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Abstract. Let C be a smooth projective curve over C of genus g ⩾ 1. Let E be a vector
bundle on C of rank r and degree e. Given integers k1, k2, d1, d2 such that r > k1 > k2 > 0,
let Qk1,k2

d1,d2
(E) denote the nested Quot scheme which parametrizes pair of quotients [E ↠

F1 ↠ F2] such that Fi has rank ki and degree di. We show that these nested Quot schemes
are integral, local complete intersection schemes when d1 ≫ d2 ≫ 0 or d2 ≫ d1 ≫ 0.

1. Introduction

Let C be a smooth projective curve over C of genus g ⩾ 1. Let E be a vector bundle on C of
rank r and degree e. Let k be an integer such that 0 < k < r. Let Qk

d(E) := QuotC/C(E, k, d)
denote the Quot scheme of quotients of E of rank k and degree d. Quot schemes are very
important objects in the study of geometry of moduli spaces. The Quot scheme Qk

d(O
⊕r
C )

also provides a compactification of the space of maps from C into the Grassmannian. Thus,
Quot schemes also appear in a natural way in enumerative geometry. In [Str87], Stromme
proved that the Quot scheme Qk

d(O
⊕r
P1 ) over P1 is smooth and irreducible and computed its

Picard group. Let C be smooth and projective of genus g ⩾ 1. When E is trivial, it is proved
in [BDW96] that the Quot scheme Qk

d(O
⊕r
C ) is irreducible, generically smooth and is a local

complete intersection for d ≫ 0. For any vector bundle E on C, it is proved in [PR03] that
the Quot scheme Qk

d(E) is irreducible and generically smooth when d ≫ 0. In [GS24], the

authors compute the Picard group of Qk
d(E) and show that Qk

d(E) is integral, normal, local
complete intersection and locally factorial when d ≫ 0.

When k = 0, the Quot scheme Q0
d(E) of torsion quotients of E is a smooth variety of

dimension rd. This is a well-studied variety, and we only mention a few recent works [BFP20],
[OS23], [OP21], [BGS24].

A natural generalization of the Quot scheme is the nested Quot scheme. Given integers

k1, k2, d1, d2 such that r > k1 > k2 > 0, let Qk1,k2
d1,d2

(E) denote the nested Quot scheme which

parametrizes pair of quotients [E ↠ F1 ↠ F2] such that Fi has rank ki and degree di.
We may also consider the case when k1 = k2 = 0. When k1 = k2 = 0 and E = OC , we get

the nested Hilbert schemes of points, Q0,0
d1,d2

(OC). In [Che94], Cheah proved that the nested

Hilbert scheme over a smooth projective curve C is isomorphic to a product of symmetric
products of C and hence smooth. A variation of the nested Hilbert scheme, namely, double
nested Hilbert scheme, which parametrizes flags of subschemes nestings in two direction, is
studied in [Mon22] and [GLM+23]. In the latter article, it is proved that these double nested
Hilbert schemes are connected, reduced, and pure. The components need not be normal, but
the normalizations are isomorphic to a product of symmetric products of C. For a vector
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bundle E, the Quot scheme Q0,0
d1,d2

(E) is smooth of dimension rd1. In [MR22], the authors

compute the generating function of the motive of the nested Quot scheme of torsion quotients,
see also [BFP20]. The smoothness of nested Quot scheme of torsion quotients is studied in
[MR23] when the underlying scheme is higher-dimensional.

In recent years, there has been an increasing focus on nested Hilbert schemes on surfaces
due to its connection with various areas like moduli of sheaves, enumerative geometry, repre-
sentation theory and Lie algebras. We refer the reader to some recent works [RS23], [RT22],
[GRS24], [GSY20], [GT20] and references therein. In [RS23], the authors study the nested

Hilbert scheme S[2,n] and show that this is an integral scheme which is normal and has ra-
tional singularities. In particular, it is Cohen-Macaulay. They further pose the question of
studying the singularities of the nested Hilbert schemes S[n,m], see [RS23, Question 9.5].

In view of the above results, it is natural to study nested Quot schemes over smooth
projective curves when the ranks of the quotients are positive. In this article we prove some
results about irreducibility and singularities of these nested Quot schemes. We will consider
two cases: d1 ≫ d2 ≫ 0 and 0 ≪ d1 ≪ d2. Writing the nested Quot scheme as a relative

Quot scheme, we get an expected dimension of the nested Quot scheme Qk1,k2
d1,d2

(E)

(1.1) expdim(d1, d2) := [d1r− k1e+ k1(r− k1)(1− g)] + [d2k1 − d1k2 + k2(k1 − k2)(1− g)] .

We prove the following results.

Theorem (Theorem 4.1). There exists a numbers d(E, k2) such that for all d2 ⩾ d(E, k2),
the following holds. There is a number ν(E, k1, k2, d2) such that if d1 − d2 ⩾ ν(E, k1, k2, d2)

then the nested Quot scheme Qk1,k2
d1,d2

(E) is irreducible of dimension expdim(d1, d2), a local

complete intersection, integral and normal.

Theorem (Theorem 5.26, Theorem 5.25). There exists a number γ(E, k1, k2) such that for
all d1 ⩾ γ(E, k1, k2), the following holds. There is a number β(E, k1, k2, d1), such that if
d2 ⩾ β(E, k1, k2, d1), then

(1) The nested Quot scheme Qk1,k2
d1,d2

(E) is irreducible of dimension expdim(d1, d2).

(2) The natural map Qk1,k2
d1,d2

(E) → Qk1
d1
(E) is a local complete intersection morphism. In

particular, it follows that Qk1,k2
d1,d2

(E) is a local complete intersection.

(3) The nested Quot scheme Qk1,k2
d1,d2

(E) is an integral scheme.

(4) Qk1,k2
d1,d2

(E) is normal if k1 + k2 > r and k1 − k2 ⩾ 2.

One of the ingredients used to prove the above results is the following Theorem, which may
be viewed as a generalization of [PR03] to a family of vector bundles. Let T be a scheme of
finite type over C and let A be a vector bundle on C × T . Let Qk

d(A) denote the relative
Quot scheme QuotC×T/T (A, k, d).

Theorem (Theorem 3.16). Let T be an irreducible scheme. Let A be a locally free sheaf on
C × T of rank r, such that each At has degree e. There is a number α(A, k) such that if
d ⩾ α(A, k) then the structure morphism π : Qk

d(A) → T has the following properties

(1) The fibers are irreducible of dimension dr − ke+ k(r − k)(1− g).
(2) The relative Quot scheme Qk

d(A) is irreducible of dimension dr − ke + k(r − k)(1 −
g) + dimT .
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(3) π is a local complete intersection morphism and flat.
(4) If T is reduced, then Qk

d(A) is generically smooth.
(5) Let T be reduced and assume the singular locus of T has codimension ⩾ 2. There is

α′(A, k) such that for all d ⩾ α′(A, k) the singular locus of Qk
d(A) has codimension

⩾ 2.

We briefly discuss the strategy and the organization of the paper. In section 2 we prove
some preliminary lemmas. In section 3 we prove Theorem 3.16. This follows easily using
slight modifications of the techniques in [PR03, Section 6]. In section 4 we prove Theorem
4.1. In section 5 our main result is Theorem 5.26. Here we write the nested Quot scheme

Qk1,k2
d1,d2

(E) as a relative Quot scheme Qk2
d2
(F1), where F1 denotes the universal quotient over

C×Qk1
d1
(E). Here F1 is not locally free. So we cannot apply Theorem 3.16 directly. However

we can apply Theorem 3.16 for the open subset of Qk1
d1
(E) where the sheaf F1 is locally free.

This gives us an open subset of the nested Quot scheme Qk1,k2
d1,d2

(E), which is irreducible of

expected dimension. Let Y denote the complement of this open locus. We show that points of

Y cannot be general in any component of Qk1,k2
d1,d2

(E). Computing the dimension upper bound

for Y is a crucial step to prove the main result and this is done through several lemmas.

Acknowledgements. The research of the first author is supported by the Prime Minister’s
Research fellowship (PMRF ID 1301167) funded by the Ministry of Education, Government
of India.

2. Preliminaries

Let C be a smooth projective curve over C of genus g ⩾ 1. Let A be a coherent sheaf on
C × T which is flat over T . As A is flat over T , if we assume T to be irreducible, then we
get χ(At) is constant as a function of t ∈ T . From the Hilbert polynomial we see that the
rank and degree of At are independent of t ∈ T . Let r := rank(At) and let e := deg(At) for
all t ∈ T .

Lemma 2.1. There are numbers mq(A, k) and ms(A, k) such that the following happens.

(1) Let F be a sheaf of rank k, which is a quotient of At for some t ∈ T . Then deg(F ) ⩾
mq(A, k).

(2) Let F be a sheaf of rank k which is a subsheaf of At for some t ∈ T . Then deg(F ) ⩽
ms(A, k).

Proof. Let A be a sheaf on C such that each At is a quotient of A. We fix such a sheaf
A on C. If F is a quotient of At for some t ∈ T , then F is also a quotient of A. Let KF

be the kernel of A → F . Then we have χ(F ) = χ(A) − χ(KF ) ⩾ χ(A) − h0(KF ). Using
Rieman-Roch formula and the fact h0(KF ) ⩽ h0(A), we get

degF ⩾ degA+ (rank(A)− k)(1− g)− h0(A) .

Define mq(A, k) := degA+ (rank(A)− k)(1− g)− h0(A). This proves the first assertion.
Let F be a subsheaf of At for some t ∈ T and let BF be the cokernel. So BF is a quotient

of At of rank r − k. By the previous part we have deg(BF ) ⩾ mq(A, r − k). We have
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χ(F ) = χ(At)−χ(BF ) ⩽ χ(At)−mq(A, r− k)− (r− k)(1− g). Using Riemann-Roch we get

degF ⩽ e−mq(A, r − k) .

Define ms(A, k) := e−mq(A, r − k). This proves the Lemma. □

Definition 2.2. Let G be a sheaf of rank r on C. For each k with 0 < k < r, define

m(G, k) = min
rank(F )=k

{deg(F ) : F is a quotient of G}

Lemma 2.3. Let T be a scheme of finite type over C and let G be a coherent sheaf on
C × T which is flat over T . Fix an integer k such that 0 < k < rank(G). Then the function
t 7→ m(Gt, k) is lower semicontinuous as a function from T to Z. Hence the set {m(Gt, k)}t∈T
is finite for a fixed k.

Proof. See Lemma 2.2 of [Ras24]. □

Remark 2.4. Lemma 2.3 proves that the set {m(At, k)}t∈T is finite for a fixed k. Define
mmax(A, k) to be the maximum of all m(At, k) and mmin(A, k) to be the minimum of all
m(At, k). If d < mmin(A, k) then the Quot scheme QuotC×T/T (A, k, d) is empty. For the

structure map QuotC×T/T (A, k) → T to be surjective on closed points we need that d ⩾
mmax(A, k).

Let A be a coherent sheaf on C × T which is flat over T . Let Qk
d(A) denote the relative

Quot scheme
Qk

d(A) := QuotC×T/T (A, k, d) .
A closed point of Qk

d(A) corresponds to a tuple (t, [φ : At → F ]), where t is a closed point
of T and φ : At → F is a quotient in QuotC/C(At, k, d). Let SF denote the kernel of φ. We
have the following Lemma.

Lemma 2.5. Let T be irreducible. Let A be a coherent sheaf on C × T which is flat over T .
Then

(2.6) hom(SF , F ) ⩾ dim(t,φ)Qk
d(A)− dimT ⩾ hom(SF , F )− ext1(SF , F ) .

Proof. Since T is irreducible we may apply [Kol96, Theorem 5.17, Chapter 1]. This gives the
second inequality.

Next we prove the first inequality. Let T̃ → T be an alteration, which exists due to [dJ96].

Let Ã denote the pullback of A to C × T̃ . Using the base change property of Quot schemes,
we have the following Cartesian square

QuotC×T̃ /T̃ (Ã, k, d) //

��

QuotC×T/T (A, k, d)

��
T̃ // T

Clearly, the map QuotC×T̃ /T̃ (Ã, k, d) → QuotC×T/T (A, k, d) is surjective on closed points.

Let q̃ be a point in QuotC×T̃ /T̃ (Ã, k, d) and let q denote its image in QuotC×T/T (A, k, d).
Then it is clear that

dimq̃(QuotC×T̃ /T̃ (Ã, k, d)) ⩾ dimq(QuotC×T/T (A, k, d)) .
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Applying [HL10, Proposition 2.2.7] to the point q̃ we get that

hom(SF , F ) + dim(T̃ ) ⩾dim(Tq̃QuotC×T̃ /T̃ (Ã, k, d))

⩾dimq̃(QuotC×T̃ /T̃ (Ã, k, d)) ⩾ dimq(QuotC×T/T (A, k, d)) .

As dim(T̃ ) = dim(T ) the proof of the first inequality is complete. □

3. Irreducibility of relative Quot scheme

Throughout this section, unless mentioned otherwise, T will be an irreducible scheme and
A will be a locally free sheaf of rank r on C×T . The degree of each At will be denoted e. We
may put additional assumptions on T if required. The proofs in this section are very similar
to those in [PR03, section 6]. We only need to take care that the degree d can be chosen so
that it works for all t ∈ T .

Lemma 3.1. There is a number α1 := α1(A, k), such that for d ⩾ α1, a stable bundle F on
C of rank k and degree d and for any t ∈ T , the sheaf H om(At, F ) is generated by global
sections and H1(A∨

t ⊗ F ) = 0.

Proof. The proof identical to that in [PR03, Lemma 6.1], except that we replace the moduli
spaces U s

C(k, j) with the relative moduli spaces U s
C×T/T (k, j). □

Lemma 3.2. Let d ⩾ α1. Fix t ∈ T and a quotient φ : At → F , where F is a stable bundle
on C of rank k and degree d. Let SF be the kernel of φ. Then h1(S∨

F ⊗ F ) = 0. As a
consequence

h0(S∨
F ⊗ F ) = dr − ke+ k(r − k)(1− g) .

Proof. The proof identical to that in [PR03, Lemma 6.2]. □

For a closed point t ∈ T , let

Qk
d(At) := QuotC/C(At, k, d) .

Inside Qk
d(At) we have the loci Qk

d(At)
s, consisting of quotients φ : At → F such that F is

stable. The closure of this locus will be denoted Qk
d(At)s.

Proposition 3.3. Let d ⩾ α1(A, k). Let t ∈ T be a closed point. The Quot scheme Qk
d(At)

has Qk
d(At)s as an irreducible component of dimension dr − ke+ k(r − k)(1− g).

Proof. The number α1(A, k) in Lemma 3.1 and Lemma 3.2 works for all t ∈ T . Thus,
following the same reasoning as in the proof of Theorem 6.1 of [PR03], we can construct an
irreducible space Y and a map Y → Qk

d(At), such that the image of Y is precisely Qk
d(At)

s.

This shows that Qk
d(At)

s is an irreducible open subset of Qk
d(At). Thus, its closure is also

irreducible. Using Lemma 3.2 and [HL10, Proposition 2.2.8], it follows that the dimension of
Qk

d(At)
s is h0(S∨

F ⊗ F ) = χ(S∨
F ⊗ F ) = dr − ke+ k(r − k)(1− g). □

Lemma 3.4. Given d0 and 0 < k0 < k, there is a number α2(A, k, k0, d0), such that if
d ⩾ α2, then the following holds. Fix a closed point t′ ∈ T . If W is an irreducible component
of Qk

d(At′) and (φ : At′ → F ) is a general point of W such that F is locally free, then F has
no vector bundle quotient of degree d0 and rank k0.



6 P. RASUL AND R. SEBASTIAN

Proof. First let us define α2(A, k, k0, d0). Let J denote the locus of locally free quotients in

Qk0
d0
(A). There is a universal quotient on C × J

0 → S0 → π∗A → F0 → 0 ,

where π : (C × T )×T J → C × T is the projection map. Using Remark 2.4 we get numbers
mmin(S0, k − k0) and mmax(S0, k − k0). Let

(3.5) M := dim J + (k − k0)(r − k)− (d0 +mmin(S0, k − k0))(r − k0) .

Let λ(A, k, k0, d0) be the smallest positive integer such that for all d ⩾ λ, we have

(3.6) d(r − k0) +M < dr − ke+ k(r − k)(1− g) .

Define

α2(A, k, k0, d0) := max{λ(A, k, k0, d0),mmax(S0, k − k0) + d0} .
Assume d ⩾ α2(A, k, k0, d0). Let W be an irreducible component of Qk

d(At′). Let B be
the following subset

B = {(φ : At′ → F ) ∈W : ∃ a locally free quotient F → F0 of rank k0 and degree d0} .

Let D denote the open subset of the relative Quot scheme QuotC×J/J(S0, k − k0, d − d0)

consisting of torsion free quotients. A closed point of J corresponds to a pair (t, [q0 : At → F0])
where

• t ∈ T , and
• [q0] is a locally free quotient of rank k0 and degree d0.

A closed point of D corresponds to a triple (t, [q0 : At → F0], [φ : S0 → H]) where

• (t, [q0]) ∈ J ,
• S0 is the kernel of the map q0,
• φ is a locally free quotient of rank k − k0 and degree d− d0.

Let π̃ : (C × J) ×J D → C × J be the projection. On C × D we have the universal exact
sequence

0 → K → π̃∗S0 → H → 0 .

As F0 is flat over J we have π̃∗F0 is flat over D. We get the following exact sequence on
C ×D

0 → π̃∗S0 → π̃∗π∗A → π̃∗F0 → 0 .

Let G be the cokernel of the inclusion K ↪→ π̃∗π∗A. The quotient π̃∗π∗A → G defines a map

f : D → Qk
d(A) .

Given a closed point (t, [q0 : At → F0], [φ : S0 → H]) in D, we can construct a quotient
At → G using the following pushout diagram

(3.7)

0 S0 At F0 0

0 H G F0 0 .

φ

q
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Clearly G is of rank k and degree d. The map f sends the point (t, [q0], [φ]) to the point
(t, [At → G]) in the relative Quot scheme Qk

d(A). From this pointwise description of f , it is
clear that B ⊂ f(D). So

dimB ⩽ dimD ⩽ dim J + max
S0∈A

{dimQuotC/C(S0, k − k0, d− d0)} .

Using [PR03, Theorem 4.1] we have, for any d− d0 ⩾ m(S0, k − k0),

dimQuotC/C(S0, k− k0, d− d0) ⩽ (k− k0)(r− k) + (r− k0)d− (d0 +m(S0, k− k0))(r− k0) .

Recall the definition of mmin(S0, k − k0) and mmax(S0, k − k0) from Remark 2.4. It follows
that for all S0 ∈ A we have

mmin(S0, k − k0) ⩽ m(S0, k − k0) ⩽ mmax(S0, k − k0) .

Using this we see that for any d ⩾ mmax(S0, k − k0) + d0,

dimB ⩽ dimD ⩽ dim J + (k − k0)(r − k) + (r − k0)d− (d0 +mmin(S0, k − k0))(r − k0)

= d(r − k0) +M ,

where M was defined in (3.5).
For a general point (φ : At′ → F ) ∈W , we have

dimφW = dimφQk
d(At′) ⩾ dr − ke+ k(r − k)(1− g) .

So dimension ofW is bounded below by the quantity dr−ke+k(r−k)(1−g). As d ⩾ α2 ⩾ λ,
it follows from (3.6) that dimB < dimW . So a general point of W is not in B. That is, for
a general point (φ : At′ → F ) of W , there is no locally free quotient F → F0 of degree d0
and rank k0. This proves the Lemma. □

Remark 3.8. The above proof also shows that given a pair (d0, k0), there are numbers
α2(A, k, k0, d0) and M(d0, k0), such that for all d ⩾ α2(A, k, k0, d0), the locus of points
(t, [φ : At → F ]) ∈ Qk

d(A) for which F has a vector bundle quotient of rank k0 and degree
d0, has dimension ⩽ d(r − k0) +M(k0, d0). We shall use this observation later.

Lemma 3.9. There is a number α3(A, k) such that if d ⩾ α3 then we have the following.
For any closed point t ∈ T , if W is an irreducible component of Qk

d(At) and (φ : At → F ) is
a general point of W such that F is locally free. Then H1(A∨

t ⊗ F ) = 0.

Proof. Let us first define α3(A, k). Let ωC denote the canonical bundle on C. Let F0 be
a sheaf on C of rank k0 and degree d0 such that F0 is a quotient of At and a subsheaf of
At ⊗ωC for some t. Using Lemma 2.1, we get numbers M1 and M2, which do not depend on
t, such that M1(k0) ⩽ d0 ⩽M2(k0). Define

α3(A, k) := max
0<k0<k

{
max

M1(k0)⩽d0⩽M2(k0)
{α2(A, k, d0, k0), α1(A, k)}

}
.

Let d ⩾ α3(A, k). Let W be an irreducible component of Qk
d(At) and (φ : At → F ) ∈ W

be a general point such that F is locally free. To show that H1(A∨
t ⊗ F ) = 0, using Serre

duality, it is enough to prove that Hom(F,At ⊗ ωC) = 0. Let us assume there is a non-
zero homomorphism ψ : F → At ⊗ ωC . Let F0 be the image of ψ. As At ⊗ ωC is locally
free, so F0 is a locally free sheaf, say of rank k0. Thus, F0 is a subsheaf of At ⊗ ωC and
a quotient of F , and so also a quotient of At. So by defintion of M1(k0) and M2(k0), we
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have M1(k0) ⩽ degF0 ⩽ M2(k0). But by choice of d, it follows that F has no locally free
quotient of rank k0 and degree d0 satisfying 0 < k0 < k and M1(k0) ⩽ d0 ⩽ M2(k0). This is
a contradiction as F0 is such a quotient of F . So we conclude that H1(At ⊗ F ) = 0. □

Theorem 3.10. Let d ⩾ α3(A, k). For any t ∈ T there is a unique component of Qk
d(At)

whose general point corresponds to a vector bundle quotient. This component is precisely

Qk
d(At)s, which appears in Proposition 3.3.

Proof. The existence of such component is already proved by Proposition 3.3. We prove the
uniqueness. Let W be any irreducible component of Qk

d(At) whose general point corresponds
to a vector bundle quotient. Let (φ : At → F ) be a general point of W . By Lemma 3.9 we
have H1(At⊗F ) = 0. Proceeding as in [PR03, Theorem 6.2], we can construct an irreducible
family of quotients of At such that the quotient φ appears in the family and the general
quotient is stable. □

Fix a closed point t ∈ T . Let Zδ be the subset of Qk
d(At) which contains points corre-

sponding to pairs (φ : At → F ) such that F has torsion of length δ. In view of Theorem 3.10,
to prove irreducibility of the Quot scheme Qk

d(At), it is enough to show that for any δ ⩾ 1,
the points of Zδ cannot be general in any component of the Quot scheme.

Let us denote by Qk
d(A)0 the set of points (t, φ : At → F ) ∈ Qk

d(A) for which F is locally

free. Let us denote by Qk
d(At)

0 the set of points (φ : At → F ) ∈ Qk
d(At) for which F is

locally free. It is clear that Qk
d(A)0 ̸= ∅ iff there is some t for which Qk

d(At)
0 ̸= ∅. Let S′

denote the set of integers d for which Qk
d(A)0 ̸= ∅. A necessary condition for d to be in S′ is

that d ⩾ mmin(A, k), see Remark 2.4.

Proposition 3.11. There is a number α4 := α4(A, k) such that the following holds. Let
t′ ∈ T be a closed point. Consider the subset Zδ in Qk

d(At′). If d ⩾ α4, then for any δ ⩾ 1,

there is no component of Qk
d(At′) whose general point is in Zδ.

Proof. For every integer d′ ∈ S′ define

ϑd′ := max
t∈T ,Qk

d′ (At)0 ̸=∅

{
dimQk

d′(At)
0 − (d′r − ke+ k(r − k)(1− g))

}
.

Note that ϑd′ <∞ as the dimension of the fibers of the map
Qk

d′(A) → T are bounded above. We know if d′ ⩾ α3 then ϑd′ = 0. Let S be the set of
integers d′ ∈ S′ for which ϑd′ > 0. Then S is finite. Let

M := max
d′∈S

{d′ + ϑd′

k
} and α4 := max{[M ] + 1, α3(A, k)} .

Assume d ⩾ α4. Then for any d′ ∈ S we have

(3.12) ϑd′ − k(d− d′) < 0 .

If possible, let W be a component of Qk
d(At′) whose general point is in Zδ. Let (φ : At′ → F )

be a general point in W which is in Zδ. The kernel SF of φ is locally free. By [HL10,
Proposition 2.2.8] we have

dim[φ]Qk
d(At′) ⩾ hom(SF , F )− ext1(SF , F )

= dr − ke+ k(r − k)(1− g) .
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So we have

(3.13) dimZδ ⩾ dimW ⩾ dr − ke+ k(r − k)(1− g) .

We may compute the dimension of Zδ in a different way as follows. For any point (φ :
At′ → F ) in Zδ, we can construct a diagram

(3.14)

0 0

0 SF SF ′ τ 0

0 SF At′ F 0

F ′ F ′

0 0

φ

where τ is the torsion subsheaf of F and F ′ is locally free. This gives us a dimension estimate
of Zδ as follows

dimZδ ⩽ dim(Qk
d−δ(At′)

0) + dim(QuotC/C(SF ′ , 0, δ))

⩽ ϑd−δ + (d− δ)r − ke+ k(r − k)(1− g) + δ(r − k)

= ϑd−δ + dr − ke+ k(r − k)(1− g)− δk

So

dimZδ − (dr − ke+ k(r − k)(1− g)) ⩽ ϑd−δ − δk .

If ϑd−δ = 0 then the RHS is negative, which contradicts equation (3.13). If ϑd−δ > 0 then
d − δ ∈ S. As d ⩾ α4, the RHS is negative due to (3.12), which is again a contradiction to
the equation (3.13). This proves the proposition. □

Corollary 3.15. If d ⩾ α4(A, k), then for every closed point t ∈ T , the Quot scheme Qk
d(At)

is irreducible of dimension dr − ke+ k(r − k)(1− g).

Proof. Fix a closed point t ∈ T . Proposition 3.11 shows that the points of Zδ cannot be
general in any component of Qk

d(At). Thus, given any component, the general point will
be such that the quotient is locally free. However, by Theorem 3.10, there is only one such

component, namely, Qk
d(At)s. The dimension of this component was computed in Proposition

3.3. This completes the proof of the Corollary. □

Theorem 3.16. Let T be an irreducible scheme. Let A be a locally free sheaf on C × T of
rank r, such that each At has degree e. There is a number α(A, k) such that if d ⩾ α(A, k)
then the structure morphism π : Qk

d(A) → T has the following properties

(1) The fibers are irreducible of dimension dr − ke+ k(r − k)(1− g).
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(2) The relative Quot scheme Qk
d(A) is irreducible of dimension dr − ke + k(r − k)(1 −

g) + dimT .
(3) π is a local complete intersection morphism and flat.
(4) If T is reduced, then Qk

d(A) is generically smooth.
(5) Let T be reduced and assume the singular locus of T has codimension ⩾ 2. There is

α′(A, k) such that for all d ⩾ α′(A, k) the singular locus of Qk
d(A) has codimension

⩾ 2.

Proof. Define

α(A, k) := α4(A, k) .
That the fibers of π are irreducible of given dimension is the content of Corollary 3.15. Since
T is assumed to be irreducible, (2) follows from (1).

For any closed point (t, [φ]) in Qk
d(A), by Lemma 2.5 we have

(3.17) dim(t,φ)Qk
d(A)− dimT ⩾ hom(SF , F )− ext1(SF , F ) ,

where SF is the kernel of φ. As Qk
d(A) is irreducible, it has the same dimension at all points,

given by dr− ke+ k(r− k)(1− g) + dimT . It follows that the quantity on the left hand side
of (3.17) is equal to dr − ke + k(r − k)(1 − g) for any point (t, [φ]). Using Riemann-Roch,
the quantity on the right hand side is equal to dr− ke+ k(r− k)(1− g) for any point (t, [φ]).
This shows that we have equality

dim(t,φ)Qk
d(A)− dimT = hom(SF , F )− ext1(SF , F )

for any point (t, [φ]). By [Kol96, Theorem 5.17, Chapter 1], we conclude that Qk
d(A) → T is

a local complete intersection morphism at any point (t, [φ]).
Let R denote the local ring OT,t. Then the local ring of Qk

d(A) at the point (t, φ) is
isomorphic to R[X1, . . . , Xn]n/(f1, . . . , fc), where R[X1, . . . , Xn] is the polynomial ring in n
variables, n ⊂ R[X1, . . . , Xn] is a maximal ideal and (f1, . . . , fc) is a regular sequence in the
local ring R[X1, . . . , Xn]n. It is clear that

dimQk
d(A) = dr − ke+ k(r − k)(1− g) + dimT = dimT + n− c .

The local ring of Qk
d(At) at the point φ is given by going modulo the maximal ideal m ⊂ R.

This ring is C[X1, . . . , Xn]n̄/(f̄1, . . . , f̄c). As the dimension of this ring is dr − ke + k(r −
k)(1 − g) = n − c, it follows that (f̄1, . . . , f̄c) is a regular sequence in C[X1, . . . , Xn]n̄, see
[Har77, Theorem 8.21A(c), Chapter 2]. Using [Stk, Tag 00MG] it follows that Qk

d(A) is flat
over T . This proves (3).

(4) is proved easily using Lemma 3.2 and [HL10, Proposition 2.2.7].
Using [HL10, Proposition 2.2.7] we see that a point (t, [φ : At → F ]) is a smooth point of

Qk
d(A) if t is a smooth point of T and H1(S∨

F ⊗ F ) = 0. It follows that the singular locus

Sing(Qk
d(A)) ⊂ π−1(Sing(T )) ∪ {(t, [φ]) | H1(S∨

F ⊗ F ) ̸= 0} =: X .

We will now show that the space X has codimension ⩾ 2 when d≫ 0.
First consider the locus (t, [φ : At → F ]) ∈ Qk

d(A)0 such that t is a smooth point of
T . As h1(S∨

F ⊗ F ) ̸= 0, it follows that h0(F, SF ⊗ ωC) ̸= 0. Thus, there is a nonzero
homomorphism F → At ⊗ ωC . Let F0 denote the image. Applying Lemma 2.1 we see that
there are numbers M1 and M2, independent of t, such that M1 ⩽ deg(F0) ⩽ M2. Consider

https://stacks.math.columbia.edu/tag/00MG
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the finite set of pairs (d0, k0) such that M1 ⩽ d0 ⩽ M2 and 0 < k0 < k. By Remark 3.8,
there are numbers α5(A, k) and M ′, such that for all d ⩾ α5 we have that, the locus of points
(t, [φ : At → F ]) ∈ Qk

d(A) for which F has a vector bundle quotient of rank k0 and degree
d0, has dimension ⩽ d(r − 1) +M ′. Let α6(A, k) be such that for any d ⩾ α6, we have

(dr − ke+ k(r − k)(1− g))− (d(r − 1) +M ′) ⩾ 2 .

It follows that if d ⩾ max{α6, α4} then the locus X ∩ Qk
d(A)0 in the open set Qk

d(A)0 has
codimension ⩾ 2.

For any sheaf F on C, let Tor(F ) denote the torsion subsheaf of F . Let Z̃⩾i be the locus of
pairs (t, [φ : At → F ]) such that length(Tor(F )) ⩾ i. One easily checks that if d− i ⩾ α4 then

the locus Z̃⩾i is irreducible and has codimension ik ⩾ i. We claim that if d − 1 ⩾ α4 then

Z̃⩾1 contains a point (t, [φ : At → F ]) such that t is a smooth point of t and H1(S∨
F ⊗F ) = 0.

A general point of Z̃⩾1 is a pair (t, [φ : At → F0 ⊕ Cc]), where t is a smooth point of T and
F0 is a stable bundle of degree d− 1 and Cc is the skyscraper sheaf at a point c ∈ C. Then

H1(S∨
F ⊗ F ) = H1(S∨

F ⊗ F0) = 0

using Lemma 3.2.
Using this it follows that {(t, [φ]) | H1(S∨

F ⊗ F ) ̸= 0} has codimension ⩾ 2 when d ⩾
max{α6, α4+2}. Using flatness of π, it follows that π−1(Sing(T )) has codimension ⩾ 2. This
proves (5). □

We remark that the condition A is locally free can not be dropped. For example, as the
next Proposition shows, if we take T to be a point and E to be a sheaf on C which has
torsion, then the Quot scheme QuotC/C(E, k, d) will be reducible when d≫ 0.

Proposition 3.18. Let E be a coherent sheaf on C of rank r > 1 and degree e which has
torsion. Let k, d be integers such that 0 < k < r and assume d ≫ 0. Then the Quot scheme
Qk

d(E) is reducible.

Proof. Let T be the torsion subsheaf of E and E′ be the locally free quotient E/T . Let
the length of T be ℓ. Then the degree of E′ is e − ℓ. The quotient E → E′ gives a closed
immersion of Quot schemes

Qk
d(E

′) ↪→ Qk
d(E) .

Now any locally free quotient q : E → F factors through E′ and hence gives a quotient
q′ : E′ → F . This correspondence gives a bijection between closed points of Qk

d(E)0 and

Qk
d(E

′)0. As Qk
d(E)0 is an open set in Qk

d(E), it follows that Qk
d(E

′)0 is an open set of

Qk
d(E). By [PR03], Qk

d(E
′) is irreducible for d ≫ 0. It follows that Qk

d(E
′) is an irreducible

component of Qk
d(E). However, it is easily seen that the Quot schemes Qk

d(E
′) and Qk

d(E) are

not equal, as Qk
d(E) has closed points which are not contained in Qk

d(E
′). Thus, we conclude

that Qk
d(E) is reducible. □

4. Irreducibility of nested Quot schemes when d1 ≫ d2 ≫ 0

Let C be a smooth projective curve on C of genus g ⩾ 1 and E be a locally free sheaf on
C of rank r and degree e. Let d1, d2, k1, k2 be integers such that 0 < k2 < k1 < r. The nested
Quot scheme QuotC/C(E, k1, k2, d1, d2) parameterizes pairs of quotients (E ↠ F1 ↠ F2) such

that F1 is of rank k1, degree d1 and F2 is of rank k2 and degree d2. We will write Qk1,k2
d1,d2

(E) to
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denote the Quot scheme QuotC/C(E, k1, k2, d1, d2). Let p : C×T → C denote the projection.
Consider the functor

Quotk1,k2d1,d2
(E) : Sch/C → Sets ,

defined as follows. For any scheme T , Quotk1,k2d1,d2
(E)(T ) is the set of isomorphism classes of

pairs of quotients [p∗E ↠ G1 ↠ G2], such that each Gi is a T -flat sheaf on C × T of rank ki
and degree di. It is easy to see that Qk1,k2

d1,d2
(E) represents this functor.

The nested Quot scheme can be constructed as follows. First we consider the Quot scheme

Qk2
d2
(E) := QuotC/C(E, k2, d2) .

Let pC : C ×Qk2
d2
(E) → C be the projection. Let

p∗CE → F2 → 0

be the universal quotient on C × Qk2
d2
(E) and S2 denote the universal kernel. Consider the

relative Quot scheme

Q := Quot
C×Qk2

d2
(E)/Qk2

d2
(E)

(S2, k1 − k2, d1 − d2) .

It is easy to see that Q is the nested Quot scheme Qk1,k2
d1,d2

(E).

Recall the quantity (expected dimension) expdim(d1, d2) from (1.1),

expdim(d1, d2) := [d1r − k1e+ k1(r − k1)(1− g)] + [d2k1 − d1k2 + k2(k1 − k2)(1− g)] .

Theorem 4.1. There exists a numbers d(E, k2) such that for all d2 ⩾ d(E, k2) the following
holds. There is a number ν(E, k1, k2, d2) such that if d1 − d2 ⩾ ν(E, k1, k2, d2) then the

nested Quot scheme Qk1,k2
d1,d2

(E) is irreducible of dimension expdim(d1, d2), a local complete

intersection, integral and normal.

Proof. Using [PR03, Theorem 6.4], [GS24, Lemma 6.1, Theorem 6.3] (see also [BDW96]), we

get a number d(E, k2) such that Qk2
d2
(E) is irreducible of dimension (d2r−k2e+k2(r−k2)(1−

g)), a local complete intersection, integral and normal for d ⩾ d(E, k2). Now we have the
universal exact sequence

0 → S2 → p∗CE → F2 → 0

on C × Qk2
d2
(E). For any closed point [q : E → F2] of Qk2

d2
(E), the fiber (S2)q is the

sheaf ker q which is locally free. So using Theorem 3.16, we get a number ν(S2, k1 −
k2) = α(S2, k1 − k2) such that if d1 − d2 ⩾ ν(S2, k1 − k2) then the relative Quot scheme

Quot
C×Qk2

d2
(E)/Qk2

d2
(E)

(S2, k1 − k2, d1 − d2) and hence the nested Quot scheme Qk1,k2
d1,d2

(E) is

irreducible of dimension expdim(d1, d2). Further, the structure map π : Qk1,k2
d1,d2

(E) → Qk2
d2
(E)

is a local complete intersection morphism. As Qk2
d2
(E) is a local complete intersection, it

follows that Qk1,k2
d1,d2

(E) is also a local complete intersection, and so also Cohen-Macaulay. By

Theorem 3.16 it follows that the singular locus has codimension ⩾ 2. Thus, Qk1,k2
d1,d2

(E) is also

normal. As S2 depends only on E, k2 and d2, so we can write the constant ν(S2, k1 − k2) as
ν(E, k1, k2, d2). □
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5. Irreducibility of nested Quot schemes when 0 ≪ d1 ≪ d2

As in the previous section, let d1, d2, k1, k2 be integers such that 0 < k2 < k1 < r and

we denote by Qk1,k2
d1,d2

(E) the nested Quot scheme QuotC/C(E, k1, k2, d1, d2). Next we want

to show that if 0 ≪ d1 ≪ d2 then the nested Quot scheme is irreducible. We will consider
another construction of the nested Quot scheme. Consider the Quot scheme

Qk1
d1
(E) = QuotC/C(E, k1, d1) .

Let pC : C ×Qk1
d1
(E) → C be the projection. Let

p∗CE → F1 → 0

be the universal quotient on C ×Qk1
d1
(E). Consider the relative Quot scheme

(5.1) Quot
C×Qk1

d1
(E)/Qk1

d1
(E)

(F1, k2, d2) .

It is easy to see that this relative Quot scheme is the nested Quot scheme Qk1,k2
d1,d2

(E).

Remark 5.2. Using [PR03, Theorem 6.4] and [GS24, Lemma 6.1, Theorem 6.3] we get a

number d(E, k1) such that the Quot scheme Qk1
d1
(E) is irreducible of dimension d1r − k1e +

k1(r − k1)(1− g), integral, normal and a local complete intersection when d1 ⩾ d(E, k1).

Recall the quantity (expected dimension) expdim(d1, d2) from (1.1),

expdim(d1, d2) := [d1r − k1e+ k1(r − k1)(1− g)] + [d2k1 − d1k2 + k2(k1 − k2)(1− g)] .

Lemma 5.3. Let d1 ⩾ d(E, k1) and d2 be an integer such that the nested Quot scheme

Qk1,k2
d1,d2

(E) is non-empty. Let W be any irreducible component of the nested quot scheme

Qk1,k2
d1,d2

(E). Then

dimW ⩾ expdim(d1, d2) .

Proof. Let [E
q1−→ F1, F1

q2−→ F2] be a closed point of the nested Quot scheme Qk1,k2
d1,d2

(E). Let

S12 denote the kernel of q2. By choice of d1, the Quot scheme Qk1
d1
(E) is irreducible. As the

nested Quot scheme Qk1,k2
d1,d2

(E) is a relative Quot scheme, we can find the dimension bound

at any closed point using Lemma 2.5, by taking Qk1
d1
(E) as T . Note that we cannot apply

Theorem 3.16 to conclude the irreducibility of the nested Quot scheme as F1 is not locally
free on C ×Qk1

d1
(E). Using Lemma 2.5, we have

hom(S12, F2) ⩾ dim(q1,q2)Q
k1,k2
d1,d2

(E)− [d1r − k1e+ k1(r − k1)(1− g)](5.4)

⩾ hom(S12, F2)− ext1(S12, F2) .

Taking a free resolution of S12 and using Riemann-Roch formula we easily see,

(5.5) hom(S12, F2)− ext1(S12, F2) = d2k1 − d1k2 + k2(k1 − k2)(1− g) .

So it follows that,

dim(q1,q2)Q
k1,k2
d1,d2

(E) ⩾ [d1r − k1e+ k1(r − k1)(1− g)] + [d2k1 − d1k2 + k2(k1 − k2)(1− g)]

= expdim(d1, d2) .
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Since this is true for any closed point of Qk1,k2
d1,d2

(E), it follows that any irreducible component

of Qk1,k2
d1,d2

(E) has dimension at least expdim(d1, d2). □

Let U be the subset of the nested Quot scheme Qk1,k2
d1,d2

(E) which contains points [E
q1−→

F1, F1
q2−→ F2] such that F1 is locally free. It is clear that the subset U is open.

Lemma 5.6. Assume d1 ⩾ d(E, k1). There exists a number β′(E, k1, k2, d1) such that if
d2 ⩾ β′(E, k1, k2, d1) then the open subset U is irreducible of dimension expdim(d1, d2).

Proof. Let Qk1
d1
(E)0 denote the open locus of all locally free quotients in the Quot scheme

Qk1
d1
(E). As d1 ⩾ d(E, k1), so Qk1

d1
(E)0 is irreducible of dimension [d1r−k1e+k1(r−k1)(1−g)].

We have the universal quotient sheaf F1 over Qk1
d1
(E). Then U is the relative Quot scheme

U = Quot
C×Qk1

d1
(E)0/Qk1

d1
(E)0

(F1, k2, d2) .

Note that, for a point [q : E → F1] of Qk1
d1
(E)0, the fiber of the sheaf F1 over [q] is F1 which

is locally free. Hence Theorem 3.16 applies to show that, there is a number α(F1, k2) such
that if d2 ⩾ α(F1, k2) then U is irreducible of dimension expdim(d1, d2). Define

β′ := α(F1, k2) .

As F1 depends only on E, k1 and d1, it follows that β
′ depends on E, k1, k2 and d1. □

For an integer δ ⩾ 1, we define the locus in Qk1
d1
(E),

Zδ := {[E → F ] ∈ Qk1
d1
(E) : length(Tor(F )) = δ} .

For any degree d1, for which Qk1
d1
(E)0 is non-empty, define

ωd1 := dimQk1
d1
(E)0 − [d1r − k1e+ k1(r − k1)(1− g)] .

Lemma 5.7. For d1 ⩾ d(E, k1) and δ ⩾ 1 such that Zδ is non-empty, we have

dimZδ ⩽ ωd1−δ + [d1r − k1e+ k1(r − k1)(1− g)]− δk1 .

Proof. This is proved in the proof of [PR03, Theorem 6.4]. Note that the condition Zδ ̸= ∅
is equivalent to the condition Qk1

d1−δ(E)0 ̸= ∅. Thus, ωd1−δ is defined. □

Fix d1 ⩾ d(E, k1). Let δ > 0 such that Zδ ̸= ∅. Consider the restriction of universal
quotient to Zδ,

p∗CE → F1 → 0 .

We consider the relative Quot scheme

QuotC×Zδ/Zδ
(F1, k2, d2) .

Closed points of this scheme correspond to pairs of quotients (E
q1−→ F1, F1

q2−→ F2) such that
[q1] ∈ Zδ and F2 is of rank k2 and degree d2. Let QuotC×Zδ/Zδ

(F1, k2, d2)
0 denote the open

locus containing all points for which F2 is locally free. We want to compute the dimension of
this locus when d2 ≫ 0. Given a point [q1 : E → F1] ∈ Zδ, after going modulo the torsion in
F1, we get the quotient F1 → F ′

1. Assume there is a quotient Ψ : F1 → F ′
1 on C×Zδ such that

F ′
1 is flat over Zδ and over the point [q1], the restriction of Ψ is the map F1 → F ′

1. Then there
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is a bijection between the points of QuotC×Zδ/Zδ
(F1, k2, d2)

0 and QuotC×Zδ/Zδ
(F ′

1, k2, d2)
0.

As F ′
1 is locally free, we may use Theorem 3.16 to compute the required dimension. However,

there may not exist such a sheaf F ′
1 on C ×Zδ. In the following Lemma we construct a map

of schemes H → Zδ which is bijective on closed points, such that over C ×H there is such a
quotient. Using this we compute the required dimension.

Lemma 5.8. Fix d1 ⩾ d(E, k1). There exists a number ν(E, k1, k2, d1, δ) such that if d2 ⩾
ν(E, k1, k2, d1, δ) then

dimQuotC×Zδ/Zδ
(F1, k2, d2)

0 = dimZδ + [d2k1 − k2(d1 − δ) + k2(k1 − k2)(1− g)] .

Proof. Let X denote the locus of locally free quotients in Qk1
d1−δ(E), that is, X := Qk1

d1−δ(E)0 .
Let ρ : C ×X → C be the projection map. We have the universal short exact sequence on
C ×X,

0 → S ′
1 → ρ∗E → G′

1 → 0 .

Note that for any x ∈ X, the fiber G′
1|x is a locally free sheaf on C. Let H denote the following

relative Quot scheme

H := QuotC×X/X(S ′
1, 0, δ) .

The closed points of H correspond to pair of quotients (E
q1−→ G′

1, ker(q1)
q2−→ τ1) such

that G′
1 is locally free of rank k1, degree d1 − δ and τ1 is a torsion sheaf of length δ. Let

σ : (C ×X)×X H → C ×X denote the projection. There is a universal quotient on C ×H,

σ∗S ′
1 → T → 0 .

From this we get a quotient σ∗ρ∗E → G1 using the following push out diagram

(5.9)

0 σ∗S ′
1 σ∗ρ∗E σ∗G′

1 0

0 T G1 σ∗G′
1 0 .

It is easy to see that G1 is flat over H. So the quotient σ∗ρ∗E → G1 → 0 on C ×H gives a
map of schemes

f : H → Qk1
d1
(E) such that f∗(F1) = G1 .

It can be checked easily that f maps bijectively H onto the subset Zδ. That is, we have a
map

f : H → Zδ .

From the base change property of Quot schemes we have the following Cartesian diagram

QuotC×H/H(G1, k2, d2)
f̃ //

��

QuotC×Zδ/Zδ
(F1, k2, d2)

��
H

f // Zδ



16 P. RASUL AND R. SEBASTIAN

As f is bijective on closed points, it follows that f̃ is also bijective on closed points. Conse-
quenly, if we restrict on the locus of locally free quotients then we have the following map
which is bijection on closed points :

f̃0 : QuotC×H/H(G1, k2, d2)
0 −→ QuotC×Zδ/Zδ

(F1, k2, d2)
0 .

Hence to prove the lemma it is enough to show the following,

(5.10) dimQuotC×H/H(G1, k2, d2)
0 = dimH + [d2k1 − k2(d1 − δ) + k2(k1 − k2)(1− g)] .

Recall that we have the following quotient on C ×H,

G1 → σ∗G′
1 → 0 .

This gives a closed immersion of Quot schemes

g : QuotC×H/H(σ∗G′
1, k2, d2) → QuotC×H/H(G1, k2, d2) .

Restricting this map on the locus of locally free quotients, we have a closed immersion

g0 : QuotC×H/H(σ∗G′
1, k2, d2)

0 → QuotC×H/H(G1, k2, d2)
0 .

It is easily checked that g0 is bijective on closed points as any torsion free quotient of G1 will
factor through G′

1.
So it is enough to find dimension of QuotC×H/H(σ∗G′

1, k2, d2)
0. Note that for any closed

point h ∈ H, the fiber (σ∗G′
1)h is a locally free sheaf on C. So using Theorem 3.16 we

get a number α(σ∗G′
1, k2) such that if d2 ⩾ α(σ∗G′

1, k2) then the relative Quot scheme
QuotC×H/H(σ∗G′

1, k2, d2)
0 has dimension

dimH + d2k1 − (d1 − δ)k2 + k2(k1 − k2)(1− g) .

We define ν := α(σ∗G′
1, k2). As σ

∗G′
1 depends only on E, k1, d1 and δ, the number ν depends

on E, k1, k2, d1 and δ. This proves that for d2 ⩾ ν, we have (5.10). From this the lemma
follows. □

Let us define the following subsets of the nested Quot scheme Qk1,k2
d1,d2

(E). For any δ > 0

and µ ⩾ 0, define

Yδ,µ := {[E → F1 → F2] ∈ Qk1,k2
d1,d2

(E) : length(Tor(F1)) = δ and length(Tor(F2)) = µ} .

Then we have

(5.11) Qk1,k2
d1,d2

(E) =

 ⊔
δ⩾1,µ⩾0

Yδ,µ

⊔
U .

To show the irreducibility of the nested Quot scheme Qk1,k2
d1,d2

(E), by Lemma 5.6, it is enough

to show that the points of any Yδ,µ cannot be general in any component of Qk1,k2
d1,d2

(E). In

order to show this, we will calculate an upper bound for the dimension of the locus Yδ,µ.
Fix δ > 0 and µ ⩾ 0. Let [q1 : E → F1, q2 : F1 → F2] be a closed point in the locus Yδ,µ.

Let τ2 ⊂ F2 denote the torsion subsheaf and F ′
2 be the locally free quotient so that we have

the short exact sequence

0 → τ2 → F2 → F ′
2 → 0 .
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Let q′2 : F1 → F2 → F ′
2 denote the composite quotient and let S12 denote the kernel of q′2.

Then it is easy to see that τ2 is a quotient of the sheaf S12. So the point [q1, q2] of Yδ,µ gives
rise to three quotients

(5.12) [E
q1−→ F1] ∈ Zδ, [F1

q′2−→ F ′
2] ∈ Quot(F1, k2, d2 − µ), [S12

σ−→ τ2] ∈ Quot(S12, 0, µ) .

Conversely, given any three quotients like above, we can get back the point [q1 : E → F1, q2 :
F1 → F2] using the following push-out diagram

(5.13)

0 S12 F1 F ′
2 0

0 τ2 F2 F ′
2 0 .

σ q2

q′2

This one-to-one correspondence shows that the closed points of Yδ,µ are in bijection with the
closed points of a scheme, which we call B, which parametrizes such triplets of quotients. We
will construct the scheme B and a map g : B → Yδ,µ which will give the correspondence on
closed points.

Consider the subset Zδ of Qk1
d1
(E) and the restriction of universal quotient to C × Zδ,

p∗CE → F1 → 0 .

We consider the relative Quot scheme

QuotC×Zδ/Zδ
(F1, k2, d2 − µ) .

Let A denote the open locus of locally free quotients,

(5.14) A := QuotC×Zδ/Zδ
(F1, k2, d2 − µ)0 .

A closed point of A corresponds to a pair of quotients (q1 : E → F1, q
′
2 : F1 → F ′

2) where
q1 ∈ Zδ and q

′
2 ∈ Quot(F1, k2, d2−µ)0. Let p : (C×Zδ)×Zδ

A→ C×Zδ denote the projection
map. We have the universal quotient on C ×A

p∗F1 → F ′
2 → 0 .

Let S12 denote the kernel of this surjection. We consider the relative Quot scheme

(5.15) B := QuotC×A/A(S12, 0, µ) .

The closed points of B correspond to 3-tuple of quotients

(q1 : E → F1, q′2 : F1 → F ′
2, σ : S12 → τ2) ,

where (q1, q
′
2) ∈ A and S12 = ker(q′2). Let π : (C × A)×A B → C × A denote the projection

map. We have the universal quotient over C ×B

π∗S12 → T2 → 0 .
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From this we get a quotient π∗p∗F1 −→ F2 using the following push out diagram

(5.16)

0 π∗S12 π∗p∗F1 π∗F ′
2 0

0 T2 F2 π∗F ′
2 0 .

It is easy to check that the following pair of quotients on C ×B,

p∗CE → π∗p∗F1 → 0, π∗p∗F1 → F2 → 0

induce a map to the nested Quot scheme

g : B → Qk1,k2
d1,d2

(E) .

Clearly, the image of g is exactly Yδ,µ and the description of g on closed points is as described
in (5.12) and (5.13). In particular, the map g : B → Yδ,µ is a bijection on the closed points.
So we have

(5.17) dimB = dimYδ,µ .

From the construction of B we have that

(5.18) dimB ⩽ dimA+ max
[q1,q′2]∈A

dim(Quot(ker(q′2), 0, µ)) .

The dimension of A can be calculated using Lemma 5.8. Recall that q′2 : F1 → F ′
2 is such

that F ′
2 is locally free. It follows that ker(q′2) = S ⊕ Tor(F1), where S is a locally free sheaf

of rank k1 − k2. As F1 = F ′
1 ⊕ Tor(F1) and E surjects onto F1, it follows that Tor(F1) is

a quotient of a locally free sheaf of rank r − k1. It follows that ker(q′2) is the quotient of a
locally free sheaf of rank (k1 − k2) + (r − k1) = r − k2. This shows that

dim(Quot(ker(q′2), 0, µ)) ⩽ (r − k2)µ .

Continuing the computation from (5.18) we get

dimYδ,µ = dimB ⩽ dimA+ max
[q1,q′2]∈A

dim(Quot(ker(q′2), 0, µ))(5.19)

⩽ dimQuotC×Zδ/Zδ
(F1, k2, d2 − µ)0 + (r − k2)µ .

Recall the number expdim(d1, d2) from (1.1).

Lemma 5.20. Assume that k1 + k2 > r. There exists a number γ(E, k1, k2), such that for
any d1 ⩾ γ(E, k1, k2), there exists a number β′′(E, k1, k2, d1) for which the following happens.
If d2 ⩾ β′′(E, k1, k2, d1) then dimYδ,µ < expdim(d1, d2) for any δ > 0 and µ ⩾ 0.

Proof. First let us define γ(E, k1, k2). For any degree d′1, for which Qk1
d′1
(E)0 is non-empty,

define

ωd′1
:= dimQk1

d′1
(E)0 − [d′1r − k1e+ k1(r − k1)(1− g)] .
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If d′1 < m(E, k1) then the quot scheme Qk1
d′1
(E) is empty. If d′1 ⩾ d(E, k1) then ωd′1

= 0. So

the set P1 := {d′1 : Q
k1
d′1
(E)0 ̸= ∅ , ωd′1

> 0} is finite. Define

(5.21) M := max
d′1∈P1

{
ωd′1

k1 − k2
+ d′1

}
and

γ(E, k1, k2) := max{[M ] + 1, d(E, k1)} .
We choose and fix d1 ⩾ γ(E, k1, k2). Then we claim

(5.22) ωd′1
− (k1 − k2)(d1 − d′1) < 0 for any d′1 < d1 such that Qk1

d′1
(E)0 ̸= ∅ .

Indeed, let d′1 < d1 be such that Qk1
d′1
(E)0 ̸= ∅. If ωd′1

⩽ 0 then (5.22) is clear. If ωd′1
> 0 then

d′1 ∈ P1. Now (5.22) follows as d1 > M . This proves the claim.
Next we define β′′(E, k1, k2, d1). Let δ > 0 be such that Zδ ̸= ∅. Consider the restriction

of universal quotient to C × Zδ,

p∗CE → F1 → 0 .

For any d′2, for which QuotC×Zδ/Zδ
(F1, k2, d

′
2)

0 is non-empty, define

ηd′2,δ := dimQuotC×Zδ/Zδ
(F1, k2, d

′
2)

0 − dimZδ − [d′2k1 − k2(d1 − δ) + k2(k1 − k2)(1− g)] .

By Remark 2.4, if d′2 < mmin(F1, k2) then the relative Quot scheme QuotC×Zδ/Zδ
(F1, k2, d

′
2)

0

is empty. By Lemma 5.8, there is a number ν(E, k1, k2, d1, δ) such that if d′2 ⩾ ν then
ηd′2,δ = 0. So the set P δ

2 := {d′2 : ηd′2,δ > 0} is finite. Define

Nδ := max
d′2∈P δ

2

{
ηd′2,δ

k1 + k2 − r
+ d′2

}
and

β′′(E, k1, k2, d1, δ) := max{[Nδ] + 1, ν(E, k1, k2, d1, δ)} .
Observe that once we fix d1, for Zδ to be non-empty, δ can be at most d1 −m(E, k1). Hence
there will be only finitely many δ for which Zδ ̸= ∅. We define

β′′(E, k1, k2, d1) := max
δ:Zδ ̸=∅

{β′′(E, k1, k2, d1, δ)} .

Assume d2 ⩾ β′′(E, k1, k2, d1). We claim that

ηd′2,δ − (k1 + k2 − r)(d2 − d′2) ⩽ 0 for any δ > 0 and d′2 ⩽ d2

such that QuotC×Zδ/Zδ
(F1, k2, d

′
2)

0 ̸= ∅ .(5.23)

To see the claim, fix δ > 0. Let us assume that d′2 ⩽ d2 and QuotC×Zδ/Zδ
(F1, k2, d

′
2)

0 ̸= ∅.
As k1 + k2 > r, if ηd′2,δ ⩽ 0 then the claim is clear. If ηd′2,δ > 0 then d′2 ∈ P δ

2 . In this case,
the claim follows as d2 > Nδ.
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Fix δ > 0 and µ ⩾ 0. Consider the subset Yδ,µ of Qk1,k2
d1,d2

(E). Using (5.19), we have

dimYδ,µ ⩽ dimQuotC×Zδ/Zδ
(F1, k2, d2 − µ)0 + (r − k2)µ

= ηd2−µ,δ + dimZδ + [(d2 − µ)k1 − k2(d1 − δ) + k2(k1 − k2)(1− g)]

+ (r − k2)µ

Using Lemma 5.7, we get that

dimYδ,µ ⩽ ηd2−µ,δ + ωd1−δ + [d1r − k1e+ k1(r − k1)(1− g)]− δk1

+ [(d2 − µ)k1 − k2(d1 − δ) + k2(k1 − k2)(1− g)] + (r − k2)µ

= expdim(d1, d2) + ηd2−µ,δ + ωd1−δ − (k1 − k2)δ − k1µ+ (r − k2)µ

= expdim(d1, d2) + ηd2−µ,δ + ωd1−δ − (k1 − k2)δ − (k1 + k2 − r)µ

Recall that d1 ⩾ γ(E, k1, k2) and d2 ⩾ β′′(E, k1, k2, d1). Using (5.22) and (5.23) we have

dimYδ,µ < expdim(d1, d2).

This proves the Lemma. □

Remark 5.24. If k1 + k2 > r and k1 − k2 ⩾ 2, then a similar argument as above shows that
dimYδ,µ ⩽ expdim(d1, d2)− 2. We only have to change the definition of M in (5.21) to

max
d′1∈P1

{
ωd′1

k1 − k2
+ d′1 + 1

}
.

Theorem 5.25. Assume k1 + k2 > r. There exists a number γ(E, k1, k2) such that the
following happens. For all d1 ⩾ γ(E, k1, k2), there is a number β(E, k1, k2, d1), such that if
d2 ⩾ β(E, k1, k2, d1), then

(1) The nested Quot scheme Qk1,k2
d1,d2

(E) is irreducible of dimension expdim(d1, d2).

(2) The map Qk1,k2
d1,d2

(E) → Qk1
d1
(E) is a local complete intersection morphism. In particu-

lar, it follows that Qk1,k2
d1,d2

(E) is a local complete intersection.

(3) The nested Quot scheme Qk1,k2
d1,d2

(E) is an integral scheme. It is normal if k1− k2 ⩾ 2.

Proof. We take γ(E, k1, k2) to be as defined in Lemma 5.20 and assume d1 ⩾ γ(E, k1, k2).
Recall the definitions of β′ from Lemma 5.6 and β′′ from Lemma 5.20. Define

β(E, k1, k2, d1) := max{β′(E, k1, k2, d1), β′′(E, k1, k2, d1)} .

Assume d2 ⩾ β(E, k1, k2, d1). Recall the subset U from Lemma 5.6. Recall (5.11) which says

Qk1,k2
d1,d2

(E) =

 ⊔
δ⩾1,µ⩾0

Yδ,µ

⊔
U ,

As d1 ⩾ d(E, k1) and d2 ⩾ β′(E, k1, k2, d1), Lemma 5.6 shows that U is an irreducible open

subset of dimension expdim(d1, d2). So U is an irreducible component of Qk1,k2
d1,d2

(E).

Let W be an irreducible component of the nested Quot scheme Qk1,k2
d1,d2

(E). By Lemma 5.3,

we have dimW ⩾ expdim(d1, d2). Lemma 5.20 implies that points of Yδ,µ cannot be general
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in W. Thus, it follows that W = U is the only component of Qk1,k2
d1,d2

(E). Hence, Qk1,k2
d1,d2

(E) is

irreducible of dimension expdim(d1, d2). This proves (1).

As d ⩾ d(E, k1), it follows that Qk1
d1
(E) is irreducible, and so a local complete intersection,

see [GS24, Lemma 6.1]. Recall from (5.1) that the nested Quot scheme is a relative Quot

scheme over Qk1
d1
(E). As the universal quotient F1 is flat over Qk1

d1
(E), we may apply [Kol96,

Theorem 5.17.2]. As the nested Quot scheme is irreducible, the dimension is constant at
any closed point and equals expdim(d1, d2). Take a closed point corresponding to the pair of

quotients [E
q−→ F1

q1−→ F2]. Let S12 denote the kernel of q1. We need to check that

dimQk1,k2
d1,d2

(E) = hom(S12, F2)− ext1(S12, F2) + dimQk1
d1
(E) .

We saw in (5.5) that this holds. This proves (2). It follows that the nested Quot scheme is
also Cohen-Macaulay.

Recall from Remark 5.2 that Qk1
d1
(E) is an integral scheme which is normal. Since the

nested Quot scheme is irreducible and Cohen Macaulay, to show it is integral, it suffices to
check that Serre’s condition R0 holds. The proof of Lemma 5.6 and Theorem 3.16(4) show
that the open set U is generically smooth. It follows that the nested Quot scheme satisfies
Serre’s condition R0, and so is integral.

Assume k1−k2 ⩾ 2. To show that the nested Quot scheme is normal, it suffices to show that
Serre’s condition R1 holds. Thus, it suffices to show that the singular locus has codimension
⩾ 2. It follows from Theorem 3.16(5) that the singular locus of U has codimension ⩾ 2. By
Remark 5.24 it follows that Yδ,µ has codimension ⩾ 2. It follows that the nested Quot scheme
is normal. □

Theorem 5.26. There exists a number γ(E, k1, k2) such that the following happens. For all
d1 ⩾ γ(E, k1, k2), there is a number β(E, k1, k2, d1), such that if d2 ⩾ β(E, k1, k2, d1), then

(1) The nested Quot scheme Qk1,k2
d1,d2

(E) is irreducible of dimension expdim(d1, d2).

(2) The structure map Qk1,k2
d1,d2

(E) → Qk1
d1
(E) is a local complete intersection morphism.

In particular, it follows that Qk1,k2
d1,d2

(E) is a local complete intersection.

(3) The nested Quot scheme Qk1,k2
d1,d2

(E) is an integral scheme.

Proof. Let l be such that l + k1 + k2 > r. Let E′ := E ⊕O⊕l
C . Let k′1 := k1 + l, k′2 := k2 + l

and let r′ := r + l. Consider the nested Quot scheme

Qk′1,k
′
2

d1,d2
(E′) := QuotC/C(E

′, k′1, k
′
2, d1, d2) .

As k′1 + k′2 > r′, we may apply Theorem 5.25. There exists a number γ(E′, k′1, k
′
2) such that

the following happens. For every d1 ⩾ γ(E′, k′1, k
′
2), there is a number β(E′, k′1, k

′
2, d1), such

that if d2 ⩾ β(E′, k′1, k
′
2, d1), then the nested Quot scheme Qk′1,k

′
2

d1,d2
(E′) is integral. We have

the following two universal subsheaves on C ×Qk′1,k
′
2

d1,d2
(E′):

S ′
1 ⊂ S ′

2 ⊂ p∗CE
′ .

The locus of points y ∈ Qk′1,k
′
2

d1,d2
(E′) such that the maps (S ′

1)y → E and (S ′
2)y → E are

inclusions is an open subset, see [Ras24, Lemma 6.12]. Let us denote this open set by T .
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The inclusions S ′
1 ⊂ S ′

2 ⊂ p∗CE on C × T give a map T → Qk1,k2
d1,d2

(E). Given a point

[E
q1−→ F1

q2−→ F2] ∈ Qk1,k2
d1,d2

(E), it is clear that this point is the image of

[E ⊕O⊕l
C

q1⊕Id−−−−→ F1 ⊕O⊕l
C

q2⊕Id−−−−→ F2 ⊕O⊕l
C ] ∈ T .

Thus, the map T → Qk1,k2
d1,d2

(E) is surjective. It follows that Qk1,k2
d1,d2

(E) is irreducible. By

Lemma 5.6 it has dimension expdim(d1, d2). This proves (1). The proof of (2) is similar to
that of Theorem 5.25(2). The proof of (3) is similar to the proof of integrality in Theorem
5.25(3). □
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