The classification theorem:

Every finite simple group is one of the following:

- 1. cyclic group of prime order,
- 2. an alternating group,
- 3. a finite simple group of Lie type, or
- 4. one of the twenty-six sporadic finite simple groups.

Jordan (1870) published first database of finite simple groups, containing alternating groups and most of the projective linear groups, for instance, $PSL_n(\mathbb{F}_p)$.

The classification is said to be complete with the monographs published by Aschbacher and Smith in 2004.

Class equation:

$$|G| = |Z(G)| + \sum_{i} |C_i|$$

where Z(G) denotes the center of G and C_i denote the distinct non-trivial conjugacy classes in G.

Sylow Theorems:

Let G be a finite group and let p be a prime dividing the order of G. We write $|G| = p^e \cdot m$, where $p \nmid m$.

- 1. The group G has a subgroup of order p^e , called Sylow-p subgroup.
- 2. If K and H are Sylow p-subgroups of G, then $K = gHg^{-1}$ for some $g \in G$.
- 3. If s is the number of Sylow p-subgroups of G, then $s \equiv 1 \pmod{p}$ and $s \mid m$.

Frobenius:

A simple group of squarefree order has prime order.

Burnside:

If p is the smallest prime divisor of |G| and if G has a cyclic Sylow p-subgroup P, then G = KP where $K \triangleleft G$ and (|K|, p) = 1.

In particular, if G is simple, then |G| = p.

A finite group G is said to be ${\bf solvable},$ if it has a composition series

 $1 = G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_n = G$

where the successive quotients are cyclic of prime order.

A group which is both solvable and simple is cyclic of prime order.

Burnside's theorem:

If G is a group of order $p^a q^b$, for primes p and q, then G is solvable.

Walter Feit; John Thompson:

All finite groups of odd order are solvable.

A finite group G is said to be ${\bf solvable},$ if it has a composition series

 $1 = G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_n = G$

where the successive quotients are cyclic of prime order.

Finite simple groups of Lie type

Classical groups

Group	Description
	as a matrix group
$A_n(q), \ n \ge 1$	$\mathrm{PSL}_{n+1}(\mathbb{F}_q)$
$2A_n(q), \ n \ge 2$	$\mathrm{PSU}_{n+1}(\mathbb{F}_q)$
$B_n(q), n \ge 2$	$\mathrm{P}\Omega_{2n+1}(\mathbb{F}_q)$
$C_n(q), n \ge 3$	$\mathrm{PSp}_{2n}(\mathbb{F}_q)$
$D_n(q), n \ge 4$	$\mathrm{P}\Omega_{2n}^+(\mathbb{F}_q)$
$2D_n(q), \ n \ge 4$	$\mathrm{P}\Omega^{-}_{2n}(\mathbb{F}_q)$

Exceptional groups

 ${}^{2}B_{2}(\sqrt{q}) = Sz(q), {}^{3}D_{4}(q), {}^{G_{2}(q)}, {}^{2}G_{2}(\sqrt{q}) = R(q)$ $F_{4}(q), {}^{2}F_{4}(\sqrt{q}), {}^{E_{6}(q)}, {}^{2}E_{6}(q), {}^{E_{7}(q)}, {}^{E_{8}(q)}$

D. Gorenstein, R. Lyons, R. Solomon:

The classification of the finite simple groups

Isomorphisms (and order coincidences) among the finite simple groups of Lie type		
$B_2(q) \cong C_2(q), D_3(q) \cong A_3(q),$		
$^{2}D_{3}(q) \cong ^{2}A_{3}(q), ^{2}D_{2}(q) \cong A_{1}(q^{2}),$,	
$B_n(2^m) \cong C_n(2^m),$		
$A_5 \cong A_1(4) \cong A_1(5) \cong {}^2D_2(2),$	60	
$A_1(7) \cong A_2(2),$	168	
$A_6 \cong A_1(9) \cong B_2(2)' \cong C_2(2)',$	360	
$A_1(8) \cong {}^2G_2(3)'$,	504	
$^{2}A_{2}(3) \cong G_{2}(2)'$,	6048	
$A_8 \cong A_3(2),$	20160	
$^{2}A_{3}(2) \cong ^{2}D_{3}(2) \cong B_{2}(3) \cong C_{2}(3).$	25920	

 $|B_n(q)| = |C_n(q)|,$ $|A_3(2)| = |A_2(4)|, |A_8| = |A_2(4)|.$

Emil Artin: The orders of the linear groups, The orders of the classical simple groups.

7