The classification theorem:

Every finite simple group is one of the following:

1. cyclic group of prime order,
2. an alternating group,
3. a finite simple group of Lie type, or
4. one of the twenty-six sporadic finite simple groups.

Jordan (1870) published first database of finite simple groups, containing alternating groups and most of the projective linear groups, for instance, $\mathrm{PSL}_{n}\left(\mathbb{F}_{p}\right)$.

The classification is said to be complete with the monographs published by Aschbacher and Smith in 2004.

Class equation:

$$
|G|=|Z(G)|+\sum_{i}\left|C_{i}\right|
$$

where $Z(G)$ denotes the center of G and C_{i} denote the distinct non-trivial conjugacy classes in G.

Sylow Theorems:

Let G be a finite group and let p be a prime dividing the order of G. We write $|G|=p^{e} \cdot m$, where $p \nmid m$.

1. The group G has a subgroup of order p^{e}, called Sylow-p subgroup.
2. If K and H are Sylow p-subgroups of G, then $K=g H g^{-1}$ for some $g \in G$.
3. If s is the number of Sylow p-subgroups of G, then $s \equiv 1(\bmod p)$ and $s \mid m$.

Frobenius:

A simple group of squarefree order has prime order.

Burnside:

If p is the smallest prime divisor of $|G|$ and if G has a cyclic Sylow p-subgroup P, then $G=K P$ where $K \triangleleft G$ and $(|K|, p)=1$.

In particular, if G is simple, then $|G|=p$.

A finite group G is said to be solvable, if it has a composition series

$$
1=G_{0} \triangleleft G_{1} \triangleleft G_{2} \triangleleft \cdots \triangleleft G_{n}=G
$$

where the successive quotients are cyclic of prime order.

A group which is both solvable and simple is cyclic of prime order.

Burnside's theorem:

If G is a group of order $p^{a} q^{b}$, for primes p and q, then G is solvable.

Walter Feit; John Thompson:

All finite groups of odd order are solvable.

A finite group G is said to be solvable, if it has a composition series

$$
1=G_{0} \triangleleft G_{1} \triangleleft G_{2} \triangleleft \cdots \triangleleft G_{n}=G
$$

where the successive quotients are cyclic of prime order.

Finite simple groups of Lie type

Classical groups

Group	Description as a matrix group
$A_{n}(q), n \geq 1$	$\operatorname{PSL}_{n+1}\left(\mathbb{F}_{q}\right)$
${ }^{2} A_{n}(q), n \geq 2$	$\operatorname{PSU}_{n+1}\left(\mathbb{F}_{q}\right)$
$B_{n}(q), n \geq 2$	$\mathrm{P}_{2 n+1}\left(\mathbb{F}_{q}\right)$
$C_{n}(q), n \geq 3$	$\mathrm{PSp}_{2 n}\left(\mathbb{F}_{q}\right)$
$D_{n}(q), n \geq 4$	$\mathrm{P} \Omega_{2 n}^{+}\left(\mathbb{F}_{q}\right)$
${ }^{2} D_{n}(q), n \geq 4$	$\mathrm{P} \Omega_{2 n}^{-}\left(\mathbb{F}_{q}\right)$

Exceptional groups

${ }^{2} B_{2}(\sqrt{q})=S z(q), \quad{ }^{3} D_{4}(q), \quad G_{2}(q), \quad{ }^{2} G_{2}(\sqrt{q})=R(q)$ $F_{4}(q),{ }^{2} F_{4}(\sqrt{q}), \quad E_{6}(q),{ }^{2} E_{6}(q), \quad E_{7}(q), \quad E_{8}(q)$
D. Gorenstein, R. Lyons, R. Solomon:

The classification of the finite simple groups

Isomorphisms (and order coincidences) among the finite simple groups of Lie type

$B_{2}(q) \cong C_{2}(q), D_{3}(q) \cong A_{3}(q)$,	
${ }^{2} D_{3}(q) \cong{ }^{2} A_{3}(q),{ }^{2} D_{2}(q) \cong A_{1}\left(q^{2}\right)$,	
$B_{n}\left(2^{m}\right) \cong C_{n}\left(2^{m}\right)$,	60
$A_{5} \cong A_{1}(4) \cong A_{1}(5) \cong{ }^{2} D_{2}(2)$,	168
$A_{1}(7) \cong A_{2}(2)$,	360
$A_{6} \cong A_{1}(9) \cong B_{2}(2)^{\prime} \cong C_{2}(2)^{\prime}$,	504
$A_{1}(8) \cong{ }^{2} G_{2}(3)^{\prime}$,	6048
${ }^{2} A_{2}(3) \cong G_{2}(2)^{\prime}$,	20160
$A_{8} \cong A_{3}(2)$,	25920

$$
\begin{gathered}
\left|B_{n}(q)\right|=\left|C_{n}(q)\right|, \\
\left|A_{3}(2)\right|=\left|A_{2}(4)\right|,\left|A_{8}\right|=\left|A_{2}(4)\right|
\end{gathered}
$$

Emil Artin: The orders of the linear groups, The orders of the classical simple groups.

