.5.33), respectively. Then using (3.5.34) and (3.5.29), we obtain

M
Gn(To(Zn,1n)) = Gn(Zn. 1) — 452:@&(5@',}1, Zih) (3.5.39)
=1
and hence,
13 <
2 P NT R (5 ). 3.5.40
=1 = G 2 oG ) (3.5.40)

From (3.5.40), we conclude that |y| < 1. Note that |y| = 1 if and only if
ab (Zin, Zin) =0 and  afy (Zip, 2ip) =0 Vi=1,2,--- M. (3.5.41)

Then proceeding as in the proof of Theorem 2.2.3, it is easy to show that (Zj,7,) is trivial,
i.e., (Zn,mn) = (0,0) and this leads to a contradiction as (Zp,7y) is an eigenvector of Tj.

Hence, |y| < 1 and this completes the rest of the proof. [ |

3.5.2 Rate of convergence with quasi-uniformity assumption on

the mesh
From (3.5.40), we obtain

1
WP<1——=

5 (3.5.42)
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where () > 1 is such that

M
Gn(Zn,n) <4Qp Z a}éi (Zi,hs Zip)- (3.5.43)
i1

Note that the estimation of () yields the convergence rate for the iterative procedure

(3.3.16)-(3.3.17).
Lemma 3.5.7 If (Z,,7,) € C® (X, x Y}), j € N(i), then
750l [5.r,, < CR7HZinl3 0y (3.5.44)

where C' is independent of h.
Proof. Using (3.5.23), Lemma 3.5.5 and Lemma 3.5.3, we obtain (3.5.44). This completes
the proof. [ |

Lemma 3.5.8 For every v, € C® X,, Vj,l € N(i), then
[wavil[o.r,, < CH[GilS )0, + CllTs0l[5 r, (3.5.45)

where 7;; and T, are the complexifications of m;; and m;, respectively, and the positive
constant C' is independent of H.

Proof. Using (3.5.23), Lemma 3.5.5 and Lemma 3.3.3, we obtain (3.5.45). This completes
the proof. u

Lemma 3.5.9 Let (Z,,7,) € C® (Xh X ffh) be an eigenvector of Ty such that Ty(Z, T) =
Y(Zn, 7). Then

Vijh = =B Vi Zn (D) — T Zn(P) ) — Tjion Ve eIy, je N(®). (3.5.46)

Lemma 3.5.10 Let (z;,7,) € C® (X'h X ?’h) be an eigenvector of Ty such that Ty(Zy, 7p) =
Y(Zh,Mn). Then there is a positive constant C' independent of I';; and § such that

|7Zinll5r, < CB7 <||77z'j,h||3,rij + ||ﬁji,h||3,rij> +Cllmsizinllor, Vi€ N(). (3.547)
Proof. From (3.5.46), we note that

BTijZin = Nijp + Yjin + BYTiZin Vi € N(i). (3.5.48)
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Using (3.5.23), Lemma 3.5.5, we obtain
Bmyzinllor, < Wignllie, + Y Winllsr, + 877525l r,, - (3.5.49)
We know from Theorem 3.5.1 that |y| < 1 and this completes the rest of the proof. [ |
It follows from (3.5.27), (3.5.23) and Lemma 3.5.5 that
Gin(Zin, Nijp) = Z | 7ij,n + ﬁﬁz’jgi,hHg,rij
JEN(i)

< 2> (Il + 875zl ) (3.5.50)
JEN(?)
Below, we discuss a bound for the terms in the bracket which appear on the right hand

side of (3.5.50).

Theorem 3.5.2 Let Q- be the sets of subdomain in D,, and 3 = O(h~2H=/2). Further,
let (Zn,mn) € C® (Xh X ffh) be an eigenvector of Ty such that Ty(Zu, M) = Y(Zn, 7)), then

||77i’“j,hH%),rirj + ﬁQHﬁ—Z’T‘jZ’L’T,hHg,FiTj < th_l/2Hl/2ﬁ|2iT,h|%,h,Qir

+ CY ' hTPHY Bz,

2
l,hvgir—l

o 4 CYTYRTYRHYB|Z 0, VI € N(T), (3.5.51)
where Cy > 1.5 is independent of h and H, and N s the winding number.
Proof. First we consider when r = 1, i.e., Q1 € D;. Note that there is at least one face of
;1 belonging to 0 and 7;1;Z;1 ;, vanishes on this face. Then using Lemma 3.5.8, we find
that
||7_Ti1j2i1,h| |(2)’Fi1j S CH‘ZZJJLEJL,Q“? VJ c N(Zl) (3552)
From Lemma 3.5.7 and (3.5.52), we arrive at
Hﬁilj,hH(Q),Filj + ﬁ2||ﬁi1j2i1,h||(2),ri1j < CPHYEB|Z0 W] o, Vi€ NG, (3.5.53)

and hence (3.5.51) holds for » = 1. Next, we consider when r = 2, i.e., Q;2 € D,. In this
case, at least one face of {2;2 is common to some ;1 € D;. From Lemma 3.5.10, we find

that

FllFenzepllor,, < Cillieinllir,,

+ O (Hﬁiliahug’rﬂil +ﬁ2||77i1i25i17h“3,ri2i1) Vil € N(i%). (3.5.54)
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Using Lemma 3.5.7 and substituting (3.5.53) in (3.5.54), we arrive at
|72 zepllir,, < CThTYVPHY?B|Z2 48 g, + CTRTPHY2B|Z0 41 g, -
Substituting (3.5.55) in Lemma 3.5.8, we obtain Vj € N(i?)

ﬁQ“ﬁi2j5¢2,h“(2)7ri2j < Clh_l/QHlmﬁ‘Ziz,h‘ih,gﬂ + th_l/2H1/2ﬁ‘2127h|%,h791_2

+013h_1/2H1/2/8|221,h‘%7h,ﬂ1 .
From Lemma 3.5.7 and (3.5.56), we arrive at

17izinllor,, + B%|FiiZenllor,, < Crh™ P HY?B1Z2 413 1

+ ChTVPHYRB| 5 g, Vi€ N(),

102

(3.5.55)

(3.5.56)

(3.5.57)

where C7 > 1.5. Next, we consider when r = 3, i.e., ;3 € D3. That means at least one

face of {);3 is common to one of €22 € Dy. From Lemma 3.5.10, we find that

Bllrsiezonllor,, < Cillisenllor,,

+ O (||ﬁ12i3,h||g,ri3i2 + 62||7_r2-22-322-27h||(2),ri3i2> Vi2 € N(i).
Using Lemma 3.5.7 and (3.5.57) in (3.5.58), we arrive at

ﬁ2||ﬁi3i25i3,h||(2),ri3i2 < C%h_l/QHlpmzz‘?’,h|§,h,9i3 + th_l/QHlmﬁ|5i2,h‘ih,9i2

+th_1/2H1/2/6‘zll7h|%’h791
Substituting (3.5.59) in Lemma 3.5.8, we obtain Vj € N(i?)

3| |73 23 1| \g,riBj < C’1h_1/2H1/2ﬁ\EiS,h\ih,gig + C?h_1/2H1/2ﬁ‘2@'3,h|ih,9i3

+CP R HY2 B2 4} o, + CVRT P HY2B) 20 01 10, -
From Lemma 3.5.7 and 3.5.60, we arrive at Vj € N(i3)

Hﬁz‘?)j,h“g,rig,j + 52||7_Ti3j§i3,h||(2),ri3j < CPh VP HY2 Bz 0l s

+ th_l/QHl/zm5i2,h‘ih,ﬂi2 + C{’h_l/zHl/Qmzil,hﬁ,h,ﬁil )

(3.5.58)

(3.5.59)

(3.5.60)

(3.5.61)
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where €'y > 1.5. Similarly, we can continue the argument until the entire domain is

exhausted. In general, we obtain Vj € N(i")

BT iz o, < Cih™ PHY2BIZ0 413 g, + CORT P HY2B|20 413 0

R L
+ o OF T TP HYR Bz o
and
sl + B FirgZiral B, < CPRT2H 2812000 1
+ C%T_lh_l/2Hl/2/6‘le_1’h %Jl,ﬂirfl
b OF T Pz, (3.5.6)
where C7 > 1.5. This completes the rest of the proof. [ ]

From Theorem 3.5.2 and (3.5.50), we find that

> GG < 2> 3 (Wwsallir,, + 8117zl )

Qi'r GDT Qir GDT ]EN(ZT)
< RCWPHYE " |z nli o,
Qr €Dy
+ Rcl2r—lh—1/2Hl/2ﬁ Z |27LT—1,h‘ihyﬂ.T_1
Qir—leDr—l
+ -+ RCTIV2HV2B Z Za )i na,s (3.5.64)

Q1€Dy

where R is the total number of interfaces. Now we sum up all the subdomains using

(3.5.64), and arrive at

N N
Gh(zhaﬁh>zz Z Gin(Zin Mijn) < Rh_1/2H1/25Z <C12r_1 Z |27:T,h|%,h,Qir>

r=1 Q,L'T EDT r=1 Qir ED,«

M
< RCYNh'PHY?BY “afy (Zin, Zin).  (3.5.65)

=1

From the estimate (3.5.65), we obtain that (3.5.43), i.e., 4Q = RO?Nh=1/2 /2,
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Theorem 3.5.3 Assume that the parameter 3 = B;; = Bj; in the iterative procedure
(3.3.16)-(3.3.17) satisfies 3 = O(h~Y2H~Y/2). Then, the spectral radius p(Tp) of the oper-

ator is bounded as follows:
p(Ty) <1 —Ch\VPH? =, (3.5.66)

4
where C' = TooN and the iteration (3.8.16)-(3.3.17) converges with an error at the k'
1

iteration bounded asymptotically by O(vF).

3.6 Numerical experiments

In this section, we have applied the present results to a model problem. The numerical
implementation scheme has been performed in a sequential machine using MATLAB.

Consider the problem (3.2.1) with f = 2[z(1 —x) 4+ y(1 — y)]. The exact solution of the
problem (3.2.1) problem is given by u = x(1 — z)y(1 — y).

Here we take 2 = (0,1) x (0,1). We decompose the square into [0,3/4] x [0,1] and
[3/4,1] x [0,1], with interface I' = {3/4} x (0, 1).

We triangulate the domain uniformly and mesh size is h. Here, we consider the winding
number N = 1. We choose the initial guess {uy,,\};,} = {0,0}. The stop criterion is
|luf — up|lee < 107%, where iteration number is k. We choose the relaxation parameter

8= O(h~2H1/?).

h | H| D.OF.in Q; | D.O.F. in Q | k = No. of Iter. | ey, = ||lu —upllon | Rate
1/8 | 1 138 46 6 2.13200154x 1074 -
1/16 | 1 564 188 10 5.53207760x 107" | 1.9463
1/24 | 1 1278 426 12 2.44792188x107° | 2.0108
1/32 ] 1 2280 760 14 1.36365473x1075 | 2.0337
1/40 | 1 3570 1190 16 8.66312732x 1075 | 2.0331
1/48 | 1 5148 1716 17 5.82667301x 1076 | 2.1754

Table 3.1: L? error and the rate of convergence for the 2-domain case
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Figure 3.2: The order of convergence

In Figure 3.2, the graph of the L? error ||[u — || is plotted as a function of the dis-

cretization step 'h’

in the log — log scale. The slope of the graph provides the computed
order of convergence as approximately 2.0.

In Table 3.1, the iteration number, order of convergence and L? error e;, = ||u — uy|| for
h=1/8 h=1/16, h =1/24, h =1/32, h = 1/40 and h = 1/48 are given. The numerical

result confirms our theoretical result.

3.7 The parabolic problem

In this section, we discuss the fully discrete non-conforming finite element method combined
with nonoverlapping DD method using Robin-type boundary conditions across the inter-

subdomains boundary at each time step for the following linear second order parabolic
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initial and boundary value problem. Find u = u(x,t) such that

— Au = f(z,t) in Q, te(0,7T],
u(z,t) =0 on 09, te (0,7, (3.7.1)
u(z,0) = up(x) in

where Q is a bounded convex polygon or polyhedron in IRY, d = 2 or 3 with a Lipschitz
continuous, piecewise C'' boundary 9. Here the non-homogeneous term f = f(x,t) and
uo(x) are given functions.

In section 2.7, we have stated a completely discrete scheme which is based on backward
Euler method for the multi-domain problem. The weak formulation corresponding to the
multi-domain problem stated as follows (see, chapter 2, problem A§2.7.2)—(2.7.4)): Given
f € L¥(Qr) and U™ € X, find U™ = (U}, ,Ufy) € Xp, = [[ Xin and X} € V), =

i=1

M
H H Yipforn=1,2,3,---, N, such that
i=1 i<jeN(i)
ur—uprt
T,Uh ’Uh Z Z zgh 7TUh dS—(f Uh) vvaXh,(372)
1=1 §<jeN(i)
Z > / [w U™ i ds = 0 Vi € Vi, (3.7.3)
1=1 i<jeN(i)
and

U° = ugp. (3.7.4)

Let us formulate an iterative version of (3.7.2)-(3.7.3). Consider the Lagrange multiplier
to be Al as seen from €2; and A%, as seen from ;. Then, the iterative procedure is to

compute {U™M*, )\ZIZ} € X n x Y;;p, recursively as the solution of

UMt —ur!
Tar U YUt e+ 3 By / m U o ds = (17, e,

JEN(7)

+ Z ﬁﬂ/ ]"hk o ds — Z / ?ZIZ "rijonds Yo, € Xy, (3.7.5)

JEN(3) j JEN(3)
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and

AR — (BT UM (p) = Bmp U (p) ) — A;’; L Vo €Ty, j€N@E), (3.7.6)

ij,h T J

n,0 )\no )\no

iins Nt € {Xin, Yign, Yiin} as given in the time level ¢,_;.

with initial guess {U;"

3.7.1 Convergence of iterative scheme

In this subsection, we discuss the convergence of the iteration defined by (3.7.5)-(3.7.6).

From (3.7.3), we note that in each subdomain €,

ur —yr—1t
(% )+GQ(Uz>Uh Z/ Zjhﬂ'lj’l)hdé’—(f ’Uh)VUhEXZh (377)

t
JEN(7)

Since A}, = —AJ; ;,, then form (3.7.3), we obtain
Nign = —Njin — By U (p) — m33 U (p))- (3.7.8)
Set
ey = UMt = UL, sy = Ny — Aoy and i = N3G = M7 (3.7.9)

Then, subtracting (3.7.7) from (3.7.5) and (3.7.8) from (3.7.6) with 8 = 3;; = [;;, lead to

the following equations:

n,k
e.
<AZ )“LQ i vn) Z/ A mjonds =0 Vo, € X;  (3.7.10)

JEN(3)

and
N = =8 (7 el o) = mi €y ) ) = AT (3.7.11)
Setting v), = 62’: in (3.7.10), we arrive at
ICO IR CHE R N R (37.12)
For analyzing convergence, we now define

n,k n,k nk
Ezh _Elh zh’:uzgh Z ||Iu7,]h+57r7«] zh||01"”’ (3713)

JEN(7)
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and
M M
Ey* = En(ep*, uy") = ) Bl = Y Eunleli migh,)- (3.7.14)

Lemma 3.7.1 Let E}"* and Eznhk be defined, respectively, by (3.7.14) and (3.7.13). Then
following identity

1
Byt =B —4p Z <a9 e 1,ez;f‘1)+§||e"’f 1||OQ) (3.7.15)
i=1

holds true.
Proof. From (3.7.13) and (3.7.12), we obtain

n,k n,k n,k
B = Z <H:uz]h||OF + 0|yl Horw "‘25 Z/ M} i€ ) @S

JEN(7) JEN(7)
1
n,k n,k n,k
= D (hlige, + Bllmgein o, ) +26 (ag, (€ i) + lleillia, ) -
J At
JEN(3)
(3.7.16)
Then, from (3.7.11), (3.7.13) and (3.7.16), we arrive at
n,k n,k—1 nk 1
E, = Z H:uz]h—i_ﬁﬂ—lj Horw Z | = w3~ + Bmjie; Horw
JEN(3) JEN(3)
n,k n,k— n,k—1 n,k—1
= Z <||:U’z‘j,h 1||0F +52H7Tm€ IHOFU —2p Z/ Hijpn Tij€ih s
JEN(5) JEN(5)
= > (g B, + Pl R,
JEN()

1
nk—1 n,k—1 n,k—1
26 (ol (2 el + gl 1B, )
=m0 (b e B ),
and this completes the proof. [ |

Theorem 3.7.1 Let (U, AL ,), i = 1,2,--- M, be the solutions of the problem (3.7.7)-

ij,h

(3.7.8) and let (UM )‘ZIZ) be the solutions of the discrete iterative problem (3.7.5) and
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(3.7.6) at iterative step k. Then, for any initial guess {U"°, )\Z(,)l, )\Z(L} € {Xin, Yijn Yjin}
Vj € N(i), the iterative method converges in the sense that

M 1/2
U™ — U |y = (Z\\Uﬁv’f—Uf||§m> — 0, as k— oo, (3.7.17)
=1
and
1/2
A — Ao = Z D> I = Al —0, as k— oo. (3.7.18)
=1 jeN(i)

For a proof of Theorem 3.7.1, we refer to Theorem 3.4.1.

3.7.2 Spectral radius

Let T} : X, x Yy, — X, x Y, be an mapping such that for any (wp, ) € X X Y,
(zi,mp) = TF(wy, 0y) is the solution, for all 4, of

1
el m) - al fom) + Y ﬁ/ iy lmigon ds = (", vn)o
JEN(7)
+ Z ﬁ/ WS, Tij0p dS — Z / onTigvnds Yo, € Xy, (3.7.19)
JEN(7) JEN(3)
Nisn = —B( w20 (p) — maw?y,(p) ) — 05, Vaz € Iy, j € N(i), (3.7.20)

where 27y = 2\, wil), = wy\, , 0, = 0y, and 67, = 6Oy . Since the operator T’
i % ij ij

is linear, we can now split the operator T} as Ty (wy, 0y) = Ti (wy, 0) + TF(0,0) where

the operators Tg* and T} are defined as follows : Given (wy,0y), (2,7, m,") = Ti' (wy, ;)

satisfies for all 7,

1
E(zz;l*, vp) + a?li(zz;l*, vp) + ﬁ/ Tij 2 WigUn ds = ﬁ/ TjiW} i 0p ds
JEN(7)

JEN(7)

_ Z / 9]2 1T Uh ds Yy, € th, (3 7. 21)

JEN(3)

Nin = —B( w2y (p) — Thwin(p) ) — 0%, Ve el j€ N(i), (3.7.22)
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and given (z,°,n,"°) = T7(0,0) satisfies for all i,

1 n,o n,o
Kt( zh>Uh) +aQ( Zh,vh) ﬁ/ m]zzhmjvhds = (f" v, Vo, € X, (3.7.23)
N(i

Jje
M =—Bmzn(p)  Vrely, jeN(). (3.7.24)

Then (23, 1) = (2,7 my™) + (2 0, )-

Lemma 3.7.2 The pair (27, 1}) € X, x Y}, is a solution, for all i, of

1
At( zh?vh) + CLQ ( zh?vh + Z ﬂ/ Tij zhﬂ-ljvhds - (f U)Qi
JEN(3)
+ Z ﬂ/ TjiZy pTijUnds — Z / N5 nTijUnds Vo, € Xip, (3.7.25)
JEN(3) JEN(7)
Nisn = =B w2l (p) — mzin(p) ) — 0 Vo € Ty, j € N(i), (3.7.26)

where 0, = —nj;,, if and only if it is a fived point of the operator T}.
It is easy to check that for each i any solution of (3.7.7)-(3.7.8) is a fixed point of T} and
conversely a fixed point of T} is a solution of (3.7.7)-(3.7.8).

Lemma 3.7.3 Let (up, \;) be a fized point of Tf'. Then miuiy,(p) = mjul,(p) and N, =
=A%y Jor all T'jj.
Note that the operator T7 (2}, nj) can be decomposed into a sum of two operators T (z};, 1)

and T7(0,0). Then then
(znmn) = TF (wy, 0y) = 15" (wy, 0y) + T7(0,0). (3.7.27)
The fixed point (23, n;) of T that is T7 (27, ) = (2, 1) is a solution of
(I =T§) (2, my) = T7(0,0). (3.7.28)
Lemma 3.7.4 Let (uy, \y) be a fired point of Tf. Then from (5.7.27), we write

(u, N = T (ufl, AR) = Ty (ufp, A + T} (0, 0). (3.7.20)
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Moreover,
(6" = T (™ ™). (3.7:30)

If (2}, n) is a fixed point of T, then from (3.7.27), the operator T satisfies

1
E(zgh, on) + ag, (2, vn) — Z / NinTijonds =0 Y, € Xjp, (3.7.31)
jeN() /L
Nisn = =B T2l (p) — 7527, (P) ) — i Vo € Ty, j € N(i). (3.7.32)

Lemma 3.7.5 Let (z',n7") € X), x Y}, be the solution of (3.7.31) and (3.7.32). Then

1/2

h . .
[In5llory < CPT2 2 una, + Cllzullon, Vi € N(). (3.7.33)

Proof. Now choose v, = Syn7; ), in (3.7.31), and using Lemma 2.2.6, we obtain

1
HUZ,hH(QJ,FU = a?zi(ZZh,SZ'mZ},h)+—(22h,5z'ﬂ7§},h)
At

1
Siinis plina; + EH%HO,&- Siimis nlo,o;

h1/2
n?j,h‘ ‘071—‘1']' + CE‘ ‘ZZh| |0,Qi

S |Z77j?h|1,h,Qi

< Ch_1/2|22h|1,h,9i

Nignllor,- (3.7.34)

This completes the rest of the proof. [ |
Now next aim to find the spectral radius of 7.

Here X, x Y}, is a real linear space and 7] is a real linear operator. In general, the spectral
radius formula does not hold in the real case. So the complexification of a real linear space
and a real linear operator is necessary. Now, we recall the linear operator 7} defined in
(3.5.13) and the linear space X, x Y}, defined in (3.5.1). Our main idea to find ||7{"¥|,
which is dominated by p(T7), where p(T) is the spectral radius of 7. The next lemma
shows that the relation between ||T5"*|| and p(T7").

Lemma 3.7.6 Let X, X Y}, be equipped with an inner-product and
p(T?Y<1—R, Re(01). (3.7.35)
Then for all positive integer number k, there is a constant C independent of k such that

TN < C(1 = R/2)F. (3.7.36)



Chapter 3. Domain Decomposition Methods 112

Let (2,77) € C® (X, x V3,), i.e

(zgvlr_]h) Zhvnh + \/ 2}7777}7 (3737)

where (27, 7), (27, 71") € X),xY3. Using the Lemma 1.2.12, we obtain the following identity.

Lemma 3.7.7 Let (2!, 7}) € C® (X, x Y3,), and (22, 77), (22, 77) € Xy X Yy,. Then

‘Zzh 10,0 |Zzh|1hQ +|Zzh Lh,Q (3.7.38)
||77inj,h||0,ij = ||77ij,hH0,ij + ||ﬁij,h||0,ija (3.7.39)

and
HﬁijgzhHg,ij = ||7Tij2?,hH?),ij + Hﬂ—ij'%i,hHg,ij (3.7.40)

where 7;; is the complexification of ;.
For the sake of convenience, let us define another notation G7;, similar to £, but both
having the same property, where each G}, acts on complex values and each E, acts on

real values.

Gy = Gin(zh, Ni,) = Z 735, + ﬁﬁijz%”%,rija (3.7.41)
JEN(3)
and
M
Gy = Gr(z,7}) Z Gl = Gin(Z T )- (3.7.42)
i=1

Lemma 3.7.8 Let G}, and G, be defined, respectively, by (3.7.41) and (3.7.42). Then the
following identity holds :

Gu(zy,, 1) = Z Z (anthorw‘i‘ﬁzHWu Horw>

=1 jeN(i)

n - 1
+2/6 Z <agi(zi,h7 Zz',h) + AtHZZ h||OQ ) . (3743)
i=1
Theorem 3.7.2 Let p(T) be the spectral radius of T3. Then

p(T0) < 1. (3.7.44)
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Proof. Let v be an eigenvalue of T¢* and let (27, 71) # (0,0) be its corresponding eigen-

vector. Then
T3 (2, 7h) = v (23, 7T7)- (3.7.45)

It follows from (3.7.41) and (3.7.43) that

Gn(Ty (Z, 7)) = WG (z, ) (3.7.46)
In the other hand,
Gin(T5( 2 in) = Z ||77_7?j,h+577_rij52h”(2),rij

JEN(i)

= Z |Vilijp + Bymisz Horw"‘ Z V35,0 + By zhHOFZ]
JEN(?) JEN(?)

= Z || = 7550 + B thorz]‘i‘ Z |- ﬁﬁ,hﬂLﬁﬂjiéﬁhHg,Fﬁ
JEN(?) JEN(i)

= I5+ Ig. (3.7.47)

To find the estimates of I5 and I, we proceed in the same way as finding the estimates of

I and I, in (3.5.32) and (3.5.32), respectively. By the simple calculation, we obtain

_ . 1
Gn(T3(zh.mp)) = Gr(zp, 1 452 (aQ o Zin) AtHthHOQ ) (3.7.48)

Therefore,

M
1
2 ~ =n |2
. LA § s Zin) + —17% (20, ) - 3.7.49
‘7‘ G Zh,,r]h (a’ Q; Zi,h 2 h ﬁtHzl,hHO,Qz) ( )

=1

From (3.7.49), we concluded that |y| < 1. Note that |y| = 1 if and only if Vi =1,2,--- /| M

n  zn Lo sn an L
a}éi(’zi,hazi,h> + EHZzhH%)QZ =0 and a?) (2 Zihy 2 zh) EHZzhH%)QZ =0. (3.7.50)
Then using the argument of proof of Theorem 2.2.3, it is easy to show that (z}!, 7)) is
trivial, i.e., (z7, 7)) = (0,0) and this leads to a contradiction as (Z}!, 7)) is an eigenvector

of Ti. Hence, |y| < 1 and this completes the rest of the proof. |
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3.7.3 Rate of convergence

From (3.7.49), we obtain

y[?<1- & (3.7.51)
where ()1 > 1 is such that
M
Gaat ) < 4@ 03 (o Gl ) + 7100 R, ) (3752
=1

Note that estimation of (); with yields the convergence rate for the iterative procedure

(3.7.5) and (3.7.6).

Lemma 3.7.9 If (z,77) € C® (X, x Y3), j € N(i), then

-n - =n h'l/2 =n

where C' is independent of h.
Proof. Using (3.7.37), Lemma 3.7.7 and Lemma 3.7.5, we obtain (3.7.53). This completes
the proof. [ |

Lemma 3.7.10 Let (z,7}) € C®(X), xY}) be an eigenvector of Ty such that Ty (27, 7) =
vz, 7). Then

Vi = —B(VT5Z0(P) — T2 (D) ) — N Vo € 'y, j € N(i). (3.7.54)

Lemma 3.7.11 Let (z,7}) € C®(X), xY}) be an eigenvector of Ty such that T (27, 7) =
v(Zp.mp). Then there is a positive constant C' independent of I';; and 3 such that

gzl B, < €872 (sl + il ) + Clizazialir, Vi € NG). (3.7.55)
Proof. From (3.7.54), we note that
B2l = Nign + Y en + BYRZ0, Vi € N(i). (3.7.56)
Using (3.7.37), Lemma 3.7.7, we obtain

52||7?ij53h“(2),rij < Hﬁ?j,h”g,f‘ij + 72“77ﬁ,hH(2),FU + 5272||7?ji5?,h“(2),rij- (3.7.57)
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We know from Theorem 3.7.2 that |y| < 1 and this completes the rest of the proof. |
It follows from (3.7.41), (3.7.37) and Lemma 3.7.7 that

Gin(Ziin) = Y s+ Brizillor,
JEN(5)
< 2> (Il + A7z B, ) (3.7.58)
JEN(7)

Below, we discuss a bound for the terms in the bracket which appear in the right-hand side

of (3.7.58).

Theorem 3.7.3 Let Qyr be the sets of subdomain in D,., and 3 = O(h™Y2H~'/?). Further,
let (Z,77) € C® (X, x Y3) be an eigenvector of Ty such that T (22, 77) = v(Z2,7}), then

Hﬁ?j,h”(z),rﬂj +52||7_Tirj2$,hu(2),rirj

B h? 1
< Cin'?H'? <2+E) <‘Zz’“h%hﬂr ||Z7,Th||O,Qir)

r—13— h? =n =n
+CE 2 (24 1) 8 (1ol + 311l )
L h? 1 _ ;
+ Cr gtz g2 (2 + ) (I Zj hlih@il + EHzil,hHﬁ’Qil) Vjie N(@i"), (3.7.59)

where Cy > 1.5 is independent of h and H, and N s the winding number.
Proof. First we consider when r = 1, i.e., Q1 € D;. Note that there is at least one face of
Q;1 belonging to 02 and Tz j, vanishes on this face. Then using Lemma 3.5.8, we find

that
||ﬁi1jzﬁ,h||(2),ri1j < CH‘Zil,hﬁ,h,Qil’ Vje N(i'). (3.7.60)
From Lemma 3.7.9 and (3.7.60), we arrive at

Hﬁz‘lj,hH(QJ,Filj + 52“7_%19'23 hH(2)F a,
h 1
< 1 (24 1) 6 (1, + glEalRa, )« ¥ € NG, (761
and hence (3.7.59) holds for » = 1. Next, we consider when r = 2, i.e., Q;2 € D5. In this

case, at least one face of 2,2 is common to some €2;; € D;. From Lemma 3.7.11, we find
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that
52”7@'2115?2,;1”(2),1“1.21.1 < Chllmpa hHOF 2.1
+ G (11T alra, + BlIFaezi llr,, ) Vit € NG (3.7.62)
Using Lemma 3.7.9 and substituting (3.7.61) in (3.7.62), we arrive at

o _ h? _ 1.
ﬁ2||7ri2ilzz‘2,h||g,1‘igi1 < 012h Vg (1 + At) B (‘Zﬂ,h‘ih,ﬂig + EH%%H%QQ)

_ h? _ 1. -
+Ol2h 1/2[—[1/2 (2 + E) ﬁ (|Zi1,h|%,h79i1 + EHZil,hHg,Qil) . (3763)

Substituting (3.7.63) in Lemma 3.5.8, we obtain Vj € N (i?)

62‘ ‘ﬁﬁjzﬂ,h‘ ‘S,Fizj S Olh_1/2H1/26|Eg,h‘ih,ﬂig

_ h? n L
+th 1/2H1/2 (1 + At) ﬁ <‘Zi2,h‘ih,9i2 + EHZiQ’hH(z)’QiQ)
37 —1/2 771/2 h? o |2 a2
+CYh™PHYT 24 At Bz ine, + EHZil,hHO,Qil : (3.7.64)
From Lemma 3.7.9 and (3.7.64), we arrive at

17752 5.1] ‘(2),1—‘223. + 3 |Tizj 2 3| ‘S,Figj

_ h? 1.,
< C3pV2 [ (2+ ) (\z2h1h92 E\\zﬁ’h\\agﬁ)

a h? _ _ . .
retn 2 (24 10 ) 8 (Fhakua, + 5717alRa, ) WIEN@), (3709

where C7 > 1.5. Next, we consider when r = 3, i.e., ;3 € D3. That means at least one

face of {);3 is common to one of €22 € Dy. From Lemma 3.7.11, we find that

62“7?1'32'22;,h||(2),1“i3i2 < OlHﬁgﬁ,hH(z),rigiz
+ O (I iRy + B Fe0Z8 1 By ) Vi% € NG). (37.66)

Using Lemma 3.7.9 and (3.7.65) in (3.7.66), we arrive at

. h? 1.,
Pl < COE (1450 5 (128 a, + 2l1alRa )

~ h2 ) 1,
OV (2 + At) 3 (‘Z@ﬁ‘ih’QiQ + E||Zi2’h||g7gi2)
+CHRTVPHY2 (2 4 L BlIZE i, + i||zl |2 . (3.7.67)
1 At i, h11,h,Q 1 At i1,h 110,21
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Substituting (3.7.67) in Lemma 3.5.8, we obtain Vj € N(i?)

8177wl < Crh2HY2B125 412 b
1
—|—CS 1/2H1/2 (1+—) ‘ z3h 1hQ3 Euzﬁ,hHg,Qﬁ)

— 1 ~
+015h 1/2H1/2 ( At) (‘ Qh‘thQ EHziz,hHg,Qﬂ)
— 1 >
+015h 1/2H1/2 < ) <|Zlh|1th EHzil,hHaQil) . (3768)

From Lemma 3.7.9 and 3.7.68, we arrive at Vj € N(i?)

||7; ]hHOF3 +52H7TZ ]Zz3hHOF3

_ h? n I
< Cf’h 1/2H1/2 (2 + E) ﬁ <‘Zz’3,hﬁ,h,ﬂi3 + E||Zz3,h||(2),913)
2

_ h n I
+015h 1/2H1/2 <2 + Kt) ﬁ <|Zi2,h|%,h,9i2 + Kt||zi2’hHg’Qi2)
2
+CORV2 Y2 2+£—6 VWFMZ+34QW%Q (3.7.69)
1 At it,hi1,h, il At 1, masl ’

where C7; > 1.5. Similarly, we can continue the argument until the entire domain is

exhausted. In general,we obtain Vj € N(i")

B2 w5, < C1hPHY2BIZE LR g,

- h? =n 1 =n
+OShTVEHY? <1 + At) B <|Zir,h|ih,9ir + Kt”%rh”(zmr)

2

r—17 — h 1 -n
+Of lh 1/2H1/2 <2 + A ) <|ZZT—17h %Jl,gir—l + E“Zir—17hH(2)7QiT_l)
+~+ﬁHWWW2MJiﬁﬁ1F +imwﬁ . (3.7.70)
1 At it,h11,h,Q At it,h 110,821

and

|75, h||0 Py T 52“77#9% hHOF .y

S 03 1/2Hl/2 ( ) ( Zl",h ihyﬂ - AtHZZT h||O,Qir)

+O7 T VP ( ) ( Zir—1p, ih,Qir . AtHZﬂ 1 hHO,QiTl)

4 CEp 2 2 (2 + At) <|2i1,h|%,h79i1 + EHZﬂ,hHg,ail) , (3.7.71)
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where C'; > 1.5. This completes the rest of the proof. [ |
From Theorem 3.7.3 and (3.7.58), we find that

> Gl <2 >0 > (il i, + Bl7ezk 4l i)

QreD, QireDy jEN(iT)

_ h?
< RiC}h VEHY? <2+ At) Z <|Zﬂh Lh,Qr At“erhHo,Qﬂ)

Q;r €D,
2r—17—1/2 771/2 h? -n 2 L, 2
+R:C7"h H 2+ At 5} Z ‘Zﬂ—l,h‘l,h,ﬂir,l + Euzir—l,huonﬂ,l
Qi'rfleDrfl

h? 1
o RICE IR (2 + At) B Z <|22‘n1,h|%,h79i1 + EHEﬂ,hHaQil) . (3.7.72)

Qil €Dy

where R; is the total number of interfaces. Now we sum up all the subdomains using

(3.7.72), we arrive at

ZiYLL?ﬁ}YLL Z Z Gzh zh?rr]zgh)

r=1 Q;reD,

S th_1/2H1/2 (2 + —) ﬁz <02r ! Z (‘Zz’“h 1,h,Q;r AtHZz’“hHO,Qir))

Q, TEDT

_ 1
< RPN (2+—)ﬂ2(a9 i) + g llRa, ) B1)

h2
From the estimate (3.7.73), we obtain that (3.7.52), i.e., 4Q = R,C?Np~ V2 H'/? (2 + At)

Theorem 3.7.4 Assume that the parameter 3 = (3;; = B; in the iterative procedure
(3.7.5)-(3.7.6) satisfies 3 = O(h™Y2H~'2). Then, for At = O(h?) the spectral radius
p(Ty) satisfies

p(Ty) <1 —ChYV2H Y2 =41, (3.7.74)

4
where C' = TN, with Cy > 2 and the iteration (3.7.5)-(3.7.6) converges with an error
1V1 4

at the k™ iteration bounded asymptotically by O(yi).
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Remark 3.7.1 From Theorem 2.7.2, Theorem 3.7.1 and Theorem3.7.4, we conclude that
" = U™ log < [Ju" = Uloo + U™ = U™ oo < O(AL+ %) + O(y").  (3.7.75)

Since the overall error estimate at time level t,, is of order O(At + h?). We need to stop
the iterative procedure in k when we achieve 3" < O(At + h?), that is with At =~ h?, k,
satisfies
log(At)
ky =~
log (7o)

Remark 3.7.2 In this iterative procedure, both theoretical and computational result shows

. (3.7.76)

the parabolic problem has faster convergence than the elliptic problem.

3.8 Numerical experiments

In this section, we have discussed the implementation procedure of the present results to a
model problem. The numerical implementation scheme has been performed in a sequential
machine using MATLAB.

Consider the parabolic initial boundary value problem (3.7.1) with f(x,y,t) = e'[z(1 —
z)+y(l—y)+22(1l —2)+2y(1 —y)] and u(z,y,0) = up(x,y). The exact solution of the
problem (3.7.1) problem is given by u = e'z(1 — z)y(1 — y).

Here we take the square domain 2 = (0,1) x (0,1). We decompose the square into
[0,3/4] x [0,1] and [3/4,1] x [0, 1], with interface I = {3/4} x (0,1). We triangulate the
domain uniformly and mesh size is h. Here, we consider the winding number N = 1. We
choose the initial guess {u?}?, )\Z%} = {uf,', A}, where n — 1 is the previous time step.
The stop criterion is ||u}™ — u}|| < 107%, where iteration number is k. We choose the
relaxation parameter 3 = O(h~Y/2H~1/2).

In Figure 3.3, the graph of the L? error ||u — uy|| is plotted as a function of the dis-
cretization step ‘A’ in the log — log scale. The slope of the graph provides the computed
order of convergence as approximately 2.0.

In Table 3.2, the iteration number, order of convergence and L? error e, = |Ju — uy||
for h =1/8, h=1/12, h=1/16, h = 1/20, h = 1/24 and h = 1/28, and At = h? at time

t =1 are given. The numerical result confirms our theoretical result.
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Figure 3.3: The order of convergence
h | H| D.OF.in Q; | D.O.F. in Q | k = No. of Iter. | ey, = ||lu —upllon | Rate
1/8 | 1 138 46 5 5.83814998 x 104 -
1/12 | 1 315 105 5 2.68160215x10~* | 1.9188
1/16 | 1 564 188 5 1.51485628x 1074 | 1.9851
1/20 | 1 885 295 5 9.65067546x10~° | 2.0206
1/24 | 1 1278 426 5 6.63850676x10~° | 2.0521
1/28 | 1 1743 581 5 4.81675258x10~° | 2.0810

Table 3.2: L? error and the rate of convergence for the 2-domain case



Chapter 4

Parallel Iterative Procedures Using

Mixed Finite Element Methods

4.1 Introduction

In this chapter, we discuss an iterative method based on mixed finite element methods
using Robin-type boundary condition as transmission data on the artificial interface (inter-
subdomain boundary) for nonoverlapping DDM. We now consider the following second
order elliptic problem, which models single phase Darcy flow in a porous medium: Find

pressure p and velocity u satisfying

u=-KVp in Q, (4.1.1)
V-u+bp=f in Q, (4.1.2)
p=g on o9, (4.1.3)

where Q C IRY, d = 2 or 3, is the bounded domain, K is a symmetric, uniformly positive
definite tensor with L>°(£2)-components representing the permeability divided by the vis-
cosity and b(z) > 0, b(z) € L*(2). The Dirichlet boundary conditions are considered for
simplicity. In the proposed method, the problem (4.1.1)-(4.1.3) is decomposed into a series
of small, local (or subdomain) problems. On each artificial interface, Robin-type boundary
are considered as transmission conditions and then the subproblems are solved using mixed
finite element methods.

Other domain decomposition methods with nonoverlapping partitions for mixed fi-

nite element methods are discussed by Glowinski and Wheeler [74, 37], Cowsar, Mandel,

121
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Wheeler [38], and Douglas et al [49, 51]. The balancing domain decomposition method is
proposed in [38, 94]. In [49], Douglas et al. have also proposed and analyzed a parallel iter-
ative domain decomposition method with Robin-type boundary conditions as transmission
conditions on the interface. While the proposed iterative method is different from the one
introduced by Douglas et al. [49], it is closely related to one proposed by Deng [43, 44].
The organization of this chapter is as follows. In Section 4.2, we have discussed DD
procedures based on mixed finite element methods. In this section, we have introduced
iterative method for multidomain problem. In Section 4.3, we have discussed the conver-
gence analysis for the iterative mixed finite element multidomain formulation. In Section
4.4, we have estimated rate of convergence using spectral radius of the matrix associated

with the fixed point iterations.

4.2 Domain decomposition and finite element frame-

work

In this section, we discuss the variational and mixed finite element formulations for the
multidomain problems.
Before stating the weak formulation of (4.1.1)-(4.1.3), we recall the usual velocity space

[26]. Let
H(div;Q) = {v e (L*(Q))* : V-veL*(Q)}, (4.2.1)
be equipped with the norm

1/2

IVl m@ive) = (IVIF+ 1V - vI[?) (4.2.2)

The weak formulation corresponding to (4.1.1)-(4.1.3) is to find {u*,p*} € H(div;Q) x
L*(9) such that

(K 'u*,v)a— (0, V-V)g = —{g,v-V)aa, v € H(div; ), (4.2.3)
(V-u,qa+ (bp" 0o = (f.0a, qe L*(Q), (4.2.4)

where v is the outward unit normal vector to 9. Under the assumption of coercivity

and LBB condition (see, the References [26, 114]) the problem (4.2.3)-(4.2.4) has a unique
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solution. We now assume that the problem (4.1.1)-(4.1.3) is H?—regular, i.e., there exists

a positive constant C' depending only on K and 2 such that

Ipll2 < C (I1AIl + llglls/200) - (4.2.5)

We refer the reader to [71, 75, 93] for sufficient conditions for H?—regularity.

In order to obtain a discretization of (4.2.3)-(4.2.4), we assume that there are two
standard mixed finite element spaces V;, C H(div; Q) and W), C L?*(Q) (see, the References
[26, 114]). Now the approximation of (u*,p*) is to find (u},p}) € V} x W), satisfying

(K, v)a— (05, V-v)a = {(g,v-V)aq, v € V), (4.2.6)

Under the assumption of coercivity and discrete LBB condition (see, the References [26,
114]) the discrete problem (4.2.6)-(4.2.7) has a unique solution in (u},p;) € V, x Wj,.
For the multidomain formulation, let the domain €2 be partitioned into a finite number

M
of non-overlapping sub-domains ;(i = 1,2,--- , M) with Q = U ), and let I';; = 0, N

i=1
M

0Q; = I';; with |[';;| as the measure of [';;. Further, let I' = U [y, and I'; = 0€,;\0Q
i=1, jEN(i)
denote the interior interfaces, where N (i) = {j #i||I';;| > 0}.

We define a sequence of sets D; whose elements are subdomain by induction: D; = {€; |
at least one face of ; belongs to 90}, D, 1 = {Q; | % & D,,Q; share one face with some
Q; € D, at least} (see the definition 3.2.1 in chapter 3).

Now we are in a position to write the following multidomain formulation correspond-

mg to the problem (4.1.1)-(4.1.3). Find (u;,p;), © = satisiying the followin
ing he probl (411)(413) F'd( ,p),’ 1,2, , M isfying the following

subproblems:
u; + KVp; =0 in Q,, (4.2.8)
pi=4g on o€ N oA (4.2.10)

The consistency conditions which need to be imposed on the artificial interface I' of the
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problem are

bi = Py on Fz’j; VJ c N(Z), (4211)
KVp;-v = KVp;-v on Ty, Vi€ N(i), (4.2.12)
where v = 1% = —17" on T';; and v and 17" are the unit outward normal vectors to 9€2;

and 0€;, respectively. The equation (4.2.12) can be written as

= —u; - on Ly, Vje N(i). (4.2.13)

u; - v

We need the following spaces for our future use. Let

M
Vi =H(div;Q), V=[]V (4.2.14)
i=1
M
W; = L*(), W =||wW:=L*Q). (4.2.15)
=1

For v € V, g € W and n € L?(T'), the multidomain weak formulation corresponding to
(4.2.3)-(4.2.4) becomes :

M M
Z {(K_luhv)ﬂi - (pza V- V)QZ} = - Z Z <p2 Vo Vij>f‘ij - <g Vo V)@Qi\l_‘ ) (4216)
=1 i=1 | jeN()

M

STV wig)a, + (bpig)a,} = Z(f, 9a,, (4.2.17)

i=1
M
SN (w-vYop)r, =0, (4.2.18)
i=1 jEN(i)
where v is the outward unit normal vector on 9€2; (see, [26, pp. 91-92]), u; = uf and
pi = p|*Q_. There may be problem in assigning a meaning of the traces in (4.2.16)-(4.2.18),
but this formulation will be useful for discrete formulation.
To describe finite element approximations for (4.2.16)-(4.2.18), we begin with the tri-
angulation of Q;, i = 1,2,---, M. Let 7;,; be a conforming and regular triangulation of €);

into triangles (resp. tetrahedrons) satisfying Vi

TCO VT €T, U= J T (4.2.19)
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We also assume that the triangles (resp. tetrahedrons) 7" should not cross the interface T',
and thus, each element is either contained in €2; or in Qj, where 1 < 4,57 < M and they

share the same edges of T';;. This implies that the global triangulation 7;, of 2 induces the

M
triangulations 7j,; of Q; and Tp,; of Qj, 1<i,j<M.ie, T,= U’]}” Let
i=1

V@h X W@h CV,; x Wi, (4220)

be any of the usual mixed finite element spaces defined on 7j,; (see for the RT spaces
[104, 112], the BDM spaces [25], the BDFM spaces [24], the BDDF spaces [23], or the CD
spaces [31]). The velocity and pressure mixed finite element spaces on 2 are defined as

follows:

M M
Vi=[[Virn.  Wu=][Wir (4.2.21)
i=1

i=1
For example, let T be a d- simplicial (triangular or tetrahedral) element. Define the Raviart-

Thomas spaces [104, 112]
RT.(T) = (P.(T))* + x P.(T), (4.2.22)

where x = (x1,29) for d = 2, x = (21,29, 23) for d = 3 and P,(T) is the polynomial of

degree < r over T.

Lemma 4.2.1 /26, pp. 116] For any d-simplicial element T" we have for v € RT,.(T)
divv € P.(T), v-v),, € R.(07), (4.2.23)
where v is the outward unit normal vector on 0T and

R.(0T) = {gzﬁ | ¢ € L*(0T), 9., € Pr(ei)Ve;, and e; are the edges of triangles} :

In the remaining part of the paper, we have used the Raviart-Thomas spaces of lowest

order RTj [104, 112]. Define the finite dimensional spaces

VvV, = {V:(Ul,~'~ a) EV i vip=vu=a+Pr;a,BER, =1, ,d}, (4.2.24)
Wy, = {w € L*(Q) : w), = constant} . (4.2.25)
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Note that for any element 7' € 7j, the degrees of freedom for a vector v € Vj can be
specified by the values of its normal components v - v at the midpoints of all edges (faces)
of T, where vr is the outward unit normal vector on 97. The degree of freedom for a

function w € W), is its value at the center of T

Remark 4.2.1 The normal components of vectors in V), are continuous between the inter
element faces within each subdomain ); and there is no such restriction across I', that is,
the normal component of the flux variable may not be continuous across the inter-subdomain
boundaries I';; and hence, Vi, may not be a subspace of H(div;(2).

Let 7;; 5 be a quasi-uniform finite element partition of I';;. From Proposition 4.2.1, we
find that r is the degree of the polynomials in V, - #%. In order to construct the Lagrange
multiplier space on I'y;;, let A;;, C L*(Ty;) consist of either the continuous or discontinuous
piecewise polynomials of degree r on 7;;,, where r is associated with the degree of the
polynomials in 'V, - v, For example, in the case of RTp, A;j, is the space of all piecewise

constants (linear, if d = 3 and the grids are hexahedral) polynomials on 7;; . Let

M
A=1T TT A (4.2.26)

i=1 jEN (i)

be the Lagrange multiplier space on I'. For convenience, we interpret any function n € A
to be extended by zero on 0€). The mixed finite element formulation corresponding to
(4.2.16)-(4.2.18) is to seek (un, pn, A\n) € Vi, x Wy, x Ay, such that, for v € Vi, ¢ € W), and
n € Ay

M M
> AE T wv)a, = Vevia ==Y 8 D (v N, — (9, V- v)aaar ¢ (4.2.27)
=1 i=1 | jeN()

M

> AV un, g, + (bpn, 9o} = Z(f, Qo (4.2.28)

=1
M
Z Z <uh : Viju 77)1—‘1']' = 0. (4229)

i=1 jEN(i)

Here on each subdomain €2;, we have a standard mixed finite element method, and (4.2.28)

enforces local conservation over each degree of freedom. Moreover, since uy, - v is continuous
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at any element face (or edge) 7 ¢ T' U 0f, the local mass conservation property across
interior element faces is satisfied. By considering the Dirichlet boundary condition, it is
clear from (4.2.16) and (4.2.27) that the Lagrange multiplier A\, € Aj actually replaces
the pressure p on the boundary I';;. The equation (4.2.29) enforces weak continuity of the
flux across the interfaces (weakly with respect to the Lagrange multiplier space Aj,). The

matrix associated with (4.2.27)-(4.2.29) takes the form

A B C
BT E 0 |, (4.2.30)
cro0 0

where A is a block diagonal matrix and B also has a block structure. Actually, by intro-
ducing the Lagrange multiplier, we easily eliminate the flux and obtain a reduced problem
for the pressure unknowns only. Thus, the variable u; can be eliminated by computing the
inverse of A which is trivial. The reduced matrix takes the form

D= BTfZl_iB - L BATAAAC: : (4.2.31)

CTA'B CTAIC

Notice that the simplification of the matrix (4.2.30) cannot in general be done in practice.
Moreover, the matrix D in (4.2.31) is also ill-conditioned. Therefore, efficient iterative
methods need be introduced to handle such a difficult situation. In the next section, we

are going to introduce mixed iterative domain decomposition method.

4.2.1 TIterative method for multidomain problem

In this subsection, we discuss the iterative method based on the multidomain subproblems,
and also derive the weak formulation for both continuous and discrete problems.
It is easy (cf. [45, 46]) to replace (4.2.11) and (4.2.13) by the following Robin-type

boundary condition on the artificial interfaces I';; as :

—Biju; v +p; = Biug v +py, 1 €Ty C O, (4.2.32)
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where §;; = (;; > 0 are parameters. Now, we define an iterative procedure based on the

nonoverlapping multidomain problems as follows: for all i =1,2,--- | M
(1) given I;, 1 <i# j < M, arbitrarily.
(i1) recursively compute uf, p¥, i =1,2,--- M, by solving in parallel
aulf +Vpi =0 in Qi (4.2.34)
V-ub+opt=f in Q, (4.2.35)
—Buf v+ pl =15 on Ty, Vi € N(i), (4.2.36)
pr=g on o8, N oA, (4.2.37)

where o = K1,

(7i1) for i = 1,2, --- , M update the Robin-type transmission condition
lffl = 2ﬁ]z NV A lk on Iy, V5 € N(i). (4.2.38)

The weak formulation corresponding to the problem (4.2.34)-(4.2.38) may be stated as
follows: For all ¢ and j, given l?j € Ay, l]Z € Aj; arbitrarily, find {uz, P, lffl} €V, x
W; x A;; such that

(au V)Q _(pzav VQ + Z ﬁl] Z] y Vo V]>Fij

JEN(H)
= — > (U5, v, = {9,V videaar, VEV:,  (4.2.39)
JEN(7)
(V-uf, 9o, + (b9F, )a, = (f, 9)as, geW:,  (4.2.40)

and
<lfj+l V- I/ij>pij =2 ﬁji(uf v Vij)ng (l;"’Z ,V I/ij>rij, v e L2(Fij). (4.2.41)

There may be some difficulty in assigning a meaning to (4.2.41) regarding the product (u;f
vt v ifuf € Vjand v € V;. Similar difficulties may arise while attaching a meaning
to some of the term in (4.2.39). However, the problem (4.2.39)-(4.2.41) may be viewed a
motivation for the following iterative mixed finite element multidomain formulation.

For all 7 and j, given l?j,h € Nijn, l?i,h € A, arbitrarily, find {uﬁh, pf’h, lffhl} € Vin X
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Wi n x Ayjp such that

(a uf,h’ V)Qi - (pf,m V- V)Qi + Z 6ij<u§,h VY Ve Vij)Ej

JEN(3)
JEN(3)
(V-ufy, o, + (bpin @)or = (f, e g€ Wip,  (4.2.43)
and
I =2p,ub, v+ 105, on Ty, Vje N(i). (4.2.44)

Note that the two spaces A;;;, and Aj; j, are different on the edge or side I';;.

4.3 Convergence analysis

In this section, we discuss the convergence of the iterative method defined by (4.2.42)-
(4.2.44).
Below, we first discuss the equivalence between the mixed finite element multidomain for-

mulation and the single domain formulation (4.2.6)-(4.2.7).

Theorem 4.3.1 Let (u}, p;) € Vi, x W), be the solution of (4.2.6)-(4.2.7), and v, = L
and w; p, = w}*lm'. Then for all1 <i < M and j € N(i), there exists l;j, € Nijp, such that
(Wi n, pin) € Vin X Wiy satisfies

(awin, v)o, — (pin, V- V)q, + Z Bij(aip - v v Vij)rij

JEN(4)
- Z <lij,h Vo Vij>Fij - <g , V- Vi>8Qi\F, vV € Vi,h, (4.3.1)
JEN(i)
(Vuin, @)a, + (bpin: o, = (f, Do g€ Wi (432)
and
lijn = 2 B, - S Liin on Ly, Vje N(), (4.3.3)

where « = K~' and 3 = B;; = Bj; > 0.

Proof. For simplicity, we prove the above theorem for the two fixed subdomains, i.e.,
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M = 2. For example, Q = Q; UQy and I = T'j5 = 904 NI, Let
V=V, PV, D Vrwn (4.3.4)
where
Vah = {VM | Vip = Vo, € V, and v, - v; = 0 on Fij} ,i1=1, 2, (4.3.5)

and we associate to I'y2 a complementary subspace Vr,, ) of V%h@Vg’h in V,,. Now
equation (4.2.6)-(4.2.7) can be written in an equivalent split form: Find (w;, pin) € Vin X
Wi such that

(Oé ui,hvv>Qi — (pi,hu V : V)Qi - _<g;V : Vi)aﬂiﬂaﬂv VV S Vghv 1= ]-7 27 (436)
(V-uin @)a, + (bpin Q)o. = (f, 0o, Vg€ Win, i=1, 2, (43.7)

and
(O{ u2,h7 V)QQ - (p2,h7 v : V)QQ = - [(Oé ul,h7 V)Ql - (pl,hv V ' V)Ql] ) VV c Vl—‘lg,h' (438)

Now we consider first €2;. Then for v € Vp,, 1, we define L9, as
L12,h = (a U—2,h7 V)92 — (pzh, V . V)QQ. (439)
Therefore, we can construct l12; € Ajap such that

<l127h, A\ V12>F12 = —ﬁ<u17h . 1/12 , V- V12>F12 + Ll2,h VV - Vrl%h. (4310)

The space Ajz ), consists of polynomials of degree < r and also the normal component v -2

on I'y5 is a polynomial of fixed degree < r. So, existence of a unique [y, follows from the

equation (4.3.10). Similarly, we now consider 5. Then we define Lo 5, as

L21,h = (a Uy,h, V)Ql - (pl,hu = V)Ql- (4311)

Therefore, we can construct la; 5, € Agy p, such that

<l21,h, AV V21>1"12 = —6<u27h . 1/21 , V- V21>1"12 -+ LQLh Vv € me’h. (4312)
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Existence of a unique I j, follows from the equation (4.3.12). Thus, it follows from (4.3.6),

(4.3.8), (4.3.10) and (4.3.12) that

12>

— . . 12 .
b 7 9 b
(auyp, V)g, — (P1h, V- V)a, + B, -v=,v-v ),

= —{lop,v- v, —{g,v - oo, v E Vi, (4.3.13)

1 21>

(auyn, V), — (P2, V- V), + Blugy - v v v)p,

— _<121,h , V o+ V21>F12 - <g , V- V2>8920397 vV E V2,h' (4314>

Clearly, (4.3.13)-(4.3.14) and (4.3.7) implies (4.3.1)-(4.3.2) with 8 = B = B;;. Adding
(4.3.12) and (4.3.10), we obtain

<ll2,h> A\ V12>F12 + <l217h , V- V21>F12 = —ﬁ<111,h -t y V° V12>

—ﬁ<u2,h . V21 , V- V21>1"12 + (L127h + LQL}L) Vv S Vl"lg,h‘ (4315)

IRD)

Since uy p, = u;ml, Uy, = u;mz and uj is the solution of (4.2.6)-(4.2.7), therefore, we obtain

uy V2 = —Ug, v* on Ty, (4.3.16)

12 1

where 2 and v?! are outward normals to €; and €2y, respectively. From (4.3.9) and

(4.3.11), we find that
Liop + Loy p = 0. (4.3.17)
Substituting (4.3.17) in (4.3.15), we arrive at
(hap + Buyy - v v v, + (lup + B ugy - v*, v ), =0 (4.3.18)

We rewrite the equation (4.3.18) to obtain

12

<l12,h + ﬁuLh VT, Vo 1/12>1"12 — <l217h + 61127]1 . 1/21 , —V - 1/21>1"12 =0. (4319)

21 21

12 12
Now choose v - v = ligp —lorp + By - v — Bugy - v and v - v™ = —lop + logp —

Buyy -2+ Buyy - v, and substituting in (4.3.19), we arrive at

(Lioy + Buyyp - v, Loy — o1 + Buyy - v — Bugy - V21>F12

~(loyp + Bugp - v Liag — by + Bugy - v = Bugy, - ), = 0.(4.3.20)
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Using (4.3.16) in (4.3.20), we find that

Lo = 2B ugp + log . (4.3.21)
Similarly, we obtain

bovpn =280y + Lo (4.3.22)

Clearly, (4.3.21)-(4.3.22) implies (4.3.3) with § = §;; = (j;. Here, we have proved for
two subdomain cases with 3 = (;; = ;. Similarly we can proceed for more than two
subdomains with 3 = 3;; = (;;. This completes the rest of the proof. [ |

Now we are in a position to discuss the convergence of the iterative method defined by

(4.2.42)-(4.2.44). Define

ko .k ko k k  _ gk k gk
€n=Wn— Wh, Tip=Din = Pihy Mijn = lz’j,h - lij,h and Hijin = lji,h - ljz‘,h- (4-323)

Then, subtracting (4.3.1)-(4.3.3) from (4.2.42)-(4.2.44), we obtain the following equations:

(Oé ei’ih’ V)Qi - (rﬁh’ V- V)Qi + Z ﬁij<e§,h "z Ve Vij>Fij

JENG)
= = (u, v, VeV (43.24)
JEN(7)
(Ve o, + (b5, @)o, = 0, g€ Win, (4.3.25)
and
i =20j€k, v 4, on Ty, Vi€ N(), (4.3.26)

Setting v = e, in (4.3.24) and ¢ = r}, in (4.3.25), and adding the resulting equations, we

arrive at the following equality:

(a ef,ha ef,h)ﬂi + (brf,ha Tf,h)ﬂi + Z 5ij<ef,h "z 7ei‘€,h ’ Vij>1“¢j = - Z <Mi‘€j,h ) e?,h : Vij>rij‘
JEN() JEN()

Lemma 4.3.1 Let {e},, rj),, ul;,} for all i and j € N(i) satisfy (4.3.24)-(4.3.26). Then,

the following identity holds true :

enllo.r = ek lor — 45 Z{ (el t el M, + (0t ri e (4.3.27)
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where 3 = (;; = Bj; and

a5 = Z > Hadallgr,- (4.3.28)

i=1 jEN(3)

Proof. From (4.3.26), we arrive at

S bl = Z/ 5, s = Z/ 286kt vt 1 ] s

JEN(3) JEN(3) JEN(4)
Z / |Mz]h‘2d8+4ﬁ Z / umh +ﬁe ]/ji) ef’;gl -t ds
JEN(3) JEN(7)
= > / bt Pds — 48 {(aely e o, + (bri i e, b (4.3.29)
JEN(7)
Sum up over i = 1,--- , M to complete the rest of the proof. [ |

Below, we discuss some lemmas for our future use.

Lemma 4.3.2 (Local inverse inequality) /2, Lemma 4.1, pp. 1304] For any function
v € V,,, there exists a positive constant C' independent of h and ); such that

v - 19 ]0,00, < Ch™Y2||v|]0.q,- (4.3.30)

Lemma 4.3.3 [49, pp. 102] For any function v € V,,, there exists a positive constant C
independent of h such that

Ivlloo < Cr | IV - vlloo, + Y [Iv-17llor,, | - (4.3.31)

JEN(i)
Lemma 4.3.4 [49, pp. 102] Let Tp,; be a reqular triangulation of Q; and let I';; and L'y,
be the two faces of C);, then for any function v € V,, there exists a positive constant Cy

such that

v -l

< Co ([IV - Vllog, + 11V - " llor,,,) - (4.3.32)

iy —

Theorem 4.3.2 Let {w;n,pin, lijn}, @ = 1,2,--- M, j € N(i), be the solutions of the
problem (4.3.1)-(4.5.3) and let {uzh,pzh,lwh} i=1,2,--- M, j € N(i), be the solutions
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of the discrete iterative problem (4.2.42)-(4.2.44) at iterative step k. Then, for any initial
guess {10,191} € {Nijn, Njin}, Vi, Vj € N(i), the iterative method converges in the sense
that

v 1/2
[Juj; — unllon = (Z [luf), — uhH%,@-) —0, as k— oo, (4.3.33)
i=1
v 1/2
1Pk — pallog = (Z iz —phllﬁ,m) —0, as k— oo, (4.3.34)
i=1
and
1/2
12 = tullor = Z Do e —luallie, | —0, as & — oo (4.3.35)
=1 jeN(i)
Proof. Since €}, =}, — w;n, 1) = pf, — pin and pl;, = I, — lijp, it is enough to show

that for each 1,

||ei‘€,hH(2),Qi — 0, as k— oo, (4.3.36)
Irfullio, — 0, as k— oo, (4.3.37)
i ullor, — 0, as k— oo, Vj e N(i), (4.3.38)

From (4.3.28), we note that

|Iuh\\op+4ﬁz{ (el t el Do, + (brf rl et =y I3y (4.3.39)

Since the second term on the right hand side of (4.3.39) is non-negative, 0 < ||uf|[§ <
|| |12 and hence, {||pf|lor} is a decreasing sequence of non-negative terms which is

bounded above by ||u?|]o.r. Therefore, klim ||i¥||or converges. Moreover,
—00

4/ Z{ O‘ekh17 zh Ja, + (brkhla fh1>9i} = Hﬂﬁ_lH(z),r - ||MIZH(2)F (4.3.40)
On summing up k£ = 1 to N, we obtain

4 ZZ{aefh% e o, + (brky L rk e, = Z (Y2 = bl

k=1 =1
= HMhHo,r — e |6r < 20|ppll5r (4.3.41)



Chapter 4. Domain Decomposition Methods 135

and, hence,
co M
Zz{aezm th +(brzh7 zh }<OO (4342)
k=1 i=1
Thus,
(efy,el)o, =0 as k—oo, =12 M (4.3.43)
Therefore,
ef’h—>0 in L2(Qi) as ].{;_>oo7 7= 1’2’... ’M' (4.3‘44)

Using Lemma 4.3.2 and (4.3.44), we find that for fixed h
lef, - 7 joon, = 0 as k—oo,  i=1,2--- M. (4.3.45)
In particular,
e, -7 —0 in L*(I;) as k—oo, Vi, Vje N(i). (4.3.46)
If the function b(x) > by > 0 on 2, then it follows from (4.3.42) that
ri,— 0 in L*() as k—oo,  i=1,2--- M. (4.3.47)

But we have to prove this in general case, i.e., b(z) > 0. First we consider the subdomains
Q; € Dy, that is, one face of the subdomains €2;, which belongs to the boundary 9€2. Choose
v € V,, for all 4, Q; € Dy, such that

V.v= rf’;h on Q; and v =0 on I;. (4.3.48)
Substituting (4.3.48) in (4.3.24) and using Lemma 4.3.3, we obtain

HrihH(QJ,Qi = (O./ ei’imv)ﬂi < C||ek,

rfjh| lo.0, - (4.3.49)

Therefore,

IrEnllog, — 0, as k — oo, foralli, where €; € D;. (4.3.50)
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Other way around, we choose v € V;;, , for all 4, ; € Dy, such that

k
—Hijn O Lij,

0 on [y, m#J.

V.-v=0 on Q and v-v¥ =

Substituting (4.3.51) in (4.3.24) and using Lemma 4.3.3, we arrive at

Hﬂfj,hHg,rij = (a ef,ha V)q, + <ef,h SZNE Vij>Fij
< Cllefulloallvllog + CBlES, - v o, IV - v7|lor
< C (HeihHO,Qi + ﬁ Hef,h ’ VZ'HOTU) ||V ' VZ'HOTU

= C (He’ihHO,Qi + ﬁ Hef,h ’ VZ'HOTU) ||/J’i‘€j,hH07Fij‘

Using (4.3.44) and (4.3.46) in (4.3.52), we find that for all 4, Q; € D,

Hufj,hHO,Fij —0 k— o0 ] S N(Z)

ij

136

(4.3.51)

(4.3.52)

(4.3.53)

Thus, we have proved convergence of uj,, pf,, I¥, on boundary subdomains (€; € Dy).

Now, we consider a subdomain, which shares at least one interface with boundary subdo-

mains, and having a common face I';,, with one of the boundary elements, i.e., for all 7,

QZ‘ S DQ. From (4326) with 6 = 62']' = /sz', it follows that

p =28 4 bl Ve e Ty, e N(i).
Using (4.3.46) and (4.3.53) in (4.3.54), we obtain for all 4, Q; € D,
H,ufj,hHo,pij — 0, as k— o0, where Q; € D;.
Now, we choose v € V,,, for all 4, ); € Dy, such that
. 0 on Iy, m#75€ N(®i),
V-v:rfh on Q, and v-vY = . ! 7 (@)
’ v ym on Cim, m # j.

Substituting (4.3.56) in (4.3.24) and using Lemma 4.3.3, we obtain

(4.3.54)

(4.3.55)

(4.3.56)

||7’fh||(2m = (a ef,h? V), + 3 <ei‘€,h e T <:ui‘€j,h VU™,
< Clletullosullvllon +C (Bllefn - v™loru + ik nllora) IV - v lor...
< C||e§,hH079i TﬁhHO,Qi
+ O (llefulloo: + Bllen - v™lorim + itmallors) V-7 lor,,..  (4.3.57)
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First we have to use Lemma 4.3.4 in (4.3.57) and then using (4.3.56), (4.3.44), (4.3.46) and
(4.3.55), we arrive at

||rﬁh||0,gi — 0 as k— oo for all i, where Q; € Ds. (4.3.58)

Similarly, we can continue the argument until the domain is exhausted and this completes
the rest of the proof. [ |
We now recall the spaces defined earlier in (4.2.21) and (4.2.26),

M M
Vi=][Vin.  Wa=][Wir. M= H 1T A
i=1 i=1 i=1 jeN(i)

Also, let Ty g : Vi, X Wy x Ay — Vi, x W), x Ay, be an affine mapping such that for any
(zh, wh,Mp) € Vi X Wi, X Ay, (my, dp, 0,) = Tr.g(2zh, wp, np) is the solution, for all ¢, of

(amzha ) (dlh>v VQ + Z ﬁzg mzh V , Vo* V‘j>f‘ij

JEN()
== Oy, v, = {9,V Vdooar, VE Vi, (4.3.59)
JEN(7)
(V-m;p, q)a, + (bdin, Q)a, = (f, )a;, q € Wip, (4.3.60)
and
92-]-7,1 = 2/632 Zj,h . l/ji -+ 77]‘@'7]1 on Fz’j; VJ - N(Z), (4361)
where o« = K~!, m;; = My, Zih = Znjg, din = dng, Win = Wnig» Oijn = 9h|rij7

Ojin = Qh\rij, Mij.h = Th|p,, and i, = Mhir,, -

Lemma 4.3.5 The triple (up, pp,ln) € Vi X Wy, X Ay, is the solution of (4.3.1)-(4.53.8) if
and only if it is a fived point of Ty,. Moreover, if (upn, pp,ln) is a fived point of Ty, then
w; VY = —u -7 for all Ty

Proof. Observe that if (uy, pp, 1) is a fixed point of T, then T ,(up, pn, ln) = (an, P, ln)
and hence, (up, pp, ly) is a solution of (4.3.1)-(4.3.3). Conversely, if (un, pp,ln) € Vi x W, X
Ay, is a solution of (4.3.1)-(4.3.3), then, it is straight forward to check that it is a fixed point
of T} ,. For the second part, let (up,pp,ln) € Vi, x W), X Aj, be a fixed point of Ty, ie.,
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Tt qg(un, pr,ln) = (Wn, pr,ln). Then replacing 6, by ), and n, by I, from (4.3.61), we note
that

Lijn = 20B5wn- AN Liihs (4.3.62)
Lin = 2B V4 Lij.h- (4.3.63)

Summing (4.3.62) and (4.3.63), we arrive at
ﬁij U; p - I/ij + /8]2 u;p - I/ji = 0. (4364)

Here 8 = 3;; = B;; and this completes the rest of the proof. [ |
Since the operator T ,(zp, wp,np,) is linear, we can split the operator T ,(zp, wy, np) into a

sum of two operators Tg (zp, wy, n,) and T,4(0,0,0), ie.,
Tf,g(zha Wh, Th) = TO,O(Zha Wh, M) + Tf,g(oa 0,0), (4.3.65)

where T0,0(zn, wp, n,) and T 4(0, 0, 0) are defined as follows: Given (zy, wy, 71,), the operator

(mj, d;, 07) = Too(zn, wh,np) is defined for all ¢ through

(Oé m:,h’ V)Qi - (dzm V- V)Qi + Z ﬁl]<m:h s Vo Vij>Fij

JEN(3)
JEN(4)
(V-m},, e, + (0d), 0o, = 0, g€Win,  (43.67)
and
05 =208jzjn- v+ on Ty, Vi€ N(i), (4.3.68)

and (mj,d;, 0r) = T7,4(0,0,0) satisfies for all 1,

(Oé mz?,h’ V)Qi - ( ?,h? V- V)Qi + Z ﬁij<mz?,h ¥z y Ve Vij>Fij
JEN()
= Z (050 v -V, — (g, v-vi)oarrs VE Vip,  (4.3.69)
JEN()

(V ’ mZhv q)Qi + (btha Q)Qi - (f> Q)Q“ qc Wi,h7 (4370)
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and
Hfj,h =0 on Fz’ja Vj e N(’L), (4371)

Then (mh, dh, «9h) = (mfb, d?m 92) + (m‘;” d(})m 92)
Then the fixed point (up, pp, lp) of Tt 4, that is, Ty ,(ap, py, ln) = (U, ph, lp) is characterized

as a solution of

(I = To0) (n, oy In) = T4 (0,0,0). (4.3.72)
Observe that the problem (4.3.24) - (4.3.26) can be written in abstract form as

(ef, rF, uf) = Toolef ™t rf =t up ™). (4.3.73)

Now our next aim to find the spectral radius of T} .

Remark 4.3.1 Here Vi, xW), x Ay, is a real linear space and Ty is a real linear operator. In
general, the spectral radius formula does not hold for the real case. So the complexification
of the real linear spaces and the real linear operators are necessary.

Now, we recall the linear operator Ty defined in (4.3.73) and the linear space V;, x W), x A,
defined in (4.2.21) and (4.2.26). Our main idea to find [|T§,||, i.e., ||T¢,ll is dominated
by p(To), where Tyo = 1 ® Tpp is the complexification of Ty (see, subsection 1.2.2) and
p(Top) is the spectral radius of Tpo. The next lemma shows the relation between ||T§||

and p(Thy).
Lemma 4.3.6 If V, x W, x Ay, is equipped with an inner-product and
p(Too) <1-R, R e (0,1), (4.3.74)
then for each positive integer k, there exists a constant C' independent of k such that
T30l < C(1 = R/2)F. (4.3.75)
Proof. From Lemmas 1.2.13 and 1.2.14, we find that

150l = 11 T5ll- (4.3.76)
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Since Ty is a complex linear operator on the complex linear space C ® (Vj, x Wy, x Ap),

by the spectral radius formula
p(Too) = lim ||Tg,|[", (4.3.77)
that is for € > 0, there exists a natural number N,, such that when k£ > N,,, we arrive at
1Tl < p(Too) + e,
and hence,
1Tl < (p(To0) + €)".
Choose a constant C' > 1 such that
1T50l] < Cp(Too) + )
fork=1,2,---,N. Then Vk
10l = 1|1 To0l| < Clp(To0) + €)" (4.3.78)

With € = R/2 in (4.3.78), we complete the rest of the proof. |
We have complexify only the operator T and the space Vj, x Wy, x Aj. In our subsequent
analysis, we need also the complexification of other real linear spaces such as V,;, W,

Az‘j,h and Ajz',h‘

4.4 Spectral radius

In Section 4.3, we have discussed the convergence of the proposed iterative scheme in
Theorem 4.3.2. Now in this section, we plan to derive the rate of convergence of the

iterative procedure.

4.4.1 Spectral radius without quasi-uniformity assumptions

Let (mh,Jh,éh) eCw® (Vh X Wy, x Ah), ie.,

(1, dp, 0) = (i, dp, 0) + /(—1) (xing, dy, 61, (4.4.1)
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where (rhh,cih,éh), (mh,dh,éh) € V, x W, x Aj,. Using Lemma 1.2.12, we obtain the
following identities.

Lemma 4.4.1 Let (rhh,czh,@h) e C X (Vh X Wh X Ah), and (ﬁ'lh,CZh,éh), (ﬁlh,dAh,éh) €
Vi, x Wy x Ay, satisfy (4.4.1). Then

[0 5 [5,0, = |10 4115 0, + |10 4[5 0, (4.4.2)
| (4.4.3)
1 dinll8.0, = ldinl 1§ + 11dinll5 0, (4.4.4)
16:4118.5 = 116isn 118,55 + 116301155 (4.4.5)
and
o - 7|15 5 = [0 - 27 |[5 5 4 [ - 7|15 (4.4.6)

Lemma 4.4.2 Let (ﬁlh, Jh, éh) - C@(VhXWhXAh), with (Iﬁi,h, Jz‘,ha éz’j,h) = (Iﬁi’h, Ji,h; éz’j,h)_'_
(_1)<ﬁ1i,h> dAi,ha éij,h); where (ﬁli,ha Ji,h; éij,h); (ﬁli,ha Cii,h; éij,h) € Vi,h X VVi,h X Aij,h are the
solutions of (4.3.66)-(4.53.68). Then the following identity holds true :

M
10u15 = 10n]16.0 — 48> {(amyp, mi4)q, + (bdin, din)o, } (4.4.7)

=1

where = (;; = Bj; and

16n] 150 = Z > 8iallor,- (4.4.8)

=1 ]EN )
Proof. By Lemma 4.4.1, we find that

S 8salliry, = 3 Wgallr, + 3 Nsallr,

JEN(?) JEN(3) JEN(7)
— L+ 1L (4.4.9)

Since (rh@h,CZM,éij,h)and(rhz-,h,czm,éij,h) - V@h X Wz‘,h X Az’j,h, then by Lemma 431, we

obtain

L= |6yallir, ds—48 {(a 1, )0, + (bdi,h,di,h)gj}, (4.4.10)

JEN(3)
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and
L= 3" BnlBr,ds — 48 { (@i, min)o, + (bdis, din)o, | (4.4.11)
JEN()
From (4.4.9)-(4.4.11) and Lemma 4.4.1, we arrive at (4.4.7) and this completes the rest of
the proof. [ |

Lemma 4.4.3 Let (1, dp, 0,) € C® (Vy, x Wy, x Ay) be an eigenvector of Ty such that
To.o(1y, dn, 0y) = 7 (M, dy, 01,). Then the following identity holds true :

YO0ijn =26m; 17" + 0, Vz € Iy, j € N(i). (4.4.12)
Theorem 4.4.1 Let p(TO,O) be the spectral radius of TQO. Then
p(Too) < 1. (4.4.13)

Proof. Let v be an eigenvalue of Ty and let (1, wy, 0),) # (0,0) be its corresponding

eigenvector, i.e.,
To.0 (@, @Wp, On) = v (Tan, D, O). (4.4.14)

It follows from (4.4.12) and Lemma 4.4.2 that

M
VN0 = 110150 — 48D~ {(amip, myp)o, + (bdin, din)a,} (4.4.15)
=1
Therefore,
=1 Z{ amyy, m;p)o, + (bdin, dip)o, } - (4.4.16)

Heh”OF i=1

From (4.4.16), we concluded that |y| < 1. Note that |y| = 1 if and only if

(athy,, M), + (bdip,dip)a, =0  Yi=1,2,---, M, (4.4.17)
and

(any 0y p)a, + (bdip, dip), =0  Vi=1,2,--- M. (4.4.18)

Then applying the argument used in the proof of Theorem 4.3.2, it is easy to show that
(my,, Wy, 0y) is trivial, i.e., (Mg, o, 0,) = (0,0,0) and this leads to a contradiction as
(my,, Wy, 0),) is an eigenvector of Tyo. Hence, |y| < 1 and this completes the rest of the

proof. [ |
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4.4.2 Rate of convergence with quasi-uniformity assumption on

the mesh

In this subsection, we estimate the spectral radius and derive the rate of convergence of
the iterative method under the quasi-uniformity assumption on the mesh in each 2;.

From (4.4.20), we obtain

1
21—, 4.4.19
SESET (4.4.19)
where 1 < Qg < oo is such that
— M —
1001150 <4Q08>  {(amyp, my ), + (bdin, din)e, } - (4.4.20)

i=1
Note that estimation of )y with yields the convergence rate for the iterative procedure

(4.2.42)-(4.2.44).

Lemma 4.4.4 Let (1, dy, 0,) € C® (Vy, x Wy, x Ay) be an eigenvector of Tyo and let
be its corresponding to an eigenvalue, i.e., To(my, dy, 0,) = v (my,, dy, 0),). Then

M

M
SN W0yallir, <CBTH(Cs+ BT+ HITDTY) B {(amy,, myp)o,
=1

=1 jEN(3)

+(bd;p, dz’,h)ﬂi} . (4.4.21)

where C' is independent of I';; and 3 and H, is the minimum diameter of the subdomains.

Proof. It is enough to show that

> WisallBe, < CH7 (Cot B0+ H™) B{ (@i o, + (bdip dipdo |
JEN(1)
(4.4.22)

and

> Wbsalidr, < CA™ (Cs+ 207"+ Hov™) 8 (@t ip)e, + (bdin dinde, }
JEN()

(4.4.23)
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From (4.3.66), we observe that

(amyp, v)g, — (dip, V- v)g, + Z Blmy, -7 v v = — Z (Oijn, v - ),

JEN(3) JEN(3)

(4.4.24)

Now, we choose v € V,,, for all 7, such that

v-v = =0, Vov=_5=-

1
a > / 0i;.n ds, (4.4.25)

Wien@ YT

then

IvII§a, <Cs > 116inlldr,- (4.4.26)

JEN(i)

Substituting (4.4.25) in (4.4.24), we obtain

Z 1163, h||0 Ty = (amyp, v)o, + |§i|(di,h7 Da, + Z B (my p, - v v Vij>rij
JEN(3) JEN(i)
< C’< %] [ di.nl 0,0

+ > Bllmiy - v or, v - v lor, | - (4.4.27)
JEN(5)
Using Cauchy-Schwarz inequality, we find that
1/2

BT O
\S¢|§‘ > 6nlldr, | (4.4.28)

|€%]
JEN(3)

Together with (4.4.28), (4.4.26) in (4.4.27) and then applying Lemma 4.3.2, we arrive at

> Wsalidr, < C (Collminllos, + V/IOXTTIU lidiallo, + € BA™ |lminlloc, )

JEN(3)
1/2

| S ol |- (4429)

JEN(7)
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1/2

Now eliminating first Z 116351 |(23,Fij from right hand side of (4.4.29) and squaring
JEN()
both sides, it follows that

> Mbinllor, <CB(Cs+ B2 h™ +10Q]/I6167") B {(amyy,m; ),
JEN(5)

+(bdip,din)a,} . (4.4.30)

The bound of |9€;|/|€]| is less than C H_ !, where H, is minimum diameter of the subdo-
mains. Since (1m; j, Ji7h, éijvh), (M, p, Ji7h, éijvh) € Vi, x W, x Ay;; and satisfies the equation
(4.4.24). We, therefore obtain (4.4.22) and (4.4.23) from (4.4.30). This completes the rest
of the proof. [ |

From the estimate (4.4.21), we obtain
4Qu=CpB  (C3+Bh " +H b ). (4.4.31)

Theorem 4.4.2 Let the parameter 3 = 3;; = (i, b(x) > by > 0, in the iterative procedure
(4.2.42)-(4.2.44) satisfy B = O(Vh). Then, the spectral radius p(Typ) of the operator is

bounded as follows:
p(Too) <1 —CVhH, =, (4.4.32)

4
where H, is minimum diameter of the subdomains and C' = m with C* depends
on fived constant H,, and the iteration (4.2.42)-(4.2.44) converges with an error at the k'

iteration bounded asymptotically by O(vF).
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Conclusions

In this concluding chapter, we highlight the main results obtained in the present disserta-
tion. Further, we discuss the possible extensions and the scope for further investigations

in this direction.

5.1 Summary and some observations

In this thesis, we have studied nonoverlapping DD methods for second order elliptic and
parabolic problems for both iterative and non-iterative cases. We also have analyzed the
iterative DD methods using the mixed finite elements for elliptic problems with a scope to
apply mixed finite element methods for parabolic problems.

In Chapter 2, we have discussed a DD method with Lagrange multipliers for elliptic
problems (1.3.1), when b(z) = 0 and parabolic initial and boundary value problems (2.5.1).
In this context, we note that the bilinear form b(-,-) : X x Y — IR of the Lagrange

multipliers for (2.2.16)-(2.2.17) satisfies naturally the following continuous inf-sup condition

inf sup BLCYORS > Ky, (5.1.1)

0£ueY  ozvex |[0llxllplly ~
where Ky > 0, see [8, Lemma 3.1(c), pp. 614], with the spaces X and Y defined as in
Chapter 2.
In the discrete case with V¥ € X and A; C L?*(T") as a finite-dimensional subspaces of

X and Y, respectively, we derive the following discrete form of the inf-sup condition (5.1.1)

inf sup - m i) o e (5.1.2)

0Fun€A} 0£v,eVyr vl x|elly —

146
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where K7 > 0. While this discrete inf-sup condition (5.1.2), which plays a crucial role in
deriving the error estimates, is taken as a hypothesis in Bamberger et al. [8, pp. 618],
in the context of mortar finite element method, Belgacem [11] and Wohlmuth [126] have
proved discrete inf-sup condition (5.1.2) with appropriate compatibility condition on V}*
and Aj. Based on nonconforming Crouzeix-Raviart space (cf. [39]), an attempt has been
made in Chapter 2 to discuss DD method with Lagrange multipliers for the discretization
of the problem (2.2.16)-(2.2.17). It was shown in [8, 11, 126] that the choice of the discrete
Lagrange multiplier spaces A} C L*(T') C Y, but in our analysis, we have chosen discrete
Lagrange multiplier spaces Y}, which are piecewise constants on the elements of the tri-
angulations over interfaces I' and Y} is not a subspace of Y. The emphasis throughout
this study is on the existence and uniqueness of the approximate solutions (2.2.36)-(2.2.37)
and the order of convergence in the broken H! norm (2.2.26) and L?-norm using Strang’s
second lemma [34, 121, 122]. For finding the consistency error, a projection operator

Qpn : L*(Ty;) — Yijp, which is defined in (2.3.7) as
/ (Qup) mijop ds = / o (mijon) ds Vo, € X (5.1.3)
r

ij Lij

is introduced and optimal order of estimates in the broken H'-norm (2.2.26) and L*-norm
are derived. The error estimates have been illustrated with numerical experiments for each
of these methods. Further, we have discussed a DD method with Lagrange multipliers
for parabolic problems (2.5.1). Both semidiscrete and fully discrete schemes are discussed.
Based on backward Euler method, a completely discrete scheme is analyzed. For optimal
error estimates in semidiscrete case, we first split the error v — u, = u — Ryu + Ryu — uy,

and A — Ay = A — GpA + Gp\ — \p,, using intermediate projection Rpu and GpA, where
Ryu € Xj, and GpA €'Y}, are defined in (2.6.19)-(2.6.20) as : for given u and A,

ah(u — Rh“; Uh) — Z Z [/ )\ij [Uh] ds — Gh)\ij [7T Uh] dé’]
) LT

i=1 i<jEN(i
= ME E / %Uihds Y, € X}, (514)
ovT ’

i=1 T€T, OTint

M
Z Z / [u— 7 Rpu| pp, ds =0 Yy € Y. (5.1.5)
)t

i=1 {<jEN(3
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After deriving the estimates of u— Rpu and A— G\, the estimates of Ryu—uy, and GpkA— Ay,
can be derived in terms of u— Rpu and A— G, A and then use of triangle inequality completes
the rest of the estimates. Similar procedures are also adopted for the complete discrete
scheme. This chapter is concluded with some numerical experiments.

We observe that the nonconforming multidomain approximation related to the elliptic
problem leads to a discrete system (2.2.36)-(2.2.37) with a saddle point structure of the
form

Ac+Bn = b, (5.1.6)

BT¢ = e
Here, A € IR™™ a block diagonal matrix, which is symmetric and positive definite, and
B € R™ " also has a block structure with n < m. Now, the coefficient matrix A associated

with the system (5.1.6) is given by

A B
, (5.1.7)
BT 0

and it is symmetric, nonsingular, and indefinite. However, the matrix A is invertible, and

the system (5.1.6) can be reduced to a positive definite system in variable 7 as
BTA'Bnp=BT"A" —¢ (5.1.8)

which first yields 1 on the interface. Using 1 in (5.1.6), it is easy to obtain {. However, the
matrix BT A~!'B is dense and has a high condition number. Note that, the construction of
effective iterative methods for the discrete system (5.1.6) is not as well studied compared
to the systems arising from conforming finite element methods. Therefore, it is desirable
to introduce iterative methods to compute a good preconditioner and this is a part of our
future plan.

In Chapter 3, we have discussed a nonoverlapping iterative DD method for the elliptic
problems (1.3.1) and parabolic initial and boundary value problems (2.5.1). The iterative
method has been defined with the help of Robin-type boundary conditions on the artificial

interfaces I';; as
Vui : I/ij + ﬁij U; = —VU]' . l/ji + ﬁji U, on Fij; 1< j 7é 1 < ]\47 (519)
Vu, - 7'+ Bjiu; = =V, - V7 + B on Ty, 1<j#i<M, (5.1.10)
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where 3;; = Bj; > 0 are parameters and M is the number of subdomains. The Robin-type
boundary conditions as interface conditions was earlier proposed by Lions in [92] as a tool for
the domain decomposition iterative methods in the context of conforming discretization.
As in Chapter 2, we introduce in Chapter 3 the following Lagrange multipliers on the

interfaces
Nij = Vu; - v, Ny =V, -7 on Ty, (5.1.11)

where 1% is the normal vector oriented from €; to ;. For deriving the discrete case,
we have adopted the nonconforming method. A convergence analysis is carried out and
the convergence of the iterative algorithm is proved for the elliptic problems (1.3.1) when
b(x) = 0. In discrete case, the convergence of the iterative scheme is obtained by proving
that the spectral radius of the matrix associated with the fixed point iterations is less than 1.
Earlier Douglas et al. [52] have established the convergence rate as 1—Ch for nonconforming
finite element methods by again using the spectral radius estimation of the iterative solution
for the elliptic problems (1.3.1) on quasi-uniform partitions when b(x) > by > 0. Note that,
Douglas et al. have considered each triangle as a subdomain. Particular attention is needed
when b(x) = 0 and this is due to lack of coercivity of the associated bilinear form in the inner
subdomains. In case, b(x) = 0, we have derived the convergence rate which is shown to be
of 1- O(hY/2H=%/2), when the winding number N (see, the definition 3.2.1 given in section
3) is not large and H is the maximum diameter of the subdomains. Note that, we have
also assumed quasi-uniform hypothesis for the mesh on every subdomain and not on the
global mesh defined on the entire domain. This results suggest that the best choice for the
parameter 3 = 3;; = 3;; in the iterative procedure satisfies 3 = O(h~?2H~1/2) and this is
the best rate of convergence that can be expected using this iterative procedure. Moreover,
we have extended this iterative method to parabolic initial-boundary value problems and
demonstrated the convergence of the iteration at each time step. Numerical experiments
confirm the theoretical results established in Chapter 3.

The matrix associated with (4.2.27)-(4.2.29) corresponding to mixed finite element for-
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mulations based on Lagrange multiplier takes the form

A B C
BT E 0 |, (5.1.12)
cTo0 0

where A is a block diagonal matrix and B also has a block structure. Actually, by intro-
ducing the Lagrange multiplier, we easily eliminate the flux and obtain a reduced problem
for the pressure unknowns only. Thus, the variable u; can be eliminated by computing the
inverse of A which is trivial. The reduced matrix takes the form

D= ?T{rlé tB ?T{H? : (5.1.13)

CTA'B CTA-IC

and it is a common practice to complete the process by solving (5.1.13) using a direct
method. It is observed that the matrix D is ill-conditioned, therefore, efficient iterative
methods are required computing a good preconditioner and this may be a part of our future
investigation.

In Chapter 4, we discuss an iterative scheme based on mixed finite element meth-
ods using Robin-type boundary condition as transmission data on the artificial interfaces
(inter subdomain boundaries) for nonoverlapping DD method applied to (1.3.1) with non-
homogeneous boundary condition. In this context, it is easy (cf. [45, 46]) to replace (4.2.11)
and (4.2.13) by the following Robin-type boundary condition on the artificial interfaces I';;:

_ﬁij u; I/ij +p7, = ﬁji u]' . I/ji +pj7 T € Fij C GQZ, (5114)

_ﬁjz’ u; - A +p; = 6@' u; - V¥ +pi, T €E sz' - an, (5115)

where 3;; = Bj; > 0 are parameters. Then, we have proposed an iterative procedure based
on the nonoverlapping multidomain problems in (4.2.34)-(4.2.38). There may be some
difficulty in assigning a meaning to (4.2.41) regarding the product (u;g v v v if
u? € V; and v € V;, but the problem (4.2.39)-(4.2.41) may be viewed as a motivation
for the iterative mixed finite element multidomain formulation (4.2.42)-(4.2.44). In this
chapter, we have shown the convergence of the iterative scheme for the discrete problem

(4.2.42)-(4.2.44). In the convergence analysis, we have used the spectral radius of the
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matrix associated with the fixed point iterations which is shown to be less than 1. Further,
it is shown that the spectral radius has a bound of the form 1 — C'vhH, for quasi-uniform
partitions when b(z) > by > 0, where h is the mesh size for triangulations and H, is
the minimum diameter of the subdomains with appropriate parameter 5 = 3;; = B, =
O(Vh). In this context, Douglas et al. [49] have discussed parallel iterative procedure to
approximate the solution of (1.3.1) by using mixed finite element methods and obtained
the rate of convergence through a spectral radius estimation of the iterative solution. Note
that each triangle is considered as a subdomain. Further, it is shown that the spectral
radius has a bound of the form 1 — Ch for quasi-regular partitions when b(z) > by > 0,
where h is the mesh size for triangulations. Compared to the iterative method proposed by
Douglas et al. [49], the proposed iterative method is also different. In our case, we choose
initial guess 17, , € Aijp, 19, ), € Ajin arbitrarily (I9;, = 19, , seems natural), but in [49], one

i 0 0 0 0
needs to choose initial guesses u;, € Vi, pi), € Wi, Ny € Nijp and A, € Ajip.

5.2 Possible extensions and future problems

In this section, we discuss possible extension and future problems.

5.2.1 Parallelization

One of the main objective of the DD methods is to parallelize the algorithm naturally. In
the entire thesis, we have not touched upon the parallel implementation aspect. Below we
present briefly our on going effort in parallelizing the algorithms.

As our first model problem, we have considered a parallel implementation of the second
order parabolic initial boundary value problem (2.5.1) using a conforming finite element
method with Lagrange multipliers. Parallel numerical computations have been carried out
on a Beowulf cluster called “Galaxy” under message passing library. The cluster comprises

of 34 compute nodes with the following configuration:
e CPU: Intel(R) Dual Processor Xeon(R) CPU 3.2GHz

e RAM: 2GB per node
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e HDD: 40GB IDE

Consider the parabolic problem (2.5.1) with f(z,y,t) = e'[z(1 — z) + y(1 — y) + 2z(1 —
z) + 2y(1 — y)]. The exact solution of the problem (2.5.1) problem is given by u(z,y,t) =
elx(1 — 2)y(1 — y). Here we take Q = (0,1) x (0,1). For a given number of parallel
processors, say ‘M’, we subdivide the original problem into multi-domain problems on
‘M’ subdomains. Each subdomain is assigned to only one processor and the multidomain
problem for that subdomain is fully solved by its assigned processor. Also, whenever
one subdomain shares an interface with another subdomain, the interface information is
available with both the processors. This kind of subdivision minimizes the inter processor
communication which speeds up the computing time. Under SIMD (single instruction
multiple data) approach, each processor carries out triangulation for its subdomain, defines
matrices for the elements assigned to it and assembles them. For every time step, each
processor uses LU decomposition to solve the system of equations. Processors communicate
the interface data to its neighboring processor, which contains the same interface, to satisfy
the interface condition. Solution obtained at one time step is used as an initial solution for
the next time step.

We carried out our computations on 2 and 4 processors by subdividing the problem into
2 and 4 subdomains, respectively. The following table summarizes the total computing time
on 2 and 4 processors with increasing number of elements in each processor. Here for 8 x 8
problem size, computing time using 2 processors is more than 4 processors. This is because
of the fact that for small problem size, computing time is very less in comparison to the
inter-processor communication time. For a problem size of order 24 x 24 and more, we
obtain an improvement factor of almost 8. Here for a particular problem size, improvement

factor is calculated as follows:

Total computing time on 4 processors

Improvement factor = : - .
Total computing time on 2 processors

Plots in the Figures 5.1 and 5.2 show the time spent in various subroutines of the code
for 2 and 4 processors, respectively, with data size 64 x 64. Here, we notice that the inter
processor communication time is very less as compared with the total time. Also matrix

calculation and solver is the main time consuming part in the code. Using some sparse
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Problem For 2 processors For 4 processors Improvement
size DOF in Total DOF in Total Factor
each computing each computing
processor time processor time
8 X 8 45 0.06s 25 0.49s 0.12
16 x 16 153 0.23s 81 0.08s 2.88
24 x 24 325 3.91s 169 0.47s 8.31
32 x 32 561 30.06s 289 3.61s 8.35
48 x 48 1225 9m 35.50s 625 1m 9.08s 8.38
64 x 64 2145 1h 29m 5.28s 1089 10m 32.44s 8.45
Table 5.1: Parallel computing time
Time spent in various subroutines for 2 processors
Problem Size : 64 x 64
Total Time 5345.2s
Com_lr_ri]#]rgcation 216.40s
| :
Element matrix 5038.21s
Interface Data 6.485E-05s
Boundary
Conditions 5.508E-05s
Triangulation 0.020s

Figure 5.1: Time spent in various subroutines of the program: 2 processors case
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Time spent in various subroutines for 4 processors
Problem Size: 64 x 64

Total Time 619.47s
Communication

Time 12.86s
Element matrix 590.25s

and Solver

Interface Data 7.916E-05s

Boundary
Conditions 4.441E-05s

Triangulation 0.0027s

Figure 5.2: Time spent in various subroutines of the program: 4 processors case

storage scheme for the matrix and sparse system solver the performance can be improved
in terms of computing time.

Since the initial results of parallel implementation with conforming finite elements are
quite encouraging, now we propose parallel algorithms for the problems presented in this
thesis. An efficient parallel implementation of these algorithms will be a subject of our
immediate future research.

Parallel Algorithm - I (For elliptic problems in Chapter 3).
Step 1. Given {ul;,, A}, A% 1} € {Xin, Yijn, Yjin}, arbitrarily, for alli =1,--- | M
and j € N(i).
fork=1,2,---,
Step 2. Find uﬁh € X;p,t=1,---, M such that

?2( fh?vh + Z ﬂzy/ T4 Zhﬂ-zjvhds— (f Uh) Q

JEN(7)

+ Z ﬂ]z/ W]Zu]h 7TZJUhdS— Z / )\]Zhﬂ'lj’l)h ds Yuy, eXi,h-

JEN(3) Lij JEN(3)
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Step 3. Calculate )\;‘?i,h €Yjin,t=1,--- M

A = —( Bymigul,(p)

end for

Remark 5.2.1 Steps 2 and 3 can be performed in parallel.

initial guess at the interfaces.

- 5ji7TjiU§,hl( ))— Afzhl
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Vo € Fija ] S N(Z)

Step 1 is just providing an

Parallel Algorithm-// (For mixed finite element methods in Chapter 4).

Step 1. Given If;;, € Ayjp, 13;), € Ajiy arbitrarily, for all i =1, -

for k=0,1,2,---,
Step 2. Find {uﬁh, pﬁh} EVipxWip, i=1

(a ui'g,h’ V)Qi -

JEN(@)
- Z (v
JEN(9)
(V-uiy, 9o, + (bPn 0o, = (f,9)a;
Step 3. Calculate lffhl € Nijp,t=1,--- M
I =2p,ub, - "+ 15, on

end for

Remark 5.2.2 Steps 2 and 3 can be performed in parallel.

initial guess at the interfaces.

, M and j € N(i).

, M such that
(pf,m V-v)q, + Z ﬁij<uf7h Vv I/ij>]_"ij

- <9 Voo Vz'>8Qi\F7 v eV,

q € Wip.

Iy, Vi € N(1).

Step 1 is just providing an

Similarly, parallel algorithm can be proposed for the parabolic problem considered in Chap-

ter 3 and elliptic/parabolic problem considered in Chapter 2.

5.2.2 Choice of relaxation parameter

For the improvement in the rate of convergence in Chapter 3, it may be worthwhile to

propose an under relaxed version of the transmission condition by replacing (3.2.9) with

= 3 ( (-t

) + 5I<: ( - U;?_l) ) + (1 — (Sk))\fj_l

— e AT

Vo € Fij; j S N(Z), (521)
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where § = f3;; = (;; and for some value of the relaxation parameter 0, € [0,1). The relax-
ation parameter approach was introduced by Despres [47] for the Lions iterative method
in the context of Helmholtz problems. But the optimal choice of the relaxation parameter
was not discussed. In his analysis, the random selection of § € [0.7,1) for each iteration
is reported to yield unexpectedly good results. Subsequently, Guo and Hou [79] have dis-
cussed relaxation parameter method and applied it to the iterative method proposed by
Deng [43]. They also did not discuss the optimal choice of the relaxation parameter. In
general, their observation is that one can choose § € [0.5,1). In the absence of any further
guidance as to a good choice of a constant 9, they have suggested using the golden ration
constant (/5 — 1)/2 ~ 0.618. In our approach (5.2.1), we propose to find the optimal

choice of the relaxation parameter § as a future problem.

5.2.3 Rate of convergence

In Chapter 4, we have shown the convergence of the iterative scheme for the discrete
problem (4.2.42)-(4.2.44) when b(x) = 0. Further, it is shown that the spectral radius has
a bound of the form 1 — C'v/hH, for quasi-uniform partitions when b(z) > by > 0, where h
is the mesh size for the triangulations and H, is the minimum diameter of the subdomains
with appropriate parameter 5 = 3;; = (3, = O(\/E) To the best of our knowledge, there
is no result for DD with mixed finite element method when b(x) = 0. Therefore, it is
pertinent to discuss the rate of convergence when b(z) = 0 and we plan to investigate this
in future.

In Chapter 4, we obtain the rate of convergence is of 1 —CvhH,. But in the elliptic case
(see Chapter 3), we have derived the rate of convergence is of 1 — Ch'/2H~1/2, Therefore,

it is worth while to explore this in future.

5.2.4 DD for biharmonic problems

Except for [70] and references cited there, there is hardly any literature in the direction of
DD method for biharmonic problems. Gervasio [70] has analyzed the DD method for plate

bending problems based on spectral element methods and discussed Dirichlet-Neumann
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iterative scheme as a preconditioner. We consider the biharmonic equation as a model
problem. Given f, we are interested to find u such that

Ay=f in Q

5.2.2
u = @ =0 on 01, ( )
ov

where  is a bounded polygonal domain in IR? with boundary 92, A? is the biharmonic
operator defined as

, O Lo ot +6_4
- Ot 0x20y?  Oy*’

(5.2.3)

and (Ju/0v) is the exterior normal derivative of u along 9. This problem arises in fluid
mechanics and in solid mechanics (bending of elastic plates).

In a mixed method, the problem is decomposed into problems involving lower order dif-
ferential equations by introducing new independent variables which are then approximated
along with the solution of the original problem. One reason for this is that if one uses a
finite element method based on the standard variational principle, i.e., find v € HZ(£2) such
that for all v € Hg(Q), [, AulAv = [, fvdz, then the approximate solution must lie in a
subspace of HZ(2). Since the construction of such subspaces can be difficult in general, we

set w = —Auw to obtain the following equivalent system of PDEs in variables u, w :

—Aw=f in Q

—Au =w in  Q (5.2.4)
ou
u = o 0 on on.

Here, both v and w are taken as primary variables. It is worthwhile to extend the Dirichlet-
Neumann and Neumann-Neumann preconditioners to fourth order boundary value prob-
lems and discretize with the help of the mixed finite element methods and this will be a
part of our future project.

Decomposing §2 into two disjoint subdomains €2; and Qy with Q@ = Q; Uy, and I’ =
091 N Oy where T is the interface and I'; = 0€); N OS2 with I'; the external boundaries for

each 1 = 1, 2, now we split the original problem in the framework of the multi-domain as
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for each i = 1, 2, find (wj;, w;) such that

Ou;
u; = aljj =0 on I
and
Uy = U7, We = Wy on I
Ouy _ 0w dwy _dw o (5:2.6)
v o’ o v '

Here u; and w;, 1 = 1,2 both are the restrictions to €2;, ¢ = 1,2 of the solution v and w
of original the problem (5.2.4) (that means u; = ujg, and w; = wyq,,7 = 1,2) and v is
the unit outward normal to 0€2; NI (oriented outward). The equation (5.2.6) yields the
transmission conditions for u; and wug, and w; and wy on I" of the mixed problem (5.2.4),

1,2

where v = v

In order to solve the problem (5.2.5)-(5.2.6), we introduce two iterative procedures
which entails the solution of a sequence of boundary value problems on each subdomain,
along with relaxation conditions at the interface I'.

Gervasio [70] has introduced the Dirichlet-Neumann type iterative scheme in the context
of plate bending problems. We propose Neumann-Neumann iterative scheme for biharmonic
problem.

Neumann-Neumann Iterative Scheme. Let \) € A and \J € A° be given. For kn > 1,

we construct the sequence of functions : find (w¥,u%) such that

(

—Auk = w¥ in 4,

{ ouF (5.2.7)
uk = % =0 on I'y,
ulb = Mtk = 25t on r,
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and find (w4, u%) such that

(

—Awh = f in Qo,
—Aub = wh in Qo
k 5.2.8
) ub = Juy _ 0 on Ty, 528)
n
dus  ouf  owl  Owy 5 r
L Oon  dn’ On  On N ’
where, for n > 1, let be given by A € A and A € A°
S\If = 51 ug‘r + (]. - §1>5\11€_1 and 5\15 == 52 ’UJS‘F + (]_ - 52)5\15_1. (529)

In (5.2.9), § = (6;,0;) are the (positive) relaxation parameter that will be determined
in order to ensure (and possibly, to accelerate) the convergence of the iterative scheme.
Variational formulation for the problem (5.2.7)-(5.2.8) given below. Given X! € A and
AJ € A find (wf,u}) € H'(4) x HE (€4) such that

(wh,v1)o, — ay(vy,uf) =0 Vo, € HE (),
ar(wy, 1) = (f, 21)a, Yz € HE (), (5.2.10)

ko Yk—1 ko Yk—1
Youy = Ay, Yowy = Ay on I,

and find (wh, ub) € H'(Q) x Hf (Qs) such that

(

(wh, v9)q, — as(ve, uk) =0 Yoy € HE (),
az(wh, z2) = (f, 22), Vzo € Hy (), (5.2.11)
(w]2€> R2M)92 - a2(R2:u> ug) - —(U)]f, RIM)Ql + al(RLu? u?) v ne A>
| ax(w§, RSn) = (f, RIn)a, + (f, RIN)a, — ar(wf, Rin) V¥ ne A
where, for k > 1, let \¥ € A and A € A° be given by
j\lf = él ’)/Oug + (]. - §1>5\11€_1 and 5\15 = éz ’)/owl; + (]. - 92)5\’5_1, (5212)

and R; (i = 1,2) denotes any possible extension operator from A to H'(Q;) that satisfies
(Rip)jr = and RY (i = 1,2) denotes any possible extension operator from A® to Ht. (€;)
that satisfies (R9n). = 7.

We are working on the convergence analysis, finite element formulation and implemen-

tation of the iterative scheme (5.2.7)-(5.2.8).
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