Mon, February 27, 2023
Public Access

Category: All

February 2023
Mon Tue Wed Thu Fri Sat Sun
    1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28          
4:00pm [4:00pm] M. S. Raghunathan, CEBS, Mumbai

Lecture series on Lie groups

Monday, 27 Feb at 4 pm

Tea: 3.50 pm


Venue: A1-A2, CDEEP, Mathematics Department

Host: Dipendra Prasad

Speaker: M. S. Raghunathan

Affiliation: CEBS, Mumbai

Title: Compact Lie groups and their representations

Abstract: In this course I will first talk about the structure theory of compact Lie groups, beginning with the fact that a compact connected Lie group is an almost direct product of the identity connected component of its center and its commutator subgroup (which is closed subgroup) conjugacy of maximal tori and the fact that every element is contained in a maximal torus. In the course of proving these results, some results on the topology of compact Lie groups which will also be proved. I will then establish Weyl's theorem which asserts that if G is a compact connected Lie group and [G, G]=Gπ_1(G,e) is finite (and hence the universal covering of a compact group whose abelianisation is trivial is compact.


Then I will introduce roots and weights and the Dynkin diagram of the compact group and sketch a proof of the fact that the Dynkin diagram determines the group locally. The remaining lectures will be devoted to representation theory. I will establish the bijective correspondence between 'Dominant Weights' and irreducible representations. The course will end with the Weyl Character Formula for the character of an irreducible representation corresponding to a 'dominant' weight. The entire theory is essentially the same as the representation theory of reductive algebraic groups. I will off and on indicate how the two are related.  

I will be assuming some familiarity with the basic theory of Lie groups such as the correspondence between Lie sub-algebras of the Lie group and Lie subgroups of the Lie groups, and also with some basic results from algebraic topology.