Maximal tori determining the algebraic group

Shripad M. Garge.
Harish-Chandra Research Institute,
Allahabad, India.
(shripad@mri.ernet.in)

Talk given at

The workshop on Linear Algebraic Groups, Quadratic Forms and Related Topics Eilat. Israel. $(\text{Feb } 1-5,\,2004)$

1

Main Theorem:

Let k be a finite field, a global field or a local non-archimedean field.

Let H_1 and H_2 be two split, connected, reductive algebraic groups defined over k.

Suppose that for every maximal torus T_1 in H_1 there exists a maximal torus T_2 in H_2 which is isomorphic to T_1 over k and vice versa.

Then the Weyl groups $W(H_1)$ and $W(H_2)$ are isomorphic.

Moreover, if we write the Weyl groups $W(H_1)$ and $W(H_2)$ as a direct product of the Weyl groups of simple algebraic groups,

$$W(H_1) = \prod_{\Lambda_1} W_{1,\alpha}$$
 and $W(H_2) = \prod_{\Lambda_2} W_{2,\beta}$.

Then there is a bijection $i:\Lambda_1\to\Lambda_2$ such that $W_{1,\alpha}$ is isomorphic to $W_{2,i(\alpha)}$ for every $\alpha\in\Lambda_1$.

Suppose in addition that the groups \mathcal{H}_1 and \mathcal{H}_2 have trivial centers.

Write the direct product decompositions of \mathcal{H}_1 and \mathcal{H}_2 into simple algebraic groups as

$$H_1 = \prod_{\Lambda_1} H_{1,\alpha}$$
 and $H_2 = \prod_{\Lambda_2} H_{2,\beta}$.

Then there is a bijection $i:\Lambda_1\to\Lambda_2$ such that $H_{1,\alpha}$ is isomorphic to $H_{2,i(\alpha)}$, except for the case when $H_{1,\alpha}$ is a simple group of type B_n or C_n , in which case $H_{2,i(\alpha)}$ could be of type C_n or B_n .

Let $G(\bar{\mathbb{Q}}/\mathbb{Q})$ denote the absolute Galois group of \mathbb{Q} .

Let $\mathcal F$ be the dense subset of $G(\bar{\mathbb Q}/\mathbb Q)$ consisting of *Frobenius* elements.

A family of continuous representations

$$\rho_l: G(\bar{\mathbb{Q}}/\mathbb{Q}) \to GL_n(\mathbb{Q}_l),$$

indexed by the set of rational primes, is called $compatible^a$ if, for every $\alpha \in \mathcal{F}$, the characteristic polynomial of $\rho_l(\alpha)$ has coefficients in $\mathbb Q$ and is independent of l. Let G_l denote the connected component of the Zariski closure of $\rho_l(G(\bar{\mathbb Q}/\mathbb Q))$.

Question: Is G_l independent of l?

In other words, does there exist a group G defined over $\mathbb Q$ such that

$$G_l = G \otimes_{\mathbb{Q}} \mathbb{Q}_l$$
?

 $[^]a$ For a precise definition see 'Abelian l-adic representations and elliptic curves' by Serre.

Let k be an arbitrary field and let H be a split connected semisimple algebraic group defined over k. Fix a maximal torus T_0 in H. Let the dimension of T_0 be n.

ullet The k-conjugacy classes of maximal tori in H are described by the "kernel" of the map

$$H^1(k, N(T_0)) \to H^1(k, H).$$

ullet The k-isomorphism classes of n-dimensional k-tori, is described by the set $H^1ig(k,GL_n(\mathbb{Z})ig)$.

Consider the exact sequence

$$0 \to T_0 \to N(T_0) \to W(H) \to 0.$$

This gives us

$$H^1(k, N(T_0)) \xrightarrow{\psi} H^1(k, W(H)) \xrightarrow{i} H^1(k, GL_n(\mathbb{Z})).$$

Fix a torus T in H.

Let $[T]^c \in H^1(k, N(T_0))$ be the element corresponding to the k-conjugacy class of T in H.

Then the element

$$i \circ \psi([T]^c) \in H^1(k, GL_n(\mathbb{Z}))$$

corresponds to the k-isomorphism class of T.

Let H_1 and H_2 be two split connected, semisimple groups of the same rank, say n.

Let T_1 be a maximal torus in H_1 and $T_2 \subset H_2$ be the maximal torus k-isomorphic to T_1 . Consider,

$$\psi_1([T_1]^c) \in H^1(k, W(H_1)) \xrightarrow{i_1} H^1(k, GL_n(\mathbb{Z})),$$

$$\psi_2([T_2]^c) \in H^1(k, W(H_2)) \xrightarrow{i_2} H^1(k, GL_n(\mathbb{Z})).$$

The images of the integral Galois representations,

$$\psi_1([T_1]^c)(G(\bar{k}/k)) \subset W_1, \quad \psi_2([T_2]^c)(G(\bar{k}/k)) \subset W_2$$

are conjugate in $GL_n(\mathbb{Z})$.

Now, let k be a finite field, a global field or a local non-archimedean field and H be a split semisimple connected algebraic group defined over k.

An element $H^1\big(k,W(H)\big)$ which corresponds to a homomorphism $\rho:G(\bar k/k)\to W(H)$ with cyclic image, corresponds to a k-isomorphism class of a maximal torus in H, under the mapping $\psi:H^1\big(k,N(T_0)\big)\to H^1\big(k,W(H)\big).$

Let H_1 and H_2 be two split connected, semisimple algebraic groups defined over k.

If they satisfy the conditions described in the main theorem, then every element $w_1 \in W(H_1)$ can be conjugated in $GL_n(\mathbb{Z})$ to lie in $W(H_2)$ and vice versa.

Theorem. Let W_1 and W_2 be two Weyl groups (of split semisimple algebraic groups) embedded in $GL_n(\mathbb{Z})$ for some n, in a natural way^a.

Assume that every element of W_1 can be conjugated in $GL_n(\mathbb{Z})$ to an element of W_2 and vice versa.

Then the Weyl groups W_1 and W_2 are isomorphic.

Moreover, if we write the Weyl groups W_i as a direct product of Weyl groups of simple algebraic groups,

$$W_1 = \prod_{\Lambda_1} W_{1,\alpha}$$
 and $W_2 = \prod_{\Lambda_2} W_{2,\beta}$,

then there exists a bijection $i:\Lambda_1\to\Lambda_2$ such that $W_{1,\alpha}$ is isomorphic to $W_{2,i(\alpha)}$ for all $\alpha\in\Lambda_1$.

 $[^]a$ i.e., by their action on a split maximal torus in the respective groups

Some observations:

- The sets $ch(W_1)$ and $ch(W_2)$ are the same in $\mathbb{Z}[X]$.
- For i=1,2, the irreducible factors (over \mathbb{Z}) of elements of $ch(W_i)$ are the cyclotomic polynomials.
- ullet For a subset $W\subset GL_n(\mathbb{Z})$, let us define

```
\begin{split} \mathfrak{m}_i(W) &= \max \big\{ t : \phi_i^t \text{ divides } f \text{ for some } f \in ch(W) \big\}, \\ \mathfrak{m}_i'(W) &= \min \big\{ t : \phi_2^t \cdot \phi_i^{\mathfrak{m}_i(W)} \text{ divides } f \text{ for some } f \in ch(W) \big\} \quad \text{ and } \\ \mathfrak{m}_{i,j}(W) &= \max \big\{ t + s : \phi_i^t \cdot \phi_j^s \text{ divides } f \text{ for some } f \in ch(W) \big\} \quad \text{ for } i \neq j. \end{split}
```

Then,

$$\mathfrak{m}_i(W_1) = \mathfrak{m}_i(W_2), \qquad \mathfrak{m}'_i(W_1) = \mathfrak{m}'_i(W_2),$$

$$\mathfrak{m}_{i,j}(W_1) = \mathfrak{m}_{i,j}(W_2)$$
for all i, j .

If we have $U_1 \subset GL_{n_1}(\mathbb{Z})$ and $U_2 \subset GL_{n_2}(\mathbb{Z})$, then $U_1 \times U_2 \subset GL_{n_1+n_2}(\mathbb{Z})$ and

$$\begin{split} \mathfrak{m}_i(U_1 \times U_2) &= \mathfrak{m}_i(U_1) + \mathfrak{m}_i(U_2) \\ \mathfrak{m}_i'(U_1 \times U_2) &= \mathfrak{m}_i'(U_1) + \mathfrak{m}_i'(U_2), \\ \mathfrak{m}_{i,j}(U_1 \times U_2) &= \mathfrak{m}_{i,j}(U_1) + \mathfrak{m}_{i,j}(U_2) \end{split}$$
 for all i,j .

Method of Induction!

Let m be the highest rank among the simple factors of H_i .

For i=1,2, let

$$W_i = W_i' \times W_i''$$

where $W_i^{\prime\prime}$ is the product of Weyl groups of simple factors of H_i of rank m.

Claim: If a simple group of rank m appears as a direct factor of H_1 with certain multiplicity, then it appears as a direct factor of H_2 with the same multiplicity.

Thus $W_1^{\prime\prime}$ is isomorphic to $W_2^{\prime\prime}.$

Therefore,

$$\mathfrak{m}_{i}(W'_{1}) = \mathfrak{m}_{i}(W_{1}) - \mathfrak{m}_{i}(W''_{1}) = \mathfrak{m}_{i}(W_{2}) - \mathfrak{m}_{i}(W''_{2}) = \mathfrak{m}_{i}(W'_{2}),$$

$$\mathfrak{m}'_{i}(W'_{1}) = \mathfrak{m}'_{i}(W'_{2}) \qquad \mathfrak{m}_{i,j}(W'_{1}) = \mathfrak{m}_{i,j}(W''_{2})$$
for all i, j .

The proof now follows by induction on m.

Now, we prove the claim (for m = 2).

The possible simple factors of H_1 and H_2 are of type A_1,A_2,B_2 and G_2 .

Observe that $\mathfrak{m}_6(W(G_2))=1$ and $\mathfrak{m}_6(W)=0$ for Weyl group of any other simple algebraic group of rank less than or equal to 2.

Hence for i=1,2, the multiplicity of $W(G_2)$ as a factor of W_i is given by $\mathfrak{m}_6(W_i)$, therefore it is the same for i=1,2.

Similarly, the multiplicity of $W(B_2)$ is given by $\mathfrak{m}_4(W_i)$,

and the multiplicity of $W(A_2)$ as a factor of H_i is given by $\mathfrak{m}_3(W_i) - \mathfrak{m}_6(W_i)$.

Thus, we prove that the factors of $W_1^{\prime\prime}$ and $W_2^{\prime\prime}$ are the same with the same multiplicity.

For general case, we need more care.

Type	Degrees	Divisors of degrees
A_n	$2,3,\ldots,n+1$	$1,2,\ldots,n+1$
B_n	$2,4,\ldots,2n$	$\left[\begin{array}{ccc} 1,2,\ldots,n,n+2,n+4,\ldots,2n \end{array} ight.$ n even $\left[\begin{array}{ccc} n \end{array} \right]$
		$\left[\begin{array}{ccc} 1,2,\ldots,n,n+1,n+3,\ldots,2n \end{array} ight.$ n odd $\left[\begin{array}{ccc} n \end{array} ight]$
D_n	$2,4,\ldots,2n-2,n$	$\left[\begin{array}{ccc} 1,2,\ldots,n,n+2,n+4,\ldots,2n-2 & n \end{array} ight.$ even $\left[\begin{array}{ccc} \end{array} ight.$
		$\left \begin{array}{ccc} 1,2,\ldots,n,n+1,n+3,\ldots,2n-2 & & n \ odd \end{array} \right $
G_2	2,6	1, 2, 3, 6
F_4	2, 6, 8, 12	1, 2, 3, 4, 6, 8, 12
E_6	2, 5, 6, 8, 9, 12	1, 2, 3, 4, 5, 6, 8, 9, 12
E_7	2, 6, 8, 10, 12, 14, 18	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18
E_8	2, 8, 12, 14, 18, 20, 24, 30	$\left[\begin{array}{c} 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 24, 30 \end{array}\right]$

Section 3.7

^{&#}x27;Reflection groups and Coxeter groups' by James E. Humphreys.

Using Springer's Theorem^a and the above table, we can now easily compute the set $ch^*(W)^b$ for any simple Weyl group W. We summarize them below.

```
ch^*(W(A_n)) = \{\phi_1, \phi_2, \dots, \phi_{n+1}\}
ch^*(W(B_n)) = \{\phi_i, \phi_{2i} : i = 1, 2, \dots, n\}
ch^*(W(D_n)) = \{\phi_i, \phi_{2j} : i = 1, 2, \dots, n, j = 1, 2, \dots, n-1\}
ch^*(W(G_2)) = \{\phi_1, \phi_2, \phi_3, \phi_6\}
ch^*(W(F_4)) = \{\phi_1, \phi_2, \phi_3, \phi_4, \phi_6, \phi_8, \phi_{12}\}
ch^*(W(E_6)) = \{\phi_1, \phi_2, \phi_3, \phi_4, \phi_5, \phi_6, \phi_8, \phi_9, \phi_{12}\}
ch^*(W(E_7)) = \{\phi_1, \phi_2, \dots, \phi_{10}, \phi_{12}, \phi_{14}, \phi_{18}\}
ch^*(W(E_8)) = \{\phi_1, \phi_2, \dots, \phi_{10}, \phi_{12}, \phi_{14}, \phi_{15}, \phi_{18}, \phi_{20}, \phi_{24}, \phi_{30}\}
```

^aT. A. Springer 'Regular elements of finite reflection groups', Invent. Math., **25**, 159–198 (1974). ${}^bch^*(W) = \{\phi_t : \phi_t \text{ divides some element } f \in ch(W)\}$

While determining the multiplicities of the rank m simple factors of H_i , we proceed in the following order.

- ullet simple group of exceptional type, i.e., G_2 , F_4 , E_6 , E_7 or E_8 ;
- ullet simple group of type B_m ;
- ullet simple group of type D_m ;
- simple group of type A_m .

Let $k = \mathbb{Q}_p$ for some rational prime p.

Then, we have that $Br(k) = \mathbb{Q}/\mathbb{Z}$.

Let D_1 and D_2 be two division algebras corresponding to 1/5 and 2/5 in Br(k).

Let $H_1 = SL_1(D_1)$ and $H_2 = SL_1(D_2)$.

A maximal torus in $SL_1(D_i)$ corresponds to a maximal commutative subfield of D_i for i=1,2.

Over \mathbb{Q}_p , every division algebra of degree n contains every field extension of dimension n.

Thus, the maximal tori in H_1 and H_2 are the same upto k-isomorphism.

But if $H_1\cong H_2$, then $D_1\cong D_2$ or $D_1\cong D_2^\circ$, which is a contradiction!!!

THANK YOU!