Maximal tori determining the algebraic group

Shripad M. Garge. Institut de Mathématiques de Jussieu, Paris. FRANCE. (garge@math.jussieu.fr)

Talk given at Colloque Jeunes Chercheurs en Théorie des Nombres 2006 Rennes. FRANCE. (June 7 – 9, 2006)

Main Theorem:

Let k be a finite field, a global field or a local non-archimedean field.

Let H_1 and H_2 be two split, connected, reductive algebraic groups defined over k.

Suppose that for every maximal torus T_1 in H_1 there exists a maximal torus T_2 in H_2 which is isomorphic to T_1 over k and vice versa.

Then the Weyl groups $W(H_1)$ and $W(H_2)$ are isomorphic.

Moreover, if we write the Weyl groups $W(H_1)$ and $W(H_2)$ as a direct product of the Weyl groups of simple algebraic groups,

$$W(H_1) = \prod_{\Lambda_1} W_{1,\alpha}$$
 and $W(H_2) = \prod_{\Lambda_2} W_{2,\beta}$

Then there is a bijection $i: \Lambda_1 \to \Lambda_2$ such that $W_{1,\alpha}$ is isomorphic to $W_{2,i(\alpha)}$ for every $\alpha \in \Lambda_1$.

Suppose in addition that the groups H_1 and H_2 have trivial centers.

Write the direct product decompositions of H_1 and H_2 into simple algebraic groups as

$$H_1 = \prod_{\Lambda_1} H_{1,\alpha}$$
 and $H_2 = \prod_{\Lambda_2} H_{2,\beta}$.

Then there is a bijection $i: \Lambda_1 \to \Lambda_2$ such that $H_{1,\alpha}$ is isomorphic to $H_{2,i(\alpha)}$, except for the case when $H_{1,\alpha}$ is a simple group of type B_n or C_n , in which case $H_{2,i(\alpha)}$ could be of type C_n or B_n .

Let $G(\overline{\mathbb{Q}}/\mathbb{Q})$ denote the absolute Galois group of \mathbb{Q} .

Let \mathcal{F} be the dense subset of $G(\overline{\mathbb{Q}}/\mathbb{Q})$ consisting of *Frobenius* elements.

A family of continuous representations

 $\rho_l: G(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_n(\mathbb{Q}_l),$

indexed by the set of rational primes, is called *compatible*^{*a*} if, for every $\alpha \in \mathcal{F}$, the characteristic polynomial of $\rho_l(\alpha)$ has coefficients in \mathbb{Q} and is independent of *l*. Let G_l denote the connected component of the Zariski closure of $\rho_l(G(\overline{\mathbb{Q}}/\mathbb{Q}))$.

Question : Is G_l independent of l?

In other words, does there exist a group G defined over ${\mathbb Q}$ such that

$$G_l = G \otimes_{\mathbb{Q}} \mathbb{Q}_l$$
?

4

^{*a*} For a precise definition see 'Abelian *l*-adic representations and elliptic curves' by Serre.

Let k be an arbitrary field and let H be a split connected semisimple algebraic group defined over k. Fix a maximal torus T_0 in H. Let the dimension of T_0 be n.

 \bullet The $k\mbox{-}{\rm conjugacy}$ classes of maximal tori in H are described by the "kernel" of the map

$$H^1(k, N(T_0)) \to H^1(k, H).$$

• The k-isomorphism classes of n-dimensional k-tori, is described by the set $H^1(k, GL_n(\mathbb{Z}))$.

Consider the exact sequence

$$0 \to T_0 \to N(T_0) \to W(H) \to 0.$$

This gives us

$$H^1(k, N(T_0)) \xrightarrow{\psi} H^1(k, W(H)) \xrightarrow{i} H^1(k, GL_n(\mathbb{Z}))$$

Fix a torus T in H.

Let $[T]^c \in H^1(k, N(T_0))$ be the element corresponding to the k-conjugacy class of T in H.

Then the element

$$i \circ \psi([T]^c) \in H^1(k, GL_n(\mathbb{Z}))$$

corresponds to the k-isomorphism class of T.

Let H_1 and H_2 be two split connected, semisimple groups of the same rank, say n. Let T_1 be a maximal torus in H_1 and $T_2 \subset H_2$ be the maximal torus k-isomorphic to T_1 . Consider, $\psi_1([T_1]^c) \in H^1(k, W(H_1)) \xrightarrow{i_1} H^1(k, GL_n(\mathbb{Z})),$

$$\psi_2([T_2]^c) \in H^1(k, W(H_2)) \xrightarrow{i_2} H^1(k, GL_n(\mathbb{Z})).$$

The images of the integral Galois representations,

$$\psi_1([T_1]^c)(G(\bar{k}/k)) \subset W_1, \quad \psi_2([T_2]^c)(G(\bar{k}/k)) \subset W_2$$

7

are conjugate in $GL_n(\mathbb{Z})$.

Now, let k be a finite field, a global field or a local non-archimedean field and H be a split semisimple connected algebraic group defined over k.

An element $H^1(k, W(H))$ which corresponds to a homomorphism $\rho: G(\bar{k}/k) \to W(H)$ with cyclic image, corresponds to a k-isomorphism class of a maximal torus in H, under the mapping $\psi: H^1(k, N(T_0)) \to H^1(k, W(H)).$

Let H_1 and H_2 be two split connected, semisimple algebraic groups defined over k.

If they satisfy the conditions described in the main theorem, then every element $w_1 \in W(H_1)$ can be conjugated in $GL_n(\mathbb{Z})$ to lie in $W(H_2)$ and vice versa.

Theorem. Let W_1 and W_2 be two Weyl groups (of split semisimple algebraic groups) embedded in $GL_n(\mathbb{Z})$ for some n, in a natural way^a.

Assume that every element of W_1 can be conjugated in $GL_n(\mathbb{Z})$ to an element of W_2 and vice versa. Then the Weyl groups W_1 and W_2 are isomorphic.

Moreover, if we write the Weyl groups W_i as a direct product of Weyl groups of simple algebraic groups,

$$W_1 = \prod_{\Lambda_1} W_{1,\alpha}$$
 and $W_2 = \prod_{\Lambda_2} W_{2,\beta}$,

then there exists a bijection $i: \Lambda_1 \to \Lambda_2$ such that $W_{1,\alpha}$ is isomorphic to $W_{2,i(\alpha)}$ for all $\alpha \in \Lambda_1$.

 $^a\mathrm{i.e.}$, by their action on a split maximal torus in the respective groups

Some observations:

- The sets $ch(W_1)$ and $ch(W_2)$ are the same in $\mathbb{Z}[X]$.
- For i = 1, 2, the irreducible factors (over Z) of elements of ch(W_i) are the cyclotomic polynomials.
- For a subset $W \subset GL_n(\mathbb{Z})$, let us define

$$\begin{split} \mathfrak{m}_{i}(W) &= \max \left\{ t : \phi_{i}^{t} \text{ divides } f \text{ for some } f \in ch(W) \right\}, \\ \mathfrak{m}_{i}'(W) &= \min \left\{ t : \phi_{2}^{t} \cdot \phi_{i}^{\mathfrak{m}_{i}(W)} \text{ divides } f \text{ for some } f \in ch(W) \right\} \quad \text{ and} \\ \mathfrak{m}_{i,j}(W) &= \max \left\{ t + s : \phi_{i}^{t} \cdot \phi_{j}^{s} \text{ divides } f \text{ for some } f \in ch(W) \right\} \quad \text{ for } i \neq j. \end{split}$$

Then,

$$\mathfrak{m}_{i}(W_{1}) = \mathfrak{m}_{i}(W_{2}), \qquad \mathfrak{m}'_{i}(W_{1}) = \mathfrak{m}'_{i}(W_{2}), \qquad \text{for all } i, j.$$
$$\mathfrak{m}_{i,j}(W_{1}) = \mathfrak{m}_{i,j}(W_{2})$$

If we have $U_1 \subset GL_{n_1}(\mathbb{Z})$ and $U_2 \subset GL_{n_2}(\mathbb{Z})$, then $U_1 \times U_2 \subset GL_{n_1+n_2}(\mathbb{Z})$ and

$$\mathfrak{m}_i(U_1 \times U_2) = \mathfrak{m}_i(U_1) + \mathfrak{m}_i(U_2)$$

$$\mathfrak{m}'_i(U_1 \times U_2) = \mathfrak{m}'_i(U_1) + \mathfrak{m}'_i(U_2), \quad \text{for all } i, j.$$

$$\mathfrak{m}_{i,j}(U_1 \times U_2) = \mathfrak{m}_{i,j}(U_1) + \mathfrak{m}_{i,j}(U_2)$$

Method of Induction!

Let m be the highest rank among the simple factors of H_i .

For i = 1, 2, let

$$W_i = W_i' \times W_i''$$

where W_i'' is the product of Weyl groups of simple factors of H_i of rank m.

Claim: If a simple group of rank m appears as a direct factor of H_1 with certain multiplicity, then it appears as a direct factor of H_2 with the same multiplicity.

Thus W_1'' is isomorphic to W_2'' .

Therefore,

$$\mathfrak{m}_{i}(W_{1}') = \mathfrak{m}_{i}(W_{1}) - \mathfrak{m}_{i}(W_{1}'') = \mathfrak{m}_{i}(W_{2}) - \mathfrak{m}_{i}(W_{2}'') = \mathfrak{m}_{i}(W_{2}'),$$
 for all i, j .
$$\mathfrak{m}_{i}'(W_{1}') = \mathfrak{m}_{i}'(W_{2}') \qquad \mathfrak{m}_{i,j}(W_{1}') = \mathfrak{m}_{i,j}(W_{2}')$$

The proof now follows by induction on m.

Now, we prove the claim (for m = 2).

The possible simple factors of H_1 and H_2 are of type A_1, A_2, B_2 and G_2 .

Observe that $\mathfrak{m}_6(W(G_2)) = 1$ and $\mathfrak{m}_6(W) = 0$ for Weyl group of any other simple algebraic group of rank less than or equal to 2.

Hence for i = 1, 2, the multiplicity of $W(G_2)$ as a factor of W_i is given by $\mathfrak{m}_6(W_i)$, therefore it is the same for i = 1, 2.

Similarly, the multiplicity of $W(B_2)$ is given by $\mathfrak{m}_4(W_i)$,

and the multiplicity of $W(A_2)$ as a factor of H_i is given by $\mathfrak{m}_3(W_i) - \mathfrak{m}_6(W_i)$.

Thus, we prove that the factors of $W_1^{\prime\prime}$ and $W_2^{\prime\prime}$ are the same with the same multiplicity.

For general case, we need more care.

Гуре	Degrees	Divisors of degrees
A_n	$2, 3, \ldots, n+1$	$1, 2, \ldots, n+1$
B_n	$2, 4, \ldots, 2n$	$1,2,\ldots,n,n+2,n+4,\ldots,2n$ n even
		$1, 2, \ldots, n, n+1, n+3, \ldots, 2n$ $n \text{ odd}$
D_n	$2,4,\ldots,2n-2,n$	$1,2,\ldots,n,n+2,n+4,\ldots,2n-2$ n even
		$1, 2, \dots, n, n+1, n+3, \dots, 2n-2$ $n \text{ odd}$
G_2	2, 6	1, 2, 3, 6
F_4	2, 6, 8, 12	1, 2, 3, 4, 6, 8, 12
E_6	2, 5, 6, 8, 9, 12	1, 2, 3, 4, 5, 6, 8, 9, 12
E_7	2, 6, 8, 10, 12, 14, 18	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18
E_8	2, 8, 12, 14, 18, 20, 24, 30	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 24, 30

'Reflection groups and Coxeter groups' by James E. Humphreys.

Using Springer's Theorem^{*a*} and the above table, we can now easily compute the set $ch^*(W)^b$ for any simple Weyl group W. We summarize them below.

$$ch^{*}(W(A_{n})) = \{\phi_{1}, \phi_{2}, \dots, \phi_{n+1}\}$$

$$ch^{*}(W(B_{n})) = \{\phi_{i}, \phi_{2i} : i = 1, 2, \dots, n\}$$

$$ch^{*}(W(D_{n})) = \{\phi_{i}, \phi_{2j} : i = 1, 2, \dots, n, j = 1, 2, \dots, n-1\}$$

$$ch^{*}(W(G_{2})) = \{\phi_{1}, \phi_{2}, \phi_{3}, \phi_{6}\}$$

$$ch^{*}(W(F_{4})) = \{\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}, \phi_{6}, \phi_{8}, \phi_{12}\}$$

$$ch^{*}(W(E_{6})) = \{\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}, \phi_{5}, \phi_{6}, \phi_{8}, \phi_{9}, \phi_{12}\}$$

$$ch^{*}(W(E_{7})) = \{\phi_{1}, \phi_{2}, \dots, \phi_{10}, \phi_{12}, \phi_{14}, \phi_{18}\}$$

$$ch^{*}(W(E_{8})) = \{\phi_{1}, \phi_{2}, \dots, \phi_{10}, \phi_{12}, \phi_{14}, \phi_{15}, \phi_{18}, \phi_{20}, \phi_{24}, \phi_{30}\}$$

^{*a*}T. A. Springer '*Regular elements of finite reflection groups*', Invent. Math., **25**, 159–198 (1974). ^{*b*} $ch^*(W) = \{\phi_t : \phi_t \text{ divides some element } f \in ch(W)\}$

While determining the multiplicities of the rank m simple factors of H_i , we proceed in the following order.

- simple group of exceptional type, i.e., G_2 , F_4 , E_6 , E_7 or E_8 ;
- simple group of type B_m ;
- simple group of type D_m ;
- simple group of type A_m .

Let $k = \mathbb{Q}_p$ for some rational prime p.

Then, we have that $Br(k) = \mathbb{Q}/\mathbb{Z}$.

Let D_1 and D_2 be two division algebras corresponding to 1/5 and 2/5 in Br(k).

Let $H_1 = SL_1(D_1)$ and $H_2 = SL_1(D_2)$.

A maximal torus in $SL_1(D_i)$ corresponds to a maximal commutative subfield of D_i for i = 1, 2.

Over \mathbb{Q}_p , every division algebra of degree n contains every field extension of dimension n. Thus, the maximal tori in H_1 and H_2 are the same upto k-isomorphism.

But if $H_1 \cong H_2$, then $D_1 \cong D_2$ or $D_1 \cong D_2^{\circ}$, which is a contradiction!!!

THANK YOU!