Title: A Sum Product theorem over finite fields
Abstract: Let A be a finite subset of a field F. Define A+A and AA to
be the set of pairwise sums and products of elements of A,
respectively. We will see a theorem of Bourgain, Katz and Tao that
shows that if neither A+A nor AA is much bigger than A, then A must be
(in some well-defined sense) close to a subfield of F.
12:00pm
1:00pm
2:00pm
3:00pm
4:00pm
5:00pm
6:00pm
Time:
11:00am-12:30pm
Location:
Ramanujan Hall, Department of Mathematics
Description:
Title: A Sum Product theorem over finite fields
Abstract: Let A be a finite subset of a field F. Define A+A and AA to
be the set of pairwise sums and products of elements of A,
respectively. We will see a theorem of Bourgain, Katz and Tao that
shows that if neither A+A nor AA is much bigger than A, then A must be
(in some well-defined sense) close to a subfield of F.