Minimal dilations for commuting contractions and Q-commutant lifting

Abstract

For commuting contractions T_1, \ldots, T_n acting on a Hilbert space \mathcal{H} with $T = \prod_{i=1}^n T_i$, we find a necessary and sufficient condition under which (T_1, \ldots, T_n) dilates to commuting isometries (V_1, \ldots, V_n) or commuting unitaries (U_1, \ldots, U_n) acting on the minimal isometric dilation space or the minimal unitary dilation space of T respectively, where $V = \prod_{i=1}^n V_i$ and $U = \prod_{i=1}^n U_i$ are the minimal isometric and the minimal unitary dilations of T respectively. We construct both Schäffer and Sz. Nagy-Foias type isometric and unitary dilations for (T_1, \ldots, T_n) on the minimal dilation spaces of T. Also a minimal isometric dilation is constructed where the product T is a $C_{\cdot 0}$ contraction, that is $T^{*n} \to 0$ strongly as $n \to \infty$. As a consequence of these dilation theorems we obtain different functional models for (T_1, \ldots, T_n) . When the product T is a $C_{\cdot 0}$ contraction, the dilation of (T_1, \ldots, T_n) leads to a natural factorization of T in terms of compression of Toeplitz operators with linear analytic symbols. Several examples have been constructed towards this direction.

For bounded linear operators $Q, T_1, T_2 \in \mathcal{B}(\mathcal{H}), T_1, T_2$ are said to be Q-commuting if $QT_1T_2 = T_2T_1$, or $T_1QT_2 = T_2T_1$ or $T_1T_2Q = T_2T_1$. For any contraction Q, we obtain analogues of the commutant lifting theorem, co-isometric extension theorem, intertwining lifting theorem and Ando's dilation theorem in the Q-commuting setting. We show several applications of this theory to connected acyclic graphs.