On the order of finite semisimple groups

Department of Mathematics, IIT Bombay.
December 07, 2005.

Shripad M. Garge. School of Mathematics, TIFR. (shripad@math.tifr.res.in)

Theorem (E. Artin, J. Tits):

If H_{1} and H_{2} are finite simple groups such that $\left|H_{1}\right|=\left|H_{2}\right|$ then H_{1} and H_{2} are isomorphic except when

$$
H_{1}=\mathrm{PSL}_{4}\left(\mathbb{F}_{2}\right) \text { and } H_{2}=\mathrm{PSL}_{3}\left(\mathbb{F}_{4}\right)
$$

or

$$
H_{1}=\mathrm{PSO}_{2 n+1}\left(\mathbb{F}_{q}\right) \text { and } H_{2}=\mathrm{PSp}_{2 n}\left(\mathbb{F}_{q}\right) \quad \text { for } n \geq 3, q \text { odd. }
$$

Fix a field $k=\bar{k}$.
An algebraic group H/k is a closed (in Zariski topology) subgroup of $G L_{n}(k)$.

Example: $\mathrm{SL}_{n}=\left\{A \in \mathrm{GL}_{n}: \operatorname{det}(A)-1=0\right\}, \mathrm{GL}_{n}, \mathrm{SO}_{n}, \mathrm{Sp}_{n}$.
A simple algebraic group is one which has no nontrivial proper normal connected subgroup.

If H / \mathbb{I}_{q} is a simple algebraic group, then in almost all cases the group

$$
H\left(\mathbb{F}_{q}\right) / \text { center }
$$

is a finite simple group.

Fix a field $k=\bar{k}$.
An algebraic group H / k is a closed (in Zariski topology) subgroup of $G L_{n}(k)$.
Example: $\mathrm{SL}_{n}=\left\{A \in \mathrm{GL} \mathrm{L}_{n}: \operatorname{det}(A)-1=0\right\}, \mathrm{GL}_{n}, \mathrm{SO}_{n}, \mathrm{Sp}_{n}$.
A simple algebraic group is one which has no nontrivial proper normal connected subgroup.

If H / \mathbb{F}_{q} is a simple algebraic group, then in almost all cases the group

$H\left(\mathbb{F}_{q}\right) /$ center

is a finite simple group.

Fix a field $k=\bar{k}$.
An algebraic group H / k is a closed (in Zariski topology) subgroup of $G L_{n}(k)$.

Example: $\mathrm{SL}_{n}=\left\{A \in \mathrm{GL}_{n}: \operatorname{det}(A)-1=0\right\}, \mathrm{GL}_{n}, \mathrm{SO}_{n}, \mathrm{Sp}_{n}$.
A simple algebraic group is one which has no nontrivial proper normal connected subgroup.

If H / \mathbb{I}_{q} is a simple algebraic group, then in almost all cases the group

$$
H\left(\mathbb{F}_{q}\right) / \text { center }
$$

is a finite simple group.

Fix a field $k=\bar{k}$.
An algebraic group H / k is a closed (in Zariski topology) subgroup of $G L_{n}(k)$.

Example: $\mathrm{SL}_{n}=\left\{A \in \mathrm{GL}_{n}: \operatorname{det}(A)-1=0\right\}, \mathrm{GL}_{n}, \mathrm{SO}_{n}, \mathrm{Sp}_{n}$.
A simple algebraic group is one which has no nontrivial proper normal connected subgroup.

If H / \mathbb{F}_{q} is a simple algebraic group, then in almost all cases the group

$$
H\left(\mathbb{F}_{q}\right) / \text { center }
$$

is a finite simple group.

Fix a field $k=\bar{k}$.
An algebraic group H / k is a closed (in Zariski topology) subgroup of $G L_{n}(k)$.
Example: $\mathrm{SL}_{n}=\left\{A \in \mathrm{GL}_{n}: \operatorname{det}(A)-1=0\right\}, \mathrm{GL}_{n}, \mathrm{SO}_{n}, \mathrm{Sp}_{n}$.
A simple algebraic group is one which has no nontrivial proper normal connected subgroup.

If H / \mathbb{F}_{q} is a simple algebraic group, then in almost all cases the group

$$
H\left(\mathbb{F}_{q}\right) / \text { center }
$$

is a finite simple group.

Question: Is a semisimple algebraic group H / \mathbb{F}_{q} determined by the order of the finite group $H\left(\mathbb{F}_{q}\right)$?
(For us, a semisimple algebraic group is just a direct product of simple algebraic groups.)

The simple algebraic groups are classified.
They are of the following types:
$A_{n}(n \geq 1), B_{n}(n \geq 2), C_{n}(n \geq 3), D_{n}(n \geq 4)$, and $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$.

There are formulae for the orders of $H\left(\mathbb{F}_{q}\right)$ for simple algebraic groups.

Question: Is a semisimple algebraic group H / \mathbb{F}_{q} determined by the order of the finite group $H\left(\mathbb{F}_{q}\right)$?
(For us, a semisimple algebraic group is just a direct product of simple algebraic groups.)

The simple algebraic groups are classified.
They are of the following types:
$A_{n}(n \geq 1), B_{n}(n \geq 2), C_{n}(n \geq 3), D_{n}(n \geq 4)$, and
$G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$.
There are formulae for the orders of $H\left(\mathbb{F}_{q}\right)$ for simple algebraic groups.

Question: Is a semisimple algebraic group H / \mathbb{F}_{q} determined by the order of the finite group $H\left(\mathbb{F}_{q}\right)$?
(For us, a semisimple algebraic group is just a direct product of simple algebraic groups.)

The simple algebraic groups are classified.
They are of the following types:
$A_{n}(n \geq 1), B_{n}(n \geq 2), C_{n}(n \geq 3), D_{n}(n \geq 4)$, and
$G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$.
There are formulae for the orders of $H\left(\mathbb{F}_{q}\right)$ for simple algebraic groups.

Question: Is a semisimple algebraic group H / \mathbb{F}_{q} determined by the order of the finite group $H\left(\mathbb{F}_{q}\right)$?
(For us, a semisimple algebraic group is just a direct product of simple algebraic groups.)

The simple algebraic groups are classified.
They are of the following types:
$A_{n}(n \geq 1), B_{n}(n \geq 2), C_{n}(n \geq 3), D_{n}(n \geq 4)$, and
$G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$.
There are formulae for the orders of $H\left(\mathbb{F}_{q}\right)$ for simple algebraic groups.

Question: Is a semisimple algebraic group H / \mathbb{F}_{q} determined by the order of the finite group $H\left(\mathbb{F}_{q}\right)$?
(For us, a semisimple algebraic group is just a direct product of simple algebraic groups.)

The simple algebraic groups are classified.
They are of the following types:
$A_{n}(n \geq 1), B_{n}(n \geq 2), C_{n}(n \geq 3), D_{n}(n \geq 4)$, and
$G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$.
There are formulae for the orders of $H\left(\mathbb{F}_{q}\right)$ for simple algebraic groups.

Question: Is a semisimple algebraic group H / \mathbb{F}_{q} determined by the order of the finite group $H\left(\mathbb{F}_{q}\right)$?
(For us, a semisimple algebraic group is just a direct product of simple algebraic groups.)

The simple algebraic groups are classified.
They are of the following types:
$A_{n}(n \geq 1), B_{n}(n \geq 2), C_{n}(n \geq 3), D_{n}(n \geq 4)$, and $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$.
There are formulae for the orders of $H\left(\mathbb{F}_{q}\right)$ for simple algebraic groups.

Question: Is a semisimple algebraic group H / \mathbb{F}_{q} determined by the order of the finite group $H\left(\mathbb{F}_{q}\right)$?
(For us, a semisimple algebraic group is just a direct product of simple algebraic groups.)

The simple algebraic groups are classified.
They are of the following types:
$A_{n}(n \geq 1), B_{n}(n \geq 2), C_{n}(n \geq 3), D_{n}(n \geq 4)$, and $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$.
There are formulae for the orders of $H\left(\mathbb{F}_{q}\right)$ for simple algebraic groups.

Question: Is a semisimple algebraic group H / \mathbb{F}_{q} determined by the order of the finite group $H\left(\mathbb{F}_{q}\right)$?
(For us, a semisimple algebraic group is just a direct product of simple algebraic groups.)

The simple algebraic groups are classified.
They are of the following types:
$A_{n}(n \geq 1), B_{n}(n \geq 2), C_{n}(n \geq 3), D_{n}(n \geq 4)$, and $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$.

There are formulae for the orders of $H\left(\mathbb{F}_{q}\right)$ for simple algebraic groups.

Strategy: From the order of $H\left(\mathbb{F}_{q}\right)$

we first determine the characteristic of the finite field \mathbb{F}_{q}.

- Then we determine the finite field \mathbb{F}_{q}.
- Then we go about determining the group H.
- But this need not always be possible!
$\left|A_{1} A_{3}\left(\mathbb{F}_{q}\right)\right|=\left|A_{2} B_{2}\left(\mathbb{F}_{q}\right)\right|=q^{7}\left(q^{2}-1\right)^{2}\left(q^{3}-1\right)\left(q^{4}-1\right)$.
- We give a recipe to find all pairs $\left(H_{1}, H_{2}\right)$ such that $\left|H_{1}\left(\mathbb{F}_{q}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q}\right)\right|$.
- Finally, we give a geometric reasoning for these order coincidences.

Strategy: From the order of $H\left(\mathbb{F}_{q}\right)$

- we first determine the characteristic of the finite field \mathbb{F}_{q}.

Then we determine the finite field \mathbb{F}_{q}.

- Then we go about determining the group H.
- But this need not always be possible!

$$
\left|A_{1} A_{3}\left(\mathbb{F}_{q}\right)\right|=\left|A_{2} B_{2}\left(\mathbb{F}_{q}\right)\right|=q^{7}\left(q^{2}-1\right)^{2}\left(q^{3}-1\right)\left(q^{4}-1\right) .
$$

- We give a recipe to find all pairs $\left(H_{1}, H_{2}\right)$ such that $\left|H_{1}\left(\mathbb{F}_{q}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q}\right)\right|$.
- Finally, we give a geometric reasoning for these order coincidences.

Strategy: From the order of $H\left(\mathbb{F}_{q}\right)$

- we first determine the characteristic of the finite field \mathbb{F}_{q}.
- Then we determine the finite field \mathbb{F}_{q}.
- Then we go about determining the group H .
- But this need not always be possible!

$$
\left|A_{1} A_{3}\left(\mathbb{F}_{q}\right)\right|=\left|A_{2} B_{2}\left(\mathbb{F}_{q}\right)\right|=q^{7}\left(q^{2}-1\right)^{2}\left(q^{3}-1\right)\left(q^{4}-1\right) .
$$

- We give a recipe to find all pairs $\left(H_{1}, H_{2}\right)$ such that $\left|H_{1}\left(\mathbb{F}_{q}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q}\right)\right|$.
- Finally, we give a geometric reasoning for these order coincidences.

Strategy: From the order of $H\left(\mathbb{F}_{q}\right)$

- we first determine the characteristic of the finite field \mathbb{F}_{q}.
- Then we determine the finite field \mathbb{F}_{q}.
- Then we go about determining the group H.
- But this need not always be possible!
$\left|A_{1} A_{3}\left(\mathbb{F}_{q}\right)\right|=\left|A_{2} B_{2}\left(\mathbb{F}_{q}\right)\right|=q^{7}\left(q^{2}-1\right)^{2}\left(q^{3}-1\right)\left(q^{4}-1\right)$.
- We give a recipe to find all pairs $\left(H_{1}, H_{2}\right)$ such that $\left|H_{1}\left(\mathbb{F}_{q}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q}\right)\right|$.
- Finally, we give a geometric reasoning for these order coincidences.

Strategy: From the order of $H\left(\mathbb{F}_{q}\right)$

- we first determine the characteristic of the finite field \mathbb{F}_{q}.
- Then we determine the finite field \mathbb{F}_{q}.
- Then we go about determining the group H.
- But this need not always be possible!

$$
\begin{aligned}
& \left|A_{1} A_{3}\left(\mathbb{F}_{q}\right)\right|=\left|A_{2} B_{2}\left(\mathbb{F}_{q}\right)\right|=q^{7}\left(q^{2}-1\right)^{2}\left(q^{3}-1\right)\left(q^{4}-1\right) . \\
& \text { We give a recipe to find all pairs }\left(H_{1}, H_{2}\right) \text { such that } \\
& \left|H_{1}\left(\mathbb{F}_{q}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q}\right)\right| \text {. } \\
& \text { Finally, we give a geometric reasoning for these order } \\
& \text { coincidences. }
\end{aligned}
$$

Strategy: From the order of $H\left(\mathbb{F}_{q}\right)$

- we first determine the characteristic of the finite field \mathbb{F}_{q}.
- Then we determine the finite field \mathbb{F}_{q}.
- Then we go about determining the group H.
- But this need not always be possible!

$$
\left|\boldsymbol{A}_{1} \boldsymbol{A}_{3}\left(\mathbb{F}_{q}\right)\right|=\left|\boldsymbol{A}_{2} \boldsymbol{B}_{2}\left(\mathbb{F}_{q}\right)\right|=q^{7}\left(q^{2}-1\right)^{2}\left(q^{3}-1\right)\left(q^{4}-1\right) .
$$

- We give a recipe to find all pairs $\left(H_{1}, H_{2}\right)$ such that $\left|H_{1}\left(\mathbb{F}_{q}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q}\right)\right|$.
- Finally, we give a geometric reasoning for these order coincidences.

Strategy: From the order of $H\left(\mathbb{F}_{q}\right)$

- we first determine the characteristic of the finite field \mathbb{F}_{q}.
- Then we determine the finite field \mathbb{F}_{q}.
- Then we go about determining the group H.
- But this need not always be possible!

$$
\left|A_{1} A_{3}\left(\mathbb{F}_{q}\right)\right|=\left|A_{2} B_{2}\left(\mathbb{F}_{q}\right)\right|=q^{7}\left(q^{2}-1\right)^{2}\left(q^{3}-1\right)\left(q^{4}-1\right) .
$$

- We give a recipe to find all pairs $\left(H_{1}, H_{2}\right)$ such that $\left|H_{1}\left(\mathbb{F}_{q}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q}\right)\right|$.
- Finally, we give a geometric reasoning for these order coincidences.

Strategy: From the order of $H\left(\mathbb{F}_{q}\right)$

- we first determine the characteristic of the finite field \mathbb{F}_{q}.
- Then we determine the finite field \mathbb{F}_{q}.
- Then we go about determining the group H.
- But this need not always be possible!

$$
\left|A_{1} A_{3}\left(\mathbb{F}_{q}\right)\right|=\left|A_{2} B_{2}\left(\mathbb{F}_{q}\right)\right|=q^{7}\left(q^{2}-1\right)^{2}\left(q^{3}-1\right)\left(q^{4}-1\right) .
$$

- We give a recipe to find all pairs $\left(H_{1}, H_{2}\right)$ such that $\left|H_{1}\left(\mathbb{F}_{q}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q}\right)\right|$.
- Finally, we give a geometric reasoning for these order coincidences.

Strategy: From the order of $H\left(\mathbb{F}_{q}\right)$

- we first determine the characteristic of the finite field \mathbb{F}_{q}.
- Then we determine the finite field \mathbb{F}^{\prime}.
- Then we go about determining the group H.
- But this need not always be possible!

$$
\left|A_{1} A_{3}\left(\mathbb{F}_{q}\right)\right|=\left|A_{2} B_{2}\left(\mathbb{F}_{q}\right)\right|=q^{7}\left(q^{2}-1\right)^{2}\left(q^{3}-1\right)\left(q^{4}-1\right) .
$$

- We give a recipe to find all pairs $\left(H_{1}, H_{2}\right)$ such that $\left|H_{1}\left(\mathbb{F}_{q}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q}\right)\right|$.
- Finally, we give a geometric reasoning for these order coincidences.

Strategy: From the order of $H\left(\mathbb{F}_{q}\right)$

- we first determine the characteristic of the finite field \mathbb{F}_{q}.
- Then we determine the finite field \mathbb{F}_{q}.
- Then we go about determining the group H .
- But this need not always be possible!

$$
\left|A_{1} A_{3}\left(\mathbb{F}_{q}\right)\right|=\left|A_{2} B_{2}\left(\mathbb{F}_{q}\right)\right|=q^{7}\left(q^{2}-1\right)^{2}\left(q^{3}-1\right)\left(q^{4}-1\right) .
$$

- We give a recipe to find all pairs $\left(H_{1}, H_{2}\right)$ such that $\left|H_{1}\left(\mathbb{F}_{q}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q}\right)\right|$.
- Finally, we give a geometric reasoning for these order coincidences.

The p-contribution to n is the largest power of p that divides n.

Proposition 1:

Let H / \mathbb{F}_{q} be a simple algebraic group where $q=p^{t}$.
If the p-contribution to $\left|H\left(\mathbb{F}_{q}\right)\right|$ is not the largest prime power dividing it, then the group $H\left(\mathbb{F}_{q}\right)$ is:
(1) $B_{2}\left(\mathbb{F}_{3}\right)$ or

2 $A_{1}\left(\mathbb{F}_{q}\right)$ for $q \in\left\{8,9,2^{r}, p^{\prime}\right\}$ where $2^{r}+1$ is a Fermat prime and p^{\prime} is a prime number of the type $2^{s} \pm 1$.

Moreover, in all these cases, the p-contribution is the second largest prime power dividing the order of the group $H\left(\mathbb{F}_{q}\right)$.

The p-contribution to n is the largest power of p that divides n.

Proposition 1:

Let H / \mathbb{F}_{q} be a simple algebraic group where $q=p^{t}$.
If the p-contribution to $\left|H\left(\mathbb{F}_{q}\right)\right|$ is not the largest prime power dividing it, then the group $H\left(\mathbb{F}_{q}\right)$ is:
(1) $B_{2}\left(\mathbb{F}_{3}\right)$ or
2. $A_{1}\left(\mathbb{F}_{q}\right)$ for $q \in\left\{8,9,2^{r}, p^{\prime}\right\}$ where $2^{r}+1$ is a Fermat prime and p^{\prime} is a prime number of the type $2^{s} \pm 1$.

Moreover, in all these cases, the p-contribution is the second largest prime power dividing the order of the group $H\left(\mathbb{F}_{q}\right)$.

The p-contribution to n is the largest power of p that divides n.

Proposition 1:

Let H / \mathbb{F}_{q} be a simple algebraic group where $q=p^{t}$.
If the p-contribution to $\left|H\left(\mathbb{F}_{q}\right)\right|$ is not the largest prime power dividing it, then the group $H\left(\mathbb{F}_{q}\right)$ is:
$B_{2}\left(\mathbb{F}_{3}\right)$ or
$A_{1}\left(\mathbb{F}_{q}\right)$ for $q \in\left\{8,9,2^{r}, p^{\prime}\right\}$ where $2^{r}+1$ is a Fermat prime and p^{\prime} is a prime number of the type $2^{s} \pm 1$.

Moreover, in all these cases, the p-contribution is the second largest prime power dividing the order of the group $H\left(\mathbb{F}_{q}\right)$.

The p-contribution to n is the largest power of p that divides n.

Proposition 1:

Let H / \mathbb{F}_{q} be a simple algebraic group where $q=p^{t}$.
If the p-contribution to $\left|H\left(\mathbb{F}_{q}\right)\right|$ is not the largest prime power dividing it, then the group $H\left(\mathbb{F}_{q}\right)$ is:
(1) $B_{2}\left(\mathbb{F}_{3}\right)$ or
$A_{1}\left(\mathbb{F}_{q}\right)$ for $q \in\left\{8,9,2^{r}, p^{\prime}\right\}$ where $2^{r}+1$ is a Fermat prime and p^{\prime} is a prime number of the type $2^{s} \pm 1$.

Moreover, in all these cases, the p-contribution is the second largest prime power dividing the order of the group $H\left(\mathbb{F}_{q}\right)$.

The p-contribution to n is the largest power of p that divides n.

Proposition 1:

Let H / \mathbb{F}_{q} be a simple algebraic group where $q=p^{t}$.
If the p-contribution to $\left|H\left(\mathbb{F}_{q}\right)\right|$ is not the largest prime power dividing it, then the group $H\left(\mathbb{F}_{q}\right)$ is:
(1) $B_{2}\left(\mathbb{F}_{3}\right)$ or
$A_{1}\left(\mathbb{F}_{q}\right)$ for $q \in\left\{8,9,2^{r}, p^{\prime}\right\}$ where $2^{r}+1$ is a Fermat prime and p^{\prime} is a prime number of the type $2^{s} \pm 1$.

Moreover, in all these cases, the p-contribution is the second largest prime power dividing the order of the group $H\left(\mathbb{F}_{q}\right)$.

The p-contribution to n is the largest power of p that divides n.

Proposition 1:

Let H / \mathbb{F}_{q} be a simple algebraic group where $q=p^{t}$.
If the p-contribution to $\left|H\left(\mathbb{F}_{q}\right)\right|$ is not the largest prime power dividing it, then the group $H\left(\mathbb{F}_{q}\right)$ is:
(1) $B_{2}\left(\mathbb{F}_{3}\right)$ or
(2) $A_{1}\left(\mathbb{F}_{q}\right)$ for $q \in\left\{8,9,2^{r}, p^{\prime}\right\}$ where $2^{r}+1$ is a Fermat prime and p^{\prime} is a prime number of the type $2^{s} \pm 1$.

Moreover, in all these cases, the p-contribution is the second largest prime power dividing the order of the group $H\left(\mathbb{F}_{q}\right)$.

The p-contribution to n is the largest power of p that divides n.

Proposition 1:

Let H / \mathbb{F}_{q} be a simple algebraic group where $q=p^{t}$.
If the p-contribution to $\left|H\left(\mathbb{F}_{q}\right)\right|$ is not the largest prime power dividing it, then the group $H\left(\mathbb{F}_{q}\right)$ is:
(1) $B_{2}\left(\mathbb{F}_{3}\right)$ or
(2) $A_{1}\left(\mathbb{F}_{q}\right)$ for $q \in\left\{8,9,2^{r}, p^{\prime}\right\}$ where $2^{r}+1$ is a Fermat prime and p^{\prime} is a prime number of the type $2^{s} \pm 1$.

Moreover, in all these cases, the p-contribution is the second largest prime power dividing the order of the group $H\left(\mathbb{F}_{q}\right)$.

The p-contribution to n is the largest power of p that divides n.

Proposition 1:

Let H / \mathbb{F}_{q} be a simple algebraic group where $q=p^{t}$.
If the p-contribution to $\left|H\left(\mathbb{F}_{q}\right)\right|$ is not the largest prime power dividing it, then the group $H\left(\mathbb{F}_{q}\right)$ is:
(1) $B_{2}\left(\mathbb{F}_{3}\right)$ or
(2) $A_{1}\left(\mathbb{F}_{q}\right)$ for $q \in\left\{8,9,2^{r}, p^{\prime}\right\}$ where $2^{r}+1$ is a Fermat prime and p^{\prime} is a prime number of the type $2^{s} \pm 1$.

Moreover, in all these cases, the p-contribution is the second largest prime power dividing the order of the group $H\left(\mathbb{F}_{q}\right)$.

Theorem 2:

Let $H_{1} / \mathbb{F}_{q_{1}}$ and $H_{2} / \mathbb{F}_{q_{2}}$ be semisimple algebraic groups.
Let X denote the set $\left\{8,9,2^{r}, p\right\}$ where $2^{r}+1$ is a Fermat prime and p is a prime of the type $2^{s} \pm 1$.

Suppose that for $i=1,2, A_{1}$ is not one of the direct factors of H_{i} whenever $q_{i} \in X$ and B_{2} is not a direct factor of H_{i} whenever $q_{i}=3$.

Then,

$$
\left|H_{1}\left(\mathbb{F}_{q_{1}}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q_{2}}\right)\right| \Longrightarrow \text { char. } \mathbb{F}_{q_{1}}=\text { char. } \mathbb{F}_{q_{2}} .
$$

Theorem 2:

Let $H_{1} / \mathbb{F}_{q_{1}}$ and $H_{2} / \mathbb{F}_{q_{2}}$ be semisimple algebraic groups.
Let X denote the set $\left\{8,9,2^{r}, p\right\}$ where $2^{r}+1$ is a Fermat prime and p is a prime of the type $2^{s} \pm 1$.
Suppose that for $i=1,2, A_{1}$ is not one of the direct factors of H_{i} whenever $q_{i} \in X$ and B_{2} is not a direct factor of H_{i} whenever $q_{i}=3$.
Then,

$$
\left|H_{1}\left(\mathbb{F}_{q_{1}}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q_{2}}\right)\right| \Longrightarrow \text { char. } \mathbb{F}_{q_{1}}=\text { char. } \mathbb{F}_{q_{2}} .
$$

Theorem 2:

Let $H_{1} / \mathbb{F}_{q_{1}}$ and $H_{2} / \mathbb{F}_{q_{2}}$ be semisimple algebraic groups.
Let X denote the set $\left\{8,9,2^{r}, p\right\}$ where $2^{r}+1$ is a Fermat prime and p is a prime of the type $2^{s} \pm 1$.
Suppose that for $i=1,2, A_{1}$ is not one of the direct factors of H_{i} whenever $q_{i} \in X$ and B_{2} is not a direct factor of H_{i} whenever $q_{i}=3$.
Then,

$$
\left|H_{1}\left(\mathbb{F}_{q_{1}}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q_{2}}\right)\right| \Longrightarrow \text { char. } \mathbb{F}_{q_{1}}=\text { char. } \mathbb{F}_{q_{2}} .
$$

Theorem 2:

Let $H_{1} / \mathbb{F}_{q_{1}}$ and $H_{2} / \mathbb{F}_{q_{2}}$ be semisimple algebraic groups.
Let X denote the set $\left\{8,9,2^{r}, p\right\}$ where $2^{r}+1$ is a Fermat prime and p is a prime of the type $2^{s} \pm 1$.

Suppose that for $i=1,2, A_{1}$ is not one of the direct factors of H_{i} whenever $q_{i} \in X$ and B_{2} is not a direct factor of H_{i} whenever $q_{i}=3$.

Then,

$$
\left|H_{1}\left(\mathbb{F}_{q_{1}}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q_{2}}\right)\right| \Longrightarrow \text { char. } \mathbb{F}_{q_{1}}=\text { char. } \mathbb{F}_{q_{2}} .
$$

Theorem 2:

Let $H_{1} / \mathbb{F}_{q_{1}}$ and $H_{2} / \mathbb{F}_{q_{2}}$ be semisimple algebraic groups.
Let X denote the set $\left\{8,9,2^{r}, p\right\}$ where $2^{r}+1$ is a Fermat prime and p is a prime of the type $2^{s} \pm 1$.

Suppose that for $i=1,2, A_{1}$ is not one of the direct factors of H_{i} whenever $q_{i} \in X$ and B_{2} is not a direct factor of H_{i} whenever $q_{i}=3$.
Then,

$$
\left|H_{1}\left(\mathbb{F}_{q_{1}}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q_{2}}\right)\right| \Longrightarrow \text { char. } \mathbb{F}_{q_{1}}=\text { char. } \mathbb{F}_{q_{2}} .
$$

Theorem 2:

Let $H_{1} / \mathbb{F}_{q_{1}}$ and $H_{2} / \mathbb{F}_{q_{2}}$ be semisimple algebraic groups.
Let X denote the set $\left\{8,9,2^{r}, p\right\}$ where $2^{r}+1$ is a Fermat prime and p is a prime of the type $2^{s} \pm 1$.

Suppose that for $i=1,2, A_{1}$ is not one of the direct factors of H_{i} whenever $q_{i} \in X$ and B_{2} is not a direct factor of H_{i} whenever $q_{i}=3$.

Then,

$$
\left|H_{1}\left(\mathbb{F}_{q_{1}}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q_{2}}\right)\right| \Longrightarrow \text { char. } \mathbb{F}_{q_{1}}=\text { char. } \mathbb{F}_{q_{2}}
$$

Recall that for a semisimple group H / \mathbb{F}_{q}, the order of $H\left(\mathbb{F}_{q}\right)$ is given by the formula,

$$
\left|H\left(\mathbb{F}_{q}\right)\right|=q^{N}\left(q^{d_{1}}-1\right)\left(q^{d_{2}}-1\right) \cdots\left(q^{d_{n}}-1\right)
$$

where

$d_{1}, d_{2}, \ldots, d_{n}$ are the fundamental degrees of $W(H)$, the Weyl group of H,
n is the rank of H and
$N=\sum\left(d_{i}-1\right)$.

Recall that for a semisimple group H / \mathbb{F}_{q}, the order of $H\left(\mathbb{F}_{q}\right)$ is given by the formula,

$$
\left|H\left(\mathbb{F}_{q}\right)\right|=q^{N}\left(q^{d_{1}}-1\right)\left(q^{d_{2}}-1\right) \cdots\left(q^{d_{n}}-1\right)
$$

where
$d_{1}, d_{2}, \ldots, d_{n}$ are the fundamental degrees of $W(H)$, the Weyl group of H,
n is the rank of H and $N=\sum\left(d_{i}-1\right)$.

Recall that for a semisimple group H / \mathbb{F}_{q}, the order of $H\left(\mathbb{F}_{q}\right)$ is given by the formula,

$$
\left|H\left(\mathbb{F}_{q}\right)\right|=q^{N}\left(q^{\alpha_{1}}-1\right)\left(q^{d_{2}}-1\right) \cdots\left(q^{\alpha_{n}}-1\right)
$$

where
$d_{1}, d_{2}, \ldots, d_{n}$ are the fundamental degrees of $W(H)$, the Weyl group of H,
n is the rank of H and
$N=\sum\left(d_{i}-1\right)$.

Recall that for a semisimple group H / \mathbb{F}_{q}, the order of $H\left(\mathbb{F}_{q}\right)$ is given by the formula,

$$
\left|H\left(\mathbb{F}_{q}\right)\right|=q^{N}\left(q^{\alpha_{1}}-1\right)\left(q^{d_{2}}-1\right) \cdots\left(q^{\alpha_{n}}-1\right)
$$

where
$d_{1}, d_{2}, \ldots, d_{n}$ are the fundamental degrees of $W(H)$, the Weyl group of H,
n is the rank of H and
$N=\sum\left(d_{i}-1\right)$.

The situation is

$$
\begin{aligned}
& p^{t_{1} N}\left(p^{t_{1} d_{1}}-1\right)\left(p^{t_{1}} d_{2}\right. \\
&-1) \cdots\left(p^{t_{1} d_{n}}-1\right) \\
&= p^{t_{2}} N^{\prime}\left(p^{t_{2} d_{1}^{\prime \prime}}-1\right)\left(p^{t_{2}} d_{2}^{\prime \prime}-1\right) \cdots\left(p^{t_{2}} d_{n^{\prime}}^{\prime \prime}-1\right)
\end{aligned}
$$

Lemma 3 (Artin): There is a prime divisor of $\left(p^{r}-1\right)$ which does not divide any $\left(p^{t}-1\right)$ for $t<r$, except when $p=2$ and $r=6$. Indeed $2^{6}-1=63=3^{2} \cdot 7$.

The situation is

$$
\begin{aligned}
& p^{t_{1} N}\left(p^{t_{1} d_{1}}-1\right)\left(p^{t_{1}} d_{2}\right. \\
&-1) \cdots\left(p^{t_{1} d_{n}}-1\right) \\
&= p^{t_{2}} N^{\prime}\left(p^{t_{2} d_{1}^{\prime \prime}}-1\right)\left(p^{t_{2}} d_{2}^{\prime \prime}-1\right) \cdots\left(p^{t_{2}} d_{n^{\prime}}^{\prime \prime}-1\right)
\end{aligned}
$$

Lemma 3 (Artin): There is a prime divisor of $\left(p^{r}-1\right)$ which does not divide any $\left(p^{t}-1\right)$ for $t<r$, except when $p=2$ and $r=6$. Indeed $2^{6}-1=63=3^{2} \cdot 7$.

The situation is

$$
\begin{aligned}
& p^{t_{1} N}\left(p^{t_{1} d_{1}}-1\right)\left(p^{t_{1} d_{2}}-1\right) \cdots\left(p^{t_{1} d_{n}}-1\right) \\
= & p^{t_{2}} N^{\prime}\left(p^{t_{2} d_{1}^{\prime \prime}}-1\right)\left(p^{t_{2}} d_{2}^{\prime \prime}-1\right) \cdots\left(p^{t_{2}} d_{n^{\prime}}^{\prime \prime}-1\right)
\end{aligned}
$$

Lemma 3 (Artin): There is a prime divisor of $\left(p^{r}-1\right)$ which does not divide any $\left(p^{t}-1\right)$ for $t<r$, except when $p=2$ and $r=6$. Indeed $2^{6}-1=63=3^{2} \cdot 7$.

The situation is

$$
\begin{aligned}
& p^{t_{1} N}\left(p^{t_{1} d_{1}}-1\right)\left(p^{t_{1} d_{2}}-1\right) \cdots\left(p^{t_{1} d_{n}}-1\right) \\
= & p^{t_{2}} N^{\prime}\left(p^{t_{2} d_{1}^{\prime \prime}}-1\right)\left(p^{t_{2}} d_{2}^{\prime \prime}-1\right) \cdots\left(p^{t_{2}} d_{n^{\prime}}^{\prime \prime}-1\right)
\end{aligned}
$$

Lemma 3 (Artin): There is a prime divisor of $\left(p^{r}-1\right)$ which does not divide any $\left(p^{t}-1\right)$ for $t<r$, except when $p=2$ and $r=6$. Indeed $2^{6}-1=63=3^{2} \cdot 7$.

Theorem 4:

Let H_{1} and H_{2} be two semisimple algebraic groups defined over finite fields $\mathbb{F}_{q_{1}}$ and $\mathbb{F}_{q_{2}}$ of the same characteristic. Then

$$
\left|H_{1}\left(\mathbb{F}_{q_{1}}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q_{2}}\right)\right| \Longrightarrow q_{1}=q_{2} .
$$

Moreover, the fundamental degrees (with the multiplicities) of the Weyl groups $W\left(H_{1}\right)$ and $W\left(H_{2}\right)$ are the same.

Theorem 4:

Let H_{1} and H_{2} be two semisimple algebraic groups defined over finite fields $\mathbb{F}_{q_{1}}$ and $\mathbb{F}_{q_{2}}$ of the same characteristic. Then

$$
\left|H_{1}\left(\mathbb{F}_{q_{1}}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q_{2}}\right)\right| \Longrightarrow q_{1}=q_{2} .
$$

Moreover, the fundamental degrees (with the multiplicities) of the Weyl groups $W\left(H_{1}\right)$ and $W\left(H_{2}\right)$ are the same.

Theorem 4:

Let H_{1} and H_{2} be two semisimple algebraic groups defined over finite fields $\mathbb{F}_{q_{1}}$ and $\mathbb{F}_{q_{2}}$ of the same characteristic. Then

$$
\left|H_{1}\left(\mathbb{F}_{q_{1}}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q_{2}}\right)\right| \Longrightarrow q_{1}=q_{2}
$$

Moreover, the fundamental degrees (with the multiplicities) of the Weyl groups $W\left(H_{1}\right)$ and $W\left(H_{2}\right)$ are the same.

Theorem 5:

Let H_{1} and H_{2} be two semisimple algebraic groups defined over a finite field \mathbb{F}_{q}.
If $\left|H_{1}\left(\mathbb{F}_{q}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q}\right)\right|$ then $\left|H_{1}\left(\mathbb{F}_{q^{\prime}}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q^{\prime}}\right)\right|$ for any finite extension $\mathbb{F}_{q^{\prime}}$ of \mathbb{F}_{q}.

Remark 6:

Let H_{1} and H_{2} be two semisimple algebraic groups over a finite field \mathbb{F}_{q} such that the groups $H_{1}\left(\mathbb{F}_{q}\right)$ and $H_{2}\left(\mathbb{F}_{q}\right)$ have the same order. Then we have:

> The rank of the group H_{1} is the same as the rank of H_{2}.
> The number of direct simple factors of the groups H_{1} and H_{2} is the same.

If one of the groups, say H_{1}, is simple, then so is H_{2} and in that case H_{1} is isomorphic to H_{2}.

Remark 6:

Let H_{1} and H_{2} be two semisimple algebraic groups over a finite field \mathbb{F}_{q} such that the groups $H_{1}\left(\mathbb{F}_{q}\right)$ and $H_{2}\left(\mathbb{F}_{q}\right)$ have the same order. Then we have:
(1) The rank of the group H_{1} is the same as the rank of H_{2}.

The number of direct simple factors of the groups H_{1} and H_{2} is the same.
If one of the groups, say H_{1}, is simple, then so is H_{2} and in that case H_{1} is isomorphic to H_{2}.

Remark 6:

Let H_{1} and H_{2} be two semisimple algebraic groups over a finite field \mathbb{F}_{q} such that the groups $H_{1}\left(\mathbb{F}_{q}\right)$ and $H_{2}\left(\mathbb{F}_{q}\right)$ have the same order. Then we have:
(1) The rank of the group H_{1} is the same as the rank of H_{2}.
(2) The number of direct simple factors of the groups H_{1} and H_{2} is the same.
If one of the groups, say H_{1}, is simple, then so is H_{2} and in that case H_{1} is isomorphic to H_{2}.

Remark 6:

Let H_{1} and H_{2} be two semisimple algebraic groups over a finite field \mathbb{F}_{q} such that the groups $H_{1}\left(\mathbb{F}_{q}\right)$ and $H_{2}\left(\mathbb{F}_{q}\right)$ have the same order. Then we have:
(1) The rank of the group H_{1} is the same as the rank of H_{2}.
(2) The number of direct simple factors of the groups H_{1} and H_{2} is the same.
(3) If one of the groups, say H_{1}, is simple, then so is H_{2} and in that case H_{1} is isomorphic to H_{2}.

Theorem 7: Let H_{1} and H_{2} be semisimple algebraic groups each being a direct product of exactly two simple algebraic groups. If $\left|H_{1}\left(\mathbb{F}_{q}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q}\right)\right|$ then the pair $\left(H_{1}, H_{2}\right)$ is one of the following:
$\left(A_{2 n-2} B_{n}, A_{2 n-1} B_{n-1}\right)$ for $n \geq 2$,
$\left(A_{n-2} D_{n}, A_{n-1} B_{n-1}\right)$ for $n \geq 4$,
$\left(B_{n-1} D_{2 n}, B_{2 n-1} B_{n}\right)$ for $n \geq 2$,

- ($\left.A_{1} A_{5}, A_{4} G_{2}\right)$,
- $\left(A_{1} B_{3}, B_{2} G_{2}\right)$,
- $\left(A_{1} D_{6}, B_{5} G_{2}\right)$,
- $\left(A_{2} B_{3}, A_{3} G_{2}\right)$ and
- ($\left.B_{3}^{2}, D_{4} G_{2}\right)$.

Theorem 7: Let H_{1} and H_{2} be semisimple algebraic groups each being a direct product of exactly two simple algebraic groups. If $\left|H_{1}\left(\mathbb{F}_{q}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q}\right)\right|$ then the pair $\left(H_{1}, H_{2}\right)$ is one of the following:
$\left(A_{2 n-2} B_{n}, A_{2 n-1} B_{n-1}\right)$ for $n \geq 2$,
$\left(A_{n-2} D_{n}, A_{n-1} B_{n-1}\right)$ for $n \geq 4$,
$\left(B_{n-1} D_{2 n}, B_{2 n-1} B_{n}\right)$ for $n \geq 2$,
$\left(A_{1} A_{5}, A_{4} G_{2}\right)$,
$\left(A_{1} B_{3}, B_{2} G_{2}\right)$,
$\left(A_{1} D_{6}, B_{5} G_{2}\right)$,
$\left(A_{2} B_{3}, A_{3} G_{2}\right)$ and
$\left(B_{3}^{2}, D_{4} G_{2}\right)$.

Theorem 7: Let H_{1} and H_{2} be semisimple algebraic groups each being a direct product of exactly two simple algebraic groups. If $\left|H_{1}\left(\mathbb{F}_{q}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q}\right)\right|$ then the pair $\left(H_{1}, H_{2}\right)$ is one of the following:

- $\left(A_{2 n-2} B_{n}, A_{2 n-1} B_{n-1}\right)$ for $n \geq 2$, $\left(A_{n-2} D_{n}, A_{n-1} B_{n-1}\right)$ for $n \geq 4$, $\left(B_{n-1} D_{2 n}, B_{2 n-1} B_{n}\right)$ for $n \geq 2$, $\left(A_{1} A_{5}, A_{4} G_{2}\right)$, $\left(A_{1} B_{3}, B_{2} G_{2}\right)$, $\left(A_{1} D_{6}, B_{5} G_{2}\right)$, $\left(A_{2} B_{3}, A_{3} G_{2}\right)$ and $\left(B_{3}^{2}, D_{4} G_{2}\right)$.

Theorem 7: Let H_{1} and H_{2} be semisimple algebraic groups each being a direct product of exactly two simple algebraic groups. If $\left|H_{1}\left(\mathbb{F}_{q}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q}\right)\right|$ then the pair $\left(H_{1}, H_{2}\right)$ is one of the following:

- $\left(A_{2 n-2} B_{n}, A_{2 n-1} B_{n-1}\right)$ for $n \geq 2$,
- $\left(A_{n-2} D_{n}, A_{n-1} B_{n-1}\right)$ for $n \geq 4$, $\left(B_{n-1} D_{2 n}, B_{2 n-1} B_{n}\right)$ for $n \geq 2$, $\left(A_{1} A_{5}, A_{4} G_{2}\right)$, $\left(A_{1} B_{3}, B_{2} G_{2}\right)$, $\left(A_{1} D_{6}, B_{5} G_{2}\right)$, $\left(A_{2} B_{3}, A_{3} G_{2}\right)$ and $\left(B_{3}^{2}, D_{4} G_{2}\right)$.

Theorem 7: Let H_{1} and H_{2} be semisimple algebraic groups each being a direct product of exactly two simple algebraic groups. If $\left|H_{1}\left(\mathbb{F}_{q}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q}\right)\right|$ then the pair $\left(H_{1}, H_{2}\right)$ is one of the following:

- $\left(A_{2 n-2} B_{n}, A_{2 n-1} B_{n-1}\right)$ for $n \geq 2$,
- $\left(A_{n-2} D_{n}, A_{n-1} B_{n-1}\right)$ for $n \geq 4$,
- $\left(B_{n-1} D_{2 n}, B_{2 n-1} B_{n}\right)$ for $n \geq 2$, $\left(A_{1} A_{5}, A_{4} G_{2}\right)$, $\left(A_{1} B_{3}, B_{2} G_{2}\right)$, $\left(A_{1} D_{6}, B_{5} G_{2}\right)$, $\left(A_{2} B_{3}, A_{3} G_{2}\right)$ and $\left(B_{3}^{2}, D_{4} G_{2}\right)$.

Theorem 7: Let H_{1} and H_{2} be semisimple algebraic groups each being a direct product of exactly two simple algebraic groups. If $\left|H_{1}\left(\mathbb{F}_{q}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q}\right)\right|$ then the pair $\left(H_{1}, H_{2}\right)$ is one of the following:

- $\left(A_{2 n-2} B_{n}, A_{2 n-1} B_{n-1}\right)$ for $n \geq 2$,
- $\left(A_{n-2} D_{n}, A_{n-1} B_{n-1}\right)$ for $n \geq 4$,
- $\left(B_{n-1} D_{2 n}, B_{2 n-1} B_{n}\right)$ for $n \geq 2$,
- $\left(A_{1} A_{5}, A_{4} G_{2}\right)$,
- $\left(A_{1} B_{3}, B_{2} G_{2}\right)$,
- $\left(A_{1} D_{6}, B_{5} G_{2}\right)$,
- $\left(A_{2} B_{3}, A_{3} G_{2}\right)$ and
- ($\left.B_{3}^{2}, D_{4} G_{2}\right)$.

Observe that in the above theorem, we have three infinite families of pairs.

If we consider the following pairs given by the first two infinite families:

$$
\begin{gathered}
\left(H_{1}, H_{2}\right)=\left(A_{2 n-2} B_{n}, A_{2 n-1} B_{n-1}\right) \\
\left(H_{3}, H_{4}\right)=\left(A_{2 n-2} D_{2 n}, A_{2 n-1} B_{2 n-1}\right)
\end{gathered}
$$

then

$$
\left(H_{1} H_{4}, H_{2} H_{3}\right)=\left(A_{2 n-2} A_{2 n-1} B_{n} B_{2 n-1}, A_{2 n-1} A_{2 n-2} B_{n-1} D_{2 n}\right)
$$

This implies that $\left(B_{2 n-1} B_{n}, B_{n-1} D_{2 n}\right)$ is also a pair of order coincidence and this is precisely our third infinite family!

Observe that in the above theorem, we have three infinite families of pairs.

If we consider the following pairs given by the first two infinite families:

$$
\begin{gathered}
\left(H_{1}, H_{2}\right)=\left(A_{2 n-2} B_{n}, A_{2 n-1} B_{n-1}\right) \\
\left(H_{3}, H_{4}\right)=\left(A_{2 n-2} D_{2 n}, A_{2 n-1} B_{2 n-1}\right)
\end{gathered}
$$

then

$$
\left(H_{1} H_{4}, H_{2} H_{3}\right)=\left(A_{2 n-2} A_{2 n-1} B_{n} B_{2 n-1}, A_{2 n-1} A_{2 n-2} B_{n-1} D_{2 n}\right) .
$$

This implies that ($B_{2 n-1} B_{n}, B_{n-1} D_{2 n}$) is also a pair of order coincidence and this is precisely our third infinite family!

Observe that in the above theorem, we have three infinite families of pairs.

If we consider the following pairs given by the first two infinite families:

$$
\begin{gathered}
\left(H_{1}, H_{2}\right)=\left(A_{2 n-2} B_{n}, A_{2 n-1} B_{n-1}\right) \\
\left(H_{3}, H_{4}\right)=\left(A_{2 n-2} D_{2 n}, A_{2 n-1} B_{2 n-1}\right)
\end{gathered}
$$

then

$$
\left(H_{1} H_{4}, H_{2} H_{3}\right)=\left(A_{2 n-2} A_{2 n-1} B_{n} B_{2 n-1}, A_{2 n-1} A_{2 n-2} B_{n-1} D_{2 n}\right) .
$$

This implies that ($B_{2 n-1} B_{n}, B_{n-1} D_{2 n}$) is also a pair of order coincidence and this is precisely our third infinite family!

Observe that in the above theorem, we have three infinite families of pairs.

If we consider the following pairs given by the first two infinite families:

$$
\begin{gathered}
\left(H_{1}, H_{2}\right)=\left(A_{2 n-2} B_{n}, A_{2 n-1} B_{n-1}\right) \\
\left(H_{3}, H_{4}\right)=\left(A_{2 n-2} D_{2 n}, A_{2 n-1} B_{2 n-1}\right)
\end{gathered}
$$

then
$\left(H_{1} H_{4}, H_{2} H_{3}\right)=\left(A_{2 n-2} A_{2 n-1} B_{n} B_{2 n-1}, A_{2 n-1} A_{2 n-2} B_{n-1} D_{2 n}\right)$.
This implies that ($B_{2 n-1} B_{n}, B_{n-1} D_{2 n}$) is also a pair of order coincidence and this is precisely our third infinite family!

Observe that in the above theorem, we have three infinite families of pairs.

If we consider the following pairs given by the first two infinite families:

$$
\begin{gathered}
\left(H_{1}, H_{2}\right)=\left(A_{2 n-2} B_{n}, A_{2 n-1} B_{n-1}\right) \\
\left(H_{3}, H_{4}\right)=\left(A_{2 n-2} D_{2 n}, A_{2 n-1} B_{2 n-1}\right)
\end{gathered}
$$

then

$$
\left(H_{1} H_{4}, H_{2} H_{3}\right)=\left(A_{2 n-2} A_{2 n-1} B_{n} B_{2 n-1}, A_{2 n-1} A_{2 n-2} B_{n-1} D_{2 n}\right) .
$$

This implies that ($B_{2 n-1} B_{n}, B_{n-1} D_{2 n}$) is also a pair of order coincidence and this is precisely our third infinite family!

Observe that in the above theorem, we have three infinite families of pairs.

If we consider the following pairs given by the first two infinite families:

$$
\begin{gathered}
\left(H_{1}, H_{2}\right)=\left(A_{2 n-2} B_{n}, A_{2 n-1} B_{n-1}\right) \\
\left(H_{3}, H_{4}\right)=\left(A_{2 n-2} D_{2 n}, A_{2 n-1} B_{2 n-1}\right)
\end{gathered}
$$

then

$$
\left(H_{1} H_{4}, H_{2} H_{3}\right)=\left(A_{2 n-2} A_{2 n-1} B_{n} B_{2 n-1}, A_{2 n-1} A_{2 n-2} B_{n-1} D_{2 n}\right) .
$$

This implies that ($B_{2 n-1} B_{n}, B_{n-1} D_{2 n}$) is also a pair of order coincidence and this is precisely our third infinite family!

Remark 8: All the pairs of order coincidence described in Theorem 7 can be obtained from the following pairs:

```
( }\mp@subsup{A}{2n-2}{}\mp@subsup{B}{n}{},\mp@subsup{A}{2n-1}{}\mp@subsup{B}{n-1}{})\mathrm{ for n}\geq2\mathrm{ ,
(}\mp@subsup{A}{n-2}{}\mp@subsup{D}{n}{},\mp@subsup{A}{n-1}{}\mp@subsup{B}{n-1}{})\mathrm{ for }n\geq4\mathrm{ , and
(A2B3, A A G2).
```

Remark 8: All the pairs of order coincidence described in Theorem 7 can be obtained from the following pairs:
(1) $\left(A_{2 n-2} B_{n}, A_{2 n-1} B_{n-1}\right)$ for $n \geq 2$,
2) $\left(A_{n-2} D_{n}, A_{n-1} B_{n-1}\right)$ for $n \geq 4$, and
(3) $\left(A_{2} B_{3}, A_{3} G_{2}\right)$.

If we do not restrict ourselves to the groups having exactly two simple factors, then we also find the following pairs $\left(H_{1}, H_{2}\right)$ involving other exceptional groups:

$$
\left(A_{1} B_{4} B_{6}, B_{2} B_{5} F_{4}\right),\left(A_{4} G_{2} A_{8} B_{6}, A_{3} A_{6} B_{5} E_{6}\right),\left(A_{1} B_{7} B_{9}, B_{2} B_{8} E_{7}\right),
$$

and

$$
\left(A_{1} B_{4} B_{7} B_{10} B_{12} B_{15}, B_{3} B_{5} B_{8} B_{11} B_{14} E_{8}\right) .
$$

One now asks a natural question whether these four pairs, together with the pairs described in Remark 8, generate all possible pairs of order coincidence.

If we do not restrict ourselves to the groups having exactly two simple factors, then we also find the following pairs $\left(H_{1}, H_{2}\right)$ involving other exceptional groups:
$\left(A_{1} B_{4} B_{6}, B_{2} B_{5} F_{4}\right),\left(A_{4} G_{2} A_{8} B_{6}, A_{3} A_{6} B_{5} E_{6}\right),\left(A_{1} B_{7} B_{9}, B_{2} B_{8} E_{7}\right)$,

$$
\left(A_{1} B_{4} B_{7} B_{10} B_{12} B_{15}, \quad B_{3} B_{5} B_{8} B_{11} B_{14} E_{8}\right) .
$$

One now asks a natural question whether these four pairs, together with the pairs described in Remark 8, generate all possible pairs of order coincidence.

If we do not restrict ourselves to the groups having exactly two simple factors, then we also find the following pairs $\left(H_{1}, H_{2}\right)$ involving other exceptional groups:
$\left(A_{1} B_{4} B_{6}, B_{2} B_{5} F_{4}\right),\left(A_{4} G_{2} A_{8} B_{6}, A_{3} A_{6} B_{5} E_{6}\right),\left(A_{1} B_{7} B_{9}, B_{2} B_{8} E_{7}\right)$,
and
$\left(A_{1} B_{4} B_{7} B_{10} B_{12} B_{15}, B_{3} B_{5} B_{8} B_{11} B_{14} E_{8}\right)$.
One now asks a natural question whether these four pairs, together with the pairs described in Remark 8, generate all possible pairs of order coincidence.

If we do not restrict ourselves to the groups having exactly two simple factors, then we also find the following pairs $\left(H_{1}, H_{2}\right)$ involving other exceptional groups:
$\left(A_{1} B_{4} B_{6}, B_{2} B_{5} F_{4}\right),\left(A_{4} G_{2} A_{8} B_{6}, A_{3} A_{6} B_{5} E_{6}\right),\left(A_{1} B_{7} B_{9}, B_{2} B_{8} E_{7}\right)$,
and

$$
\left(A_{1} B_{4} B_{7} B_{10} B_{12} B_{15}, B_{3} B_{5} B_{8} B_{11} B_{14} E_{8}\right) .
$$

One now asks a natural question whether these four pairs, together with the pairs described in Remark 8, generate all possible pairs of order coincidence.

Let \mathcal{A} be the set of ordered pairs $\left(H_{1}, H_{2}\right)$ such that

$$
\left|H_{1}\left(\mathbb{F}_{q}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q}\right)\right| .
$$

We define an equivalence relation on \mathcal{A} by $\left(H_{1}, H_{2}\right) \sim\left(H_{1}^{\prime}, H_{2}^{\prime}\right)$ if and only if there exist semisimple groups H and K such that

$$
H_{1}^{\prime} \times K=H_{1} \times H \quad \text { and } \quad H_{2}^{\prime} \times K=H_{2} \times H .
$$

We denote \mathcal{A} / \sim by \mathcal{G} and the equivalence class of an element $\left(H_{1}, H_{2}\right) \in \mathcal{A}$ is denoted by $\left[\left(H_{1}, H_{2}\right)\right]$.
This set \mathcal{G} describes all pairs of order coincidence $\left(H_{1}, H_{2}\right)$ where the semisimple groups H_{i} do not have any common direct simple factor.

Let \mathcal{A} be the set of ordered pairs $\left(H_{1}, H_{2}\right)$ such that

$$
\left|H_{1}\left(\mathbb{F}_{q}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q}\right)\right| .
$$

We define an equivalence relation on \mathcal{A} by $\left(H_{1}, H_{2}\right) \sim\left(H_{1}^{\prime}, H_{2}^{\prime}\right)$ if and only if there exist semisimple groups H and K such that

$$
H_{1}^{\prime} \times K=H_{1} \times H \quad \text { and } \quad H_{2}^{\prime} \times K=H_{2} \times H .
$$

We denote \mathcal{A} / \sim by \mathcal{G} and the equivalence class of an element $\left(H_{1}, H_{2}\right) \in \mathcal{A}$ is denoted by $\left[\left(H_{1}, H_{2}\right)\right]$.
This set \mathcal{G} describes all pairs of order coincidence $\left(H_{1}, H_{2}\right)$ where the semisimple groups H_{i} do not have any common direct simple factor.

Let \mathcal{A} be the set of ordered pairs $\left(H_{1}, H_{2}\right)$ such that

$$
\left|H_{1}\left(\mathbb{F}_{q}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q}\right)\right| .
$$

We define an equivalence relation on \mathcal{A} by $\left(H_{1}, H_{2}\right) \sim\left(H_{1}^{\prime}, H_{2}^{\prime}\right)$ if and only if there exist semisimple groups H and K such that

$$
H_{1}^{\prime} \times K=H_{1} \times H \quad \text { and } \quad H_{2}^{\prime} \times K=H_{2} \times H .
$$

We denote \mathcal{A} / \sim by \mathcal{G} and the equivalence class of an element $\left(H_{1}, H_{2}\right) \in \mathcal{A}$ is denoted by $\left[\left(H_{1}, H_{2}\right)\right]$.
This set \mathcal{G} describes all pairs of order coincidence $\left(H_{1}, H_{2}\right)$ where the semisimple groups H_{i} do not have any common direct simple factor.

Let \mathcal{A} be the set of ordered pairs $\left(H_{1}, H_{2}\right)$ such that

$$
\left|H_{1}\left(\mathbb{F}_{q}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q}\right)\right| .
$$

We define an equivalence relation on \mathcal{A} by $\left(H_{1}, H_{2}\right) \sim\left(H_{1}^{\prime}, H_{2}^{\prime}\right)$ if and only if there exist semisimple groups H and K such that

$$
H_{1}^{\prime} \times K=H_{1} \times H \quad \text { and } \quad H_{2}^{\prime} \times K=H_{2} \times H .
$$

We denote \mathcal{A} / \sim by \mathcal{G} and the equivalence class of an element $\left(H_{1}, H_{2}\right) \in \mathcal{A}$ is denoted by $\left[\left(H_{1}, H_{2}\right)\right]$.
This set \mathcal{G} describes all pairs of order coincidence $\left(H_{1}, H_{2}\right)$ where the semisimple groups H_{i} do not have any common direct simple factor.

Let \mathcal{A} be the set of ordered pairs $\left(H_{1}, H_{2}\right)$ such that

$$
\left|H_{1}\left(\mathbb{F}_{q}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q}\right)\right| .
$$

We define an equivalence relation on \mathcal{A} by $\left(H_{1}, H_{2}\right) \sim\left(H_{1}^{\prime}, H_{2}^{\prime}\right)$ if and only if there exist semisimple groups H and K such that

$$
H_{1}^{\prime} \times K=H_{1} \times H \quad \text { and } \quad H_{2}^{\prime} \times K=H_{2} \times H .
$$

We denote \mathcal{A} / \sim by \mathcal{G} and the equivalence class of an element $\left(H_{1}, H_{2}\right) \in \mathcal{A}$ is denoted by $\left[\left(H_{1}, H_{2}\right)\right]$.
This set \mathcal{G} describes all pairs of order coincidence $\left(H_{1}, H_{2}\right)$ where the semisimple groups H_{i} do not have any common direct simple factor.

Let \mathcal{A} be the set of ordered pairs $\left(H_{1}, H_{2}\right)$ such that

$$
\left|H_{1}\left(\mathbb{F}_{q}\right)\right|=\left|H_{2}\left(\mathbb{F}_{q}\right)\right| .
$$

We define an equivalence relation on \mathcal{A} by $\left(H_{1}, H_{2}\right) \sim\left(H_{1}^{\prime}, H_{2}^{\prime}\right)$ if and only if there exist semisimple groups H and K such that

$$
H_{1}^{\prime} \times K=H_{1} \times H \quad \text { and } \quad H_{2}^{\prime} \times K=H_{2} \times H .
$$

We denote \mathcal{A} / \sim by \mathcal{G} and the equivalence class of an element $\left(H_{1}, H_{2}\right) \in \mathcal{A}$ is denoted by $\left[\left(H_{1}, H_{2}\right)\right]$.
This set \mathcal{G} describes all pairs of order coincidence $\left(H_{1}, H_{2}\right)$ where the semisimple groups H_{i} do not have any common direct simple factor.

We put a binary operation on \mathcal{G} given by

$$
\left[\left(H_{1}, H_{2}\right)\right] \circ\left[\left(H_{1}^{\prime}, H_{2}^{\prime}\right)\right]=\left[\left(H_{1} \times H_{1}^{\prime}, H_{2} \times H_{2}^{\prime}\right)\right] .
$$

The set \mathcal{G} is obviously closed under o which is an associative operation.
The equivalence class $[(H, H)]$ acts as the identity and

$$
\left[\left(H_{1}, H_{2}\right)\right]^{-1}=\left[\left(H_{2}, H_{1}\right)\right] .
$$

Thus \mathcal{G} is an abelian, torsion-free group!

We put a binary operation on \mathcal{G} given by

$$
\left[\left(H_{1}, H_{2}\right)\right] \circ\left[\left(H_{1}^{\prime}, H_{2}^{\prime}\right)\right]=\left[\left(H_{1} \times H_{1}^{\prime}, H_{2} \times H_{2}^{\prime}\right)\right] .
$$

The set \mathcal{G} is obviously closed under o which is an associative operation.
The equivalence class $[(H, H)]$ acts as the identity and

$$
\left[\left(H_{1}, H_{2}\right)\right]^{-1}=\left[\left(H_{2}, H_{1}\right)\right] .
$$

Thus \mathcal{G} is an abelian, torsion-free group!

We put a binary operation on \mathcal{G} given by

$$
\left[\left(H_{1}, H_{2}\right)\right] \circ\left[\left(H_{1}^{\prime}, H_{2}^{\prime}\right)\right]=\left[\left(H_{1} \times H_{1}^{\prime}, H_{2} \times H_{2}^{\prime}\right)\right] .
$$

The set \mathcal{G} is obviously closed under o which is an associative operation.

The equivalence class $[(H, H)]$ acts as the identity and

$$
\left[\left(H_{1}, H_{2}\right)\right]^{-1}=\left[\left(H_{2}, H_{1}\right)\right] .
$$

Thus \mathcal{G} is an abelian, torsion-free group!

We put a binary operation on \mathcal{G} given by

$$
\left[\left(H_{1}, H_{2}\right)\right] \circ\left[\left(H_{1}^{\prime}, H_{2}^{\prime}\right)\right]=\left[\left(H_{1} \times H_{1}^{\prime}, H_{2} \times H_{2}^{\prime}\right)\right] .
$$

The set \mathcal{G} is obviously closed under o which is an associative operation.

The equivalence class $[(H, H)]$ acts as the identity and

$$
\left[\left(H_{1}, H_{2}\right)\right]^{-1}=\left[\left(H_{2}, H_{1}\right)\right]
$$

Thus \mathcal{G} is an abelian, torsion-free group!

We put a binary operation on \mathcal{G} given by

$$
\left[\left(H_{1}, H_{2}\right)\right] \circ\left[\left(H_{1}^{\prime}, H_{2}^{\prime}\right)\right]=\left[\left(H_{1} \times H_{1}^{\prime}, H_{2} \times H_{2}^{\prime}\right)\right] .
$$

The set \mathcal{G} is obviously closed under o which is an associative operation.

The equivalence class $[(H, H)]$ acts as the identity and

$$
\left[\left(H_{1}, H_{2}\right)\right]^{-1}=\left[\left(H_{2}, H_{1}\right)\right] .
$$

Thus \mathcal{G} is an abelian, torsion-free group!

We put a binary operation on \mathcal{G} given by

$$
\left[\left(H_{1}, H_{2}\right)\right] \circ\left[\left(H_{1}^{\prime}, H_{2}^{\prime}\right)\right]=\left[\left(H_{1} \times H_{1}^{\prime}, H_{2} \times H_{2}^{\prime}\right)\right] .
$$

The set \mathcal{G} is obviously closed under o which is an associative operation.

The equivalence class $[(H, H)]$ acts as the identity and

$$
\left[\left(H_{1}, H_{2}\right)\right]^{-1}=\left[\left(H_{2}, H_{1}\right)\right] .
$$

Thus \mathcal{G} is an abelian, torsion-free group!

Theorem 9: The group \mathcal{G} is generated by following elements:

$$
\begin{aligned}
& {\left[\left(A_{2 n-2} B_{n}, A_{2 n-1} B_{n-1}\right)\right] \text { for } n \geq 2,} \\
& {\left[\left(A_{n-2} D_{n}, A_{n-1} B_{n-1}\right)\right] \text { for } n \geq 4,}
\end{aligned}
$$

$\left[\left(A_{2} B_{3}, A_{3} G_{2}\right)\right]$,
$\left[\left(A_{1} B_{4} B_{6}, B_{2} B_{5} F_{4}\right)\right]$,
$\left[\left(A_{4} G_{2} A_{8} B_{6}, A_{3} A_{6} B_{5} E_{6}\right)\right]$,
$\left[\left(A_{1} B_{7} B_{9}, B_{2} B_{8} E_{7}\right)\right]$,
$\left[\left(A_{1} B_{4} B_{7} B_{10} B_{12} B_{15}, B_{3} B_{5} B_{8} B_{11} B_{14} E_{8}\right)\right]$.

Theorem 9: The group \mathcal{G} is generated by following elements:
(1) $\left[\left(A_{2 n-2} B_{n}, A_{2 n-1} B_{n-1}\right)\right]$ for $n \geq 2$,

2 $\left[\left(A_{n-2} D_{n}, A_{n-1} B_{n-1}\right)\right]$ for $n \geq 4$,
(3 $\left[\left(A_{2} B_{3}, A_{3} G_{2}\right)\right]$,
$\left[\left(A_{1} B_{4} B_{6}, B_{2} B_{5} F_{4}\right)\right]$,
$\left[\left(A_{4} G_{2} A_{8} B_{6}, A_{3} A_{6} B_{5} E_{6}\right)\right]$,
$\left[\left(A_{1} B_{7} B_{9}, B_{2} B_{8} E_{7}\right)\right]$,
$\left[\left(A_{1} B_{4} B_{7} B_{10} B_{12} B_{15}, B_{3} B_{5} B_{8} B_{11} B_{14} E_{8}\right)\right]$.

Theorem 9: The group \mathcal{G} is generated by following elements:
(1) $\left[\left(A_{2 n-2} B_{n}, A_{2 n-1} B_{n-1}\right)\right]$ for $n \geq 2$,

2 $\left[\left(A_{n-2} D_{n}, A_{n-1} B_{n-1}\right)\right]$ for $n \geq 4$,
3 $\left[\left(A_{2} B_{3}, A_{3} G_{2}\right)\right]$,
4. $\left[\left(A_{1} B_{4} B_{6}, B_{2} B_{5} F_{4}\right)\right]$,

5 $\left[\left(A_{4} G_{2} A_{8} B_{6}, A_{3} A_{6} B_{5} E_{6}\right)\right]$,
© $\left[\left(A_{1} B_{7} B_{9}, B_{2} B_{8} E_{7}\right)\right]$,
(8) $\left[\left(A_{1} B_{4} B_{7} B_{10} B_{12} B_{15}, B_{3} B_{5} B_{8} B_{11} B_{14} E_{8}\right)\right]$.

Example: Let G_{1}, G_{2} be finite groups acting transitively on a set X.
For a fixed $x \in X$, let G_{j}^{\prime} denote the stabiliser of x in G_{j} for $i=1,2$.
Then

$$
\begin{aligned}
& \frac{\left|G_{1}\right|}{\left|G_{1}^{\prime}\right|}=|X|=\frac{\left|G_{2}\right|}{\left|G_{2}^{\prime}\right|} \\
\Longrightarrow & \left|G_{1} \times G_{2}^{\prime}\right|=\left|G_{2} \times G_{1}^{\prime}\right| .
\end{aligned}
$$

Example: \quad Let G_{1}, G_{2} be finite groups acting transitively on a set X.
For a fixed $x \in X$, let G_{i}^{\prime} denote the stabiliser of x in G_{i} for $i=1,2$. Then

$$
\begin{aligned}
& \frac{\left|G_{1}\right|}{\left|G_{1}^{\prime}\right|}=|X|=\frac{\left|G_{2}\right|}{\left|G_{2}^{\prime}\right|} \\
\Longrightarrow & \left|G_{1} \times G_{2}^{\prime}\right|=\left|G_{2} \times G_{1}^{\prime}\right| .
\end{aligned}
$$

Example: \quad Let G_{1}, G_{2} be finite groups acting transitively on a set X. For a fixed $x \in X$, let G_{i}^{\prime} denote the stabiliser of x in G_{i} for $i=1,2$. Then

$$
\begin{aligned}
& \frac{\left|G_{1}\right|}{\left|G_{1}^{\prime}\right|}=|X|=\frac{\left|G_{2}\right|}{\left|G_{2}^{\prime}\right|} \\
\Longrightarrow & \left|G_{1} \times G_{2}^{\prime}\right|=\left|G_{2} \times G_{1}^{\prime}\right|
\end{aligned}
$$

Example: Let G_{1}, G_{2} be finite groups acting transitively on a set X. For a fixed $x \in X$, let G_{i}^{\prime} denote the stabiliser of x in G_{i} for $i=1,2$. Then

$$
\begin{aligned}
& \frac{\left|G_{1}\right|}{\left|G_{1}^{\prime}\right|}=|X|=\frac{\left|G_{2}\right|}{\left|G_{2}^{\prime}\right|} . \\
\Longrightarrow & \left|G_{1} \times G_{2}^{\prime}\right|=\left|G_{2} \times G_{1}^{\prime}\right| .
\end{aligned}
$$

Observe that the groups $\mathrm{SU}_{n} \subset \mathrm{SO}_{2 n}$ act transitively on the sphere $S^{2 n-1}$.

The corresponding stabilisers are $\mathrm{SU}_{n-1} \subset \mathrm{SO}_{2 n-1}$.
By a result of Onishchik, it follows that the degrees of the Lie groups

$$
\mathrm{SU}_{n} \times \mathrm{SO}_{2 n-1} \quad \text { and } \quad \mathrm{SU}_{n-1} \times \mathrm{SO}_{2 n}
$$

are the same with the same multiplicities.
Thus, we get a pair of order coincidence as $\left(A_{n-1} B_{n-1}, A_{n-2} D_{n}\right)$.

Observe that the groups $\mathrm{SU}_{n} \subset \mathrm{SO}_{2 n}$ act transitively on the sphere $S^{2 n-1}$.

The corresponding stabilisers are $S U_{n-1} \subset S O_{2 n-1}$.
By a result of Onishchik, it follows that the degrees of the Lie groups

$$
\mathrm{SU}_{n} \times \mathrm{SO}_{2 n-1} \quad \text { and } \quad \mathrm{SU}_{n-1} \times \mathrm{SO}_{2 n}
$$

are the same with the same multiplicities.
Thus, we get a pair of order coincidence as $\left(A_{n-1} B_{n-1}, A_{n-2} D_{n}\right)$.

Observe that the groups $\mathrm{SU}_{n} \subset \mathrm{SO}_{2 n}$ act transitively on the sphere $S^{2 n-1}$.

The corresponding stabilisers are $S U_{n-1} \subset S O_{2 n-1}$.
By a result of Onishchik, it follows that the degrees of the Lie groups

$$
\mathrm{SU}_{n} \times \mathrm{SO}_{2 n-1} \quad \text { and } \quad \mathrm{SU}_{n-1} \times \mathrm{SO}_{2 n}
$$

are the same with the same multiplicities.
Thus, we get a pair of order coincidence as $\left(A_{n-1} B_{n-1}, A_{n-2} D_{n}\right)$.

Observe that the groups $\mathrm{SU}_{n} \subset \mathrm{SO}_{2 n}$ act transitively on the sphere $S^{2 n-1}$.

The corresponding stabilisers are $S U_{n-1} \subset S O_{2 n-1}$.
By a result of Onishchik, it follows that the degrees of the Lie groups

$$
\mathrm{SU}_{n} \times \mathrm{SO}_{2 n-1} \quad \text { and } \quad \mathrm{SU}_{n-1} \times \mathrm{SO}_{2 n}
$$

are the same with the same multiplicities.
Thus, we get a pair of order coincidence as $\left(A_{n-1} B_{n-1}, A_{n-2} D_{n}\right)$.

THANK YOU!

