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ﬁllain Theorem: \

Let k& be a finite field, a global field or a local non-archimedean field.
Let H; and Hy be two split, connected, reductive algebraic groups defined over k.

Suppose that for every maximal torus 1% in H; there exists a maximal torus T5 in Hy which is

isomorphic to I over k and vice versa.

Then the Weyl groups W (H;) and W (H>) are isomorphic.

Moreover, if we write the Weyl groups W (H7) and W (H>) as a direct product of the Weyl groups of

simple algebraic groups,

W(H) =][Wia and W(H)=]]Was.
Ao

Then there is a bijection ¢ : Ay — Ag such that Wy , is isomorphic to W5 ;) for every a € A;.
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@uppose in addition that the groups Hy and H> have trivial centers.

Write the direct product decompositions of H; and Hs into simple algebraic groups as

Hy=]]Hia and Hy= lA_[Hm.
2

Then there is a bijection i : A; — Ag such that H; , is isomorphic to Hj ;(,), except for the case
when Hy  is a simple group of type B,, or (), in which case Hj ;) could be of type C), or B,,.




/Let G(Q/Q) denote the absolute Galois group of Q.
Let F be the dense subset of G(Q/Q) consisting of Frobenius elements.

A family of continuous representations

p: G(Q/Q) — GL,(Q),

indexed by the set of rational primes, is called compatible® if, for every a € F, the characteristic

polynomial of p;(a) has coefficients in Q and is independent of [. Let G; denote the connected
component of the Zariski closure of p;(G(Q/Q)).

Question : Is G, independent of [?

In other words, does there exist a group G defined over Q such that

Gl:G(X)QQl?

\ For a precise definition see ‘Abelian l-adic representations and elliptic curves' by Serre.
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ﬁet k be an arbitrary field and let H be a split connected semisimple algebraic group defined over m

Fix a maximal torus Ty in H. Let the dimension of T;; be n.

e The k-conjugacy classes of maximal tori in H are described by the “kernel” of the map

H'(k,N(Tp)) — H'(k, H).

e The k-isomorphism classes of n-dimensional k-tori, is described by the set H* (k, GLn(Z)).




ﬂonsider the exact sequence
0— Ty — N(Ty) - W(H) — 0.

This gives us
H' (k, N(Tp)) -2 H' (k, W(H)) - H"(k, GL,(Z)).
Fix a torus 1" in H.
Let [T]¢ € H'(k, N(T},)) be the element corresponding to the k-conjugacy class of T in H.

Then the element
ioy([T°) € H' (k,GL,(Z))

corresponds to the k-isomorphism class of T'.




ﬁet H, and H> be two split connected, semisimple groups of the same rank, say n. \

Let 77 be a maximal torus in H; and T C H5 be the maximal torus k-isomorphic to T3. Consider,

o ([10)°) € H' (k, W(Hy)) -~ H'(k,GLy(Z)),
o ([T2]°) € H' (k, W (Hs)) -2 H'(k,GL,(Z)).
The images of the integral Galois representations,

1 ([T1]°) (G(k/K)) € Wi, e ([T2)°) (G(k/K)) € W

are conjugate in GL,,(Z).
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Gow, let k£ be a finite field, a global field or a local non-archimedean field and H be a split \
semisimple connected algebraic group defined over k.

An element H'(k, W (H)) which corresponds to a homomorphism p : G(k/k) — W (H) with cyclic
image, corresponds to a k-isomorphism class of a maximal torus in H, under the mapping
v:H'(k,N(Tp)) — H*(k, W(H)).

Let H, and Hy be two split connected, semisimple algebraic groups defined over k.

If they satisfy the conditions described in the main theorem, then every element w; € W (H7) can be
conjugated in GL,,(Z) to lie in W(H>) and vice versa.




fTheorem. Let W1 and W5 be two Weyl groups (of split semisimple algebraic groups) embedded in\
G L, (7Z) for some n, in a natural way®.

Assume that every element of W; can be conjugated in GL,,(Z) to an element of W5 and vice versa.
Then the Weyl groups W; and W5 are isomorphic.

Moreover, if we write the Weyl groups W, as a direct product of Weyl groups of simple algebraic
groups,

W, = HWLQ and Wy = HW2,57
A Ao

then there exists a bijection ¢ : Ay — As such that Wy , is isomorphic to Wy ;4 for all a € A;.

\ %i.e., by their action on a split maximal torus in the respective groups j
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@ome observations:

e The sets ch(W7) and ch(W5) are the same in Z|X].

e For i =1,2, the irreducible factors (over Z) of elements of ch(W;) are the cyclotomic
polynomials.

e For a subset W C GL,,(Z), let us define

m;(W) = max{¢: ¢} divides f for some f € ch(W)},
m;(W) = min{t:¢}- (b;ni(w) divides f for some f € ch(W)} and
m; (W) = max{t+s:¢}- ¢; divides f for some f € ch(W)}  fori# j.
Then,
m; (W) = m; (W), mi(Wr) = m;(Wa),

for all 1, 7.
m;,; (W) = mg (W)
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/h‘we have Uy C GLy,(Z) and Us C GL,,,(Z), then Uy x Uy C GLy, 41,(Z) and
mZ(Ul X Ug) = mZ(Ul) +mZ(U2)

m, (U x Ug) = m(Uy) + m}(Us), for all 1, .
m; ;(Up x Uz) = m; ;(Ur) +m; ;(Uz)

Method of Induction!
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ﬁet m be the highest rank among the simple factors of H;. \

For:=1,2, let
W, = Wz-’ X Wi”

where W/ is the product of Weyl groups of simple factors of H; of rank m.

1

Claim: If a simple group of rank m appears as a direct factor of H; with certain multiplicity, then it
appears as a direct factor of Hy with the same multiplicity.

Thus W{" is isomorphic to W4/ .

Therefore,

mi(Wi) = mi(Wh) —mi(Wy') = m(W) —my(W5) = mi(IWy),
m; (W) = m; (W) m; (W) = mg ;(W3)

for all 7, .

The proof now follows by induction on m.
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/Now, we prove the claim (for m = 2). \

The possible simple factors of H; and Hy are of type A, Ay, By and Gs.

Observe that mg(W (G2)) = 1 and mg(W) = 0 for Weyl group of any other simple algebraic group
of rank less than or equal to 2.

Hence for i = 1,2, the multiplicity of W (G2) as a factor of W; is given by mg(W;), therefore it is
the same for i = 1, 2.

Similarly, the multiplicity of W (Bs) is given by my(W;),
and the multiplicity of W (A5) as a factor of H; is given by mg(W;) — mg(W;).

Thus, we prove that the factors of W{" and W3’ are the same with the same multiplicity.

For general case, we need more care.

\_ /
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Type | Degrees Divisors of degrees

A, | 2,3,....,n+1 1,2,...,.n+1

B, | 2,4,...,2n ,L2,....n,n+2,n+4,...,2n n even
1,2,....n,n+1,n+3,...,2n n odd

D, |2,4,....2n—2,n L2,....nnn+2,n+4,...,2n —2 n even
,2,....n,n+1,n+3,...,2n — 2 n odd

Ga | 2,6 1,2,3,6

Fy, | 2,6,8,12 1,2,3,4,6,8,12

Eg | 2,5,6,8,9,12 1,2,3,4,5,6,8,9,12

E; | 2,6,8,10,12,14,18 1,2,3,4,5,6,7,8,9,10,12,14, 18

Es | 2,8,12,14,18,20,24,30 | 1,2,3,4,5,6,7,8,9,10,12, 14, 15, 18, 20, 24, 30

‘Reflection groups and Coxeter groups’ by James E. Humphreys.

Section 3.7
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sting Springer's Theorem® and the above table, we can now easily compute the set ch*(W)? for any\
simple Weyl group W. We summarize them below.

ch*(W(An)) = {é1,02, -, nt1}

ch*(W(B)) = {¢id2i:i=12,....n}

ch*(W(Dy)) = {i,¢e:i=1,2,...,n,5=1,2...,n—1}
ch*(W(G2)) = {1, 02, ¢3, 06}

ch*(W(Fy) = {¢1,02, 63,61, 6, b5, ¢12}

ch*(W(Es)) = {b1,¢2, b3, ¢4, b5, b6, Ps, b9, P12 }

ch*(W(E7)) = {é1,02,.... 010, P12, b14, P18}

ch*(W(Eg)) = {é1,02,...,010, P12, P14, P15, P18, P20, P24, P30 }

@T. A. Springer ‘Regular elements of finite reflection groups’, Invent. Math., 25, 159-198 (1974).

\ bch*(W) = {¢t : ¢+ divides some element f € ch(W)} j
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thiIe determining the multiplicities of the rank m simple factors of H;, we proceed in the foIIowing\
order.
e simple group of exceptional type, i.e., Go, Fy, Fg, E7 or Eg;
e simple group of type B,,;

e simple group of type D,,;

e simple group of type A,,.
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ﬁet k = Q, for some rational prime p.

Then, we have that Br(k) = Q/Z.

Let Dy and D, be two division algebras corresponding to 1/5 and 2/5 in Br(k).
Let Hy = SL1(D1) and Hy = SL1(Ds3).

A maximal torus in SLi(D;) corresponds to a maximal commutative subfield of D; for i =1, 2.

Over Q,, every division algebra of degree n contains every field extension of dimension n.

Thus, the maximal tori in H; and H> are the same upto k-isomorphism.

But if H; = Hs, then Dy = Dy or Dy = Dg, which is a contradiction!!!

THANK YOU!
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