Maximal tori determining the algebraic group

Shripad M. Garge.
Harish-Chandra Research Institute,
Allahabad, India.
(shripad@mri.ernet.in)

Talk given at
The workshop on
Linear Algebraic Groups, Quadratic Forms and Related Topics
Eilat. Israel.
(Feb 1 - 5, 2004)

Main Theorem:

Let k be a finite field, a global field or a local non-archimedean field.
Let H_{1} and H_{2} be two split, connected, reductive algebraic groups defined over k.
Suppose that for every maximal torus T_{1} in H_{1} there exists a maximal torus T_{2} in H_{2} which is isomorphic to T_{1} over k and vice versa.

Then the Weyl groups $W\left(H_{1}\right)$ and $W\left(H_{2}\right)$ are isomorphic.

Moreover, if we write the Weyl groups $W\left(H_{1}\right)$ and $W\left(H_{2}\right)$ as a direct product of the Weyl groups of simple algebraic groups,

$$
W\left(H_{1}\right)=\prod_{\Lambda_{1}} W_{1, \alpha} \quad \text { and } \quad W\left(H_{2}\right)=\prod_{\Lambda_{2}} W_{2, \beta}
$$

Then there is a bijection $i: \Lambda_{1} \rightarrow \Lambda_{2}$ such that $W_{1, \alpha}$ is isomorphic to $W_{2, i(\alpha)}$ for every $\alpha \in \Lambda_{1}$.

Suppose in addition that the groups H_{1} and H_{2} have trivial centers.
Write the direct product decompositions of H_{1} and H_{2} into simple algebraic groups as

$$
H_{1}=\prod_{\Lambda_{1}} H_{1, \alpha} \quad \text { and } \quad H_{2}=\prod_{\Lambda_{2}} H_{2, \beta} .
$$

Then there is a bijection $i: \Lambda_{1} \rightarrow \Lambda_{2}$ such that $H_{1, \alpha}$ is isomorphic to $H_{2, i(\alpha)}$, except for the case when $H_{1, \alpha}$ is a simple group of type B_{n} or C_{n}, in which case $H_{2, i(\alpha)}$ could be of type C_{n} or B_{n}.

Let $G(\overline{\mathbb{Q}} / \mathbb{Q})$ denote the absolute Galois group of \mathbb{Q}.
Let \mathcal{F} be the dense subset of $G(\overline{\mathbb{Q}} / \mathbb{Q})$ consisting of Frobenius elements.
A family of continuous representations

$$
\rho_{l}: G(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow G L_{n}\left(\mathbb{Q}_{l}\right)
$$

indexed by the set of rational primes, is called compatible ${ }^{a}$ if, for every $\alpha \in \mathcal{F}$, the characteristic polynomial of $\rho_{l}(\alpha)$ has coefficients in \mathbb{Q} and is independent of l. Let G_{l} denote the connected component of the Zariski closure of $\rho_{l}(G(\overline{\mathbb{Q}} / \mathbb{Q}))$.

Question: Is G_{l} independent of l ?
In other words, does there exist a group G defined over \mathbb{Q} such that

$$
G_{l}=G \otimes_{\mathbb{Q}} \mathbb{Q}_{l} ?
$$

[^0]Let k be an arbitrary field and let H be a split connected semisimple algebraic group defined over k.
Fix a maximal torus T_{0} in H. Let the dimension of T_{0} be n.

- The k-conjugacy classes of maximal tori in H are described by the "kernel" of the map

$$
H^{1}\left(k, N\left(T_{0}\right)\right) \rightarrow H^{1}(k, H)
$$

- The k-isomorphism classes of n-dimensional k-tori, is described by the set $H^{1}\left(k, G L_{n}(\mathbb{Z})\right)$.

Consider the exact sequence

$$
0 \rightarrow T_{0} \rightarrow N\left(T_{0}\right) \rightarrow W(H) \rightarrow 0
$$

This gives us

$$
H^{1}\left(k, N\left(T_{0}\right)\right) \xrightarrow{\psi} H^{1}(k, W(H)) \xrightarrow{i} H^{1}\left(k, G L_{n}(\mathbb{Z})\right) .
$$

Fix a torus T in H.
Let $[T]^{c} \in H^{1}\left(k, N\left(T_{0}\right)\right)$ be the element corresponding to the k-conjugacy class of T in H.
Then the element

$$
i \circ \psi\left([T]^{c}\right) \in H^{1}\left(k, G L_{n}(\mathbb{Z})\right)
$$

corresponds to the k-isomorphism class of T.

Let H_{1} and H_{2} be two split connected, semisimple groups of the same rank, say n.
Let T_{1} be a maximal torus in H_{1} and $T_{2} \subset H_{2}$ be the maximal torus k-isomorphic to T_{1}. Consider,

$$
\begin{aligned}
& \psi_{1}\left(\left[T_{1}\right]^{c}\right) \in H^{1}\left(k, W\left(H_{1}\right)\right) \xrightarrow{i_{1}} H^{1}\left(k, G L_{n}(\mathbb{Z})\right), \\
& \psi_{2}\left(\left[T_{2}\right]^{c}\right) \in H^{1}\left(k, W\left(H_{2}\right)\right) \xrightarrow{i_{2}} H^{1}\left(k, G L_{n}(\mathbb{Z})\right) .
\end{aligned}
$$

The images of the integral Galois representations,

$$
\psi_{1}\left(\left[T_{1}\right]^{c}\right)(G(\bar{k} / k)) \subset W_{1}, \quad \psi_{2}\left(\left[T_{2}\right]^{c}\right)(G(\bar{k} / k)) \subset W_{2}
$$

are conjugate in $G L_{n}(\mathbb{Z})$.

Now, let k be a finite field, a global field or a local non-archimedean field and H be a split semisimple connected algebraic group defined over k.

An element $H^{1}(k, W(H))$ which corresponds to a homomorphism $\rho: G(\bar{k} / k) \rightarrow W(H)$ with cyclic image, corresponds to a k-isomorphism class of a maximal torus in H, under the mapping $\psi: H^{1}\left(k, N\left(T_{0}\right)\right) \rightarrow H^{1}(k, W(H))$.

Let H_{1} and H_{2} be two split connected, semisimple algebraic groups defined over k.
If they satisfy the conditions described in the main theorem, then every element $w_{1} \in W\left(H_{1}\right)$ can be conjugated in $G L_{n}(\mathbb{Z})$ to lie in $W\left(H_{2}\right)$ and vice versa.

Theorem. Let W_{1} and W_{2} be two Weyl groups (of split semisimple algebraic groups) embedded in $G L_{n}(\mathbb{Z})$ for some n, in a natural way ${ }^{a}$.

Assume that every element of W_{1} can be conjugated in $G L_{n}(\mathbb{Z})$ to an element of W_{2} and vice versa. Then the Weyl groups W_{1} and W_{2} are isomorphic.

Moreover, if we write the Weyl groups W_{i} as a direct product of Weyl groups of simple algebraic groups,

$$
W_{1}=\prod_{\Lambda_{1}} W_{1, \alpha} \quad \text { and } \quad W_{2}=\prod_{\Lambda_{2}} W_{2, \beta}
$$

then there exists a bijection $i: \Lambda_{1} \rightarrow \Lambda_{2}$ such that $W_{1, \alpha}$ is isomorphic to $W_{2, i(\alpha)}$ for all $\alpha \in \Lambda_{1}$.

[^1]Some observations:

- The sets $\operatorname{ch}\left(W_{1}\right)$ and $\operatorname{ch}\left(W_{2}\right)$ are the same in $\mathbb{Z}[X]$.
- For $i=1,2$, the irreducible factors (over \mathbb{Z}) of elements of $c h\left(W_{i}\right)$ are the cyclotomic polynomials.
- For a subset $W \subset G L_{n}(\mathbb{Z})$, let us define

$$
\begin{array}{rll}
\mathfrak{m}_{i}(W) & =\max \left\{t: \phi_{i}^{t} \text { divides } f \text { for some } f \in \operatorname{ch}(W)\right\} \\
\mathfrak{m}_{i}^{\prime}(W) & =\min \left\{t: \phi_{2}^{t} \cdot \phi_{i}^{\mathfrak{m}_{i}(W)} \text { divides } f \text { for some } f \in \operatorname{ch}(W)\right\} & \text { and } \\
\mathfrak{m}_{i, j}(W) & =\max \left\{t+s: \phi_{i}^{t} \cdot \phi_{j}^{s} \text { divides } f \text { for some } f \in \operatorname{ch}(W)\right\} & \text { for } i \neq j
\end{array}
$$

Then,

$$
\begin{gathered}
\mathfrak{m}_{i}\left(W_{1}\right)=\mathfrak{m}_{i}\left(W_{2}\right), \quad \mathfrak{m}_{i}^{\prime}\left(W_{1}\right)=\mathfrak{m}_{i}^{\prime}\left(W_{2}\right), \quad \text { for all } i, j . \\
\mathfrak{m}_{i, j}\left(W_{1}\right)=\mathfrak{m}_{i, j}\left(W_{2}\right)
\end{gathered}
$$

If we have $U_{1} \subset G L_{n_{1}}(\mathbb{Z})$ and $U_{2} \subset G L_{n_{2}}(\mathbb{Z})$, then $U_{1} \times U_{2} \subset G L_{n_{1}+n_{2}}(\mathbb{Z})$ and

$$
\begin{aligned}
\mathfrak{m}_{i}\left(U_{1} \times U_{2}\right) & =\mathfrak{m}_{i}\left(U_{1}\right)+\mathfrak{m}_{i}\left(U_{2}\right) \\
\mathfrak{m}_{i}^{\prime}\left(U_{1} \times U_{2}\right) & =\mathfrak{m}_{i}^{\prime}\left(U_{1}\right)+\mathfrak{m}_{i}^{\prime}\left(U_{2}\right), \\
\mathfrak{m}_{i, j}\left(U_{1} \times U_{2}\right) & =\mathfrak{m}_{i, j}\left(U_{1}\right)+\mathfrak{m}_{i, j}\left(U_{2}\right)
\end{aligned} \quad \text { for all } i, j .
$$

Method of Induction!

Let m be the highest rank among the simple factors of H_{i}.
For $i=1,2$, let

$$
W_{i}=W_{i}^{\prime} \times W_{i}^{\prime \prime}
$$

where $W_{i}^{\prime \prime}$ is the product of Weyl groups of simple factors of H_{i} of rank m.

Claim: If a simple group of rank m appears as a direct factor of H_{1} with certain multiplicity, then it appears as a direct factor of H_{2} with the same multiplicity.

Thus $W_{1}^{\prime \prime}$ is isomorphic to $W_{2}^{\prime \prime}$.
Therefore,

$$
\begin{aligned}
\mathfrak{m}_{i}\left(W_{1}^{\prime}\right)=\mathfrak{m}_{i}\left(W_{1}\right)-\mathfrak{m}_{i}\left(W_{1}^{\prime \prime}\right)= & \mathfrak{m}_{i}\left(W_{2}\right)-\mathfrak{m}_{i}\left(W_{2}^{\prime \prime}\right)=\mathfrak{m}_{i}\left(W_{2}^{\prime}\right), \\
\mathfrak{m}_{i}^{\prime}\left(W_{1}^{\prime}\right)=\mathfrak{m}_{i}^{\prime}\left(W_{2}^{\prime}\right) & \mathfrak{m}_{i, j}\left(W_{1}^{\prime}\right)=\mathfrak{m}_{i, j}\left(W_{2}^{\prime}\right)
\end{aligned} \quad \text { for all } i, j
$$

The proof now follows by induction on m.

Now, we prove the claim (for $m=2$).
The possible simple factors of H_{1} and H_{2} are of type A_{1}, A_{2}, B_{2} and G_{2}.
Observe that $\mathfrak{m}_{6}\left(W\left(G_{2}\right)\right)=1$ and $\mathfrak{m}_{6}(W)=0$ for Weyl group of any other simple algebraic group of rank less than or equal to 2 .

Hence for $i=1,2$, the multiplicity of $W\left(G_{2}\right)$ as a factor of W_{i} is given by $\mathfrak{m}_{6}\left(W_{i}\right)$, therefore it is the same for $i=1,2$.

Similarly, the multiplicity of $W\left(B_{2}\right)$ is given by $\mathfrak{m}_{4}\left(W_{i}\right)$,
and the multiplicity of $W\left(A_{2}\right)$ as a factor of H_{i} is given by $\mathfrak{m}_{3}\left(W_{i}\right)-\mathfrak{m}_{6}\left(W_{i}\right)$.

Thus, we prove that the factors of $W_{1}^{\prime \prime}$ and $W_{2}^{\prime \prime}$ are the same with the same multiplicity.

For general case, we need more care.

Type	Degrees	Divisors of degrees	
A_{n}	$2,3, \ldots, n+1$	$1,2, \ldots, n+1$	
B_{n}	$2,4, \ldots, 2 n$	$1,2, \ldots, n, n+2, n+4, \ldots, 2 n$	n even
		$1,2, \ldots, n, n+1, n+3, \ldots, 2 n$	n odd
D_{n}	$2,4, \ldots, 2 n-2, n$	$1,2, \ldots, n, n+2, n+4, \ldots, 2 n-2$	n even
		$1,2, \ldots, n, n+1, n+3, \ldots, 2 n-2$	n odd
G_{2}	2,6	$1,2,3,6$	
F_{4}	$2,6,8,12$	$1,2,3,4,6,8,12$	
E_{6}	$2,5,6,8,9,12$	$1,2,3,4,5,6,8,9,12$	
E_{7}	$2,6,8,10,12,14,18$	$1,2,3,4,5,6,7,8,9,10,12,14,18$	
E_{8}	$2,8,12,14,18,20,24,30$	$1,2,3,4,5,6,7,8,9,10,12,14,15,18,20,24,30$	

Section 3.7
'Reflection groups and Coxeter groups' by James E. Humphreys.

Using Springer's Theorem ${ }^{a}$ and the above table, we can now easily compute the set $c h^{*}(W)^{b}$ for any simple Weyl group W. We summarize them below.

$$
\begin{aligned}
c h^{*}\left(W\left(A_{n}\right)\right) & =\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{n+1}\right\} \\
c h^{*}\left(W\left(B_{n}\right)\right) & =\left\{\phi_{i}, \phi_{2 i}: i=1,2, \ldots, n\right\} \\
c h^{*}\left(W\left(D_{n}\right)\right) & =\left\{\phi_{i}, \phi_{2 j}: i=1,2, \ldots, n, j=1,2 \ldots, n-1\right\} \\
c h^{*}\left(W\left(G_{2}\right)\right) & =\left\{\phi_{1}, \phi_{2}, \phi_{3}, \phi_{6}\right\} \\
c h^{*}\left(W\left(F_{4}\right)\right) & =\left\{\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}, \phi_{6}, \phi_{8}, \phi_{12}\right\} \\
c h^{*}\left(W\left(E_{6}\right)\right) & =\left\{\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}, \phi_{5}, \phi_{6}, \phi_{8}, \phi_{9}, \phi_{12}\right\} \\
c h^{*}\left(W\left(E_{7}\right)\right) & =\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{10}, \phi_{12}, \phi_{14}, \phi_{18}\right\} \\
c h^{*}\left(W\left(E_{8}\right)\right) & =\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{10}, \phi_{12}, \phi_{14}, \phi_{15}, \phi_{18}, \phi_{20}, \phi_{24}, \phi_{30}\right\}
\end{aligned}
$$

[^2]While determining the multiplicities of the rank m simple factors of H_{i}, we proceed in the following order.

- simple group of exceptional type, i.e., $G_{2}, F_{4}, E_{6}, E_{7}$ or E_{8};
- simple group of type B_{m};
- simple group of type D_{m};
- simple group of type A_{m}.

Let $k=\mathbb{Q}_{p}$ for some rational prime p.
Then, we have that $\operatorname{Br}(k)=\mathbb{Q} / \mathbb{Z}$.
Let D_{1} and D_{2} be two division algebras corresponding to $1 / 5$ and $2 / 5$ in $\operatorname{Br}(k)$.
Let $H_{1}=S L_{1}\left(D_{1}\right)$ and $H_{2}=S L_{1}\left(D_{2}\right)$.

A maximal torus in $S L_{1}\left(D_{i}\right)$ corresponds to a maximal commutative subfield of D_{i} for $i=1,2$.

Over \mathbb{Q}_{p}, every division algebra of degree n contains every field extension of dimension n.
Thus, the maximal tori in H_{1} and H_{2} are the same upto k-isomorphism.

But if $H_{1} \cong H_{2}$, then $D_{1} \cong D_{2}$ or $D_{1} \cong D_{2}^{\circ}$, which is a contradiction!!!

THANK YOU!

[^0]: ${ }^{a}$ For a precise definition see 'Abelian l-adic representations and elliptic curves' by Serre.

[^1]: $a_{\text {i.e., }}$ by their action on a split maximal torus in the respective groups

[^2]: ${ }^{a}$ T. A. Springer 'Regular elements of finite reflection groups', Invent. Math., 25, 159-198 (1974).
 ${ }^{b} c h^{*}(W)=\left\{\phi_{t}: \phi_{t}\right.$ divides some element $\left.f \in c h(W)\right\}$

