Resistance matrices of balanced directed graphs

Let $G=(V, E)$ be a strongly connected and balanced digraph with vertex set $V=\{1, \ldots, n\}$. The Laplacian matrix of G is then the matrix (not necessarily symmetric) $L:=D-A$, where A is the adjacency matrix of G and D is the diagonal matrix such that the row sums and the column sums of L are equal to zero. Let $L^{\dagger}=\left[l_{i j}^{\dagger}\right]$ be the Moore-Penrose inverse of L. We define the resistance between any two vertices i and j of G by $r_{i j}:=l_{i i}^{\dagger}+l_{j j}^{\dagger}-2 l_{i j}^{\dagger}$. Some interesting properties of the resistance and the corresponding resistance matrix $\left[r_{i j}\right]$ will be discussed in the talk.

The classical distance $d_{i j}$ between any two vertices i and j in G is the minimum length of all the directed paths joining i and j. Numerical examples show that the resistance distance between i and j is always less than or equal to the classical distance, i.e. $r_{i j} \leq d_{i j}$. However, no proof for this inequality is known. In the talk we will mention that this inequality holds for all directed cactus graphs. This is a joint work with Dr. R. Balaji and Professor R. B. Bapat.

